1
|
Zhu LY, Zhang MY, Juan-Cheng, Zhang YX. Shield-armed probiotic delivery system based on co-deposition of poly-dopamine and poly-lysine helps Lactiplantibacillus plantarum relieve hyperuricemia. Int J Biol Macromol 2024; 280:135666. [PMID: 39299415 DOI: 10.1016/j.ijbiomac.2024.135666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Hyperuricemia (HUA) is a disease characterized by an abnormal metabolism of purine. Lactic acid bacteria (LAB) have attracted much attention for their safe and effective treatment of HUA by inhibiting xanthine oxidase (XOD) and regulating gut microbiota. However, the effectiveness of probiotics can be compromised by the harsh environment of the gastrointestinal tract. In preliminary experiments, Lactiplantibacillus plantarum DY1, which is generally regarded as safe (GRAS), can lower uric acid. We have devised a straightforward and efficient technique for encapsulating DY1 using a coating comprising polydopamine (PDA) co-deposited with poly-l-lysine (PLL) to obtain DY1@PDLL. TEM, SEM, FT-IR and DLS tests showed that DY1 was successfully coated. Incubate at SGF or SIF for 3 h, the number of viable bacteria of free probiotics and DY1@PDLL decreased by 0.92 and 0.46 log cfu/mL, 1.66 and 0.66 log cfu/mL, respectively. The fluorescence intensity of the intestines of the DY1@PDLL treated mice was 3.96 times that of free probiotic. Notably, DY1@PDLL can reduce the uric acid levels of HUA mice by 31.63 % and free probiotics by 18.72 % (≈1.69 times). DY1@PDLL could also regulate gut microbiota and serum metabolic profile. These findings unequivocally highlight the remarkable potential of DY1@PDLL as an exceptional oral probiotic delivery system.
Collapse
Affiliation(s)
- Lin-Yan Zhu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Juan-Cheng
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
2
|
Dorchei F, Heydari A, Kroneková Z, Kronek J, Pelach M, Cseriová Z, Chorvát D, Zúñiga-Navarrete F, Rios PD, McGarrigle J, Ghani S, Isa D, Joshi I, Vasuthas K, Rokstad AMA, Oberholzer J, Raus V, Lacík I. Postmodification with Polycations Enhances Key Properties of Alginate-Based Multicomponent Microcapsules. Biomacromolecules 2024; 25:4118-4138. [PMID: 38857534 DOI: 10.1021/acs.biomac.4c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Postmodification of alginate-based microspheres with polyelectrolytes (PEs) is commonly used in the cell encapsulation field to control microsphere stability and permeability. However, little is known about how different applied PEs shape the microsphere morphology and properties, particularly in vivo. Here, we addressed this question using model multicomponent alginate-based microcapsules postmodified with PEs of different charge and structure. We found that the postmodification can enhance or impair the mechanical resistance and biocompatibility of microcapsules implanted into a mouse model, with polycations surprisingly providing the best results. Confocal Raman microscopy and confocal laser scanning microscopy (CLSM) analyses revealed stable interpolyelectrolyte complex layers within the parent microcapsule, hindering the access of higher molar weight PEs into the microcapsule core. All microcapsules showed negative surface zeta potential, indicating that the postmodification PEs get hidden within the microcapsule membrane, which agrees with CLSM data. Human whole blood assay revealed complex behavior of microcapsules regarding their inflammatory and coagulation potential. Importantly, most of the postmodification PEs, including polycations, were found to be benign toward the encapsulated model cells.
Collapse
Affiliation(s)
- Faeze Dorchei
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Abolfazl Heydari
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešt'any, Slovakia
| | - Zuzana Kroneková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešt'any, Slovakia
| | - Juraj Kronek
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešt'any, Slovakia
| | - Michal Pelach
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Zuzana Cseriová
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Dušan Chorvát
- Department of Biophotonics, International Laser Centre, Slovak Centre of Scientific and Technical Information, Ilkovičova 3, 841 04 Bratislava, Slovakia
| | - Fernando Zúñiga-Navarrete
- Department of Proteomics, Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Peter D Rios
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
| | - James McGarrigle
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
| | - Sofia Ghani
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
| | - Douglas Isa
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
| | - Ira Joshi
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
| | - Kalaiyarasi Vasuthas
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Prinsesse Kristinas gt.1, NO-7491 Trondheim, Norway
| | - Anne Mari A Rokstad
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Prinsesse Kristinas gt.1, NO-7491 Trondheim, Norway
| | - José Oberholzer
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Vladimír Raus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Igor Lacík
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešt'any, Slovakia
| |
Collapse
|
3
|
Egbeyemi OI, Hatem WA, Kober UA, Lapitsky Y. Transforming the Stability, Encapsulation, and Sustained Release Properties of Calcium Alginate Beads through Gel-Confined Coacervation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11947-11958. [PMID: 38807458 DOI: 10.1021/acs.langmuir.4c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Calcium alginate (Ca2+/alginate) gel beads find use in diverse applications, ranging from drug delivery and tissue engineering to bioprocessing, food formulation, and agriculture. Unless modified, however, these gels have limited stability in alkaline media (including phosphate buffers), and their high solute permeability limits their ability to efficiently encapsulate and slowly release water-soluble small molecules. Here, we show how these limitations can be addressed by mixing the alginate solutions used in the bead preparation with the nontoxic anionic polymer polyphosphate (PP). Upon complexing Ca2+ ions, PP undergoes complex coacervation (i.e., liquid/liquid phase separation into a Ca2+/PP-rich coacervate phase and a dilute supernatant phase). At lower PP concentrations, the Ca2+/PP coacervate appears to simply remain dispersed within the beads. Though its presence makes the beads more stable in alkaline media (phosphate-buffered saline and seawater), it has little impact on the bead stiffness, morphology, and (at least in the absence of substantial payload/coacervate association) encapsulation and release properties. When the PP concentrations exceed a critical value, however, Ca2+/PP coacervation within the gelling Ca2+/alginate beads collapses the resulting beads into more compact, interpenetrating polymer networks. Besides their enhanced stability to alkaline environments, these hybrid beads exhibit irregular morphologies with wrinkled and dimpled surface structures and macroscopic (closed) internal pores, and their collapse into these polymer-rich networks also makes them significantly stiffer than their PP-free counterparts. Crucially, these beads also exhibit a much lower solute permeability, which enables highly efficient encapsulation and multiday release of water-soluble small molecules (with the beads encapsulating >90% of the added model payload and sustaining its release over 3-5 d). Collectively, these findings provide a mild and simple (single-step) pathway to generating ionically cross-linked alginate beads with significantly enhanced stability, encapsulation efficiency, and sustained release.
Collapse
Affiliation(s)
| | - Wesam A Hatem
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio 43606, United States
| | - Umberto A Kober
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio 43606, United States
| | - Yakov Lapitsky
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
4
|
Greco I, Machrafi H, Minetti C, Risaliti C, Bandini A, Cialdai F, Monici M, Iorio CS. Hydrogel Formulation for Biomimetic Fibroblast Cell Culture: Exploring Effects of External Stresses and Cellular Responses. Int J Mol Sci 2024; 25:5600. [PMID: 38891788 PMCID: PMC11171947 DOI: 10.3390/ijms25115600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
In the process of tissue engineering, several types of stresses can influence the outcome of tissue regeneration. This outcome can be understood by designing hydrogels that mimic this process and studying how such hydrogel scaffolds and cells behave under a set of stresses. Here, a hydrogel formulation is proposed to create biomimetic scaffolds suitable for fibroblast cell culture. Subsequently, we examine the impact of external stresses on fibroblast cells cultured on both solid and porous hydrogels. These stresses included mechanical tension and altered-gravity conditions experienced during the 83rd parabolic flight campaign conducted by the European Space Agency. This study shows distinct cellular responses characterized by cell aggregation and redistribution in regions of intensified stress concentration. This paper presents a new biomimetic hydrogel that fulfills tissue-engineering requirements in terms of biocompatibility and mechanical stability. Moreover, it contributes to our comprehension of cellular biomechanics under diverse gravitational conditions, shedding light on the dynamic cellular adaptations versus varying stress environments.
Collapse
Affiliation(s)
- Immacolata Greco
- Center for Research and Engineering in Space Technologies, Universit libre de Bruxelles, 1050 Brussels, Belgium; (I.G.); (C.M.); (A.B.); (C.S.I.)
| | - Hatim Machrafi
- Center for Research and Engineering in Space Technologies, Universit libre de Bruxelles, 1050 Brussels, Belgium; (I.G.); (C.M.); (A.B.); (C.S.I.)
- GIGA-In Silico Medicine, University of Liège, 4000 Liège, Belgium
| | - Christophe Minetti
- Center for Research and Engineering in Space Technologies, Universit libre de Bruxelles, 1050 Brussels, Belgium; (I.G.); (C.M.); (A.B.); (C.S.I.)
| | - Chiara Risaliti
- ASAcampus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (C.R.); (F.C.); (M.M.)
| | - Allegra Bandini
- Center for Research and Engineering in Space Technologies, Universit libre de Bruxelles, 1050 Brussels, Belgium; (I.G.); (C.M.); (A.B.); (C.S.I.)
- ASAcampus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (C.R.); (F.C.); (M.M.)
| | - Francesca Cialdai
- ASAcampus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (C.R.); (F.C.); (M.M.)
| | - Monica Monici
- ASAcampus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (C.R.); (F.C.); (M.M.)
| | - Carlo S. Iorio
- Center for Research and Engineering in Space Technologies, Universit libre de Bruxelles, 1050 Brussels, Belgium; (I.G.); (C.M.); (A.B.); (C.S.I.)
| |
Collapse
|
5
|
Mukherjee A, Debnath S, Bhowmik A, Biswas S. DNA interactive property of poly-L-lysine induces apoptosis in MCF-7 cells through DNA interaction. J Biochem Mol Toxicol 2023; 37:e23378. [PMID: 37114286 DOI: 10.1002/jbt.23378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/16/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Poly-L-lysine (PLL) is known to be an encapsulating agent in drug formulation and delivery. PLL also has apoptotic and antiproliferative activities that enable blocking of the tumorigenesis process. However, the dose-selective activities of PLL in exerting apoptosis against cancer are unclear. Therefore, this study has been designed to explore the potential role and dose of PLL in apoptosis, if any. For this, PLL was administered at several doses in cancer cell lines and was found to be more potent against MCF-7 cells. PLL causes mitochondria-mediated apoptotic death through the upregulation of cleaved caspase-3. To investigate the mechanism responsible for this activity, we have analyzed if PLL could have the DNA interactive property or not. For this, molecular docking analysis was carried out to prove whether it has the property to bind with DNA or not. Studies have revealed that PLL is a potent DNA binder and it probably performs such apoptotic activities through the binding of cellular DNA early in an exposure. Simultaneous upregulation of both ROS-mediated stress and also in key protein expressions like γ-H2AX could also help us to confirm that PLL induces apoptosis through DNA interaction. This finding leads us to believe that PLL could play an interfering role with other chemotherapeutic compounds when used as a drug-coating material as it exerts an apoptotic effect on cancer cells, which should be avoided by using a much lower concentration.
Collapse
Affiliation(s)
- Avinaba Mukherjee
- Department of Zoology, Charuchandra College, University of Calcutta, Kolkata, India
| | - Souvik Debnath
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka, India
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Souradeep Biswas
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| |
Collapse
|
6
|
Goto R, Nakahata M, Delattre C, Petit E, El Boutachfaiti R, Sakai S. Fabrication of cell-laden microbeads and microcapsules composed of bacterial polyglucuronic acid. Int J Biol Macromol 2023:125481. [PMID: 37343612 DOI: 10.1016/j.ijbiomac.2023.125481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/07/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
In the past decades, the microencapsulation of mammalian cells into microparticles has been extensively studied for various in vitro and in vivo applications. The aim of this study was to demonstrate the viability of bacterial polyglucuronic acid (PGU), an exopolysaccharide derived from bacteria and composed of glucuronic acid units, as an effective material for cell microencapsulation. Using the method of dropping an aqueous solution of PGU-containing cells into a Ca2+-loaded solution, we produced spherical PGU microbeads with >93 % viability in the encapsulated human hepatoma HepG2 cells. Hollow-core microcapsules were formed via polyelectrolyte complex layer formation of PGU and poly-l-lysine, after which Ca2+, a cross-linker of PGU, was chelated, and this was accomplished by sequential immersion of microbeads in aqueous solutions of poly-l-lysine and sodium citrate. The encapsulated HepG2 cells proliferated and formed cell aggregates within the microparticles over a 14-day culture, with significantly larger aggregates forming within the microcapsules. Our results provide evidence for the viability of PGU for cell microencapsulation for the first time, thereby contributing to advancements in tissue engineering.
Collapse
Affiliation(s)
- Ryota Goto
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-Cho, Toyonaka, Osaka 560-8531, Japan.
| | - Masaki Nakahata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan.
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France.
| | - Emmanuel Petit
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, IUT d'Amiens, Université de Picardie Jules Verne, Amiens, France.
| | - Redouan El Boutachfaiti
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, IUT d'Amiens, Université de Picardie Jules Verne, Amiens, France.
| | - Shinji Sakai
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-Cho, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
7
|
Wong FSY, Tsang KK, Chan BP, Lo ACY. Both non-coated and polyelectrolytically-coated intraocular collagen-alginate composite gels enhanced photoreceptor survival in retinal degeneration. Biomaterials 2023; 293:121948. [PMID: 36516686 DOI: 10.1016/j.biomaterials.2022.121948] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Treatments of vision-threatening retinal diseases are often hampered by drug delivery difficulties. Polyelectrolytically-coated alginate encapsulated-cell therapy (ECT) systems have shown therapeutic efficacy through prolonged in vivo drug delivery but still face various biocompatibility, viability, drug delivery and mechanical stability issues in clinical trials. Here, novel, injectable alginate-poly-l-lysine (AP)-coated composite alginate-collagen (CAC) ECT gels were developed for sustained ocular drug delivery, and their long-term performance was compared with non-coated CAC ECT gels. All optimised AP-coated gels (AP1- and AP5.5-CAC ECT: 2 mg/ml collagen, 1.5% high molecular weight alginate, 50,000 cells/gel, with 0.01% or 0.05% poly-l-lysine coating for 5 min, followed by 0.15% alginate coating) and non-coated gels showed effective cell proliferation control, cell viability support and continuous delivery of bioactive glial cell-derived neurotrophic factor (GDNF) with no significant gel degradation in vitro and in rat vitreous. Most importantly, intravitreally injected gels demonstrated therapeutic efficacy in Royal College of Surgeons rats with retinal degeneration, resulting in reduced photoreceptor apoptosis and retinal function loss. At 6 months post-implantation, no host-tissue attachment or ingrowth was detected on the retrieved gels. Non-coated gels were mechanically more stable than AP5.5-coated ones under the current cell loading. This study demonstrated that both coated and non-coated ECT gels can serve as well-controlled, sustained drug delivery platforms for treating posterior eye diseases without immunosuppression.
Collapse
Affiliation(s)
- Francisca Siu Yin Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ken Kin Tsang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Barbara Pui Chan
- Tissue Engineering Laboratory, Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Xue J, Liu Y. Mesenchymal Stromal/Stem Cell (MSC)-Based Vector Biomaterials for Clinical Tissue Engineering and Inflammation Research: A Narrative Mini Review. J Inflamm Res 2023; 16:257-267. [PMID: 36713049 PMCID: PMC9875582 DOI: 10.2147/jir.s396064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) have the ability of self-renewal, the potential of multipotent differentiation, and a strong paracrine capacity, which are mainly used in the field of clinical medicine including dentistry and orthopedics. Therefore, tissue engineering research using MSCs as seed cells is a current trending directions. However, the healing effect of direct cell transplantation is unstable, and the paracrine/autocrine effects of MSCs cannot be effectively elicited. Tumorigenicity and heterogeneity are also concerns. The combination of MSCs as seed cells and appropriate vector materials can form a stable cell growth environment, maximize the secretory features of stem cells, and improve the biocompatibility and mechanical properties of vector materials that facilitate the delivery of drugs and various secretory factors. There are numerous studies on tissue engineering and inflammation of various biomaterials, mainly involving bioceramics, alginate, chitosan, hydrogels, cell sheets, nanoparticles, and three-dimensional printing. The combination of bioceramics, hydrogels and cell sheets with stem cells has demonstrated good therapeutic effects in clinical applications. The application of alginate, chitosan, and nanoparticles in animal models has also shown good prospects for clinical applications. Three-dimensional printing technology can circumvent the shortage of biomaterials, greatly improve the properties of vector materials, and facilitate the transplantation of MSCs. The purpose of this narrative review is to briefly discuss the current use of MSC-based carrier biomaterials to provide a useful resource for future tissue engineering and inflammation research using stem cells as seed cells.
Collapse
Affiliation(s)
- Junshuai Xue
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Yang Liu
- Department of General Surgery, Vascular Surgery, Qilu Hospital of Shandong University, Jinan City, People’s Republic of China,Correspondence: Yang Liu, Department of General surgery, Vascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China, Tel +86 18560088317, Email
| |
Collapse
|
9
|
Jin F, Liao S, Li W, Jiang C, Wei Q, Xia X, Wang Q. Amphiphilic sodium alginate-polylysine hydrogel with high antibacterial efficiency in a wide pH range. Carbohydr Polym 2023; 299:120195. [PMID: 36876766 DOI: 10.1016/j.carbpol.2022.120195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Bacterial infection is a major pathological factor leading to persistent wounds. With the aging of population, wound infection has gradually become a global health-issue. The wound site environment is complicated, and the pH changes dynamically during healing. Therefore, there is an urgent need for new antibacterial materials that can adapt to a wide pH range. To achieve this goal, we developed a thymol-oligomeric tannic acid/amphiphilic sodium alginate-polylysine hydrogel film, which exhibited excellent antibacterial efficacy in the pH range from 4 to 9, achieving the highest achievable 99.993 % (4.2 log units) and 99.62 % (2.4 log units) against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, respectively. The hydrogel films exhibited excellent cytocompatibility, suggesting that the materials are promising as a novel wound healing material without the concern of biosafety.
Collapse
Affiliation(s)
- Fangyu Jin
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Shiqin Liao
- Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, PR China
| | - Wei Li
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Chenyu Jiang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Xin Xia
- College of Textile and Clothing, Xinjiang University, Urumqi 830046, PR China
| | - Qingqing Wang
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, PR China.
| |
Collapse
|
10
|
Peng Q, Guo R, Zhou Y, Teng R, Cao Y, Mu S. Comparison of Gelatin/Polylysine- and Silk Fibroin/SDF-1α-Coated Mesenchymal Stem Cell-Seeded Intracranial Stents. Macromol Biosci 2022; 23:e2200402. [PMID: 36541928 DOI: 10.1002/mabi.202200402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Endothelialization of the aneurysmal neck is essential for aneurysm healing after endovascular treatment. Mesenchymal stem cell (MSC)-seeded stents can promote aneurysm repair. The biological effects of coated and uncoated nitinol intracranial stents seeded with MSCs on vascular cells and macrophage proliferation and inflammation are investigated. Two stent coatings that exert pro-aggregation effects on MSCs via different mechanisms are examined: gelatin/polylysine (G/PLL), which enhances cell adhesion, and silk fibroin/SDF-1α (SF/SDF-1α), which enhances chemotaxis. The aim is to explore the feasibility of MSC-seeded coated stents in the treatment of intracranial aneurysms. The G/PLL coating provides the highest cytocompatibility and blood compatibility substrate for MSCs and vascular cells and promotes cell adhesion and proliferation. Moreover, it enhances MSC secretion and regulation of vascular cell and macrophage proliferation and chemotaxis. Although the SF/SDF-1α coating promotes MSC secretion and vascular cell chemotaxis, it induces a greater degree of macrophage proliferation, chemotaxis, and secretion of pro-inflammatory factors. MSC-seeded stents coated with G/PLL may benefit stent surface endothelialization and reduce the inflammatory response after endovascular treatment of intracranial aneurysm. These effects may improve aneurysm healing and increase the cure rate.
Collapse
Affiliation(s)
- Qichen Peng
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Ruimin Guo
- Healthina Academy of Biomedicine, Tianjin Economic-Technological Development Area, HAB-TEDA, Tianjin, 300457, China.,Tangyi holdings (Shenzhen) Co., LTD, Shenzhen, 518101, China
| | - Yangyang Zhou
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Ruidi Teng
- Healthina Academy of Biomedicine, Tianjin Economic-Technological Development Area, HAB-TEDA, Tianjin, 300457, China.,Tangyi holdings (Shenzhen) Co., LTD, Shenzhen, 518101, China
| | - Yulin Cao
- Healthina Academy of Biomedicine, Tianjin Economic-Technological Development Area, HAB-TEDA, Tianjin, 300457, China.,Tangyi holdings (Shenzhen) Co., LTD, Shenzhen, 518101, China
| | - Shiqing Mu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| |
Collapse
|
11
|
Applications of bile acids as biomaterials-based modulators, in biomedical science and microfluidics. Ther Deliv 2022; 13:591-604. [PMID: 36861306 DOI: 10.4155/tde-2022-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Chronic disorders such as diabetes mellitus are associated with multiple organ dysfunction, including retinopathy, neuropathy, nephropathy, peripheral vascular disease, and vascular disease. Lifelong subcutaneous insulin injections are currently the only treatment option for patients with Type 1 diabetes mellitus, and it poses numerous challenges. Since the breakthrough achieved from the Edmonton protocol in the year 2000, there has been important research to investigate whether islet cell transplantation can achieve long-term normoglycemia in patients without the need for insulin. The use of biopolymeric scaffold to enclose islet cells has also been explored to improve survivability and viability of islet cells. This review paper summarizes the latest research in using biopolymeric scaffolds in islet transplantation and how microfluidic devices can assist.
Collapse
|
12
|
Zahorán R, Kumar P, Juhász Á, Horváth D, Tóth Á. Flow-driven synthesis of calcium phosphate-calcium alginate hybrid chemical gardens. SOFT MATTER 2022; 18:8157-8164. [PMID: 36263702 DOI: 10.1039/d2sm01063a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Systems far-from-equilibrium self-assemble into spatiotemporal structures. Here, we report on the formation of calcium alginate gardens along with their inorganic hybrids when a sodium alginate solution containing sodium phosphate in various compositions is injected into a calcium chloride reservoir. The viscoelastic properties of the membranes developed are controlled by the injection rate, while their thickness by the amount of sodium phosphate besides diffusion. Inorganic hybrid membranes with constant thickness are synthesized in the presence of a sufficient amount of sodium phosphate. The electrochemical characterization of the membranes suggests that the driving force is the pH-gradient developing along the two sides; hence, the cell potential can be controlled by the addition of alkaline sodium phosphate into the sodium alginate solution.
Collapse
Affiliation(s)
- Réka Zahorán
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary.
| | - Pawan Kumar
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary.
| | - Ádám Juhász
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary.
| |
Collapse
|
13
|
Transforming Capillary Alginate Gel (Capgel) into New 3D-Printing Biomaterial Inks. Gels 2022; 8:gels8060376. [PMID: 35735720 PMCID: PMC9222415 DOI: 10.3390/gels8060376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Three-dimensional (3D) printing has great potential for creating tissues and organs to meet shortfalls in transplant supply, and biomaterial inks are key components of many such approaches. There is a need for biomaterial inks that facilitate integration, infiltration, and vascularization of targeted 3D-printed structures. This study is therefore focused on creating new biomaterial inks from self-assembled capillary alginate gel (Capgel), which possesses a unique microstructure of uniform tubular channels with tunable diameters and densities. First, extrusions of Capgel through needles (0.1–0.8 mm inner diameter) were investigated. It was found that Capgel ink extrudes as slurries of fractured and entangled particles, each retaining capillary microstructures, and that extruded line widths W and particle sizes A were both functions of needle inner diameter D, specifically power-law relationships of W~D0.42 and A~D1.52, respectively. Next, various structures were successfully 3D-printed with Capgel ink, thus demonstrating that this biomaterial ink is stackable and self-supporting. To increase ink self-adherence, Capgel was coated with poly-L-lysine (PLL) to create a cationic “skin” prior to extrusion. It was hypothesized that, during extrusion of Capgel-PLL, the sheared particles fracture and thereby expose cryptic sites of negatively-charged biomaterial capable of forming new polyelectrolyte bonds with areas of the positively-charged PLL skin on neighboring entangled particles. This novel approach resulted in continuous, self-adherent extrusions that remained intact in solution. Human lung fibroblasts (HLFs) were then cultured on this ink to investigate biocompatibility. HLFs readily colonized Capgel-PLL ink and were strongly oriented by the capillary microstructures. This is the first description of successful 3D-printing with Capgel biomaterial ink as well as the first demonstration of the concept and formulation of a self-adherent Capgel-PLL biomaterial ink.
Collapse
|
14
|
Hurtado A, Aljabali AAA, Mishra V, Tambuwala MM, Serrano-Aroca Á. Alginate: Enhancement Strategies for Advanced Applications. Int J Mol Sci 2022; 23:4486. [PMID: 35562876 PMCID: PMC9102972 DOI: 10.3390/ijms23094486] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 02/06/2023] Open
Abstract
Alginate is an excellent biodegradable and renewable material that is already used for a broad range of industrial applications, including advanced fields, such as biomedicine and bioengineering, due to its excellent biodegradable and biocompatible properties. This biopolymer can be produced from brown algae or a microorganism culture. This review presents the principles, chemical structures, gelation properties, chemical interactions, production, sterilization, purification, types, and alginate-based hydrogels developed so far. We present all of the advanced strategies used to remarkably enhance this biopolymer's physicochemical and biological characteristics in various forms, such as injectable gels, fibers, films, hydrogels, and scaffolds. Thus, we present here all of the material engineering enhancement approaches achieved so far in this biopolymer in terms of mechanical reinforcement, thermal and electrical performance, wettability, water sorption and diffusion, antimicrobial activity, in vivo and in vitro biological behavior, including toxicity, cell adhesion, proliferation, and differentiation, immunological response, biodegradation, porosity, and its use as scaffolds for tissue engineering applications. These improvements to overcome the drawbacks of the alginate biopolymer could exponentially increase the significant number of alginate applications that go from the paper industry to the bioprinting of organs.
Collapse
Affiliation(s)
- Alejandro Hurtado
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| |
Collapse
|
15
|
Adeyemi SA, Choonara YE. Current advances in cell therapeutics: A biomacromolecules application perspective. Expert Opin Drug Deliv 2022; 19:521-538. [PMID: 35395914 DOI: 10.1080/17425247.2022.2064844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Many chronic diseases have evolved and to circumvent the limitations of using conventional drug therapies, smart cell encapsulating delivery systems have been explored to customize the treatment with alignment to disease longevity. Cell therapeutics has advanced in tandem with improvements in biomaterials that can suitably deliver therapeutic cells to achieve targeted therapy. Among the promising biomacromolecules for cell delivery are those that share bio-relevant architecture with the extracellular matrix and display extraordinary compatibility in the presence of therapeutic cells. Interestingly, many biomacromolecules that fulfil these tenets occur naturally and can form hydrogels. AREAS COVERED This review provides a concise incursion into the paradigm shift to cell therapeutics using biomacromolecules. Advances in the design and use of biomacromolecules to assemble smart therapeutic cell carriers is discussed in light of their pivotal role in enhancing cell encapsulation and delivery. In addition, the principles that govern the application of cell therapeutics in diabetes, neuronal disorders, cancers and cardiovascular disease are outlined. EXPERT OPINION Cell therapeutics promises to revolutionize the treatment of various secretory cell dysfunctions. Current and future advances in designing functional biomacromolecules will be critical to ensure that optimal delivery of therapeutic cells is achieved with desired biosafety and potency.
Collapse
Affiliation(s)
- Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
16
|
Microencapsulated Multifunctionalized Graphene Oxide Equipped with Chloroquine for Efficient and Sustained siRNA Delivery. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5866361. [PMID: 35469347 PMCID: PMC9034959 DOI: 10.1155/2022/5866361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/15/2022] [Indexed: 11/26/2022]
Abstract
A multifunctionalized graphene oxide (GO)-based carrier with conjugation of aminated-polyethylene glycol (PEG-diamine), octaarginine (R8), and folic acid (FA), which also contains chloroquine (CQ), a lysosomotropic agent, is introduced. The cellular uptake mechanisms and intracellular targeting of FA-functionalized nanocarriers are examined. The localized releases of CQ and siRNA intracellular delivery are evaluated. Microencapsulation of the nanocarrier complexed with genes in layer-by-layer coating of alginate microbeads is also investigated. The covalently coconjugated FA with PEG and R8 provides a stable formulation with increased cellular uptake compared to FA-free carrier. The CQ-equipped nanocarrier shows a 95% release of CQ at lysosomal pH. The localized release of the drug inside the lysosomes is verified which accelerates the cargo discharge into cytoplasm.
Collapse
|
17
|
Moody CT, Brown AE, Massaro NP, Patel AS, Agarwalla PA, Simpson AM, Brown AC, Zheng H, Pierce JG, Brudno Y. Restoring Carboxylates on Highly Modified Alginates Improves Gelation, Tissue Retention and Systemic Capture. Acta Biomater 2022; 138:208-217. [PMID: 34728426 PMCID: PMC8738153 DOI: 10.1016/j.actbio.2021.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/05/2021] [Accepted: 10/26/2021] [Indexed: 01/17/2023]
Abstract
Alginate hydrogels are gaining traction for use in drug delivery, regenerative medicine, and as tissue engineered scaffolds due to their physiological gelation conditions, high tissue biocompatibility, and wide chemical versatility. Traditionally, alginate is decorated at the carboxyl group to carry drug payloads, peptides, or proteins. While low degrees of substitution do not cause noticeable mechanical changes, high degrees of substitution can cause significant losses to alginate properties including complete loss of calcium cross-linking. While most modifications used to decorate alginate deplete the carboxyl groups, we propose that alginate modifications that replenish the carboxyl groups could overcome the loss in gel integrity and mechanics. In this report, we demonstrate that restoring carboxyl groups during functionalization maintains calcium cross-links as well as hydrogel shear-thinning and self-healing properties. In addition, we demonstrate that alginate hydrogels modified to a high degree with azide modifications that restore the carboxyl groups have improved tissue retention at intramuscular injection sites and capture blood-circulating cyclooctynes better than alginate hydrogels modified with azide modifications that deplete the carboxyl groups. Taken together, alginate modifications that restore carboxyl groups could significantly improve alginate hydrogel mechanics for clinical applications. STATEMENT OF SIGNIFICANCE: Chemical modification of hydrogels provides a powerful tool to regulate cellular adhesion, immune response, and biocompatibility with local tissues. Alginate, due to its biocompatibility and easy chemical modification, is being explored for tissue engineering and drug delivery. Unfortunately, modifying alginate to a high degree of substitution consumes carboxyl group, which are necessary for ionic gelation, leading to poor hydrogel crosslinking. We introduce alginate modifications that restore the alginate's carboxyl groups. We demonstrate that modifications that reintroduce carboxyl groups restore gelation and improve gel mechanics and tissue retention. In addition to contributing to a basic science understanding of hydrogel properties, we anticipate our approach will be useful to create tissue engineered scaffolds and drug delivery platforms.
Collapse
Affiliation(s)
- C T Moody
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University at Raleigh, NC United States of America; Comparative Medicine Institute, North Carolina State University, Raleigh, NC United States of America
| | - A E Brown
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University at Raleigh, NC United States of America
| | - N P Massaro
- Department of Chemistry, North Carolina State University, Raleigh, NC United States of America; Comparative Medicine Institute, North Carolina State University, Raleigh, NC United States of America
| | - A S Patel
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC United States of America
| | - P A Agarwalla
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University at Raleigh, NC United States of America; Comparative Medicine Institute, North Carolina State University, Raleigh, NC United States of America
| | - A M Simpson
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University at Raleigh, NC United States of America
| | - A C Brown
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University at Raleigh, NC United States of America; Comparative Medicine Institute, North Carolina State University, Raleigh, NC United States of America
| | - H Zheng
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC United States of America
| | - J G Pierce
- Department of Chemistry, North Carolina State University, Raleigh, NC United States of America; Comparative Medicine Institute, North Carolina State University, Raleigh, NC United States of America
| | - Y Brudno
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University at Raleigh, NC United States of America; Department of Chemistry, North Carolina State University, Raleigh, NC United States of America; Comparative Medicine Institute, North Carolina State University, Raleigh, NC United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC United States.
| |
Collapse
|
18
|
Stagi L, De Forni D, Innocenzi P. Blocking viral infections by Lysine-based polymeric nanostructures. A critical review. Biomater Sci 2022; 10:1904-1919. [DOI: 10.1039/d2bm00030j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The outbreak of the Covid-19 pandemic due to the SARS-CoV-2 coronavirus has accelerated the search for innovative antivirals with possibly broad-spectrum efficacy. One of the possible strategies is to inhibit...
Collapse
|
19
|
Li J, Yu X, Martinez EE, Zhu J, Wang T, Shi S, Shin SR, Hassan S, Guo C. Emerging Biopolymer-Based Bioadhesives. Macromol Biosci 2021; 22:e2100340. [PMID: 34957668 DOI: 10.1002/mabi.202100340] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/23/2021] [Indexed: 12/13/2022]
Abstract
Bioadhesives have been widely used in healthcare and biomedical applications due to their ease-of-operation for wound closure and repair compared to conventional suturing and stapling. However, several challenges remain for developing ideal bioadhesives, such as unsatisfied mechanical properties, non-tunable biodegradability, and limited biological functions. Considering these concerns, naturally derived biopolymers have been considered good candidates for making bioadhesives owing to their ready availability, facile modification, tunable mechanical properties, and desired biocompatibility and biodegradability. Over the past several years, remarkable progress has been made on biopolymer-based adhesives, covering topics from novel materials designs and advanced processing to clinical translation. The developed bioadhesives have been applied for diverse applications, including tissue adhesion, hemostasis, antimicrobial, wound repair/tissue regeneration, and skin-interfaced bioelectronics. Here in this comprehensive review, recent progress on biopolymer-based bioadhesives is summarized with focuses on clinical translations and multifunctional bioadhesives. Furthermore, challenges and opportunities such as weak adhesion strength at the hydrated state, mechanical mismatch with tissues, and unfavorable immune responses are discussed with an aim to facilitate the future development of high-performance biopolymer-based bioadhesives.
Collapse
Affiliation(s)
- Jinghang Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China.,School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei Province, 430205, China
| | - Xin Yu
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China
| | | | - Jiaqing Zhu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei Province, 430205, China
| | - Ting Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210029, China
| | - Shengwei Shi
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei Province, 430205, China
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China
| |
Collapse
|
20
|
Alginate Modification and Lectin-Conjugation Approach to Synthesize the Mucoadhesive Matrix. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alginates are natural anionic polyelectrolytes investigated in various biomedical applications, such as drug delivery, tissue engineering, and 3D bioprinting. Functionalization of alginates is one possible way to provide a broad range of requirements for those applications. A range of techniques, including esterification, amidation, acetylation, phosphorylation, sulfation, graft copolymerization, and oxidation and reduction, have been implemented for this purpose. The rationale behind these investigations is often the combination of such modified alginates with different molecules. Particularly promising are lectin conjugate macromolecules for lectin-mediated drug delivery, which enhance the bioavailability of active ingredients on a specific site. Most interesting for such application are alginate derivatives, because these macromolecules are more resistant to acidic and enzymatic degradation. This review will report recent progress in alginate modification and conjugation, focusing on alginate-lectin conjugation, which is proposed as a matrix for mucoadhesive drug delivery and provides a new perspective for future studies with these conjugation methods.
Collapse
|
21
|
Guo L, Liang Z, Yang L, Du W, Yu T, Tang H, Li C, Qiu H. The role of natural polymers in bone tissue engineering. J Control Release 2021; 338:571-582. [PMID: 34481026 DOI: 10.1016/j.jconrel.2021.08.055] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/31/2022]
Abstract
Bone is a dynamic self-healing organ and a continuous remodeling ensures the restoration of the bone structure and function over time. However, bone remodeling is not able to repair large traumatic injuries. Therefore, surgical interventions and bone substitutes are required. The aim of bone tissue engineering is to repair and regenerate tissues and engineered a bone graft as a bone substitute. To met this goal, several natural or synthetic polymers have been used to develop a biocompatible and biodegradable polymeric construct. Among the polymers, natural polymers have higher biocompatibility, excellent biodegradability, and no toxicity. So far, collagen, chitosan, gelatin, silk fibroin, alginate, cellulose, and starch, alone or in combination, have been widely used in bone tissue engineering. These polymers have been used as scaffolds, hydrogels, and micro-nanospheres. The functionalization of the polymer with growth factors and bioactive glasses increases the potential use of polymers for bone regeneration. As bone is a dynamic highly vascularized tissue, the vascularization of the polymeric scaffolds is vital for successful bone regeneration. Several in vivo and in vitro strategies have been used to vascularize the polymeric scaffolds. In this review, the application of the most commonly used natural polymers is discussed.
Collapse
Affiliation(s)
- Linqi Guo
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Zhihui Liang
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Liang Yang
- Department of Orthopaedics, The People's Hospital of Daqing, Daqing 163000, China
| | - Wenyan Du
- Department of Orthopaedics, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Tao Yu
- Department of Orthopaedics, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Huayu Tang
- Department of Orthopaedics, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Changde Li
- Department of Orthopaedics, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Hongbin Qiu
- Department of Public Health, Jiamusi University, Jiamusi, 154000, China.
| |
Collapse
|
22
|
Artificial cells for the treatment of liver diseases. Acta Biomater 2021; 130:98-114. [PMID: 34126265 DOI: 10.1016/j.actbio.2021.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022]
Abstract
Liver diseases have become an increasing health burden and account for over 2 million deaths every year globally. Standard therapies including liver transplant and cell therapy offer a promising treatment for liver diseases, but they also suffer limitations such as adverse immune reactions and lack of long-term efficacy. Artificial cells that mimic certain functions of a living cell have emerged as a new strategy to overcome some of the challenges that liver cell therapy faces at present. Artificial cells have demonstrated advantages in long-term storage, targeting capability, and tuneable features. This article provides an overview of the recent progress in developing artificial cells and their potential applications in liver disease treatment. First, the design of artificial cells and their biomimicking functions are summarized. Then, systems that mimic cell surface properties are introduced with two concepts highlighted: cell membrane-coated artificial cells and synthetic lipid-based artificial cells. Next, cell microencapsulation strategy is summarized and discussed. Finally, challenges and future perspectives of artificial cells are outlined. STATEMENT OF SIGNIFICANCE: Liver diseases have become an increasing health burden. Standard therapies including liver transplant and cell therapy offer a promising treatment for liver diseases, but they have limitations such as adverse immune reactions and lack of long-term efficacy. Artificial cells that mimic certain functions of a living cell have emerged as a new strategy to overcome some of the challenges that liver cell therapy faces at present. This article provides an overview of the recent progress in developing artificial cells and their potential applications in liver disease treatment, including the design of artificial cells and their biomimicking functions, two systems that mimic cell surface properties (cell membrane-coated artificial cells and synthetic lipid-based artificial cells), and cell microencapsulation strategy. We also outline the challenges and future perspectives of artificial cells.
Collapse
|
23
|
Thakur M, Dan A. Poly-l-lysine-Functionalized Green-Light-Emitting Carbon Dots as a Fluorescence Turn-on Sensor for Ultrasensitive Detection of Endotoxin. ACS APPLIED BIO MATERIALS 2021; 4:3410-3422. [PMID: 35014425 DOI: 10.1021/acsabm.1c00006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report a facile, ultrasensitive, and selective fluorescence turn-on sensing strategy based on green-light-emitting functional nanodots for the detection of bacterial lipopolysaccharide (LPS) endotoxin. In this protocol, first, the pure carbon dots (CDs) with a fairly high quantum yield were prepared by microwave-assisted pyrolysis of citric acid in the presence of urea. Subsequently, the carboxyl-group-rich surfaces of the CDs were allowed to conjugate with the poly-l-lysine (PLL) using an EDC-NHS amidization method to obtain the PLL-modified CDs (PLL-CDs). The LPS could specifically bind to the PLL at the PLL-CD surfaces, and this binding enabled an electron transfer from the phosphate groups of LPS to the carbon core through the PLL bridge, thus resulting in a fluorescence enhancement. Interestingly, this fluorescent turn-on sensor provided a detection limit of 68.3 fM in PBS (pH 7.4), which is the lowest ever reported among all of the synthetic assays for LPS detection. Furthermore, our fluorescent probe was able to show a remarkable selectivity toward LPS over a range of commonly known interfering substances. Thus, this study demonstrated the feasibility of using specific LPS binding to PLL to drive molecular recognition in aqueous medium and offered an effective fluorescence turn-on sensing strategy to detect bacterial endotoxin in diverse clinical and biological applications.
Collapse
Affiliation(s)
- Meenakshi Thakur
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh 160014, India
| | - Abhijit Dan
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University - Chandigarh, Sector 14, Chandigarh 160014, India
| |
Collapse
|
24
|
Teng K, An Q, Chen Y, Zhang Y, Zhao Y. Recent Development of Alginate-Based Materials and Their Versatile Functions in Biomedicine, Flexible Electronics, and Environmental Uses. ACS Biomater Sci Eng 2021; 7:1302-1337. [PMID: 33764038 DOI: 10.1021/acsbiomaterials.1c00116] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alginate is a natural polysaccharide that is easily chemically modified or compounded with other components for various types of functionalities. The alginate derivatives are appealing not only because they are biocompatible so that they can be used in biomedicine or tissue engineering but also because of the prospering bioelectronics that require various biomaterials to interface between human tissues and electronics or to serve as electronic components themselves. The study of alginate-based materials, especially hydrogels, have repeatedly found new frontiers over recent years. In this Review, we document the basic properties of alginate, their chemical modification strategies, and the recent development of alginate-based functional composite materials. The newly thrived functions such as ionically conductive hydrogel or 3D or 4D cell culturing matrix are emphasized among other appealing potential applications. We expect that the documentation of relevant information will stimulate scientific efforts to further develop biocompatible electronics or smart materials and to help the research domain better address the medicine, energy, and environmental challenges faced by human societies.
Collapse
Affiliation(s)
- Kaixuan Teng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yao Chen
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yantao Zhao
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, Beijing 100048, China.,Beijing Engineering Research Center of Orthopedics Implants, Beijing 100048, China
| |
Collapse
|
25
|
Jeon SI, Jeong JH, Kim JE, Haque MR, Kim J, Byun Y, Ahn CH. Synthesis of PEG-dendron for surface modification of pancreatic islets and suppression of the immune response. J Mater Chem B 2021; 9:2631-2640. [PMID: 33683280 DOI: 10.1039/d1tb00069a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Islet cell transplantation has been an effective method for the treatment of type 1 diabetes. The transplanted islets release insulin in response to changes in blood glucose levels. The clinical application of islet transplantation, however, has been hindered because of some critical problems including immune responses to grafted islets and side effects caused by overdosed immunosuppressive drugs. Herein, surface modification technology using poly(ethylene glycol) (PEG)-dendron was proposed to safeguard islets from the host immune system. PEG-dendron was synthesized by a divergent polymerization method and utilized to cover the islet antigen surface. Successful conjugation of PEG-dendron on the islet surface was achieved without affecting islet morphology, viability, and functionality at a concentration of 1.00%. Surface modification using PEG-dendron effectively prevented protein absorption and immune activation. Foremost, it improved the survival rate of islet grafts in vivo when combined with a low dose of immunosuppressive drugs. In conclusion, PEG-dendron is a potential candidate for the surface modification of pancreatic islets to mitigate immune responses after transplantation.
Collapse
Affiliation(s)
- Seong Ik Jeon
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
26
|
Zhao YZ, Huang ZW, Zhai YY, Shi Y, Du CC, Zhai J, Xu HL, Xiao J, Kou L, Yao Q. Polylysine-bilirubin conjugates maintain functional islets and promote M2 macrophage polarization. Acta Biomater 2021; 122:172-185. [PMID: 33387663 DOI: 10.1016/j.actbio.2020.12.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022]
Abstract
Macrophage polarization is one of the main factors contributing to the proinflammatory milieu of transplanted islets. It causes significant islet loss. Bilirubin exhibits protective effects during the islet transplantation process, but the mode of delivering drugs along with the islet graft has not yet been developed. In addition, it remains unclear whether bilirubin or its derivatives can modulate macrophage polarization during islet transplantation. Therefore, this study aimed to develop an ε-polylysine-bilirubin conjugate (PLL-BR) to encapsulate the islets for protection and to explore its macrophage modulation activities. In in vitro studies, the PLL-BR was shown to tightly adhere to the islet surface. It also exhibited enhanced cytoprotective effects against oxidative and inflammatory conditions by promoting M2-type macrophage polarization. In in vivo studies, the PLL-BR-protected islets successfully prolonged the euglycemia period in diabetic mice and accelerated the blood glucose clearance rate by maintaining the insulin secretion function. Compared to the untreated islets, the PLL-BR-encapsulated islets induced anti-inflammatory responses that were characterized by elevated levels of M2 macrophage markers and local vascularization. In conclusion, PLL-BR can be used as a tool for reprograming macrophage polarization while providing a more efficient immune protection for transplanted islets. STATEMENT OF SIGNIFICANCE: Macrophage polarization is one main factor that caused significant loss of transplanted islets. Bilirubin possesses protective effects toward pancreatic islet, but how to deliver the drug along with the islet graft has not yet been harnessed. More importantly, whether bilirubin or its derivatives could modulate macrophage polarization during the host rejections has also not been answered. In this study, we developed an ε-polylysine-bilirubin conjugate (PLL-BR) to encapsulate the islets and explore its role in macrophage modulation activities. PLL-BR could attach to the surface of islets and exerted high oxidation resistance and anti-inflammatory effect. For the first time, we demonstrate that bilirubin and its derivatives effectively promoted the M2-type macrophage polarization, and optimize the immune microenvironment for islets survival and function.
Collapse
|
27
|
Abstract
AbstractAlginate is a polysaccharide of natural origin, which shows outstanding properties of biocompatibility, gel forming ability, non-toxicity, biodegradability and easy to process. Due to these excellent properties of alginate, sodium alginate, a hydrogel form of alginate, oxidized alginate and other alginate based materials are used in various biomedical fields, especially in drug delivery, wound healing and tissue engineering. Alginate can be easily processed as the 3D scaffolding materials which includes hydrogels, microcapsules, microspheres, foams, sponges, and fibers and these alginate based bio-polymeric materials have particularly used in tissue healing, healing of bone injuries, scars, wound, cartilage repair and treatment, new bone regeneration, scaffolds for the cell growth. Alginate can be easily modified and blended by adopting some physical and chemical processes and the new alginate derivative materials obtained have new different structures, functions, and properties having improved mechanical strength, cell affinity and property of gelation. This can be attained due to combination with other different biomaterials, chemical and physical crosslinking, and immobilization of definite ligands (sugar and peptide molecules). Hence alginate, its modified forms, derivative and composite materials are found to be more attractive towards tissue engineering. This article provides a comprehensive outline of properties, structural aspects, and application in tissue engineering.
Collapse
|
28
|
Gao K, Gao F, Li J, He C, Liu M, Zhu Q, Qian Z, Ma T, Wang P. Biomimetic integrated olfactory sensory and olfactory bulb systems in vitro based on a chip. Biosens Bioelectron 2021; 171:112739. [PMID: 33096431 DOI: 10.1016/j.bios.2020.112739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 11/28/2022]
Abstract
A variety of mammalian or insect behaviors rely on the recognition of relevant odor stimuli. The olfactory system detects and translates complex olfactory stimuli (odors) through the unique and reproducible dynamic ensembles of neuronal activities. This process is involved in various types of neurons of olfactory parts, thereby encoding olfactory information or predicting progression in some neuropsychiatric diseases. In this paper, we constructed a biomimetic model including olfactory sensing system and olfactory bulb processing system to map olfactory-associated ensembles of neuronal activity. The olfactory receptor neurons (ORNs) and olfactory bulb (OB) neurons were primarily cultured and the immunofluorescence images were performed to identify the types of neurons. Diacetyl solution was used as an odor stimulus, and the spike bursts and random spike firing patterns of concentration-dependent excitatory responses were obtained from the ORNs network. The spike waveform and feature parameters were extracted including the spike number and interval in per burst to program the stimulation unit and sequences. The sequences containing odor information were applied to the OB neuronal network for the simulation of the primary olfactory processing. The response pattern and change rule of the OB neuronal network were consistent with the OB neurons affected by the neurotransmitter, which is the carrier of olfactory information transmission in vivo. This biomimetic integrated olfactory sensory and processing system can serve as a novel model for studying the physiological and pathological mechanisms of olfaction, and the pharmacological application in vitro.
Collapse
Affiliation(s)
- Keqiang Gao
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Fan Gao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jiaxin Li
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Chuanjiang He
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Mengxue Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Qiaoqiao Zhu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Tengfei Ma
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| |
Collapse
|
29
|
Feng X, Xia K, Ke Q, Deng R, Zhuang J, Wan Z, Luo P, Wang F, Zang Z, Sun X, Xiang AP, Tu X, Gao Y, Deng C. Transplantation of encapsulated human Leydig-like cells: A novel option for the treatment of testosterone deficiency. Mol Cell Endocrinol 2021; 519:111039. [PMID: 32980418 DOI: 10.1016/j.mce.2020.111039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Previous studies have demonstrated that the transplantation of alginate-poly-ʟ-lysine-alginate (APA)-encapsulated rat Leydig cells (LCs) provides a promising approach for treating testosterone deficiency (TD). Nevertheless, LCs have a limited capacity to proliferate, limiting the efficacy of LC transplantation therapy. Here, we established an efficient differentiation system to obtain functional Leydig-like cells (LLCs) from human stem Leydig cells (hSLCs). Then we injected APA-encapsulated LLCs into the abdominal cavities of castrated mice without an immunosuppressor. The APA-encapsulated cells survived and partially restored testosterone production for 90 days in vivo. More importantly, the transplantation of encapsulated LLCs ameliorated the symptoms of TD, such as fat accumulation, muscle atrophy and adipocyte accumulation in bone marrow. Overall, these results suggest that the transplantation of encapsulated LLCs is a promising new method for testosterone supplementation with potential clinical applications in TD.
Collapse
Affiliation(s)
- Xin Feng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Kai Xia
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Rongda Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; KingMed Center for Clinical Laboratory CO., LTD, Guangzhou, China
| | - Jintao Zhuang
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zi Wan
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Luo
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fulin Wang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhijun Zang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangzhou Sun
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiang'an Tu
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yong Gao
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
30
|
Virumbrales-Muñoz M, Paz-Artigas L, Ciriza J, Alcaine C, Espona-Noguera A, Doblaré M, Sáenz Del Burgo L, Ziani K, Pedraz JL, Fernández L, Ochoa I. Force Spectroscopy Imaging and Constriction Assays Reveal the Effects of Graphene Oxide on the Mechanical Properties of Alginate Microcapsules. ACS Biomater Sci Eng 2020; 7:242-253. [PMID: 33337130 DOI: 10.1021/acsbiomaterials.0c01382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microencapsulation of cells in hydrogel-based porous matrices is an approach that has demonstrated great success in regenerative cell therapy. These microcapsules work by concealing the exogenous cells and materials in a robust biomaterial that prevents their recognition by the immune system. A vast number of formulations and additives are continuously being tested to optimize cell viability and mechanical properties of the hydrogel. Determining the effects of new microcapsule additives is a lengthy process that usually requires extensive in vitro and in vivo testing. In this paper, we developed a workflow using nanoindentation (i.e., indentation with a nanoprobe in an atomic force microscope) and a custom-built microfluidic constriction device to characterize the effect of graphene oxide (GO) on three microcapsule formulations. With our workflow, we determined that GO modifies the microcapsule stiffness and surface properties in a formulation-dependent manner. Our results also suggest, for the first time, that GO alters the conformation of the microcapsule hydrogel and its interaction with subsequent coatings. Overall, our workflow can infer the effects of new additives on microcapsule surfaces. Thus, our workflow can contribute to diminishing the time required for the validation of new microcapsule formulations and accelerate their clinical translation.
Collapse
Affiliation(s)
- María Virumbrales-Muñoz
- Department of Biomedical Engineering, Wisconsin Institutes of Medical Research, University of Wisconsin, 1111 Highland Avenue, Room 6028, Madison,53705, Wisconsin United States
| | - Laura Paz-Artigas
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Mariano Esquillor s/n, Zaragoza 50009, Spain.,Institute for Health Research Aragón (IIS Aragón), Avda San Juan Bosco, 13, Zaragoza 50009, Spain
| | - Jesús Ciriza
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, Vitoria-Gasteiz 01006, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Clara Alcaine
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Mariano Esquillor s/n, Zaragoza 50009, Spain.,Institute for Health Research Aragón (IIS Aragón), Avda San Juan Bosco, 13, Zaragoza 50009, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Albert Espona-Noguera
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, Vitoria-Gasteiz 01006, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Manuel Doblaré
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Mariano Esquillor s/n, Zaragoza 50009, Spain.,Institute for Health Research Aragón (IIS Aragón), Avda San Juan Bosco, 13, Zaragoza 50009, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Laura Sáenz Del Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, Vitoria-Gasteiz 01006, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Kaoutar Ziani
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, Vitoria-Gasteiz 01006, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, Vitoria-Gasteiz 01006, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Luis Fernández
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Mariano Esquillor s/n, Zaragoza 50009, Spain.,Institute for Health Research Aragón (IIS Aragón), Avda San Juan Bosco, 13, Zaragoza 50009, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Mariano Esquillor s/n, Zaragoza 50009, Spain.,Institute for Health Research Aragón (IIS Aragón), Avda San Juan Bosco, 13, Zaragoza 50009, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| |
Collapse
|
31
|
Pereira MS, Cardoso LMDF, da Silva TB, Teixeira AJ, Mizrahi SE, Ferreira GSM, Dantas FML, Cotta-de-Almeida V, Alves LA. A Low-Cost Open Source Device for Cell Microencapsulation. MATERIALS 2020; 13:ma13225090. [PMID: 33187294 PMCID: PMC7696579 DOI: 10.3390/ma13225090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022]
Abstract
Microencapsulation is a widely studied cell therapy and tissue bioengineering technique, since it is capable of creating an immune-privileged site, protecting encapsulated cells from the host immune system. Several polymers have been tested, but sodium alginate is in widespread use for cell encapsulation applications, due to its low toxicity and easy manipulation. Different cell encapsulation methods have been described in the literature using pressure differences or electrostatic changes with high cost commercial devices (about 30,000 US dollars). Herein, a low-cost device (about 100 US dollars) that can be created by commercial syringes or 3D printer devices has been developed. The capsules, whose diameter is around 500 µm and can decrease or increase according to the pressure applied to the system, is able to maintain cells viable and functional. The hydrogel porosity of the capsule indicates that the immune system is not capable of destroying host cells, demonstrating that new studies can be developed for cell therapy at low cost with microencapsulation production. This device may aid pre-clinical and clinical projects in low- and middle-income countries and is lined up with open source equipment devices.
Collapse
Affiliation(s)
- Miriam Salles Pereira
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil; (M.S.P.); (L.M.d.F.C.); (T.B.d.S.); (A.J.T.)
- Volta Redonda University Center—UniFOA, Av. Paulo Erlei Alves Abrantes, 1325-Três Poços, Volta Redonda 27240-560, Brazil
| | - Liana Monteiro da Fonseca Cardoso
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil; (M.S.P.); (L.M.d.F.C.); (T.B.d.S.); (A.J.T.)
| | - Tatiane Barreto da Silva
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil; (M.S.P.); (L.M.d.F.C.); (T.B.d.S.); (A.J.T.)
| | - Ayla Josma Teixeira
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil; (M.S.P.); (L.M.d.F.C.); (T.B.d.S.); (A.J.T.)
| | - Saul Eliahú Mizrahi
- National Institute of Technology—INT, Rio de Janeiro Av. Venezuela, 82-Saúde, Rio de Janeiro 20081-312, Brazil; (S.E.M.); (G.S.M.F.); (F.M.L.D.)
| | - Gabriel Schonwandt Mendes Ferreira
- National Institute of Technology—INT, Rio de Janeiro Av. Venezuela, 82-Saúde, Rio de Janeiro 20081-312, Brazil; (S.E.M.); (G.S.M.F.); (F.M.L.D.)
| | - Fabio Moyses Lins Dantas
- National Institute of Technology—INT, Rio de Janeiro Av. Venezuela, 82-Saúde, Rio de Janeiro 20081-312, Brazil; (S.E.M.); (G.S.M.F.); (F.M.L.D.)
| | - Vinicius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil;
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Manguinhos, Rio de Janeiro 21045-900, Brazil; (M.S.P.); (L.M.d.F.C.); (T.B.d.S.); (A.J.T.)
- Correspondence: ; Tel.: +55-21-2562-1841; Fax: +55-21-2562-1816
| |
Collapse
|
32
|
Zhang Y, Lu J, Li Z, Zhu D, Yu X, Li L. Enhanced cellular functions of hepatocytes in the hyaluronate-alginate-chitosan microcapsules. Int J Artif Organs 2020; 44:340-349. [PMID: 32969286 DOI: 10.1177/0391398820959345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The study aimed to develop a biocompatible microcapsule for hepatocytes and create a bio-mimic microenvironment for maintaining hepatic-specific functions of hepatocytes in vitro. The work is proposed for the bioartificial liver system in the treatment of liver failure. In this study, microcapsules were prepared with hyaluronate (HA)/sodium alginate (SA) as an inner core and an outer chitosan (CS) shell via one-step spraying method. C3A cells were encapsulated in microcapsules to examine the biocompatibility of HA-SA-CS microcapsules. MTT and fluorescence microscopy indicated that C3A cells had high viability in the HA-SA-CS microcapsules. The liver-specific functions, such as urea and albumin synthesis, and CYP1A2 and CYP3A4 activities from encapsulated cells were increased in the HA-SA-CS microcapsules compared to the SA-CS microcapsules. The gene expressions of CYP450 related genes were also increased by HA on day 3. The study suggests that HA-SA-CS microcapsules have good biocompatibility and can maintain a favorable environment for hepatocytes. This approach has improved the preservation of liver cells' metabolic functions and could be a candidate for the bioartificial liver system.
Collapse
Affiliation(s)
- Yanhong Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zuhong Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaopeng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Han Y, Shi C, Cui F, Chen Q, Tao Y, Li Y. Solution properties and electrospinning of polyacrylamide and ε-polylysine complexes. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Montero P, Flandes-Iparraguirre M, Musquiz S, Pérez Araluce M, Plano D, Sanmartín C, Orive G, Gavira JJ, Prosper F, Mazo MM. Cells, Materials, and Fabrication Processes for Cardiac Tissue Engineering. Front Bioeng Biotechnol 2020; 8:955. [PMID: 32850768 PMCID: PMC7431658 DOI: 10.3389/fbioe.2020.00955] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease is the number one killer worldwide, with myocardial infarction (MI) responsible for approximately 1 in 6 deaths. The lack of endogenous regenerative capacity, added to the deleterious remodelling programme set into motion by myocardial necrosis, turns MI into a progressively debilitating disease, which current pharmacological therapy cannot halt. The advent of Regenerative Therapies over 2 decades ago kick-started a whole new scientific field whose aim was to prevent or even reverse the pathological processes of MI. As a highly dynamic organ, the heart displays a tight association between 3D structure and function, with the non-cellular components, mainly the cardiac extracellular matrix (ECM), playing both fundamental active and passive roles. Tissue engineering aims to reproduce this tissue architecture and function in order to fabricate replicas able to mimic or even substitute damaged organs. Recent advances in cell reprogramming and refinement of methods for additive manufacturing have played a critical role in the development of clinically relevant engineered cardiovascular tissues. This review focuses on the generation of human cardiac tissues for therapy, paying special attention to human pluripotent stem cells and their derivatives. We provide a perspective on progress in regenerative medicine from the early stages of cell therapy to the present day, as well as an overview of cellular processes, materials and fabrication strategies currently under investigation. Finally, we summarise current clinical applications and reflect on the most urgent needs and gaps to be filled for efficient translation to the clinical arena.
Collapse
Affiliation(s)
- Pilar Montero
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
| | - María Flandes-Iparraguirre
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
| | - Saioa Musquiz
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country – UPV/EHU, Vitoria-Gasteiz, Spain
| | - María Pérez Araluce
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country – UPV/EHU, Vitoria-Gasteiz, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- University Institute for Regenerative Medicine and Oral Implantology – UIRMI (UPV/EHU – Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain
- Singapore Eye Research Institute, Singapore, Singapore
| | - Juan José Gavira
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Cardiology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Felipe Prosper
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
| | - Manuel M. Mazo
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
35
|
Moody CT, Palvai S, Brudno Y. Click cross-linking improves retention and targeting of refillable alginate depots. Acta Biomater 2020; 112:112-121. [PMID: 32497743 PMCID: PMC7365769 DOI: 10.1016/j.actbio.2020.05.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Injectable alginate hydrogels have demonstrated utility in tissue engineering and drug delivery applications due in part to their mild gelation conditions, low host responses and chemical versatility. Recently, the potential of these gels has expanded with the introduction of refillable hydrogel depots - alginate gels chemically decorated with click chemistry groups to efficiently capture prodrug refills from the blood. Unfortunately, high degrees of click group substitution on alginate lead to poor viscoelastic properties and loss of ionic cross-linking. In this work, we introduce tetrabicyclononyne (tBCN) agents that covalently cross-link azide-modified alginate hydrogels for tissue engineering and drug delivery application in vivo. Adjusting cross-linker concentration allowed tuning the hydrogel mechanical properties for tissue-specific mechanical strength. The bioorthogonal and specific click reaction creates stable hydrogels with improved in vivo properties, including improved retention at injected sites. Azide-alginate hydrogels cross-linked with tBCN elicited minimal inflammation and maintained structural integrity over several months and efficiently captured therapeutics drug surrogates from the circulation. Taken together, azide-alginate hydrogels cross-linked with tBCN convey the benefits of alginate hydrogels for use in tissue engineering and drug delivery applications of refillable drug delivery depots. STATEMENT OF SIGNIFICANCE: Ionically cross-linked, injectable alginate biomaterials hold promise in many different clinical settings. However, adding new chemical functionality to alginate can disrupt their ionic cross-linking, limiting their utility. We have developed a "click" cross-linking strategy to improve the mechanical properties and tissue function of modified alginate biomaterials and enable them to capture small molecule drugs from the blood. We show that click cross-linked materials remain in place better than ionically cross-linked materials and efficiently capture payloads from the blood. Development of click cross-linking for refillable depots represents a crucial step toward clinical application of this promising drug delivery platform.
Collapse
Affiliation(s)
- Christopher T Moody
- Joint Department of Biomedical Engineering, University of North Carolina - Chapel Hill and North Carolina State University - Raleigh, 1840 Entrepreneur Drive, Raleigh, NC 27695, USA
| | - Sandeep Palvai
- Joint Department of Biomedical Engineering, University of North Carolina - Chapel Hill and North Carolina State University - Raleigh, 1840 Entrepreneur Drive, Raleigh, NC 27695, USA
| | - Yevgeny Brudno
- Joint Department of Biomedical Engineering, University of North Carolina - Chapel Hill and North Carolina State University - Raleigh, 1840 Entrepreneur Drive, Raleigh, NC 27695, USA.
| |
Collapse
|
36
|
Guo C, Cui W, Wang X, Lu X, Zhang L, Li X, Li W, Zhang W, Chen J. Poly-l-lysine/Sodium Alginate Coating Loading Nanosilver for Improving the Antibacterial Effect and Inducing Mineralization of Dental Implants. ACS OMEGA 2020; 5:10562-10571. [PMID: 32426614 PMCID: PMC7227044 DOI: 10.1021/acsomega.0c00986] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/23/2020] [Indexed: 05/04/2023]
Abstract
In recent years, antibacterial surface modification of titanium (Ti) implants has been widely studied in preventing implant-associated infection for dental and orthopedic applications. The purpose of this study was to prepare a composite coating on a porous titanium surface for infection prevention and inducing mineralization, which was initialized by deposition of a poly-l-lysine (PLL)/sodium alginate(SA)/PLL self-assembled coating, followed by dopamine deposition, and finally in situ reduction of silver nanoparticles (AgNPs) by dopamine. The surface zeta potential, SEM, XPS, UV-vis, and water contact angle analyses demonstrate that each coating was successfully prepared after the respective steps and that the average sizes of AgNPs were 20-30 nm. The composite coating maintained Ag+ release for more than 27 days in PBS and induced mineralization when incubated in SBF. The antibacterial results showed that the composite coating inhibited/killed bacteria on the material surface and killed bacteria around them. In addition, although this coating inhibited the initial adhesion of osteoblasts, the mineralized surface greatly enhanced the cytocompatibility. Thus, we concluded that the composite coating could prevent bacterial infections and facilitate mineralization in vivo in the early postoperative period, and then, the mineralized surface could enhance the cytocompatibility.
Collapse
|
37
|
Facklam AL, Volpatti LR, Anderson DG. Biomaterials for Personalized Cell Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902005. [PMID: 31495970 DOI: 10.1002/adma.201902005] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/26/2019] [Indexed: 05/13/2023]
Abstract
Cell therapy has already had an important impact on healthcare and provided new treatments for previously intractable diseases. Notable examples include mesenchymal stem cells for tissue regeneration, islet transplantation for diabetes treatment, and T cell delivery for cancer immunotherapy. Biomaterials have the potential to extend the therapeutic impact of cell therapies by serving as carriers that provide 3D organization and support cell viability and function. With the growing emphasis on personalized medicine, cell therapies hold great potential for their ability to sense and respond to the biology of an individual patient. These therapies can be further personalized through the use of patient-specific cells or with precision biomaterials to guide cellular activity in response to the needs of each patient. Here, the role of biomaterials for applications in tissue regeneration, therapeutic protein delivery, and cancer immunotherapy is reviewed, with a focus on progress in engineering material properties and functionalities for personalized cell therapies.
Collapse
Affiliation(s)
- Amanda L Facklam
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lisa R Volpatti
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel G Anderson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
38
|
Sustained release of TGF-β 3 from polysaccharide nanoparticles induces chondrogenic differentiation of human mesenchymal stromal cells. Colloids Surf B Biointerfaces 2020; 189:110843. [PMID: 32044676 DOI: 10.1016/j.colsurfb.2020.110843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 11/24/2022]
Abstract
Medical treatment of certain diseases and biomedical implants are tending to use delivery systems on the nanoscale basis for biologically active factors including drugs (e. g. antibiotics) or growth factors. Nanoparticles are a useful tool to deliver bioactive substances of different chemical nature directly to the site where it is required in the patient. Here we developed three innovative delivery systems based on different polysaccharides in order to induce a sustained release of TGF-β3 to mediate chondrogenesis of human mesenchymal stromal cells. We were able to encapsulate the protein into nanoparticles and subsequently release TGF-β3 from these particles. The protein was still active and was able to induce chondrogenic differentiation of human mesenchymal stromal cells.
Collapse
|
39
|
Kumari A, Kumari K, Gupta S. Protease Responsive Essential Amino-Acid Based Nanocarriers for Near-Infrared Imaging. Sci Rep 2019; 9:20334. [PMID: 31889129 PMCID: PMC6937316 DOI: 10.1038/s41598-019-56871-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 12/18/2019] [Indexed: 11/09/2022] Open
Abstract
Delivery of the theranostic agents with effective concentration to the desired sites inside the body is a major challenge in disease management. Nanotechnology has gained attention for the delivery of theranostic agents to the targeted location. The use of essential amino-acid based homopolymers for the synthesis of biocompatible and biodegradable nanoparticles (NPs) could serve as a nanocarrier for delivery applications. In this study, poly-l-lysine (PLL) and salts were used to fabricate the NPs for the delivery of exogenous contrast agents. Here, indocyanine green (ICG) was encapsulated within these NPs, and a simple two-step green chemistry-based self-assembly process was used for the fabrication. The morphological and biochemical characterizations confirm the formation of ICG encapsulating spherical PLL NPs with an average diameter of ~225 nm. Further, a detailed study has been carried out to understand the role of constituents in the assembly mechanism of PLL NPs. Our results show a controlled release of the ICG from PLL NPs in the presence of the proteolytic enzyme. In-vitro cellular studies suggest that the PLL NPs were readily taken up by the cells showing their superior delivery efficiency of ICG in comparison to the free-form of the ICG.
Collapse
Affiliation(s)
- Anshu Kumari
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Kalpana Kumari
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Sharad Gupta
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India.
- Metallurgical Engineering and Material Science, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
40
|
Ashimova A, Yegorov S, Negmetzhanov B, Hortelano G. Cell Encapsulation Within Alginate Microcapsules: Immunological Challenges and Outlook. Front Bioeng Biotechnol 2019; 7:380. [PMID: 31850335 PMCID: PMC6901392 DOI: 10.3389/fbioe.2019.00380] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/15/2019] [Indexed: 12/29/2022] Open
Abstract
Cell encapsulation is a bioengineering technology that provides live allogeneic or xenogeneic cells packaged in a semipermeable immune-isolating membrane for therapeutic applications. The concept of cell encapsulation was first proposed almost nine decades ago, however, and despite its potential, the technology has yet to deliver its promise. The few clinical trials based on cell encapsulation have not led to any licensed therapies. Progress in the field has been slow, in part due to the complexity of the technology, but also because of the difficulties encountered when trying to prevent the immune responses generated by the various microcapsule components, namely the polymer, the encapsulated cells, the therapeutic transgenes and the DNA vectors used to genetically engineer encapsulated cells. While the immune responses induced by polymers such as alginate can be minimized using highly purified materials, the need to cope with the immunogenicity of encapsulated cells is increasingly seen as key in preventing the immune rejection of microcapsules. The encapsulated cells are recognized by the host immune cells through a bidirectional exchange of immune mediators, which induce both the adaptive and innate immune responses against the engrafted capsules. The potential strategies to cope with the immunogenicity of encapsulated cells include the selective diffusion restriction of immune mediators through capsule pores and more recently inclusion in microcapsules of immune modulators such as CXCL12. Combining these strategies with the use of well-characterized cell lines harboring the immunomodulatory properties of stem cells should encourage the incorporation of cell encapsulation technology in state-of-the-art drug development.
Collapse
Affiliation(s)
- Assem Ashimova
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Sergey Yegorov
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- Department of Pedagogical Mathematics and Natural Science, Faculty of Education and Humanities, Suleyman Demirel University, Almaty, Kazakhstan
| | - Baurzhan Negmetzhanov
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Gonzalo Hortelano
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
41
|
Kurayama F, Mohammed Bahadur N, Furusawa T, Sato M, Suzuki N. Facile preparation of aminosilane-alginate hybrid beads for enzyme immobilization: Kinetics and equilibrium studies. Int J Biol Macromol 2019; 150:1203-1212. [PMID: 31751729 DOI: 10.1016/j.ijbiomac.2019.10.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 10/25/2022]
Abstract
A simple, facile and potential platform for enzyme immobilization using alginate-based beads has been demonstrated by simultaneous gelation and modification of alginate using calcium chloride (CaCl2) and 3-aminopropyltriethoxysilane (APTES). In this method, sodium alginate solution containing enzyme was simply dripped into a crosslinker solution containing CaCl2 and APTES, leading to the formation of APTES-alginate hybrid beads (AP-beads). The optical observation, FT-IR analysis and amino group measurements provided evidence that APTES was successfully adsorbed to the alginate chain via electrostatic interaction. On the assumption that the binding of Ca2+ ion to polymannuronate residues of alginate via bidentate bridging coordination is competitive with APTES, the equilibrium isotherm and kinetics for the adsorption of APTES to AP-beads was found to follow extended Langmuir isotherm in binary system. Formate dehydrogenase (FDH) as a model enzyme was successfully immobilized in AP-beads and the immobilization yield of ca. 100% could be achieved under optimal conditions of CaCl2 and APTES concentrations in crosslinker solution. Furthermore, the AP-beads were reused efficiently for 9 cycles without loss of FDH activity. The above results demonstrated that AP-beads were effective support for enzyme immobilization.
Collapse
Affiliation(s)
- Fumio Kurayama
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Takeshi Furusawa
- Department of Material and Environmental Chemistry, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan
| | - Masahide Sato
- Department of Material and Environmental Chemistry, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan
| | - Noboru Suzuki
- Department of Material and Environmental Chemistry, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan
| |
Collapse
|
42
|
Jung J, Li L, Yeh CK, Ren X, Sun Y. Amphiphilic quaternary ammonium chitosan/sodium alginate multilayer coatings kill fungal cells and inhibit fungal biofilm on dental biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109961. [DOI: 10.1016/j.msec.2019.109961] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/20/2019] [Accepted: 07/06/2019] [Indexed: 11/16/2022]
|
43
|
Morga M, Adamczyk Z, Kosior D, Kujda-Kruk M. Kinetics of Poly-l-lysine Adsorption on Mica and Stability of Formed Monolayers: Theoretical and Experimental Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12042-12052. [PMID: 31433647 DOI: 10.1021/acs.langmuir.9b02149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Various physicochemical parameters of poly-l-lysine (PLL) solutions comprising the diffusion coefficient, the electrophoretic mobility, the density, and the intrinsic viscosity were determined for the pH range 3.0-9.2. This allowed us to calculate derivative parameters characterizing the PLL molecule such as: zeta potential, the number of electrokinetic charges, ionization degree, contour length, and cross section area. These data were exploited in theoretical calculations of PLL adsorption kinetics on solid substrates under diffusion transport. A hybrid approach was used comprising a blocking function derived from the random sequential adsorption (RSA) model. In experiments, the PLL adsorption on mica was studied using the streaming potential measurements and interpreted in terms of a general electrokinetic model. This confirmed a side-on adsorption mechanism of the macroion molecules at the examined pH range. Additionally, using this method, the stability of PLL monolayers was determined performing in situ desorption kinetic experiments. In this way, the equilibrium adsorption constant and the energy minimum depth were determined. It was confirmed that the monolayer stability decreases with pH following the decrease in the number of electrokinetic charges per molecule. This confirmed the electrostatic interaction driven adsorption mechanism of PLL. It is also predicted that at pH 5.7-7.4 the monolayers were stable under diffusion-controlled desorption over the time exceeding 100 h. In addition to their significance for basic science, the results obtained in this work can be exploited for developing procedures for preparing stable PLL monolayers of well controlled coverage and electrokinetic properties.
Collapse
Affiliation(s)
| | | | - Dominik Kosior
- Department of Inorganic and Analytical Chemistry , University of Geneva , Sciences II, 30 Quai Ernest-Ansermet , 1205 Geneva , Switzerland
| | | |
Collapse
|
44
|
Programmable microencapsulation for enhanced mesenchymal stem cell persistence and immunomodulation. Proc Natl Acad Sci U S A 2019; 116:15392-15397. [PMID: 31311862 DOI: 10.1073/pnas.1819415116] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapies demonstrate particular promise in ameliorating diseases of immune dysregulation but are hampered by short in vivo cell persistence and inconsistencies in phenotype. Here, we demonstrate that biomaterial encapsulation into alginate using a microfluidic device could substantially increase in vivo MSC persistence after intravenous (i.v.) injection. A combination of cell cluster formation and subsequent cross-linking with polylysine led to an increase in injected MSC half-life by more than an order of magnitude. These modifications extended persistence even in the presence of innate and adaptive immunity-mediated clearance. Licensing of encapsulated MSCs with inflammatory cytokine pretransplantation increased expression of immunomodulatory-associated genes, and licensed encapsulates promoted repopulation of recipient blood and bone marrow with allogeneic donor cells after sublethal irradiation by a ∼2-fold increase. The ability of microgel encapsulation to sustain MSC survival and increase overall immunomodulatory capacity may be applicable for improving MSC therapies in general.
Collapse
|
45
|
Zheng Z, Wang H, Li J, Shi Q, Cui J, Sun T, Huang Q, Fukuda T. 3D Construction of Shape-Controllable Tissues through Self-Bonding of Multicellular Microcapsules. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22950-22961. [PMID: 31252493 DOI: 10.1021/acsami.9b05108] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Designed microtissues that replicate highly ordered three-dimensional (3D) multicellular in vivo structures have shown huge potential in biomedical research and drug discovery. Through microencapsulation and microfluidic techniques, cell-laden microcapsules have been widely used as pathological or pharmacological models. However, most conventional microtissue construction strategies can only engineer simply predefined microcapsules with monotonous biological components in two dimensions. Here, we propose a flexible 3D microtissue construction method through self-bonding of real-time shape-programmable microcapsules. The microcapsules are prepared by photo-induced electrodeposition of cell-laden alginate hydrogel and flexibly tailored into tissue-specific shapes, sizes, and arbitrary biocomponents. With the local fluidics-guided assembly, the microcapsules are spatially organized into 3D perfectly aligned microtissues. To mimic in vivo intercellular connection, the aligned microcapsules are precoated with fibroblasts to self-bond the adjacent layers into a robust assemblage through fibroblast-extracellular matrix interactions, which highly reproduces the tissue morphogenesis in natural organisms. As a typical complex tissue model, the 3D hepatic lobule was engineered utilizing HepG2 cells seeded into microcapsules with a fibroblast coating, and its biofunction including albumin and urea secretion was improved by nearly two-fold compared with cells seeded without a fibroblast coating. We anticipate that our method will be capable of regenerating more complex multicellular constructs with unprecedented possibilities for future tissue engineering applications.
Collapse
Affiliation(s)
- Zhiqiang Zheng
- Intelligent Robotics Institute, School of Mechatronical Engineering , Beijing Institute of Technology , 5 South Zhongguancun Street , Haidian District, Beijing 100081 , China
| | - Huaping Wang
- Intelligent Robotics Institute, School of Mechatronical Engineering , Beijing Institute of Technology , 5 South Zhongguancun Street , Haidian District, Beijing 100081 , China
| | - Jianing Li
- Intelligent Robotics Institute, School of Mechatronical Engineering , Beijing Institute of Technology , 5 South Zhongguancun Street , Haidian District, Beijing 100081 , China
| | - Qing Shi
- Intelligent Robotics Institute, School of Mechatronical Engineering , Beijing Institute of Technology , 5 South Zhongguancun Street , Haidian District, Beijing 100081 , China
| | - Juan Cui
- Intelligent Robotics Institute, School of Mechatronical Engineering , Beijing Institute of Technology , 5 South Zhongguancun Street , Haidian District, Beijing 100081 , China
| | - Tao Sun
- Intelligent Robotics Institute, School of Mechatronical Engineering , Beijing Institute of Technology , 5 South Zhongguancun Street , Haidian District, Beijing 100081 , China
| | - Qiang Huang
- Intelligent Robotics Institute, School of Mechatronical Engineering , Beijing Institute of Technology , 5 South Zhongguancun Street , Haidian District, Beijing 100081 , China
| | - Toshio Fukuda
- Intelligent Robotics Institute, School of Mechatronical Engineering , Beijing Institute of Technology , 5 South Zhongguancun Street , Haidian District, Beijing 100081 , China
| |
Collapse
|
46
|
Han L, Jiang Y, Lv C, Gan D, Wang K, Ge X, Lu X. Mussel-inspired hybrid coating functionalized porous hydroxyapatite scaffolds for bone tissue regeneration. Colloids Surf B Biointerfaces 2019; 179:470-478. [DOI: 10.1016/j.colsurfb.2019.04.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/20/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
|
47
|
Roy S, Elbaz NM, Parak WJ, Feliu N. Biodegradable Alginate Polyelectrolyte Capsules As Plausible Biocompatible Delivery Carriers. ACS APPLIED BIO MATERIALS 2019; 2:3245-3256. [DOI: 10.1021/acsabm.9b00203] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sathi Roy
- Faculty of Physics, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Hamburg, Germany
| | - Nancy M. Elbaz
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Wolfgang J. Parak
- Faculty of Physics, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Hamburg, Germany
| | - Neus Feliu
- Faculty of Physics, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Hamburg, Germany
| |
Collapse
|
48
|
Hu S, de Vos P. Polymeric Approaches to Reduce Tissue Responses Against Devices Applied for Islet-Cell Encapsulation. Front Bioeng Biotechnol 2019; 7:134. [PMID: 31214587 PMCID: PMC6558039 DOI: 10.3389/fbioe.2019.00134] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
Immunoisolation of pancreatic islets is a technology in which islets are encapsulated in semipermeable but immunoprotective polymeric membranes. The technology allows for successful transplantation of insulin-producing cells in the absence of immunosuppression. Different approaches of immunoisolation are currently under development. These approaches involve intravascular devices that are connected to the bloodstream and extravascular devices that can be distinguished in micro- and macrocapsules and are usually implanted in the peritoneal cavity or under the skin. The technology has been subject of intense fundamental research in the past decade. It has co-evolved with novel replenishable cell sources for cure of diseases such as Type 1 Diabetes Mellitus that need to be protected for the host immune system. Although the devices have shown significant success in animal models and even in human safety studies most technologies still suffer from undesired tissue responses in the host. Here we review the past and current approaches to modulate and reduce tissue responses against extravascular cell-containing micro- and macrocapsules with a focus on rational choices for polymer (combinations). Choices for polymers but also choices for crosslinking agents that induce more stable and biocompatible capsules are discussed. Combining beneficial properties of molecules in diblock polymers or application of these molecules or other anti-biofouling molecules have been reviewed. Emerging are also the principles of polymer brushes that prevent protein and cell-adhesion. Recently also immunomodulating biomaterials that bind to specific immune receptors have entered the field. Several natural and synthetic polymers and even combinations of these polymers have demonstrated significant improvement in outcomes of encapsulated grafts. Adequate polymeric surface properties have been shown to be essential but how the surface should be composed to avoid host responses remains to be identified. Current insight is that optimal biocompatible devices can be created which raises optimism that immunoisolating devices can be created that allows for long term survival of encapsulated replenishable insulin-producing cell sources for treatment of Type 1 Diabetes Mellitus.
Collapse
Affiliation(s)
- Shuixan Hu
- Division of Medical Biology, Department of Pathology and Medical Biology, Immunoendocrinology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|
49
|
Nikravesh N, Davies OG, Azoidis I, Moakes RJA, Marani L, Turner M, Kearney CJ, Eisenstein NM, Grover LM, Cox SC. Physical Structuring of Injectable Polymeric Systems to Controllably Deliver Nanosized Extracellular Vesicles. Adv Healthc Mater 2019; 8:e1801604. [PMID: 30838810 DOI: 10.1002/adhm.201801604] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/06/2019] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) are emerging as a promising alternative approach to cell-therapies. However, to realize the potential of these nanoparticles as new regenerative tools, healthcare materials that address the current limitations of systemic administration need to be developed. Here, two technologies for controlling the structure of alginate based microgel suspensions are used to develop sustained local release of EVs, in vitro. Microparticles formed using a shearing technique are compared to those manufactured using vibrational technology, resulting in either anisotropic sheet-like or spheroid particles, respectively. EVs harvested from preosteoblasts are isolated using differential ultracentrifugation and successfully loaded into the two systems, while maintaining their structures. Promisingly, in addition to exhibiting even EV distribution and high stability, controlled release of vesicles from both structures is exhibited, in vitro, over the 12 days studied. Interestingly, a significantly greater number of EVs are released from the suspensions formed by shearing (69.9 ± 10.5%), compared to the spheroids (35.1 ± 7.6%). Ultimately, alterations to the hydrogel physical structures have shown to tailor nanoparticle release while simultaneously providing ideal material characteristics for clinical injection. Thus, the sustained release mechanisms achieved through manipulating the formation of such biomaterials provide a key to unlocking the therapeutic potential held within EVs.
Collapse
Affiliation(s)
- Niusha Nikravesh
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, 9014, Switzerland
| | - Owen G Davies
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, LE11 3TU, UK
| | - Ioannis Azoidis
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Richard J A Moakes
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Lucia Marani
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, LE11 3TU, UK
| | - Mark Turner
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, LE11 3TU, UK
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, LE1 5WW, UK
| | - Cathal J Kearney
- Department of Anatomy, Kearney Lab & Tissue Engineering Research Group (TERG), Royal College of Surgeons in Ireland (RCSI), 123 St Stephen's Green, Dublin, D02 YN77, Ireland
- Advanced Materials and BioEngineering Research (AMBER), Trinity Centre for BioEngineering (TCBE), Trinity College Dublin (TCD), 152-160, Pearse Street, Dublin 2, Ireland
| | - Neil M Eisenstein
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
50
|
Ludwinski FE, Patel AS, Damodaran G, Cho J, Furmston J, Xu Q, Jayasinghe SN, Smith A, Modarai B. Encapsulation of macrophages enhances their retention and angiogenic potential. NPJ Regen Med 2019; 4:6. [PMID: 30911410 PMCID: PMC6426993 DOI: 10.1038/s41536-019-0068-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/19/2018] [Indexed: 02/02/2023] Open
Abstract
Cell therapies to treat critical limb ischaemia have demonstrated only modest results in clinical trials, and this has been partly attributed to poor cell retention following their delivery directly into the ischaemic limb. The aim of this study was to determine whether alginate encapsulation of therapeutic pro-angio/arteriogenic macrophages enhances their retention and ultimately improves limb perfusion. A reproducible GMP-compliant method for generating 300 µm alginate capsules was developed to encapsulate pro-angio/arteriogenic macrophages. Longitudinal analysis revealed no detrimental effect of encapsulation on cell number or viability in vitro, and macrophages retained their pro-angio/arteriogenic phenotype. Intramuscular delivery of encapsulated macrophages into the murine ischaemic hindlimb demonstrated increased cell retention compared with injection of naked cells (P = 0.0001), and that this was associated both enhanced angiogenesis (P = 0.02) and arteriogenesis (P = 0.03), and an overall improvement in limb perfusion (P = 0.0001). Alginate encapsulation of pro-angio/arteriogenic macrophages enhances cell retention and subsequent limb reperfusion in vivo. Encapsulation may therefore represent a means of improving the efficacy of cell-based therapies currently under investigation for the treatment of limb ischaemia. Blood vessel-promoting immune cells stay longer in the body and help promote blood flow to the feet and toes of mice with critical limb ischemia when the therapeutic cells are packaged inside tiny bubbles of a biocompatible seaweed derivative called alginate. A team led by Bijan Modarai from King’s College London, UK, developed a reliable method for placing artery-stimulating macrophage cells inside alginate capsules measuring 300 micrometres in diameter, about the thickness of a postcard. In culture, the alginate coating had no effect on the macrophage viability; and when injected into the muscles of mice with artery blockages to their hindlimbs, the encapsulated cells were retained longer and offered greater therapeutic benefit than uncoated cells. This encapsulation strategy may improve the efficacy of comparable cell-based therapies for humans with limb ischemia.
Collapse
Affiliation(s)
- Francesca E Ludwinski
- 1King's College London, Academic Department of Vascular Surgery, School of Cardiovascular Medicine & Sciences, BHF Centre for Regenerative Medicine and BHF Centre of Excellence and the Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Ashish S Patel
- 1King's College London, Academic Department of Vascular Surgery, School of Cardiovascular Medicine & Sciences, BHF Centre for Regenerative Medicine and BHF Centre of Excellence and the Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Gopinath Damodaran
- 1King's College London, Academic Department of Vascular Surgery, School of Cardiovascular Medicine & Sciences, BHF Centre for Regenerative Medicine and BHF Centre of Excellence and the Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Jun Cho
- 1King's College London, Academic Department of Vascular Surgery, School of Cardiovascular Medicine & Sciences, BHF Centre for Regenerative Medicine and BHF Centre of Excellence and the Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Joanna Furmston
- 1King's College London, Academic Department of Vascular Surgery, School of Cardiovascular Medicine & Sciences, BHF Centre for Regenerative Medicine and BHF Centre of Excellence and the Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Qingbo Xu
- 2King's College London, Vascular Biology Section, School of Cardiovascular Medicine & Sciences, BHF Centre of Excellence, King's College London, London, UK
| | - Suwan N Jayasinghe
- 3BioPhysics Group, UCL Centre for Stem Cells and Regenerative Medicine, UCL Department of Mechanical Engineering and UCL Institute of Healthcare Engineering, University College London, Torrington Place, London, WC1E 7JE UK
| | - Alberto Smith
- 1King's College London, Academic Department of Vascular Surgery, School of Cardiovascular Medicine & Sciences, BHF Centre for Regenerative Medicine and BHF Centre of Excellence and the Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Bijan Modarai
- 1King's College London, Academic Department of Vascular Surgery, School of Cardiovascular Medicine & Sciences, BHF Centre for Regenerative Medicine and BHF Centre of Excellence and the Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|