1
|
Liu L, Ye P, Pan J, Zhang Z, Zhou Z, Dai S, Luo Y, Yang P. Constructing a blood contact material surface with selective adhesion of multiple cells using TiO 2 photocatalytic oxidation of polydopamine. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 65:102815. [PMID: 40157473 DOI: 10.1016/j.nano.2025.102815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/04/2025] [Accepted: 03/16/2025] [Indexed: 04/01/2025]
Abstract
The effective measure to promoting endothelial repair is to construct a surface similar to that of normal vascular on blood contact materials. The construction of cell culture platform regulating platelets, endothelial cells (ECs) and Smooth muscle cells (SMCs) may provide more help to promote endothelial repair. In this work, a novel versatile cell research platform UV-P-PDA@TiO2 was constructed by magnetron sputtering and photoetching. The surface of UV-P-PDA@TiO2 was evaluated by materials science methods such as FTIR, Raman, Micro BCA and WCA, and cell culture was performed on the surface. These results indicated that UV-P-PDA@TiO2 platform regulated the cellular behavior of platelets, ECs, and SMCs, achieved selective adhesion, and exhibited orientation. The advantage of histocompatibility was demonstrated by in vivo tests that UV-P-PDA@TiO2 had pattern stability and inhibited tissue proliferation. Conceivably, the regulating the multicellular UV-P-PDA @ TiO2 culture platform may provide a versatile surface engineering strategy for biomaterials.
Collapse
Affiliation(s)
- Luying Liu
- Shandong Provincial Engineering Research Center of Novel Pharmaceutical Excipients and Controlled Release Preparations, College of Pharmacy, Dezhou University, Dezhou 253023, PR China; Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Peng Ye
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Jingmei Pan
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Zhongyu Zhang
- Shandong Provincial Engineering Research Center of Novel Pharmaceutical Excipients and Controlled Release Preparations, College of Pharmacy, Dezhou University, Dezhou 253023, PR China
| | - Ziqi Zhou
- Case School of Engineering, Case Western Reserve University, 10900 Euclid Avenue, 44106-7207 Cleveland, OH, United States
| | - Sheng Dai
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China.
| | - Yue Luo
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital University of Electronic Science and Technology of China, Chengdu 610064, PR China.
| | - Ping Yang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
2
|
Padmanaban AM, Ganesan K, Ramkumar KM. A Co-Culture System for Studying Cellular Interactions in Vascular Disease. Bioengineering (Basel) 2024; 11:1090. [PMID: 39593750 PMCID: PMC11591305 DOI: 10.3390/bioengineering11111090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Cardiovascular diseases (CVDs) are leading causes of morbidity and mortality globally, characterized by complications such as heart failure, atherosclerosis, and coronary artery disease. The vascular endothelium, forming the inner lining of blood vessels, plays a pivotal role in maintaining vascular homeostasis. The dysfunction of endothelial cells contributes significantly to the progression of CVDs, particularly through impaired cellular communication and paracrine signaling with other cell types, such as smooth muscle cells and macrophages. In recent years, co-culture systems have emerged as advanced in vitro models for investigating these interactions and mimicking the pathological environment of CVDs. This review provides an in-depth analysis of co-culture models that explore endothelial cell dysfunction and the role of cellular interactions in the development of vascular diseases. It summarizes recent advancements in multicellular co-culture models, their physiological and therapeutic relevance, and the insights they provide into the molecular mechanisms underlying CVDs. Additionally, we evaluate the advantages and limitations of these models, offering perspectives on how they can be utilized for the development of novel therapeutic strategies and drug testing in cardiovascular research.
Collapse
Affiliation(s)
- Abirami M. Padmanaban
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India;
| | - Kumar Ganesan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong 999077, China;
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India;
| |
Collapse
|
3
|
Pan C, Xu J, Gao Q, Li W, Sun T, Lu J, Shi Q, Han Y, Gao G, Li J. Sequentially suspended 3D bioprinting of multiple-layered vascular models with tunable geometries for in vitromodeling of arterial disorders initiation. Biofabrication 2023; 15:045017. [PMID: 37579751 DOI: 10.1088/1758-5090/aceffa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
As the main precursor of arterial disorders, endothelial dysfunction preferentially occurs in regions of arteries prone to generating turbulent flow, particularly in branched regions of vasculatures. Although various diseased models have been engineered to investigate arterial pathology, producing a multiple-layered vascular model with branched geometries that can recapitulate the critical physiological environments of human arteries, such as intercellular communications and local turbulent flows, remains challenging. This study develops a sequentially suspended three-dimensional bioprinting (SSB) strategy and a visible-light-curable decellularized extracellular matrix bioink (abbreviated as 'VCD bioink') to construct a biomimetic human arterial model with tunable geometries. The engineered multiple-layered arterial models with compartmentalized vascular cells can exhibit physiological functionality and pathological performance under defined physiological flows specified by computational fluid dynamics simulation. Using different configurations of the vascular models, we investigated the independent and synergetic effects of cellular crosstalk and abnormal hemodynamics on the initiation of endothelial dysfunction, a hallmark event of arterial disorder. The results suggest that the arterial model constructed using the SSB strategy and VCD bioinks has promise in establishing diagnostic/analytic platforms for understanding the pathophysiology of human arterial disorders and relevant abnormalities, such as atherosclerosis, aneurysms, and ischemic diseases.
Collapse
Affiliation(s)
- Chen Pan
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jingwen Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Qiqi Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Wei Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Tao Sun
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, People's Republic of China
| | - Jiping Lu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Qing Shi
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, People's Republic of China
| | - Yafeng Han
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
4
|
Biagini F, Daddi C, Calvigioni M, De Maria C, Zhang YS, Ghelardi E, Vozzi G. Designs and methodologies to recreate in vitro human gut microbiota models. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractThe human gut microbiota is widely considered to be a metabolic organ hidden within our bodies, playing a crucial role in the host’s physiology. Several factors affect its composition, so a wide variety of microbes residing in the gut are present in the world population. Individual excessive imbalances in microbial composition are often associated with human disorders and pathologies, and new investigative strategies to gain insight into these pathologies and define pharmaceutical therapies for their treatment are needed. In vitro models of the human gut microbiota are commonly used to study microbial fermentation patterns, community composition, and host-microbe interactions. Bioreactors and microfluidic devices have been designed to culture microorganisms from the human gut microbiota in a dynamic environment in the presence or absence of eukaryotic cells to interact with. In this review, we will describe the overall elements required to create a functioning, reproducible, and accurate in vitro culture of the human gut microbiota. In addition, we will analyze some of the devices currently used to study fermentation processes and relationships between the human gut microbiota and host eukaryotic cells.
Graphic abstract
Collapse
|
5
|
Fernandes A, Miéville A, Grob F, Yamashita T, Mehl J, Hosseini V, Emmert MY, Falk V, Vogel V. Endothelial-Smooth Muscle Cell Interactions in a Shear-Exposed Intimal Hyperplasia on-a-Dish Model to Evaluate Therapeutic Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202317. [PMID: 35971167 PMCID: PMC9534971 DOI: 10.1002/advs.202202317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 05/25/2023]
Abstract
Intimal hyperplasia (IH) represents a major challenge following cardiovascular interventions. While mechanisms are poorly understood, the inefficient preventive methods incentivize the search for novel therapies. A vessel-on-a-dish platform is presented, consisting of direct-contact cocultures with human primary endothelial cells (ECs) and smooth muscle cells (SMCs) exposed to both laminar pulsatile and disturbed flow on an orbital shaker. With contractile SMCs sitting below a confluent EC layer, a model that successfully replicates the architecture of a quiescent vessel wall is created. In the novel IH model, ECs are seeded on synthetic SMCs at low density, mimicking reendothelization after vascular injury. Over 3 days of coculture, ECs transition from a network conformation to confluent 2D islands, as promoted by pulsatile flow, resulting in a "defected" EC monolayer. In defected regions, SMCs incorporated plasma fibronectin into fibers, increased proliferation, and formed multilayers, similarly to IH in vivo. These phenomena are inhibited under confluent EC layers, supporting therapeutic approaches that focus on endothelial regeneration rather than inhibiting proliferation, as illustrated in a proof-of-concept experiment with Paclitaxel. Thus, this in vitro system offers a new tool to study EC-SMC communication in IH pathophysiology, while providing an easy-to-use translational disease model platform for low-cost and high-content therapeutic development.
Collapse
Affiliation(s)
- Andreia Fernandes
- Laboratory of Applied MechanobiologyInstitute of Translational MedicineDepartment of Health Sciences and TechnologyETH Zurich8093ZurichSwitzerland
| | - Arnaud Miéville
- Laboratory of Applied MechanobiologyInstitute of Translational MedicineDepartment of Health Sciences and TechnologyETH Zurich8093ZurichSwitzerland
| | - Franziska Grob
- Laboratory of Applied MechanobiologyInstitute of Translational MedicineDepartment of Health Sciences and TechnologyETH Zurich8093ZurichSwitzerland
| | - Tadahiro Yamashita
- Laboratory of Applied MechanobiologyInstitute of Translational MedicineDepartment of Health Sciences and TechnologyETH Zurich8093ZurichSwitzerland
- Present address:
Department of System Design EngineeringKeio University108‐8345YokohamaJapan
| | - Julia Mehl
- Laboratory of Applied MechanobiologyInstitute of Translational MedicineDepartment of Health Sciences and TechnologyETH Zurich8093ZurichSwitzerland
- Present address:
Julius Wolff InstituteBerlin Institute of HealthCharité Universitätsmedizin Berlin10117BerlinGermany
| | - Vahid Hosseini
- Laboratory of Applied MechanobiologyInstitute of Translational MedicineDepartment of Health Sciences and TechnologyETH Zurich8093ZurichSwitzerland
| | - Maximilian Y. Emmert
- Department of Cardiovascular SurgeryCharité Universitätsmedizin Berlin10117BerlinGermany
- Department of Cardiothoracic and Vascular SurgeryGerman Heart Center Berlin13353BerlinGermany
- Institute for Regenerative Medicine (IREM)University of Zurich8006ZurichSwitzerland
| | - Volkmar Falk
- Department of Cardiovascular SurgeryCharité Universitätsmedizin Berlin10117BerlinGermany
- Department of Cardiothoracic and Vascular SurgeryGerman Heart Center Berlin13353BerlinGermany
- Department of Health Sciences and TechnologyETH Zurich8093ZurichSwitzerland
| | - Viola Vogel
- Laboratory of Applied MechanobiologyInstitute of Translational MedicineDepartment of Health Sciences and TechnologyETH Zurich8093ZurichSwitzerland
| |
Collapse
|
6
|
A Review of Functional Analysis of Endothelial Cells in Flow Chambers. J Funct Biomater 2022; 13:jfb13030092. [PMID: 35893460 PMCID: PMC9326639 DOI: 10.3390/jfb13030092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
The vascular endothelial cells constitute the innermost layer. The cells are exposed to mechanical stress by the flow, causing them to express their functions. To elucidate the functions, methods involving seeding endothelial cells as a layer in a chamber were studied. The chambers are known as parallel plate, T-chamber, step, cone plate, and stretch. The stimulated functions or signals from endothelial cells by flows are extensively connected to other outer layers of arteries or organs. The coculture layer was developed in a chamber to investigate the interaction between smooth muscle cells in the middle layer of the blood vessel wall in vascular physiology and pathology. Additionally, the microfabrication technology used to create a chamber for a microfluidic device involves both mechanical and chemical stimulation of cells to show their dynamics in in vivo microenvironments. The purpose of this study is to summarize the blood flow (flow inducing) for the functions connecting to endothelial cells and blood vessels, and to find directions for future chamber and device developments for further understanding and application of vascular functions. The relationship between chamber design flow, cell layers, and microfluidics was studied.
Collapse
|
7
|
Hiroshima Y, Oyama Y, Sawasaki K, Nakamura M, Kimura N, Kawahito K, Fujie H, Sakamoto N. A Compressed Collagen Construct for Studying Endothelial-Smooth Muscle Cell Interaction Under High Shear Stress. Ann Biomed Eng 2022; 50:951-963. [PMID: 35471673 DOI: 10.1007/s10439-022-02972-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/18/2022] [Indexed: 11/29/2022]
Abstract
The coculture of vascular endothelial cells (ECs) on collagen gels containing smooth muscle cells (SMCs) has been carried out to investigate cellular interactions associated with blood vessel pathophysiology under wall shear stress (WSS) conditions. However, due to a lack of gel stiffness, the previous collagen gel coculture constructs are difficult to use for pathologic higher WSS conditions. Here, we newly constructed a coculture model with centrifugally compressed cell-collagen combined construct (C6), which withstands higher WSS conditions. The elastic modulus of C6 was approximately 6 times higher than that of the uncompressed collagen construct. The level of α-smooth muscle actin, a contractile SMC phenotype marker observed in healthy arteries, was elevated in C6 compared with that of the uncompressed construct, and further increased by exposure to a physiological level WSS of 2 Pa, but not by a pathological level of 20 Pa. WSS conditions of 2 and 20 Pa also induced different expression ratios of matrix metalloproteinases and their inhibitors in the C6 coculture model but did not in monocultured ECs and SMCs. The C6 coculture model will be a powerful tool to investigate interactions between ECs and SMCs under pathologically high WSS conditions.
Collapse
Affiliation(s)
- Yuya Hiroshima
- Department of Cardiovascular Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yuki Oyama
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Kaoru Sawasaki
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Masanori Nakamura
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, 466-8555, Japan
| | - Naoyuki Kimura
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Amanuma 1-847, Omiya, Saitama, 330-834, Japan
| | - Koji Kawahito
- Department of Cardiovascular Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hiromichi Fujie
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan.,Research Center for Medicine-Engineering Collaboration, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Naoya Sakamoto
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan. .,Research Center for Medicine-Engineering Collaboration, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
8
|
Selahi A, Fernando T, Chakraborty S, Muthuchamy M, Zawieja DC, Jain A. Lymphangion-chip: a microphysiological system which supports co-culture and bidirectional signaling of lymphatic endothelial and muscle cells. LAB ON A CHIP 2021; 22:121-135. [PMID: 34850797 PMCID: PMC9761984 DOI: 10.1039/d1lc00720c] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The pathophysiology of several lymphatic diseases, such as lymphedema, depends on the function of lymphangions that drive lymph flow. Even though the signaling between the two main cellular components of a lymphangion, endothelial cells (LECs) and muscle cells (LMCs), is responsible for crucial lymphatic functions, there are no in vitro models that have included both cell types. Here, a fabrication technique (gravitational lumen patterning or GLP) is developed to create a lymphangion-chip. This organ-on-chip consists of co-culture of a monolayer of endothelial lumen surrounded by multiple and uniformly thick layers of muscle cells. The platform allows construction of a wide range of luminal diameters and muscular layer thicknesses, thus providing a toolbox to create variable anatomy. In this device, lymphatic muscle cells align circumferentially while endothelial cells aligned axially under flow, as only observed in vivo in the past. This system successfully characterizes the dynamics of cell size, density, growth, alignment, and intercellular gap due to co-culture and shear. Finally, exposure to pro-inflammatory cytokines reveals that the device could facilitate the regulation of endothelial barrier function through the lymphatic muscle cells. Therefore, this bioengineered platform is suitable for use in preclinical research of lymphatic and blood mechanobiology, inflammation, and translational outcomes.
Collapse
Affiliation(s)
- Amirali Selahi
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, 101 Bizzell Street College Station, TX, 77843, USA.
| | - Teshan Fernando
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, 101 Bizzell Street College Station, TX, 77843, USA.
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
| | - Mariappan Muthuchamy
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
| | - David C Zawieja
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
| | - Abhishek Jain
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, 101 Bizzell Street College Station, TX, 77843, USA.
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
- Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston, TX, USA
| |
Collapse
|
9
|
Tissue-Engineered Vascular Graft with Co-Culture of Smooth Muscle Cells and Human Endothelial Vein Cells on an Electrospun Poly(lactic-co-glycolic acid) Microtube Array Membrane. MEMBRANES 2021; 11:membranes11100732. [PMID: 34677499 PMCID: PMC8539722 DOI: 10.3390/membranes11100732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022]
Abstract
Coronary artery disease is one of the major diseases that plagues today’s modern society. Conventional treatments utilize synthetic vascular grafts such as Dacron® and Teflon® in bypass graft surgery. Despite the wide adaptation, these synthetic grafts are often plagued with weaknesses such as low hemocompatibility, thrombosis, intimal hyperplasia, and risks of graft infection. More importantly, these synthetic grafts are not available at diameters of less than 6 mm. In view of these challenges, we strived to develop and adapt the electrospun Poly Lactic-co-Glycolic Acid (PLGA) Microtube Array Membrane (MTAM) vascular graft for applications smaller than 6 mm in diameter. Homogenously porous PLGA MTAMs were successfully electrospun at 5.5–8.5 kV under ambient conditions. Mechanically, the PLGA MTAMs registered a maximum tensile strength of 5.57 ± 0.85 MPa and Young’s modulus value of 1.134 ± 0.01 MPa; while MTT assay revealed that seven-day Smooth Muscle Cells (SMCs) and Human Umbilical Vein Endothelial Cells (HUVECs) registered a 6 times and 2.4 times higher cell viability when cultured in a co-culture setting in medium containing α-1 haptaglobulin. When rolled into a vascular graft, the PLGA MTAMs registered an overall degradation of 82% after 60 days of cell co-culture. After eight weeks of culturing, immunohistochemistry staining revealed the formation of a monolayer of HUVECs with tight junctions on the surface of the PLGA MTAM, and as for the SMCs housed within the lumens of the PLGA MTAMs, a monolayer with high degree of orientation was observed. The PLGA MTAM registered a burst pressure of 1092.2 ± 175.3 mmHg, which was sufficient for applications such as small diameter blood vessels. Potentially, the PLGA MTAM could be used as a suitable substrate for vascular engineering.
Collapse
|
10
|
Lust ST, Shanahan CM, Shipley RJ, Lamata P, Gentleman E. Design considerations for engineering 3D models to study vascular pathologies in vitro. Acta Biomater 2021; 132:114-128. [PMID: 33652164 PMCID: PMC7611653 DOI: 10.1016/j.actbio.2021.02.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
Many cardiovascular diseases (CVD) are driven by pathological remodelling of blood vessels, which can lead to aneurysms, myocardial infarction, ischaemia and strokes. Aberrant remodelling is driven by changes in vascular cell behaviours combined with degradation, modification, or abnormal deposition of extracellular matrix (ECM) proteins. The underlying mechanisms that drive the pathological remodelling of blood vessels are multifaceted and disease specific; however, unravelling them may be key to developing therapies. Reductionist models of blood vessels created in vitro that combine cells with biomaterial scaffolds may serve as useful analogues to study vascular disease progression in a controlled environment. This review presents the main considerations for developing such in vitro models. We discuss how the design of blood vessel models impacts experimental readouts, with a particular focus on the maintenance of normal cellular phenotypes, strategies that mimic normal cell-ECM interactions, and approaches that foster intercellular communication between vascular cell types. We also highlight how choice of biomaterials, cellular arrangements and the inclusion of mechanical stimulation using fluidic devices together impact the ability of blood vessel models to mimic in vivo conditions. In the future, by combining advances in materials science, cell biology, fluidics and modelling, it may be possible to create blood vessel models that are patient-specific and can be used to develop and test therapies. STATEMENT OF SIGNIFICANCE: Simplified models of blood vessels created in vitro are powerful tools for studying cardiovascular diseases and understanding the mechanisms driving their progression. Here, we highlight the key structural and cellular components of effective models and discuss how including mechanical stimuli allows researchers to mimic native vessel behaviour in health and disease. We discuss the primary methods used to form blood vessel models and their limitations and conclude with an outlook on how blood vessel models that incorporate patient-specific cells and flows can be used in the future for personalised disease modelling.
Collapse
Affiliation(s)
- Suzette T Lust
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, United Kingdom; School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Catherine M Shanahan
- School of Cardiovascular Medicine and Sciences, King's College London, London SE5 9NU, United Kingdom
| | - Rebecca J Shipley
- Institute of Healthcare Engineering and Department of Mechanical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Pablo Lamata
- School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, United Kingdom.
| |
Collapse
|
11
|
Rogers MT, Gard AL, Gaibler R, Mulhern TJ, Strelnikov R, Azizgolshani H, Cain BP, Isenberg BC, Haroutunian NJ, Raustad NE, Keegan PM, Lech MP, Tomlinson L, Borenstein JT, Charest JL, Williams C. A high-throughput microfluidic bilayer co-culture platform to study endothelial-pericyte interactions. Sci Rep 2021; 11:12225. [PMID: 34108507 PMCID: PMC8190127 DOI: 10.1038/s41598-021-90833-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/17/2021] [Indexed: 01/27/2023] Open
Abstract
Microphysiological organ-on-chip models offer the potential to improve the prediction of drug safety and efficacy through recapitulation of human physiological responses. The importance of including multiple cell types within tissue models has been well documented. However, the study of cell interactions in vitro can be limited by complexity of the tissue model and throughput of current culture systems. Here, we describe the development of a co-culture microvascular model and relevant assays in a high-throughput thermoplastic organ-on-chip platform, PREDICT96. The system consists of 96 arrayed bilayer microfluidic devices containing retinal microvascular endothelial cells and pericytes cultured on opposing sides of a microporous membrane. Compatibility of the PREDICT96 platform with a variety of quantifiable and scalable assays, including macromolecular permeability, image-based screening, Luminex, and qPCR, is demonstrated. In addition, the bilayer design of the devices allows for channel- or cell type-specific readouts, such as cytokine profiles and gene expression. The microvascular model was responsive to perturbations including barrier disruption, inflammatory stimulation, and fluid shear stress, and our results corroborated the improved robustness of co-culture over endothelial mono-cultures. We anticipate the PREDICT96 platform and adapted assays will be suitable for other complex tissues, including applications to disease models and drug discovery.
Collapse
Affiliation(s)
- Miles T Rogers
- The Charles Stark Draper Laboratory Inc., 555 Technology Square, Cambridge, MA, 02139, USA
- Raytheon BBN Technologies, Synthetic Biology, 10 Moulton St, Cambridge, MA, 02138, USA
| | - Ashley L Gard
- The Charles Stark Draper Laboratory Inc., 555 Technology Square, Cambridge, MA, 02139, USA
| | - Robert Gaibler
- The Charles Stark Draper Laboratory Inc., 555 Technology Square, Cambridge, MA, 02139, USA
| | - Thomas J Mulhern
- The Charles Stark Draper Laboratory Inc., 555 Technology Square, Cambridge, MA, 02139, USA
| | - Rivka Strelnikov
- The Charles Stark Draper Laboratory Inc., 555 Technology Square, Cambridge, MA, 02139, USA
- Microsoft Corporation, 1 Memorial Drive, Cambridge, MA, 02142, USA
| | - Hesham Azizgolshani
- The Charles Stark Draper Laboratory Inc., 555 Technology Square, Cambridge, MA, 02139, USA
| | - Brian P Cain
- The Charles Stark Draper Laboratory Inc., 555 Technology Square, Cambridge, MA, 02139, USA
| | - Brett C Isenberg
- The Charles Stark Draper Laboratory Inc., 555 Technology Square, Cambridge, MA, 02139, USA
| | - Nerses J Haroutunian
- The Charles Stark Draper Laboratory Inc., 555 Technology Square, Cambridge, MA, 02139, USA
| | - Nicole E Raustad
- The Charles Stark Draper Laboratory Inc., 555 Technology Square, Cambridge, MA, 02139, USA
- Department of Biology, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Philip M Keegan
- The Charles Stark Draper Laboratory Inc., 555 Technology Square, Cambridge, MA, 02139, USA
- Department of Biomedical Engineering, University of Wisconsin Madison, 1550 Engineering Dr, Madison, WI, 53706, USA
| | | | | | - Jeffrey T Borenstein
- The Charles Stark Draper Laboratory Inc., 555 Technology Square, Cambridge, MA, 02139, USA
| | - Joseph L Charest
- The Charles Stark Draper Laboratory Inc., 555 Technology Square, Cambridge, MA, 02139, USA.
| | - Corin Williams
- The Charles Stark Draper Laboratory Inc., 555 Technology Square, Cambridge, MA, 02139, USA.
| |
Collapse
|
12
|
Ma Q, Shi X, Tan X, Wang R, Xiong K, Maitz MF, Cui Y, Hu Z, Tu Q, Huang N, Shen L, Yang Z. Durable endothelium-mimicking coating for surface bioengineering cardiovascular stents. Bioact Mater 2021; 6:4786-4800. [PMID: 34095629 PMCID: PMC8144668 DOI: 10.1016/j.bioactmat.2021.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Mimicking the nitric oxide (NO)-release and glycocalyx functions of native vascular endothelium on cardiovascular stent surfaces has been demonstrated to reduce in-stent restenosis (ISR) effectively. However, the practical performance of such an endothelium-mimicking surfaces is strictly limited by the durability of both NO release and bioactivity of the glycocalyx component. Herein, we present a mussel-inspired amine-bearing adhesive coating able to firmly tether the NO-generating species (e.g., Cu-DOTA coordination complex) and glycocalyx-like component (e.g., heparin) to create a durable endothelium-mimicking surface. The stent surface was firstly coated with polydopamine (pDA), followed by a surface chemical cross-link with polyamine (pAM) to form a durable pAMDA coating. Using a stepwise grafting strategy, Cu-DOTA and heparin were covalently grafted on the pAMDA-coated stent based on carbodiimide chemistry. Owing to both the high chemical stability of the pAMDA coating and covalent immobilization manner of the molecules, this proposed strategy could provide 62.4% bioactivity retention ratio of heparin, meanwhile persistently generate NO at physiological level from 5.9 ± 0.3 to 4.8 ± 0.4 × 10−10 mol cm−2 min−1 in 1 month. As a result, the functionalized vascular stent showed long-term endothelium-mimicking physiological effects on inhibition of thrombosis, inflammation, and intimal hyperplasia, enhanced re-endothelialization, and hence efficiently reduced ISR. A durable endothelium-mimicking coating was developed for surface bioengineering of cardiovascular stents. The durable endothelium-mimicking surface was realized by stepwise grafting of Cu-DOTA and heparin on a robust coating. The durable endothelium-mimicking coating endows the vascular stents with ability to dramatically reduce restenosis.
Collapse
Affiliation(s)
- Qing Ma
- Key Lab of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xiuying Shi
- Key Lab of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xing Tan
- Key Lab of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, China
| | - Rui Wang
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Kaiqin Xiong
- Key Lab of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, China
| | - Manfred F Maitz
- Key Lab of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, China.,Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069, Dresden, Germany
| | - Yuanyuan Cui
- Shimazu China Co. LTD., No. 180 Yizhou Road, Xuhui District, Shanghai, 200233, China
| | - Zhangmei Hu
- Analysis & Testing Center, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qiufen Tu
- Key Lab of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, China
| | - Nan Huang
- Key Lab of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, China
| | - Li Shen
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhilu Yang
- Key Lab of Advanced Technology of Materials of Education Ministry, School of Materials Science and Engineering, Yibin Institute of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
13
|
Rayner SG, Howard CC, Mandrycky CJ, Stamenkovic S, Himmelfarb J, Shih AY, Zheng Y. Multiphoton-Guided Creation of Complex Organ-Specific Microvasculature. Adv Healthc Mater 2021; 10:e2100031. [PMID: 33586357 PMCID: PMC8137585 DOI: 10.1002/adhm.202100031] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/01/2021] [Indexed: 12/14/2022]
Abstract
Engineering functional human tissues in vitro is currently limited by difficulty replicating the small caliber, complex connectivity, cellularity, and 3D curvature of the native microvasculature. Multiphoton ablation has emerged as a promising technique for fabrication of microvascular structures with high resolution and full 3D control, but cellularization and perfusion of complex capillary-scale structures has remained challenging. Here, multiphoton ablation combined with guided endothelial cell growth from pre-formed microvessels is used to successfully create perfusable and cellularized organ-specific microvascular structures at anatomic scale within collagen hydrogels. Fabrication and perfusion of model 3D pulmonary and renal microvascular beds is demonstrated, as is replication and perfusion of a brain microvascular unit derived from in vivo data. Successful endothelialization and blood perfusion of a kidney-specific microvascular structure is achieved, using laser-guided angiogenesis. Finally, proof-of-concept hierarchical blood vessels and complex multicellular models are created, using multistep patterning with multiphoton ablation techniques. These successes open new doors for the creation of engineered tissues and organ-on-a-chip devices.
Collapse
Affiliation(s)
- Samuel G. Rayner
- Department of BioengineeringUniversity of Washington850 Republican St.SeattleWA98109USA
- Department of MedicineDivision of PulmonaryCritical Care and Sleep MedicineUniversity of WashingtonSeattleWA98195USA
| | - Caitlin C. Howard
- Department of BioengineeringUniversity of Washington850 Republican St.SeattleWA98109USA
| | | | | | - Jonathan Himmelfarb
- Department of BioengineeringUniversity of Washington850 Republican St.SeattleWA98109USA
- Department of MedicineDivision of NephrologyUniversity of WashingtonSeattleWA98195USA
- Kidney Research InstituteSeattleWA98104USA
| | - Andy Y. Shih
- Department of BioengineeringUniversity of Washington850 Republican St.SeattleWA98109USA
- Seattle Children's Research InstituteSeattleWA98101USA
| | - Ying Zheng
- Department of BioengineeringUniversity of Washington850 Republican St.SeattleWA98109USA
- Kidney Research InstituteSeattleWA98104USA
- Institute for Stem Cell and Regenerative MedicineSeattleWA98195USA
| |
Collapse
|
14
|
Yang G, Wang F, Li Y, Hou J, Liu D. Construction of tissue engineering bone with the co‑culture system of ADSCs and VECs on partially deproteinized biologic bone in vitro: A preliminary study. Mol Med Rep 2021; 23:58. [PMID: 33215221 PMCID: PMC7706005 DOI: 10.3892/mmr.2020.11696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 02/24/2020] [Indexed: 12/17/2022] Open
Abstract
Scaffold‑based bone tissue engineering has therapeutic potential in the regeneration of osseous defects. The present study aimed to explore the adhesion and cell viability of a co‑culture system composed of vascular endothelial cells PI‑/Annexin V+ represents early apoptotic cells, and PI+/Annexin V+ represents late apoptotic cells (VECs) and adipose‑derived stem cells (ADSCs) on partially deproteinized biologic bone (PDPBB) in vitro, and determine the optimum time period for maximum cell viability that could possibly be used for standardizing the scaffold transplant into the in vivo system. VECs and ADSCs were isolated from pregnant Sprague‑Dawley rats and confirmed by immunostaining with von Willebrand factor and CD90, respectively. PDPBB was prepared using standardized protocols involving coating partially deproteinized bone with fibronectin. PDPBB was incubated in a mono‑culture with VECs or ADSCs, or in a co‑culture with both of these cells at a ratio of 1:1. An MTT assay was used to assess the adhesion and cell viability of VECs and ADSCs on PDPBB in the three different cultures. Scanning electron microscopy was used to observe the adhesion, cell viability and morphology of the different types of cells on PDPBB. It was observed that the absorbance of each group increased gradually and peaked on the 10th day; the highest absorbance was found for the co‑cultured cells group. The difference of cell viability between each cell group was statistically significant. On the 10th day, in the co‑cultured cells group, several cells adhered on the PDPBB material and a nest‑like distribution morphology was observed. Therefore, the adhesion and cell viability of the co‑cultured cells was higher compared with the mono‑cultures of VECs or ADSCs. As cell viability was highest on the 10th day, this could be the optimal length of time for incubation and therefore could be used for in vivo experiments.
Collapse
Affiliation(s)
- Guiran Yang
- Department of Sports Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Fuke Wang
- Department of Sports Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yanlin Li
- Department of Sports Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jianfei Hou
- Department of Sports Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Dejian Liu
- Department of Sports Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
15
|
Hu Q, Su C, Zeng Z, Zhang H, Feng R, Feng J, Li S. Fabrication of multilayer tubular scaffolds with aligned nanofibers to guide the growth of endothelial cells. J Biomater Appl 2020; 35:553-566. [DOI: 10.1177/0885328220935090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aligned electrospun fibers used for the fabrication of tubular scaffolds possess the ability to regulate cellular alignment and relevant functional expression, with applications in tissue engineering. Despite significant progress in the fabrication of small-diameter vascular grafts (SDVGs) over the past decade, several challenges remain; one of the most problematic of these is the fabrication of aligned nanofibers for multilayer SDVGs. Furthermore, delamination between each layer is difficult to avoid during the fabrication of multilayer structures. This study introduces a new fabrication method for minute delamination four-layer tubular scaffolds (FLTSs) that consist of an interior layer with highly longitudinal aligned nanofibers, two middle layers composed of electrospun sloped and circumferentially aligned fibers, and an exterior layer comprising random fibers. These FLTSs are used to simulate the structures and functions of native blood vessels. Here, thermoplastic polyurethane (TPU)/polycaprolactone (PCL)/polyethylene glycol (PEG) were electrospun to fabricate FLTSs or tubular scaffolds with completely random fibers layer (RLTSs). The surface wettability of the TPU/PCL/PEG tubular scaffold was tested by water contact angle analysis. In particular, compared with RLTSs, FLTSs showed excellent mechanical properties, with higher circumferential and longitudinal tensile properties. Furthermore, the high viability of the human umbilical vein endothelial cells (HUVECs) on the FLTSs indicated the biocompatibility of the tubular scaffolds comparing to RLTSs. The aligned and random composite structure of the FLTSs are conducive to promoting the growth of HUVECs, and the cell adhesion and proliferation on these scaffolds was found to be superior to that on RLTSs. These results demonstrate that the fabricated FLTSs have the potential for application in vascular tissue regeneration and clinical arterial replacements.
Collapse
Affiliation(s)
- Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
| | - Caiping Su
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Zhaoxiang Zeng
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, China
| | - Rui Feng
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Jiaxuan Feng
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Shuai Li
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| |
Collapse
|
16
|
Yang Y, Gao P, Wang J, Tu Q, Bai L, Xiong K, Qiu H, Zhao X, Maitz MF, Wang H, Li X, Zhao Q, Xiao Y, Huang N, Yang Z. Endothelium-Mimicking Multifunctional Coating Modified Cardiovascular Stents via a Stepwise Metal-Catechol-(Amine) Surface Engineering Strategy. RESEARCH (WASHINGTON, D.C.) 2020; 2020:9203906. [PMID: 32405627 PMCID: PMC7196174 DOI: 10.34133/2020/9203906] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/22/2020] [Indexed: 12/14/2022]
Abstract
Stenting is currently the major therapeutic treatment for cardiovascular diseases. However, the nonbiogenic metal stents are inclined to trigger a cascade of cellular and molecular events including inflammatory response, thrombogenic reactions, smooth muscle cell hyperproliferation accompanied by the delayed arterial healing, and poor reendothelialization, thus leading to restenosis along with late stent thrombosis. To address prevalence critical problems, we present an endothelium-mimicking coating capable of rapid regeneration of a competently functioning new endothelial layer on stents through a stepwise metal (copper)-catechol-(amine) (MCA) surface chemistry strategy, leading to combinatorial endothelium-like functions with glutathione peroxidase-like catalytic activity and surface heparinization. Apart from the stable nitric oxide (NO) generating rate at the physiological level (2.2 × 10-10 mol/cm2/min lasting for 60 days), this proposed strategy could also generate abundant amine groups for allowing a high heparin conjugation efficacy up to ∼1 μg/cm2, which is considerably higher than most of the conventional heparinized surfaces. The resultant coating could create an ideal microenvironment for bringing in enhanced anti-thrombogenicity, anti-inflammation, anti-proliferation of smooth muscle cells, re-endothelialization by regulating relevant gene expressions, hence preventing restenosis in vivo. We envision that the stepwise MCA coating strategy would facilitate the surface endothelium-mimicking engineering of vascular stents and be therefore helpful in the clinic to reduce complications associated with stenosis.
Collapse
Affiliation(s)
- Ying Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia
| | - Peng Gao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Juan Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qiufen Tu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Long Bai
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia
| | - Kaiqin Xiong
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hua Qiu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Manfred F. Maitz
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Huaiyu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiangyang Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia
| | - Nan Huang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhilu Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
17
|
Abstract
The organ-on-a-chip model mimics the structural and functional features of human tissues or organs and has great importance in translational research. For vessel-on-a-chip model, conventional fabrication techniques are unable to efficiently imitate the intimal-medial unit of the vessel wall. Bioprinting technology, which can precisely control the organization of cells, biomolecules, and the extracellular matrix, has the potential to fabricate three-dimensional (3D) tissue constructs with spatial heterogeneity. In this study, we applied the gelatin-methacryloyl-based bioprinting technology to print 3D construct containing endothelial cells (ECs) and smooth muscle cells (SMCs) on a microfluidic chip. Compared with traditional culture system, EC-SMC coculturing chip model upregulated αSMA and SM22 protein expression of the SMC to a greater degree and maintains the contractile phenotype of the SMC, which mimics the natural vascular microenvironment. This strategy enabled us to establish an in vitro vascular model for studies of the physiologic and pathologic process in vascular wall.
Collapse
|
18
|
A novel micro-grooved collagen substrate for inducing vascular smooth muscle differentiation through cell tissue arrangement and nucleus remodeling. J Mech Behav Biomed Mater 2019; 90:295-305. [DOI: 10.1016/j.jmbbm.2018.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/31/2018] [Accepted: 10/02/2018] [Indexed: 01/14/2023]
|
19
|
Choi JS, Seo TS. Orthogonal co-cultivation of smooth muscle cell and endothelial cell layers to construct in vivo-like vasculature. BIOMICROFLUIDICS 2019; 13:014115. [PMID: 30867885 PMCID: PMC6404948 DOI: 10.1063/1.5068689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/15/2019] [Indexed: 05/22/2023]
Abstract
Development of a three-dimensional (3D) vascular co-cultivation system is one of the major challenges to provide an advanced analytical platform for studying blood vessel related diseases. To date, however, the in vivo-like vessel system has not been fully realized due to the difficulty of co-cultivation of the cells with orthogonal alignment. In this study, we report the utilization of microfabrication technology to construct biomimetic 3D co-cultured vasculature. First, microwrinkle patterns whose direction was perpendicular to the axis of a circular microfluidic channel were fabricated, and vascular smooth muscle cells (VSMCs) were cultured inside the microchannel, leading to an in vivo-like circumferential VSMC layer. Then, human umbilical vein endothelial cells (HUVECs) were co-cultured on the circumferentially aligned VSMC, and the success of double layer formation of HUVEC-VSMC in the circular microchannel could be monitored. After HUVEC cultivation, we applied shear flow in order to induce the orientation of HUVEC parallel to the axis, and the analysis of orientation angle and spreading area of HUVECs indicated that they were changed by shear stress to be aligned to the direction of flow. Thus, the HUVEC and VSMC layer could be aligned with a distinct direction. The expression level of VE-Cadherin located at the boundary of HUVECs implies in vivo-like vascular behavior. The proposed in vitro microfluidic vascular assay platform would be valuable for studying vascular diseases with high reliability due to in vivo-likeness.
Collapse
Affiliation(s)
- Jong Seob Choi
- Department of Bioengineering, University of Washington, Seattle, Washington, DC 98195, USA
| | - Tae Seok Seo
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
| |
Collapse
|
20
|
Huang LY, Yang MC, Tsou HM, Liu TY. Hemocompatibility and anti-fouling behavior of multilayer biopolymers immobilized on gold-thiolized drug-eluting cardiovascular stents. Colloids Surf B Biointerfaces 2018; 173:470-477. [PMID: 30326363 DOI: 10.1016/j.colsurfb.2018.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/10/2018] [Accepted: 10/06/2018] [Indexed: 10/28/2022]
Abstract
To solve the thrombosis and restenosis problem in cardiovascular stent implantation for cardiovascular artery disease, chondroitin 6-sulfate (ChS) with heparin (HEP) have been used as drug carrier layers and alternatively covalently bonded on gold (Au)-dimercaptosuccinic acid (DMSA)-thiolized cardiovascular metallic (SUS316 L stainless steel, SS) stents. Sirolimus, a model drug, was encapsulated in the ChS-HEP alternative layers. The behavior of the drug in releasing and suppressing the growth of smooth-muscle cells (SMCs) was evaluated with 5-layer CHS-HEP coating on the SS stents. Moreover, hemocompatibility of blood clotting time and platelet adhesion was performed. The results showed that the 5-layer ChS-HEP-modified SS stents displayed the greatest hemocompatibility, showing prolonged blood clotting time of the activated partial thrombin time (> 500 s) and less platelet adhesion to reduce thrombosis. Furthermore, sirolimus can be released continuously for more than 40 days with the 5-layer ChS-HEP coating and is beneficial for inhibiting the growth of SMCs; however, it does not affect the proliferation of endothelial cells, which can avoid restenosis formation. Therefore, the multilayers of ChS-HEP grafted onto the Au-DMSA-cardiovascular SS stents provide high potential for use as drug eluting stents.
Collapse
Affiliation(s)
- Li-Ying Huang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Ming-Chien Yang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
| | - Hui-Ming Tsou
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| |
Collapse
|
21
|
van Engeland NCA, Pollet AMAO, den Toonder JMJ, Bouten CVC, Stassen OMJA, Sahlgren CM. A biomimetic microfluidic model to study signalling between endothelial and vascular smooth muscle cells under hemodynamic conditions. LAB ON A CHIP 2018; 18:1607-1620. [PMID: 29756630 PMCID: PMC5972738 DOI: 10.1039/c8lc00286j] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/11/2018] [Indexed: 05/24/2023]
Abstract
Cell signalling and mechanics influence vascular pathophysiology and there is an increasing demand for in vitro model systems that enable examination of signalling between vascular cells under hemodynamic conditions. Current 3D vessel wall constructs do not recapitulate the mechanical conditions of the native tissue nor do they allow examination of cell-cell interactions under relevant hemodynamic conditions. Here, we describe a 3D microfluidic chip model of arterial endothelial and smooth muscle cells where cellular organization, composition and interactions, as well as the mechanical environment of the arterial wall are mimicked. The hemodynamic EC-VSMC-signalling-on-a-chip consists of two parallel polydimethylsiloxane (PDMS) cell culture channels, separated by a flexible, porous PDMS membrane, mimicking the porosity of the internal elastic lamina. The hemodynamic EC-VSMC-signalling-on-a-chip allows co-culturing of human aortic endothelial cells (ECs) and human aortic vascular smooth muscle cells (VSMCs), separated by a porous membrane, which enables EC-VSMC interaction and signalling, crucial for the development and homeostasis of the vessel wall. The device allows real time cell imaging and control of hemodynamic conditions. The culture channels are surrounded on either side by vacuum channels to induce cyclic strain by applying cyclic suction, resulting in mechanical stretching and relaxation of the membrane in the cell culture channels. The blood flow is mimicked by creating a flow of medium at the EC side. Vascular cells remain viable during prolonged culturing, exhibit physiological morphology and organization and make cell-cell contact. During dynamic culturing of the device with a shear stress of 1-1.5 Pa and strain of 5-8%, VSMCs align perpendicular to the given strain in the direction of the flow and EC adopt a cobblestone morphology. To our knowledge, this is the first report on the development of a microfluidic device, which enables a co-culture of interacting ECs and VSMCs under hemodynamic conditions and presents a novel approach to systematically study the biological and mechanical components of the intimal-medial vascular unit.
Collapse
Affiliation(s)
- Nicole C. A. van Engeland
- Eindhoven University of Technology
, Department of Biomedical Engineering
, Soft Tissue Engineering and Mechanobiology (STEM)
,
5600 MB Eindhoven
, The Netherlands
.
;
; Tel: +31 40 247 3047
- Åbo Akademi University
, Faculty of Science and Engineering
, Molecular Biosciences
,
Turku
, Finland
| | - Andreas M. A. O. Pollet
- Eindhoven University of Technology
, Department of Biomedical Engineering
, Soft Tissue Engineering and Mechanobiology (STEM)
,
5600 MB Eindhoven
, The Netherlands
.
;
; Tel: +31 40 247 3047
- Department of Mechanical Engineering
, Eindhoven University of Technology
, Microsystems Group
,
5600 MB Eindhoven
, The Netherlands
| | - Jaap M. J. den Toonder
- Eindhoven University of Technology
, Institute for Complex Molecular Systems (ICMS)
,
5600 MB Eindhoven
, The Netherlands
- Department of Mechanical Engineering
, Eindhoven University of Technology
, Microsystems Group
,
5600 MB Eindhoven
, The Netherlands
| | - Carlijn V. C. Bouten
- Eindhoven University of Technology
, Department of Biomedical Engineering
, Soft Tissue Engineering and Mechanobiology (STEM)
,
5600 MB Eindhoven
, The Netherlands
.
;
; Tel: +31 40 247 3047
- Eindhoven University of Technology
, Institute for Complex Molecular Systems (ICMS)
,
5600 MB Eindhoven
, The Netherlands
| | - Oscar M. J. A. Stassen
- Eindhoven University of Technology
, Department of Biomedical Engineering
, Soft Tissue Engineering and Mechanobiology (STEM)
,
5600 MB Eindhoven
, The Netherlands
.
;
; Tel: +31 40 247 3047
| | - Cecilia M. Sahlgren
- Eindhoven University of Technology
, Department of Biomedical Engineering
, Soft Tissue Engineering and Mechanobiology (STEM)
,
5600 MB Eindhoven
, The Netherlands
.
;
; Tel: +31 40 247 3047
- Åbo Akademi University
, Faculty of Science and Engineering
, Molecular Biosciences
,
Turku
, Finland
- Eindhoven University of Technology
, Institute for Complex Molecular Systems (ICMS)
,
5600 MB Eindhoven
, The Netherlands
| |
Collapse
|
22
|
Li J, Zhang K, Huang N. Engineering Cardiovascular Implant Surfaces to Create a Vascular Endothelial Growth Microenvironment. Biotechnol J 2017; 12. [PMID: 28941232 DOI: 10.1002/biot.201600401] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 09/14/2017] [Indexed: 12/16/2022]
Abstract
Cardiovascular disease (CVD) is generally accepted as the leading cause of morbidity and mortality worldwide, and an increasing number of patients suffer from atherosclerosis and thrombosis annually. To treat these disorders and prolong the sufferers' life, several cardiovascular implants have been developed and applied clinically. Nevertheless, thrombosis and hyperplasia at the site of cardiovascular implants are recognized as long-term problems in the practice of interventional cardiology. Here, we start this review from the clinical requirement of the implants, such as anti-hyperplasia, anti-thrombosis, and pro-endothelialization, wherein particularly focus on the natural factors which influence functional endothelialization in situ, including the healthy smooth muscle cells (SMCs) environment, blood flow shear stress (BFSS), and the extracellular matrix (ECM) microenvironment. Then, the currently available strategies on surface modification of cardiovascular biomaterials to create vascular endothelial growth microenvironment are introduced as the main topic, e.g., BFSS effect simulation by surface micro-patterning, ECM rational construction and SMCs phenotype maintain. Finally, the prospects for extending use of the in situ construction of endothelial cells growth microenvironment are discussed and summarized in designing the next generation of vascular implants.
Collapse
Affiliation(s)
- Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.,Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Kun Zhang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.,School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Nan Huang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| |
Collapse
|
23
|
Battig MR, Fishbein I, Levy RJ, Alferiev IS, Guerrero D, Chorny M. Optimizing endothelial cell functionalization for cell therapy of vascular proliferative disease using a direct contact co-culture system. Drug Deliv Transl Res 2017; 8:954-963. [PMID: 28755158 DOI: 10.1007/s13346-017-0412-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Increased susceptibility to thrombosis, neoatherosclerosis, and restenosis due to incomplete regrowth of the protective endothelial layer remains a critical limitation of the interventional strategies currently used clinically to relieve atherosclerotic obstruction. Rapid recovery of endothelium holds promise for both preventing the thrombotic events and reducing post-angioplasty restenosis, providing the rationale for developing cell delivery strategies for accelerating arterial reendothelialization. The successful translation of experimental cell therapies into clinically viable treatment modalities for restoring vascular endothelium critically depends on identifying strategies for enhancing the functionality of endothelial cells (EC) derived from high cardiovascular risk patients, the target group for the majority of angioplasty procedures. Enhancing EC-associated nitric oxide (NO) synthesis by inducing overexpression of NO synthase (NOS) has shown promise as a way of increasing paracrine activity and restoring function of EC. In the present study, we developed a direct contact co-culture approach compatible with highly labile effectors, such as NO, and applied it for determining the effect of EC functionalization via NOS gene transfer on the growth of co-cultured arterial smooth muscle cells (A10 cell line) exhibiting the defining characteristics of neointimal cells. Bovine aortic endothelial cells magnetically transduced with inducible NOS-encoding adenovirus (Ad) formulated in zinc oleate-based magnetic nanoparticles (MNP[iNOSAd]) strongly suppressed growth of proliferating A10 and attenuated the stimulatory effect of a potent mitogen, platelet-derived growth factor (PDGF-BB), whereas EC functionalization with free iNOSAd or MNP formulated with a different isoform of the enzyme, endothelial NOS, was associated with lower levels of NO synthesis and less pronounced antiproliferative activity toward co-cultured A10 cells. These results show feasibility of applying magnetically facilitated gene transfer to potentiate therapeutically relevant effects of EC for targeted cell therapy of restenosis. The direct contact co-culture methodology provides a sensitive and reliable tool with potential utility for a variety of biomedical applications.
Collapse
Affiliation(s)
- Mark R Battig
- Division of Cardiology, The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ilia Fishbein
- Division of Cardiology, The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Robert J Levy
- Division of Cardiology, The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ivan S Alferiev
- Division of Cardiology, The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - David Guerrero
- Division of Cardiology, The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Michael Chorny
- Division of Cardiology, The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Loy C, Meghezi S, Lévesque L, Pezzoli D, Kumra H, Reinhardt D, Kizhakkedathu JN, Mantovani D. A planar model of the vessel wall from cellularized-collagen scaffolds: focus on cell–matrix interactions in mono-, bi- and tri-culture models. Biomater Sci 2017; 5:153-162. [DOI: 10.1039/c6bm00643d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An easy to prepare and manipulate model of the vascular wall in a planar shape to investigate physiological and pathological processes of vascular tissues.
Collapse
Affiliation(s)
- Caroline Loy
- Laboratory for Biomaterials and Bioengineering
- Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery
- Department of Min-Met-Materials Engineering
- Research Center of CHU de Quebec
- Division of Regenerative Medicine
| | - Sébastien Meghezi
- Laboratory for Biomaterials and Bioengineering
- Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery
- Department of Min-Met-Materials Engineering
- Research Center of CHU de Quebec
- Division of Regenerative Medicine
| | - Lucie Lévesque
- Laboratory for Biomaterials and Bioengineering
- Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery
- Department of Min-Met-Materials Engineering
- Research Center of CHU de Quebec
- Division of Regenerative Medicine
| | - Daniele Pezzoli
- Laboratory for Biomaterials and Bioengineering
- Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery
- Department of Min-Met-Materials Engineering
- Research Center of CHU de Quebec
- Division of Regenerative Medicine
| | - Heena Kumra
- Faculty of Medicine
- Department of Anatomy and Cell Biology
- and Faculty of Dentistry McGill University
- Montréal
- Canada H3A 0C7
| | - Dieter Reinhardt
- Faculty of Medicine
- Department of Anatomy and Cell Biology
- and Faculty of Dentistry McGill University
- Montréal
- Canada H3A 0C7
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood Research
- Department of Pathology and Laboratory Medicine
- Department of Chemistry
- University of British Columbia
- Vancouver
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering
- Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery
- Department of Min-Met-Materials Engineering
- Research Center of CHU de Quebec
- Division of Regenerative Medicine
| |
Collapse
|
25
|
Strobel HA, Dikina AD, Levi K, Solorio LD, Alsberg E, Rolle MW. Cellular Self-Assembly with Microsphere Incorporation for Growth Factor Delivery Within Engineered Vascular Tissue Rings. Tissue Eng Part A 2016; 23:143-155. [PMID: 27784202 DOI: 10.1089/ten.tea.2016.0260] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cellular self-assembly has been used to generate living tissue constructs as an alternative to seeding cells on or within exogenous scaffold materials. However, high cell and extracellular matrix density in self-assembled constructs may impede diffusion of growth factors during engineered tissue culture. In the present study, we assessed the feasibility of incorporating gelatin microspheres within vascular tissue rings during cellular self-assembly to achieve growth factor delivery. To assess microsphere incorporation and distribution within vascular tissue rings, gelatin microspheres were mixed with a suspension of human smooth muscle cells (SMCs) at 0, 0.2, or 0.6 mg per million cells and seeded into agarose wells to form self-assembled cell rings. Microspheres were distributed throughout the rings and were mostly degraded within 14 days in culture. Rings with microspheres were cultured in both SMC growth medium and differentiation medium, with no adverse effects on ring structure or mechanical properties. Incorporated gelatin microspheres loaded with transforming growth factor beta 1 stimulated smooth muscle contractile protein expression in tissue rings. These findings demonstrate that microsphere incorporation can be used as a delivery vehicle for growth factors within self-assembled vascular tissues.
Collapse
Affiliation(s)
- Hannah A Strobel
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts
| | - Anna D Dikina
- 2 Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio
| | - Karen Levi
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts
| | - Loran D Solorio
- 2 Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio
| | - Eben Alsberg
- 2 Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio.,3 Department of Orthopaedic Surgery, Case Western Reserve University , Cleveland, Ohio
| | - Marsha W Rolle
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts
| |
Collapse
|
26
|
Tan A, Fujisawa K, Yukawa Y, Matsunaga YT. Bottom-up fabrication of artery-mimicking tubular co-cultures in collagen-based microchannel scaffolds. Biomater Sci 2016; 4:1503-14. [PMID: 27549872 DOI: 10.1039/c6bm00340k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We developed a robust bottom-up approach to construct open-ended, tubular co-culture constructs that simulate the human vascular morphology and microenvironment. By design, these three-dimensional artificial vessels mimic the basic architecture of an artery: a collagen-rich extracellular matrix (as the tunica externa), smooth muscle cells (SMCs) (as the tunica media), and an endothelial cell (EC) lining (as the tunica interna). A versatile needle-based fabrication technique was employed to achieve controllable arterial layouts within a PDMS-hosted collagen microchannel scaffold (330 ± 10 μm in diameter): (direct co-culture) a SMC/EC bilayer to follow the structure of an arteriole-like segment; and (encapsulated co-culture) a lateral SMC multilayer covered by an EC monolayer lining to simulate the architecture of a larger artery. Optical and fluorescence microscopy images clearly evidenced the progressive cell elongation and sprouting behavior of SMCs and ECs along the collagen gel contour and within the gel matrix under static co-culture conditions. The progressive cell growth patterns effectively led to the formation of a tubular co-culture with an internal endothelial lining expressing prominent CD31 (cluster of differentiation 31) intercellular junction markers. During a 4-day static maturation period, the artery constructs showed modest alteration in the luminal diameters (i.e. less than 10% changes from the initial measurements). This argues in favor of stable and predictable arterial architecture achieved via the proposed fabrication protocols. Both co-culture models showed a high glucose metabolic rate during the initial proliferation phase, followed by a temporary quiescent (and thus, mature) stage. These proof-of-concept models with a controllable architecture create an important foundation for advanced vessel manipulations such as the integration of relevant physiological functionality or remodeling into a vascular disease-mimicking tissue.
Collapse
Affiliation(s)
- A Tan
- Centre for International Research on Integrative Biomedical Systems, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
| | | | | | | |
Collapse
|
27
|
Mathura RA, Russell-Puleri S, Cancel LM, Tarbell JM. Hydraulic Conductivity of Smooth Muscle Cell-Initiated Arterial Cocultures. Ann Biomed Eng 2015; 44:1721-33. [PMID: 26265460 DOI: 10.1007/s10439-015-1421-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 08/07/2015] [Indexed: 01/18/2023]
Abstract
The purpose of the study was to examine the effects of arterial coculture conditions on the transport properties of several in vitro endothelial cell (EC)-smooth muscle cell (SMC)-porous filter constructs in which SMC were grown to confluence first and then EC were inoculated. This order of culturing simulates the environment of a blood vessel wall after endothelial layer damage due to stenting, vascular grafting or other vascular wall insult. For all coculture configurations examined, we observed that hydraulic conductivity (L(p)) values were significantly higher than predicted by a resistances-in-series (RIS) model accounting for the L(p) of EC and SMC measured separately. The greatest increases were observed when EC were plated directly on top of a confluent SMC layer without an intervening filter, presumably mediated by direct EC-SMC contacts that were observed under confocal microscopy. The results are the opposite of a previous study that showed L(p) was significantly reduced compared to an RIS model when EC were grown to confluency first. The physiological, pathophysiological and tissue engineering implications of these results are discussed.
Collapse
Affiliation(s)
- Rishi A Mathura
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Sparkle Russell-Puleri
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Limary M Cancel
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - John M Tarbell
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA.
| |
Collapse
|
28
|
Liu Y, Lu J, Li H, Wei J, Li X. Engineering blood vessels through micropatterned co-culture of vascular endothelial and smooth muscle cells on bilayered electrospun fibrous mats with pDNA inoculation. Acta Biomater 2015; 11:114-25. [PMID: 25305234 DOI: 10.1016/j.actbio.2014.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/25/2014] [Accepted: 10/02/2014] [Indexed: 01/08/2023]
Abstract
Although engineered blood vessels have seen important advances during recent years, proper mechanical strength and vasoactivity remain unsolved problems. In the current study, micropatterned fibrous mats were created to load smooth muscle cells (SMC), and a co-culture with endothelial cells (EC) was established through overlaying on an EC-loaded flat fibrous mat to mimic the layered structure of a blood vessel. A preferential distribution of SMC was determined in the patterned regions throughout the fibrous scaffolds, and aligned fibers in the patterned regions provided topological cues to guide the orientation of SMC with intense actin filaments and extracellular matrix (ECM) production in a circumferential direction. Plasmid DNA encoding basic fibroblast growth factors and vascular endothelial growth factor were integrated into electrospun fibers as biological cues to promote SMC infiltration into fibrous mats, and the viability and ECM production of both EC and SMC. The layered fibrous mats with loaded EC and SMC were wrapped into a cylinder, and engineered vessels were obtained with compact EC and SMC layers after co-culture for 3 months. Randomly oriented ECM productions of EC formed a continuous endothelium covering the entire lumenal surface, and a high alignment of ECM was shown in the circumferential direction of SMC layers. The tensile strength, strain at failure and suture retention strength were higher than those of the human femoral artery, and the burst pressure and radial compliance were in the same range as the human saphenous vein, indicating potential as blood vessel substitutes for transplantation in vivo. Thus, the establishment of topographical cues and biochemical signals in fibrous scaffolds demonstrates advantages in modulating cellular behavior and organization found in complex multicellular tissues.
Collapse
|
29
|
Jin X, Yu H, Kong N, Chang J, Li H, Ye J. Superparamagnetic plasmonic nanoshells for improved imaging, separation and seeding of co-cultured cells. J Mater Chem B 2015; 3:7787-7795. [DOI: 10.1039/c5tb01420d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multifunctional superparamagnetic nanoshells were applied for improved 2D and 3D two-photon luminescence imaging, separation and seeding of co-cultured cells.
Collapse
Affiliation(s)
- Xiulong Jin
- School of Biomedical Engineering & Med-X Research Institute
- Shanghai Jiao Tong University
- Shanghai 200030
- China
| | - Hongfei Yu
- School of Biomedical Engineering & Med-X Research Institute
- Shanghai Jiao Tong University
- Shanghai 200030
- China
| | - Ni Kong
- School of Biomedical Engineering & Med-X Research Institute
- Shanghai Jiao Tong University
- Shanghai 200030
- China
| | - Jiang Chang
- Shanghai institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Haiyan Li
- School of Biomedical Engineering & Med-X Research Institute
- Shanghai Jiao Tong University
- Shanghai 200030
- China
| | - Jian Ye
- School of Biomedical Engineering & Med-X Research Institute
- Shanghai Jiao Tong University
- Shanghai 200030
- China
| |
Collapse
|
30
|
Yang Y, Qi P, Wen F, Li X, Xia Q, Maitz MF, Yang Z, Shen R, Tu Q, Huang N. Mussel-inspired one-step adherent coating rich in amine groups for covalent immobilization of heparin: hemocompatibility, growth behaviors of vascular cells, and tissue response. ACS APPLIED MATERIALS & INTERFACES 2014; 6:14608-20. [PMID: 25105346 DOI: 10.1021/am503925r] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Heparin, an important polysaccharide, has been widely used for coatings of cardiovascular devices because of its multiple biological functions including anticoagulation and inhibition of intimal hyperplasia. In this study, surface heparinization of a commonly used 316L stainless steel (SS) was explored for preparation of a multifunctional vascular stent. Dip-coating of the stents in an aqueous solution of dopamine and hexamethylendiamine (HD) (PDAM/HD) was presented as a facile method to form an adhesive coating rich in primary amine groups, which was used for covalent heparin immobilization via active ester chemistry. A heparin grafting density of about 900 ng/cm(2) was achieved with this method. The retained bioactivity of the immobilized heparin was confirmed by a remarkable prolongation of the activated partial thromboplastin time (APTT) for about 15 s, suppression of platelet adhesion, and prevention of the denaturation of adsorbed fibrinogen. The Hep-PDAM/HD also presented a favorable microenvironment for selectively enhancing endothelial cell (EC) adhesion, proliferation, migration and release of nitric oxide (NO), and at the same time inhibiting smooth muscle cell (SMC) adhesion and proliferation. Upon subcutaneous implantation, the Hep-PDAM/HD exhibited mitigated tissue response, with thinner fibrous capsule and less granulation formation compared to the control 316L SS. This number of unique functions qualifies the heparinized coating as an attractive alternative for the design of a new generation of stents.
Collapse
Affiliation(s)
- Ying Yang
- Key Laboratory of Advanced Technology for Materials of Education Ministry, ‡The Institute of Biomaterials and Surface Engineering, School of Materials Science and Engineering, and #Laboratory of Biosensing and MicroMechatronics, Southwest Jiaotong University , Chengdu 610031, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bhattacharyya A, Lin S, Sandig M, Mequanint K. Regulation of vascular smooth muscle cell phenotype in three-dimensional coculture system by Jagged1-selective Notch3 signaling. Tissue Eng Part A 2014; 20:1175-87. [PMID: 24138322 PMCID: PMC3993058 DOI: 10.1089/ten.tea.2013.0268] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 10/16/2013] [Indexed: 12/21/2022] Open
Abstract
The modulation of vascular smooth muscle cell (VSMC) phenotype is an essential element to fabricate engineered conduits of clinical relevance. In vivo, owing to their close proximity, endothelial cells (ECs) play a role in VSMC phenotype switching. Although considerable progress has been made in vascular tissue engineering, significant knowledge gaps exist on how the contractile VSMC phenotype is induced at the conclusion of the tissue fabrication process. The objectives of this study were as follows: (1) to establish ligand presentation modes on transcriptional activation of VSMC-specific genes, (2) to develop a three-dimensional (3D) coculture model using human coronary artery smooth muscle cells (HCASMCs) and human coronary artery endothelial cells (HCAECs) on porous synthetic scaffolds and, (3) to investigate EC-mediated Notch signaling in 3D cultures and the induction of the HCASMC contractile phenotype. Whereas transcriptional activation of VSMC-specific genes was not induced by presenting soluble Jagged1 and Jagged1 bound to protein G beads, a direct link between HCAEC-bound Jagged1 and HCASMC differentiation genes was observed. Our 3D culture results showed that HCASMCs seeded to scaffolds and cultured for up to 16 days readily attached, infiltrated the scaffold, proliferated, and formed dense confluent layers. HCAECs, seeded on top of an HCASMC layer, formed a distinct, separate monolayer with cell-type partitioning, suggesting that HCAEC growth was contact inhibited. While we observed EC monolayer formation with 200,000 HCAECs/scaffold, seeding 400,000 HCAECs/scaffold revealed the formation of cord-like structures akin to angiogenesis. Western blot analyses showed that 3D coculture induced an upregulation of Notch3 receptor in HCASMCs and its ligand Jagged1 in HCAECs. This was accompanied by a corresponding induction of the contractile HCASMC phenotype as demonstrated by increased expression of smooth muscle-α-actin (SM-α-actin) and calponin. Knockdown of Jagged1 with siRNA showed a reduction in SM-α-actin and calponin in cocultures, identifying a link between Jagged1 and the expression of contractile proteins in 3D cocultures. We therefore conclude that the Notch3 signaling pathway is an important regulator of VSMC phenotype and could be targeted when fabricating engineered vascular tissues.
Collapse
Affiliation(s)
- Aparna Bhattacharyya
- Graduate Program of Biomedical Engineering, The University of Western Ontario, London, Canada
| | - Shigang Lin
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Canada
| | - Martin Sandig
- Graduate Program of Biomedical Engineering, The University of Western Ontario, London, Canada
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| | - Kibret Mequanint
- Graduate Program of Biomedical Engineering, The University of Western Ontario, London, Canada
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Canada
| |
Collapse
|
32
|
Shav D, Gotlieb R, Zaretsky U, Elad D, Einav S. Wall shear stress effects on endothelial-endothelial and endothelial-smooth muscle cell interactions in tissue engineered models of the vascular wall. PLoS One 2014; 9:e88304. [PMID: 24520363 PMCID: PMC3919748 DOI: 10.1371/journal.pone.0088304] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/05/2014] [Indexed: 12/30/2022] Open
Abstract
Vascular functions are affected by wall shear stresses (WSS) applied on the endothelial cells (EC), as well as by the interactions of the EC with the adjacent smooth muscle cells (SMC). The present study was designed to investigate the effects of WSS on the endothelial interactions with its surroundings. For this purpose we developed and constructed two co-culture models of EC and SMC, and compared their response to that of a single monolayer of cultured EC. In one co-culture model the EC were cultured on the SMC, whereas in the other model the EC and SMC were cultured on the opposite sides of a membrane. We studied EC-matrix interactions through focal adhesion kinase morphology, EC-EC interactions through VE-Cadherin expression and morphology, and EC-SMC interactions through the expression of Cx43 and Cx37. In the absence of WSS the SMC presence reduced EC-EC connectivity but produced EC-SMC connections using both connexins. The exposure to WSS produced discontinuity in the EC-EC connections, with a weaker effect in the co-culture models. In the EC monolayer, WSS exposure (12 and 4 dyne/cm2 for 30 min) increased the EC-EC interaction using both connexins. WSS exposure of 12 dyne/cm2 did not affect the EC-SMC interactions, whereas WSS of 4 dyne/cm2 elevated the amount of Cx43 and reduced the amount of Cx37, with a different magnitude between the models. The reduced endothelium connectivity suggests that the presence of SMC reduces the sealing properties of the endothelium, showing a more inflammatory phenotype while the distance between the two cell types reduced their interactions. These results demonstrate that EC-SMC interactions affect EC phenotype and change the EC response to WSS. Furthermore, the interactions formed between the EC and SMC demonstrate that the 1-side model can simulate better the arterioles, while the 2-side model provides better simulation of larger arteries.
Collapse
Affiliation(s)
- Dalit Shav
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| | - Ruth Gotlieb
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Uri Zaretsky
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - David Elad
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Shmuel Einav
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
33
|
Fernandez CE, Obi-onuoha IC, Wallace CS, Satterwhite LL, Truskey GA, Reichert WM. Late-outgrowth endothelial progenitors from patients with coronary artery disease: endothelialization of confluent stromal cell layers. Acta Biomater 2014; 10:893-900. [PMID: 24140604 DOI: 10.1016/j.actbio.2013.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/16/2013] [Accepted: 10/09/2013] [Indexed: 12/20/2022]
Abstract
Patients with coronary artery disease (CAD) are the primary candidates to receive small-diameter tissue-engineered blood vessels (TEBVs). Peripheral blood derived endothelial progenitor cells (EPCs) from CAD patients (CAD EPCs) represent a minimally invasive source of autologous cells for TEBV endothelialization. We have previously shown that human CAD EPCs are highly proliferative and express many of the hallmarks of mature and healthy endothelial cells; however, their behavior on stromal cells that comprise the media of TEBVs has not yet been evaluated. Primary CAD EPCs or control human aortic endothelial cells (HAECs) were seeded over confluent, quiescent layers of human smooth muscle cells (SMCs) using a direct co-culture model. The percent coverage, adhesion strength, alignment under flow and generation of flow-induced nitric oxide of the seeded CAD EPCs were compared to that of HAECs. The integrin-binding profile of CAD EPCs was also evaluated over a layer of confluent, quiescent SMCs. Direct comparison of our CAD EPC results to analogous co-culture studies with cord blood EPCs show that both types of blood-derived EPCs are viable options for endothelialization of TEBVs.
Collapse
|
34
|
Tiruvannamalai-Annamalai R, Armant DR, Matthew HWT. A glycosaminoglycan based, modular tissue scaffold system for rapid assembly of perfusable, high cell density, engineered tissues. PLoS One 2014; 9:e84287. [PMID: 24465401 PMCID: PMC3896358 DOI: 10.1371/journal.pone.0084287] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 11/20/2013] [Indexed: 12/16/2022] Open
Abstract
The limited ability to vascularize and perfuse thick, cell-laden tissue constructs has hindered efforts to engineer complex tissues and organs, including liver, heart and kidney. The emerging field of modular tissue engineering aims to address this limitation by fabricating constructs from the bottom up, with the objective of recreating native tissue architecture and promoting extensive vascularization. In this paper, we report the elements of a simple yet efficient method for fabricating vascularized tissue constructs by fusing biodegradable microcapsules with tunable interior environments. Parenchymal cells of various types, (i.e. trophoblasts, vascular smooth muscle cells, hepatocytes) were suspended in glycosaminoglycan (GAG) solutions (4%/1.5% chondroitin sulfate/carboxymethyl cellulose, or 1.5 wt% hyaluronan) and encapsulated by forming chitosan-GAG polyelectrolyte complex membranes around droplets of the cell suspension. The interior capsule environment could be further tuned by blending collagen with or suspending microcarriers in the GAG solution These capsule modules were seeded externally with vascular endothelial cells (VEC), and subsequently fused into tissue constructs possessing VEC-lined, inter-capsule channels. The microcapsules supported high density growth achieving clinically significant cell densities. Fusion of the endothelialized, capsules generated three dimensional constructs with an embedded network of interconnected channels that enabled long-term perfusion culture of the construct. A prototype, engineered liver tissue, formed by fusion of hepatocyte-containing capsules exhibited urea synthesis rates and albumin synthesis rates comparable to standard collagen sandwich hepatocyte cultures. The capsule based, modular approach described here has the potential to allow rapid assembly of tissue constructs with clinically significant cell densities, uniform cell distribution, and endothelialized, perfusable channels.
Collapse
Affiliation(s)
| | - David Randall Armant
- Departments of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan, United States of America
- Program in Reproductive & Adult Endocrinology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Howard W. T. Matthew
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
35
|
Orndorff RL, Hong N, Yu K, Feinstein SI, Zern BJ, Fisher AB, Muzykantov VR, Chatterjee S. NOX2 in lung inflammation: quantum dot based in situ imaging of NOX2-mediated expression of vascular cell adhesion molecule-1. Am J Physiol Lung Cell Mol Physiol 2013; 306:L260-8. [PMID: 24318114 DOI: 10.1152/ajplung.00278.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Quantum dot (QD) imaging is a powerful tool for studying signaling pathways as they occur. Here we employ this tool to study adhesion molecule expression with lung inflammation in vivo. A key event in pulmonary inflammation is the regulation of vascular endothelial cell adhesion molecule-1 (VCAM), which drives activated immune cell adherence. The induction of VCAM expression is known to be associated with reactive oxygen species (ROS) production, but the exact mechanism or the cellular source of ROS that regulates VCAM in inflamed lungs is not known. NADPH oxidase 2 (NOX2) has been reported to be a major source of ROS with pulmonary inflammation. NOX2 is expressed by both endothelial and immune cells. Here we use VCAM-targeted QDs in a mouse model to show that NOX2, specifically endothelial NOX2, induces VCAM expression with lung inflammation in vivo.
Collapse
Affiliation(s)
- Rebecca L Orndorff
- Institute for Environmental Medicine, Univ. of Pennsylvania School of Medicine, 1 John Morgan Bldg., 3620 Hamilton Walk, Philadelphia, PA 19104-6068.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Li J, Zhang K, Xu Y, Chen J, Yang P, Zhao Y, Zhao A, Huang N. A novel coculture model of HUVECs and HUASMCs by hyaluronic acid micropattern on titanium surface. J Biomed Mater Res A 2013; 102:1950-60. [DOI: 10.1002/jbm.a.34867] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Jingan Li
- Key Laboratory for Advanced Technologies of Materials; Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University; Chengdu 610031 People's Republic of China
| | - Kun Zhang
- Key Laboratory for Advanced Technologies of Materials; Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University; Chengdu 610031 People's Republic of China
| | - Ying Xu
- Key Laboratory for Advanced Technologies of Materials; Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University; Chengdu 610031 People's Republic of China
| | - Jiang Chen
- Key Laboratory for Advanced Technologies of Materials; Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University; Chengdu 610031 People's Republic of China
| | - Ping Yang
- Key Laboratory for Advanced Technologies of Materials; Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University; Chengdu 610031 People's Republic of China
| | - Yuancong Zhao
- Key Laboratory for Advanced Technologies of Materials; Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University; Chengdu 610031 People's Republic of China
| | - Ansha Zhao
- Key Laboratory for Advanced Technologies of Materials; Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University; Chengdu 610031 People's Republic of China
| | - Nan Huang
- Key Laboratory for Advanced Technologies of Materials; Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University; Chengdu 610031 People's Republic of China
| |
Collapse
|
37
|
Dalmas Wilk DA, Scicchitano MS, Morel D. In vitro investigation of integrin-receptor antagonist-induced vascular toxicity in the mouse. Toxicol In Vitro 2013; 27:272-81. [DOI: 10.1016/j.tiv.2012.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/13/2012] [Accepted: 08/24/2012] [Indexed: 01/21/2023]
|
38
|
Liu Y, Rayatpisheh S, Chew SY, Chan-Park MB. Impact of endothelial cells on 3D cultured smooth muscle cells in a biomimetic hydrogel. ACS APPLIED MATERIALS & INTERFACES 2012; 4:1378-1387. [PMID: 22296557 DOI: 10.1021/am201648f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
For the development of vascular tissue engineering, the impact of endothelial cells (ECs) on smooth muscle cell (SMC) spreading, proliferation, and differentiation is explored in the current study using a coculture model. In this coculture model, SMCs were encapsulated in a biomimetic hydrogel based on methacrylated dextran-graft-lysine (Dex-MA-LA) and methacrylamide-modified gelatin (Gel-MA), and exposed to a monolayer of ECs. With EC coculture, SMC proliferation in 3D hydrogel was promoted at initial period, and the formation of denser cellular networks was enhanced. ECs dynamically modulated SMC phenotype by promoting a more contractile SMC phenotype initially (on day 2), indicated by the upregulated expression of contractile genes α-actin, calponin, smooth muscle-myosin heavy chain (SM-MHC), and smoothelin; however, the onset of maximum expressions was delayed by ECs. Full differentiation of SMCs was not obtained even with EC coculture. Higher level of platelet-derived growth factor (PDGF)-BB and latent transforming growth factor (TGF)-β1 were detected in medium of coculture. These biochemical cues together with the physical cue of tensional force within cellular networks may be responsible for the dynamic modulation of SMC phenotype in coculture. Synthesis of elastin was promoted by ECs at transcriptional level. The formation of denser cellular networks and synthesis of elastin suggest that coculture with ECs is a potential method to construct functional vessel media layer in vitro.
Collapse
Affiliation(s)
- Yunxiao Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | | | | | | |
Collapse
|
39
|
Sakamoto N, Kiuchi T, Sato M. Development of an endothelial-smooth muscle cell coculture model using phenotype-controlled smooth muscle cells. Ann Biomed Eng 2011; 39:2750-8. [PMID: 21811870 DOI: 10.1007/s10439-011-0372-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 07/25/2011] [Indexed: 11/24/2022]
Abstract
A coculture of endothelial cells (ECs) and smooth muscle cells (SMCs), which mimics cellular interactions appearing in vivo, has been performed in studies on the relationship between atherogenesis and fluid shear stress conditions. Although healthy arteries in vivo consist of contractile phenotype SMCs, cultured cells used in many studies normally exhibit a synthetic phenotype. Here, we developed an EC-SMC coculture model to investigate the interactions between ECs and contractile SMCs, and examined the effect of shear stress applied to ECs on SMC phenotypes. Cultured human umbilical artery SMCs were differentiated into contractile states by arresting cell growth using a serum-free medium. Western blotting confirmed that SMC expression of contractile protein markers, α-smooth muscle actin (SMA) and calponin, increased to levels similar to those observed in arterial cells. After coculturing contractile SMCs with ECs separated by a collagen gel layer, the expression of α-SMA decreased under static conditions, indicating that the SMC phenotype tended to be synthetic by coculturing with ECs, but shear stress applied to cocultured ECs maintained the level of α-SMA expression in SMCs. The coculture model constructed in the present study will be a useful tool to investigate interactions between ECs and contractile SMCs under shear conditions.
Collapse
Affiliation(s)
- Naoya Sakamoto
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Aoba, Sendai, Japan.
| | | | | |
Collapse
|
40
|
Vascular Wall Engineering Via Femtosecond Laser Ablation: Scaffolds with Self-Containing Smooth Muscle Cell Populations. Ann Biomed Eng 2011; 39:3031-41. [DOI: 10.1007/s10439-011-0417-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/20/2011] [Indexed: 11/26/2022]
|
41
|
Cao L, Wu A, Truskey GA. Biomechanical effects of flow and coculture on human aortic and cord blood-derived endothelial cells. J Biomech 2011; 44:2150-7. [PMID: 21683362 DOI: 10.1016/j.jbiomech.2011.05.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/12/2011] [Accepted: 05/23/2011] [Indexed: 02/05/2023]
Abstract
Human endothelial cells derived from umbilical cord blood (hCB-ECs) represent a promising cell source for endothelialization of tissue engineered blood vessels. hCB-ECs cultured directly above human aortic smooth muscle cells (SMCs), which model native and tissue engineered blood vessels, produce a confluent endothelium that responds to flow like normal human aortic endothelial cells (HAECs). The objective of this study was to quantify the elastic modulus of hCB-ECs cocultured with SMCs under static and flow conditions using atomic force microscopy (AFM). Cytoskeleton structures were assessed by AFM cell surface imaging and immunofluorescence of F-actin. The elastic moduli of hCB-ECs and HAECs were similar and significantly smaller than the value for SMCs in monoculture under static conditions (p<0.05). In coculture, hCB-ECs and HAECs became significantly stiffer with moduli 160-180% larger than their corresponding values in monoculture. While the moduli of hCB-ECs and HAECs almost doubled in monoculture and flow condition, their corresponding values in coculture declined after exposure to flow. Both the number and diameter of cortical stress fiber per cell width increased in coculture and/or flow conditions, whereas the subcortical stress fiber density throughout the cell interior increased by a smaller amount. These findings indicate that changes to biomechanical properties in coculture and/or exposure to flow are correlated with changes in the cortical stress fiber density. For ECs, fluid shear stress appeared to have greater effect on the elastic modulus than the presence of SMCs and changes to the elastic modulus in coculture may be due to EC-SMC communication.
Collapse
Affiliation(s)
- Li Cao
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Durham, NC 27708, USA
| | | | | |
Collapse
|
42
|
Zorlutuna P, Vadgama P, Hasirci V. Both sides nanopatterned tubular collagen scaffolds as tissue-engineered vascular grafts. J Tissue Eng Regen Med 2011; 4:628-37. [PMID: 20603868 DOI: 10.1002/term.278] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Two major requirements for a tissue-engineered vessel are the establishment of a continuous endothelium and adequate mechanical properties. In this study, a novel tubular collagen scaffold possessing nanopatterns in the form of channels (with a 650 nm periodicity) on both sides was designed and examined after seeding and co-culturing with vascular cells. Initially, the exterior of the tube was seeded with human vascular smooth muscle cells (VSMCs), cultured for 14 days, and then human internal thoracic artery endothelial cells (HITAECs) were seeded on the inside of the tube and cultured for a further week. Microscopy revealed that nano-scale patterns could be reproduced on collagen with high fidelity and preserved during incubation in vitro. The VSMCs were circumferentially orientated with the help of these nanopatterns and formed multilayers on the exterior, while HITAECs formed a continuous layer on the interior, as is the case in natural vessels. Both cell types were observed to proliferate and retain their phenotypes in the co-culture.
Collapse
Affiliation(s)
- P Zorlutuna
- METU, BIOMAT, Department of Biotechnology, Biotechnology Research Unit, Ankara, Turkey.
| | | | | |
Collapse
|
43
|
BIOCOMPATIBILITY OF PHBHHx AND SILK FIBROIN-MODIFIED PHBHHx SCAFFOLDS WITH HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS. ACTA POLYM SIN 2010. [DOI: 10.3724/sp.j.1105.2010.09444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Pang Z, Niklason LE, Truskey GA. Porcine endothelial cells cocultured with smooth muscle cells became procoagulant in vitro. Tissue Eng Part A 2010; 16:1835-44. [PMID: 20055662 DOI: 10.1089/ten.tea.2009.0448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Endothelial cell (EC) seeding represents a promising approach to provide a nonthrombogenic surface on vascular grafts. In this study, we used a porcine EC/smooth muscle cell (SMC) coculture model that was previously developed to examine the efficacy of EC seeding. Expression of tissue factor (TF), a primary initiator in the coagulation cascade, and TF activity were used as indicators of thrombogenicity. Using immunostaining, primary cultures of porcine EC showed a low level of TF expression, but a highly heterogeneous distribution pattern with 14% of ECs expressing TF. Quiescent primary cultures of porcine SMCs displayed a high level of TF expression and a uniform pattern of staining. When we used a two-stage amidolytic assay, TF activity of ECs cultured alone was very low, whereas that of SMCs was high. ECs cocultured with SMCs initially showed low TF activity, but TF activity of cocultures increased significantly 7-8 days after EC seeding. The increased TF activity was not due to the activation of nuclear factor kappa-B on ECs and SMCs, as immunostaining for p65 indicated that nuclear factor kappa-B was localized in the cytoplasm in an inactive form in both ECs and SMCs. Rather, increased TF activity appeared to be due to the elevated reactive oxygen species levels and contraction of the coculture, thereby compromising the integrity of EC monolayer and exposing TF on SMCs. The incubation of cocultures with N-acetyl-cysteine (2 mM), an antioxidant, inhibited contraction, suggesting involvement of reactive oxygen species in regulating the contraction. The results obtained from this study provide useful information for understanding thrombosis in tissue-engineered vascular grafts.
Collapse
Affiliation(s)
- Zhengyu Pang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | | | | |
Collapse
|
45
|
Chaterji S, Park K, Panitch A. Scaffold-free in vitro arterial mimetics: the importance of smooth muscle-endothelium contact. Tissue Eng Part A 2010; 16:1901-12. [PMID: 20088699 PMCID: PMC2949266 DOI: 10.1089/ten.tea.2009.0271] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 01/20/2010] [Indexed: 12/19/2022] Open
Abstract
We have developed an in vitro endothelial cell (EC)-smooth muscle cell (SMC) coculture platform that can mimic either the healthy or diseased state of blood vessels. Transforming growth factor-beta1 (TGF-beta1) and heparin were introduced to the SMC cultures to upregulate the SMC differentiation markers, alpha-smooth muscle actin (alpha-SMA) and calponin (homotypic model). Interestingly, seeding of near-confluent concentrations of ECs on the SMCs (heterotypic model) induced higher levels of alpha-SMA and calponin expression in the SMC cultures than did the addition of heparin and TGF-beta1 alone. The expression levels increased further on pretreating the SMCs with TGF-beta1 and heparin before adding a near-confluent monolayer of ECs. In contrast, seeding of sparse concentrations of ECs forced the SMCs into a more hyperplastic state as determined by alpha-SMA and calponin expression. This study highlights the importance of both soluble factors and EC seeding densities when considering culture conditions; in vivo SMCs are in close proximity with and interact with a monolayer of ECs. Our study suggests that this architecture is important for healthy vascular tissue function. In addition, it shows that disruption of this architecture can be used to mimic diseased states. As the EC-SMC coculture model can mimic either a diseased or a healthy blood vessel it may be useful as a test bed for evaluating cardiovascular therapeutics.
Collapse
MESH Headings
- Actins/metabolism
- Arteries/cytology
- Arteries/metabolism
- Calcium-Binding Proteins/metabolism
- Cells, Cultured
- Coculture Techniques/methods
- Endothelial Cells/cytology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Heparin/pharmacology
- Humans
- Microfilament Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Tissue Engineering/methods
- Transforming Growth Factor beta1/pharmacology
- Calponins
Collapse
Affiliation(s)
- Somali Chaterji
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Kinam Park
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
- Department of Pharmaceutics, Purdue University, West Lafayette, Indiana
- Oncological Sciences Center, Purdue University, West Lafayette, Indiana
| | - Alyssa Panitch
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| |
Collapse
|
46
|
Pullens RAA, Stekelenburg M, Baaijens FPT, Post MJ. The influence of endothelial cells on the ECM composition of 3D engineered cardiovascular constructs. J Tissue Eng Regen Med 2009; 3:11-8. [PMID: 18972581 DOI: 10.1002/term.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Tissue engineering of small diameter (<5 mm) blood vessels is a promising approach to develop viable alternatives for autologous vascular grafts. Development of a functional, adherent, shear resisting endothelial cell (EC) layer is one of the major issues limiting the successful application of these tissue engineered grafts. The goal of the present study was to create a confluent EC layer on a rectangular 3D cardiovascular construct using human venous cells and to determine the influence of this layer on the extracellular matrix composition and mechanical properties of the constructs. Rectangular cardiovascular constructs were created by seeding myofibroblasts (MFs) on poly(glycolic acid) poly-4-hydroxybutyrate scaffolds using fibrin gel. After 3 or 4 weeks, ECs were seeded and co-cultured using EGM-2 medium for 2 or 1 week, respectively. A confluent EC layer could be created and maintained for up to 2 weeks. The EGM-2 medium lowered the collagen production by MFs, resulting in weaker constructs, especially in the 2 week cultured constructs. Co-culturing with ECs slightly reduced the collagen content, but had no additional affect on the mechanical performance. A confluent endothelial layer was created on 3D human cardiovascular constructs. The layer was co-cultured for 1 and 2 weeks. Although, the collagen production of the MFs was slightly lowered, co-culturing ECs for 1 week results in constructs with good mechanical properties and a confluent EC layer.
Collapse
Affiliation(s)
- Rolf A A Pullens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | |
Collapse
|
47
|
Chong MS, Chan J, Choolani M, Lee CN, Teoh SH. Development of cell-selective films for layered co-culturing of vascular progenitor cells. Biomaterials 2009; 30:2241-51. [DOI: 10.1016/j.biomaterials.2008.12.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 12/26/2008] [Indexed: 12/20/2022]
|
48
|
Jacot JG, Wong JY. Endothelial injury induces vascular smooth muscle cell proliferation in highly localized regions of a direct contact co-culture system. Cell Biochem Biophys 2008; 52:37-46. [PMID: 18766304 DOI: 10.1007/s12013-008-9023-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 07/16/2008] [Accepted: 07/29/2008] [Indexed: 11/28/2022]
Abstract
Though previous studies have indicated a relationship between the proliferation of endothelial cells and vascular smooth muscle cells (VSMCs) in co-culture, the results have been contradictory and the signaling mechanism poorly understood. In this transmembrane co-culture study, VSMCs and endothelial cells were grown to confluence on opposite sides of a microporous membrane to mimic the intima/media border of vessels. The endothelial layer was injured, and then cultured for 3 days, resulting in partial re-endothelialization. VSMC proliferation across from the injured/partially recovered endothelial region was significantly higher than across from the de-endothelialized region (a sevenfold increase) and the uninjured region (a threefold increase). ELISA indicated that PDGF, which was undetectable in uninjured co-culture and homotypic controls, increased after injury and the addition of a piperazinyl-quinazoline carboxamide PDGF receptor inhibitor blocked VSMC proliferation across from the injured/partially recovered region. We conclude that co-culture signaling initiated by endothelial cell injury locally stimulates VSMC proliferation and that this signaling could be mediated by PDGF-BB.
Collapse
Affiliation(s)
- Jeffrey G Jacot
- Department of Biomedical Engineering, Boston University, 44 Cummington St, Boston, MA 02215, USA.
| | | |
Collapse
|
49
|
Sosnik A, Leung BM, Sefton MV. Lactoyl-poloxamine/collagen matrix for cell-containing tissue engineering modules. J Biomed Mater Res A 2008; 86:339-53. [PMID: 17969022 DOI: 10.1002/jbm.a.31594] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Collagen-containing crosslinked, remodelable poloxamine derivatives were produced by introducing very short oligo(lactic acid) segments through the reaction of poloxamine with L-lactide and the later addition of unsaturated bonds by the reaction of modified poloxamine with methacryloyl chloride. Degradation studies on discs indicated a faster weight loss in comparison to the stability of lactoyl-free samples. Cell-containing modules (both HepG2 cells and two different umbilical vein smooth muscle cell (UVSMC) cell-types) were produced. Live/Dead assay showed high survival levels for both HepG2 and UVSMC cell types after crosslinking. While nondegradable modules did not change shape over time, lactoyl-poloxamine matrices showed a gradual shrinkage and size decrease and an increase in the roughness of the surface. These findings were consistent with the expected degradability of the lactoyl derivative. A UVSMC cell line (CRL-2481) embedded in a LA-poloxamine/collagen matrix showed the characteristic elongated shape at day 9. UVSMC primary cells behaved in a manner similar to that seen in collagen gels: these cells formed isolated clusters through the matrix that gradually lost viability. On tissue culture polystyrene the same cells aggregated and did not reach confluence. Modules with embedded CRL-2481 UVSMC led to a better initial adhesion of endothelial cells and a higher extent of surface coverage than seen with the UVSMC-free system. With embedded primary UVSMC, some EC attachment and formation of gap junctions was seen. The pattern was not well organized. With further improvement (and characterization), the lactoyl poloxamine derivative is potentially useful as a scaffold for modular tissue engineering, when tissue remodeling is an important consideration.
Collapse
Affiliation(s)
- Alejandro Sosnik
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, Terrence Donelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | | | | |
Collapse
|
50
|
Huang LY, Yang MC. Surface immobilization of chondroitin 6-sulfate/heparin multilayer on stainless steel for developing drug-eluting coronary stents. Colloids Surf B Biointerfaces 2008; 61:43-52. [PMID: 17720460 DOI: 10.1016/j.colsurfb.2007.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 07/03/2007] [Accepted: 07/08/2007] [Indexed: 10/23/2022]
Abstract
A thin layer of gold was sputtered onto SUS316L stainless steel (SS) sheet. After thiolizing the Au layer with dimercaptosuccinic acid (DMSA), layers of chondroitin 6-sulfate (ChS) and heparin (HEP) were alternatively immobilized on the Au-treated SS. The resulting stent would be both anti-atherogenic and anti-thrombogenic. After repeating one to five cycles, one to five layers of polyelectrolyte complex (PEC) of ChS/HEP were successfully fabricated. A model drug, sirolimus, was loaded in the ChS/HEP layers. The SS-ChS-HEP surface was examined by X-ray photoelectron spectroscopy (XPS), contact angle, and atomic force microscopy (AFM) measurement. Biological tests including hemocompatibility, drug release pattern, and the inhibition of smooth muscle cell proliferation were also performed. The results show that the multilayer of ChS/HEP exhibits longer blood clotting time than pure SS substrates. Therefore, this biopolymer multilayer can avoid thrombosis on the stainless. The releasing rate of sirolimus can be controlled through the number of ChS/HEP PEC layers. With a five-layer coating, sirolimus can be released continuously for more than 20 days. Furthermore, the multilayer ChS/HEP loaded with sirolimus can suppress specifically to the growth of smooth muscle cells to avoid restenosis. This suggests that the PEC multilayer of ChS/HEP modified-SS could be applied in making drug-eluting stents.
Collapse
Affiliation(s)
- Li-Ying Huang
- Department of Polymer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC
| | | |
Collapse
|