1
|
Gan Y, Han H, Zhang Y, Zhou Z, Shen X, Fang J, Cui L, Zhou Z. Chitosan-based injectable porous microcarriers with enhanced adipogenic differentiation and angiogenesis for subcutaneous adipose tissue regeneration. BIOMATERIALS ADVANCES 2025; 169:214174. [PMID: 39756088 DOI: 10.1016/j.bioadv.2025.214174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Chitosan is a promising biomaterial for tissue engineering, but its functionality is limited by a lack of bioactive sites. This study develops chitosan/amniotic membrane microcarriers to enhance vascularization and tissue regeneration for subcutaneous adipose tissue. The incorporation of decellularized amniotic membrane enhances the bioactivities of chitosan in promoting cell differentiation and angiogenesis. Optimized preparation yielded porous microcarriers with a particle size of 261.2 ± 28 μm and an average pore size of 19.0 ± 4 μm. In vitro degradation analysis showed accelerated degradation with higher amniotic membrane content. Cytocompatibility and adipogenic capacity assessments indicated that the microcarriers supported cell adhesion and proliferation over 7 days, with amniotic membrane facilitating adipogenic differentiation of adipose-derived stem cells. When injected subcutaneously into nude mice, these microcarriers formed neoplastic adipose tissues, which were harvested 8 weeks later. Fluorescence staining, oil-red O staining and CD31 labeling demonstrated that amniotic membrane incorporation significantly enhanced in vivo adipose tissue formation and angiogenesis.
Collapse
Affiliation(s)
- Yan Gan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, PR China
| | - Haotian Han
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Ying Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, PR China
| | - Ziwei Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, PR China
| | - Xiang Shen
- Department of Orthopedics, The Fourth Hospital of Changsha, Changsha, PR China
| | - Jianjun Fang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, PR China.
| | - Lei Cui
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China.
| | - Zhihua Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, PR China.
| |
Collapse
|
2
|
Mohanty S, Roy S. Bioactive Hydrogels Inspired by Laminin: An Emerging Biomaterial for Tissue Engineering Applications. Macromol Biosci 2024; 24:e2400207. [PMID: 39172212 DOI: 10.1002/mabi.202400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/01/2024] [Indexed: 08/23/2024]
Abstract
Tissue or organ damage due to severe injuries or chronic diseases can adversely affect the quality of life. Current treatments rely on organ or tissue transplantation which has limitations including unavailability of donors, ethical issues, or immune rejection after transplantations. These limitations can be addressed by tissue regeneration which involves the development of bioactive scaffolds closely mimicking the extracellular matrix (ECM). One of the major components of ECM is the laminin protein which supports several tissues associated with important organs. In this direction, peptide-based hydrogels can effectively mimic the essential characteristics of laminin. While several reports have discussed the structure of laminin, the potential of laminin-derived peptide hydrogels as effective biomaterial for tissue engineering applications is yet to be discussed. In this context, the current review focuses on the structure of laminin and its role as an essential ECM protein. Further, the potential of short peptide hydrogels in mimicking the crucial properties of laminin is proposed. The review further highlights the significance of bioactive hydrogels inspired by laminin - in addressing numerous tissue engineering applications including angiogenesis, neural, skeletal muscle, liver, and adipose tissue regeneration along with a brief outlook on the future applications of these laminin-based hydrogels.
Collapse
Affiliation(s)
- Sweta Mohanty
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Sangita Roy
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| |
Collapse
|
3
|
Kang Y, Na J, Karima G, Amirthalingam S, Hwang NS, Kim HD. Mesenchymal Stem Cell Spheroids: A Promising Tool for Vascularized Tissue Regeneration. Tissue Eng Regen Med 2024; 21:673-693. [PMID: 38578424 PMCID: PMC11187036 DOI: 10.1007/s13770-024-00636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are undifferentiated cells that can differentiate into specific cell lineages when exposed to the right conditions. The ability of MSCs to differentiate into particular cells is considered very important in biological research and clinical applications. MSC spheroids are clusters of MSCs cultured in three dimensions, which play an important role in enhancing the proliferation and differentiation of MSCs. MSCs can also participate in vascular formation by differentiating into endothelial cells and secreting paracrine factors. Vascularization ability is essential in impaired tissue repair and function recovery. Therefore, the vascularization ability of MSCs, which enhances angiogenesis and accelerates tissue healing has made MSCs a promising tool for tissue regeneration. However, MSC spheroids are a relatively new research field, and more research is needed to understand their full potential. METHODS In this review, we highlight the importance of MSC spheroids' vascularization ability in tissue engineering and regenerative medicine while providing the current status of studies on the MSC spheroids' vascularization and suggesting potential future research directions for MSC spheroids. RESULTS Studies both in vivo and in vitro have demonstrated MSC spheroids' capacity to develop into endothelial cells and stimulate vasculogenesis. CONCLUSION MSC spheroids show potential to enhance vascularization ability in tissue regeneration. Yet, further research is required to comprehensively understand the relationship between MSC spheroids and vascularization mechanisms.
Collapse
Affiliation(s)
- Yoonjoo Kang
- Department of IT Convergence (Brain Korea Plus 21), Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Jinwoo Na
- Department of Polymer Science and Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju, 27469, Republic of Korea
| | - Gul Karima
- Department of Polymer Science and Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju, 27469, Republic of Korea
| | - Sivashanmugam Amirthalingam
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwan D Kim
- Department of IT Convergence (Brain Korea Plus 21), Korea National University of Transportation, Chungju, 27469, Republic of Korea.
- Department of Polymer Science and Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju, 27469, Republic of Korea.
- Department of Biomedical Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| |
Collapse
|
4
|
Lu W, Wang X, Kong C, Chen S, Hu C, Zhang J. Hydrogel Based on Riclin Cross-Linked with Polyethylene Glycol Diglycidyl Ether as a Soft Filler for Tissue Engineering. Biomacromolecules 2024; 25:1119-1132. [PMID: 38252967 DOI: 10.1021/acs.biomac.3c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Hydrogels composed of natural polysaccharides have been widely used as filling materials, with a growing interest in medical cosmetology and skin care. However, conventional commercial dermal fillers still have limitations, particularly in terms of mechanical performance and durability in vivo. In this study, a novel injectable and implantable hydrogel with adjustable characteristics was prepared from succinoglycan riclin by introducing PEG diglycidyl ether as a cross-linker. FTIR spectra confirmed the cross-linking reaction. The riclin hydrogels exhibited shear-thinning behavior, excellent mechanical properties, and cytocompatibility through in vitro experiments. Furthermore, when compared with subcutaneous injection of a commercial hyaluronic acid hydrogel, the riclin hydrogels showed enhanced persistence and biocompatibility in Balb/c mice after 16 weeks. These results demonstrate the great potential of the riclin-based hydrogel as an alternative to conventional commercial soft tissue fillers.
Collapse
Affiliation(s)
- Weiling Lu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Xianjin Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Changchang Kong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Shijunyin Chen
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Chengtao Hu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| |
Collapse
|
5
|
Zehorai E, Maor-Shoshani A, Molotski N, Dorojkin A, Marelly N, Dvash T, Lavon N. From fertilised oocyte to cultivated meat - harnessing bovine embryonic stem cells in the cultivated meat industry. Reprod Fertil Dev 2023; 36:124-132. [PMID: 38064188 DOI: 10.1071/rd23169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Global demand for animal protein is on the rise, but many practices common in conventional production are no longer scalable due to environmental impact, public health concerns, and fragility of food systems. For these reasons and more, a pressing need has arisen for sustainable, nutritious, and animal welfare-conscious sources of protein, spurring research dedicated to the production of cultivated meat. Meat mainly consists of muscle, fat, and connective tissue, all of which can be sourced and differentiated from pluripotent stem cells to resemble their nutritional values in muscle tissue. In this paper, we outline the approach that we took to derive bovine embryonic stem cell lines (bESCs) and to characterise them using FACS (fluorescence-activated cell sorting), real-time PCR and immunofluorescence staining. We show their cell growth profile and genetic stability and demonstrate their induced differentiation to mesoderm committed cells. In addition, we discuss our strategy for preparation of master and working cell banks, by which we can expand and grow cells in suspension in quantities suitable for mass production. Consequently, we demonstrate the potential benefits of harnessing bESCs in the production of cultivated meat.
Collapse
Affiliation(s)
| | | | | | | | | | - Tami Dvash
- Aleph Farms Ltd, Rehovot 7670401, Israel
| | - Neta Lavon
- Aleph Farms Ltd, Rehovot 7670401, Israel
| |
Collapse
|
6
|
Huang D, Liang J, Yang J, Yang C, Wang X, Dai T, Steinberg T, Li C, Wang F. Current Status of Tissue Regenerative Engineering for the Treatment of Uterine Infertility. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:558-573. [PMID: 37335062 DOI: 10.1089/ten.teb.2022.0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
With the recent developments in tissue engineering, scientists have attempted to establish seed cells from different sources, create cell sheets through various technologies, implant them on scaffolds with various spatial structures, or load scaffolds with cytokines. These research results are very optimistic, bringing hope to the treatment of patients with uterine infertility. In this article, we reviewed articles related to the treatment of uterine infertility from the aspects of experimental treatment strategy, seed cells, scaffold application, and repair criteria so as to provide a basis for future research.
Collapse
Affiliation(s)
- Di Huang
- Shandong First Medical University, Jinan, China
| | - Junhui Liang
- Departments of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jie Yang
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Chunrun Yang
- Departments of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Ultrasonography, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tianyu Dai
- Shandong First Medical University, Jinan, China
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fei Wang
- Departments of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
7
|
Hao S, Tian C, Bai Y, Wu L, Hao L, Kuang Y, Yang S, Mao H, Gu Z. Photo-crosslinkable hyaluronic acid microgels with reactive oxygen species scavenging capacity for mesenchymal stem cell encapsulation. Int J Biol Macromol 2023; 243:124971. [PMID: 37236562 DOI: 10.1016/j.ijbiomac.2023.124971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Mesenchymal stem cells (MSCs) have gained increasing attention in various biomedical applications. However, conventional therapeutic approaches, such as direct intravenous injection, are associated with low cell survival due to the shear force during injection and the oxidative stress microenvironments in the lesion area. Herein, a photo-crosslinkable antioxidant hydrogel based on tyramine- and dopamine-modified hyaluronic acid (HA-Tyr/HA-DA) was developed. Meanwhile, human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) were encapsulated in HA-Tyr/HA-DA hydrogel using a microfluidic system to create size-controllable microgels (hUC-MSCs@microgels). The HA-Tyr/HA-DA hydrogel was demonstrated to have good rheology, biocompatibility, and antioxidant properties for cell microencapsulation. The hUC-MSCs encapsulated in microgels showed a high viability and a significantly improved the survival rate under oxidative stress conditions. Therefore, the presented work provides a promising platform for MSCs microencapsulation, which may further improve the stem cell-based biomedical applications.
Collapse
Affiliation(s)
- Shiqi Hao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Chen Tian
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Yimeng Bai
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Lihuang Wu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Lili Hao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Yi Kuang
- College of Chemical and Materials Engineering, Zhejiang A&F University, Lin'an 311300, China
| | - Shengxiang Yang
- College of Chemical and Materials Engineering, Zhejiang A&F University, Lin'an 311300, China.
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China; NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing 210000, China.
| | - Zhongwei Gu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China; NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing 210000, China
| |
Collapse
|
8
|
Nikolopoulos VK, Augustine R, Camci-Unal G. Harnessing the potential of oxygen-generating materials and their utilization in organ-specific delivery of oxygen. Biomater Sci 2023; 11:1567-1588. [PMID: 36688522 PMCID: PMC10015602 DOI: 10.1039/d2bm01329k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The limited availability of transplantable organs hinders the success of patient treatment through organ transplantation. In addition, there are challenges with immune rejection and the risk of disease transmission when receiving organs from other individuals. Tissue engineering aims to overcome these challenges by generating functional three-dimensional (3D) tissue constructs. When developing tissues or organs of a particular shape, structure, and size as determined by the specific needs of the therapeutic intervention, a tissue specific oxygen supply to all parts of the tissue construct is an utmost requirement. Moreover, the lack of a functional vasculature in engineered tissues decreases cell survival upon implantation in the body. Oxygen-generating materials can alleviate this challenge in engineered tissue constructs by providing oxygen in a sustained and controlled manner. Oxygen-generating materials can be incorporated into 3D scaffolds allowing the cells to receive and utilize oxygen efficiently. In this review, we present an overview of the use of oxygen-generating materials in various tissue engineering applications in an organ specific manner as well as their potential use in the clinic.
Collapse
Affiliation(s)
- Vasilios K Nikolopoulos
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, USA.
| | - Robin Augustine
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, USA.
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, USA.
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
9
|
Research progress of stem cell therapy for endometrial injury. Mater Today Bio 2022; 16:100389. [PMID: 36033375 PMCID: PMC9403503 DOI: 10.1016/j.mtbio.2022.100389] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
Endometrial damage is an important factor leading to infertility and traditional conventional treatments have limited efficacy. As an emerging technology in recent years, stem cell therapy has provided new hope for the treatment of this disease. By comparing the advantages of stem cells from different sources, it is believed that menstrual blood endometrial stem cells have a good application prospect as a new source of stem cells. However, the clinical utility of stem cells is still limited by issues such as colonization rates, long-term efficacy, tumor formation, and storage and transportation. This paper summarizes the mechanism by which stem cells repair endometrial damage and clarifies the material basis of their effects from four aspects: replacement of damaged sites, paracrine effects, interaction with growth factors, and other new targets. According to the pathological characteristics and treatment requirements of intrauterine adhesion (IUA), the research work to solve the above problems from the aspects of functional bioscaffold preparation and multi-functional platform construction is also summarized. From the perspective of scaffold materials and component functions, this review will provide a reference for comprehensively optimizing the clinical application of stem cells.
Collapse
|
10
|
Sorrell JM, Caplan AI. Heparan Sulfate: A Regulator of White Adipocyte Differentiation and of Vascular/Adipocyte Interactions. Biomedicines 2022; 10:biomedicines10092115. [PMID: 36140217 PMCID: PMC9495464 DOI: 10.3390/biomedicines10092115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/30/2022] Open
Abstract
White adipose tissues are major endocrine organs that release factors, termed adipokines, which affect other major organ systems. The development and functions of adipose tissues depend largely upon the glycosaminoglycan heparan sulfate. Heparan sulfate proteoglycans (HSPGs) surround both adipocytes and vascular structures and facilitate the communication between these two components. This communication mediates the continued export of adipokines from adipose tissues. Heparan sulfates regulate cellular physiology and communication through a sulfation code that ionically interacts with heparan-binding regions on a select set of proteins. Many of these proteins are growth factors and chemokines that regulate tissue function and inflammation. Cells regulate heparan sulfate sulfation through the release of heparanases and sulfatases. It is now possible to tissue engineer vascularized adipose tissues that express heparan sulfate proteoglycans. This makes it possible to use these tissue constructs to study the role of heparan sulfates in the regulation of adipokine production and release. It is possible to regulate the production of heparanases and sulfatases in order to fine-tune experimental studies.
Collapse
|
11
|
Zhu Z, Yuan Z, Guo L, Nurzat Y, Xu H, Zhang Y. Construction of adipose tissue using a silica expander capsule and cell sheet-assembled of decellularized adipose tissue. Acta Biomater 2022; 141:89-101. [PMID: 34974176 DOI: 10.1016/j.actbio.2021.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022]
Abstract
Delayed neovascularization and unstable adipose formation are major confounding factors in adipose tissue engineering. A system using decellularized adipose tissue (DAT), adipose-derived stem cells (ADSCs), and human umbilical vein endothelial cells (HUVECs) has been preliminarily studied, but it requires optimization, as adipogenic and angiogenic capabilities for maintaining a stable construct shape are limited. The current study aimed to address these limitations. Our initial modification involved the addition of exogenous chemokine (C-C motif) ligand 2 (CCL2), which resulted in enhanced adipogenesis and angiogenesis. However, further improvement was required due to delayed blood recanalization. To further optimize the system, a vascularized fibrous capsule derived from an implanted silica expander was utilized as a second modification. We hypothesized this would function as both a microbioreactor to fix the seed cells and exogenous CCL2 locally and as a vascular bed to promote neovascularization. Compared with that of the CCL2 loaded ADSC-HUVECs cell sheet assembled DAT system, adding the silica expander capsule resulted in significantly increased construct stability, new vessel intensity, a greater number of Oil Red O-positive lipid droplets, more enhanced tissue remodeling, and upregulated peroxisome proliferator-activated receptor gamma (PPARγ) & leptin expression. Thus, these two modifications helped optimize the currently available ADSC-HUVEC cell sheet assembled DAT system, providing an adipose tissue construction strategy with enhanced adipogenesis and angiogenesis to reconstruct soft tissue defects. Moreover, close-to-normal leptin expression provided the engineered adipose tissue with a glucometabolic function, in addition to remodeling capabilities. STATEMENT OF SIGNIFICANCE: Delayed neovascularization and unstable adipose formation are the two major problems in tissue engineering adipose. Here, we introduced an adipose tissue engineering construction strategy using a silica expander capsule along with hADSCs-HUVECs cell sheet-assembled DAT in a CCL2-rich microenvironment. Our data suggested that CCL2 could improve angiogenesis and adipogenesis in vitro and in vivo. The addition of tissue expander capsule could further improve the stability of construction and fabricated adipose tissue with increased new vessel intensity, greater numbers of Oil Red O-positive lipid droplets, more enhanced tissue remodeling, and upregulated leptin expression. CCL2 and expander capsule can have clinical utility for soft tissue defects repair, and these two factors can be useful in other tissue engineering.
Collapse
Affiliation(s)
- Zhu Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 16th floor No 639, Zhizaoju Road, Shanghai 200023, PR China; Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, PR China
| | - Zhaoqi Yuan
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 16th floor No 639, Zhizaoju Road, Shanghai 200023, PR China; Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, PR China
| | - Linxiumei Guo
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 16th floor No 639, Zhizaoju Road, Shanghai 200023, PR China; Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, PR China
| | - Yeltai Nurzat
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 16th floor No 639, Zhizaoju Road, Shanghai 200023, PR China
| | - Heng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 16th floor No 639, Zhizaoju Road, Shanghai 200023, PR China.
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 16th floor No 639, Zhizaoju Road, Shanghai 200023, PR China.
| |
Collapse
|
12
|
Gao M, Cai J, Zitkovsky HS, Chen B, Guo L. Comparison of Yield, Purity, and Functional Properties of Large-Volume Exosome Isolation Using Ultrafiltration and Polymer-Based Precipitation. Plast Reconstr Surg 2022; 149:638-649. [PMID: 35196679 DOI: 10.1097/prs.0000000000008830] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mesenchymal stem cell-derived exosomes are known to produce effects similar to those of source cells and therefore represent a new approach in cell-free regenerative medicine. Their potential clinical application demands efficient isolation of stable and functional exosomes from a large volume of biological fluid. METHODS Exosomes from adipose-tissue conditioned medium of the same volume were isolated using either (1) ultrafiltration with size exclusion or (2) ExoQuick-TC. The isolated exosomes were characterized by protein concentration, particle size, exosomal marker expression, RNA expression profiles, and roles in dermal fibroblast proliferation and migration. RESULTS Both isolation methods produced exosomes within the size range defined for exosomes (50 to 200 nm) and common markers were enriched. Compared to the ExoQuick-TC precipitation method, the ultrafiltration method produced a significantly higher protein yield (p < 0.001) but a lower particle-to-protein ratio (p < 0.05); it also yielded higher RNA contents from the same fat tissue indicated by housekeeping genes, but with overall lower purity. The expression of several mRNAs and miRNAs related to tissue regeneration showed that there was no statistical difference between both methods, except miR-155 and miR-223 (p < 0.05). However, there was no difference in overall fibroblast proliferation and migration between exosomes isolated by these two methods. CONCLUSIONS Ultrafiltration with size exclusion demonstrated higher yields, acceptable purity, and comparable biophysical properties and biological functions to the more expensive commercial precipitation method. Therefore, it may conceivably be translated into yield-efficient and cost-effective modalities for therapeutic purposes. CLINICAL RELEVANCE STATEMENT Ultrafiltration with size exclusion may be amenable for exosome isolation from large-volume complex fluids such as tissue conditioned media for clinical application in future regenerative medicine.
Collapse
Affiliation(s)
- Min Gao
- From the Laboratory of Tissue Regeneration, Division of Plastic Surgery, Lahey Hospital & Medical Center; Department of Burns and Plastic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; and Department of Plastic Surgery, Nanfang Hospital, Southern Medical University
| | - Junrong Cai
- From the Laboratory of Tissue Regeneration, Division of Plastic Surgery, Lahey Hospital & Medical Center; Department of Burns and Plastic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; and Department of Plastic Surgery, Nanfang Hospital, Southern Medical University
| | - Helen S Zitkovsky
- From the Laboratory of Tissue Regeneration, Division of Plastic Surgery, Lahey Hospital & Medical Center; Department of Burns and Plastic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; and Department of Plastic Surgery, Nanfang Hospital, Southern Medical University
| | - Bin Chen
- From the Laboratory of Tissue Regeneration, Division of Plastic Surgery, Lahey Hospital & Medical Center; Department of Burns and Plastic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; and Department of Plastic Surgery, Nanfang Hospital, Southern Medical University
| | - Lifei Guo
- From the Laboratory of Tissue Regeneration, Division of Plastic Surgery, Lahey Hospital & Medical Center; Department of Burns and Plastic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; and Department of Plastic Surgery, Nanfang Hospital, Southern Medical University
| |
Collapse
|
13
|
Mallick S, Nag M, Lahiri D, Pandit S, Sarkar T, Pati S, Nirmal NP, Edinur HA, Kari ZA, Ahmad Mohd Zain MR, Ray RR. Engineered Nanotechnology: An Effective Therapeutic Platform for the Chronic Cutaneous Wound. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:778. [PMID: 35269266 PMCID: PMC8911807 DOI: 10.3390/nano12050778] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 12/27/2022]
Abstract
The healing of chronic wound infections, especially cutaneous wounds, involves a complex cascade of events demanding mutual interaction between immunity and other natural host processes. Wound infections are caused by the consortia of microbial species that keep on proliferating and produce various types of virulence factors that cause the development of chronic infections. The mono- or polymicrobial nature of surface wound infections is best characterized by its ability to form biofilm that renders antimicrobial resistance to commonly administered drugs due to poor biofilm matrix permeability. With an increasing incidence of chronic wound biofilm infections, there is an urgent need for non-conventional antimicrobial approaches, such as developing nanomaterials that have intrinsic antimicrobial-antibiofilm properties modulating the biochemical or biophysical parameters in the wound microenvironment in order to cause disruption and removal of biofilms, such as designing nanomaterials as efficient drug-delivery vehicles carrying antibiotics, bioactive compounds, growth factor antioxidants or stem cells reaching the infection sites and having a distinct mechanism of action in comparison to antibiotics-functionalized nanoparticles (NPs) for better incursion through the biofilm matrix. NPs are thought to act by modulating the microbial colonization and biofilm formation in wounds due to their differential particle size, shape, surface charge and composition through alterations in bacterial cell membrane composition, as well as their conductivity, loss of respiratory activity, generation of reactive oxygen species (ROS), nitrosation of cysteines of proteins, lipid peroxidation, DNA unwinding and modulation of metabolic pathways. For the treatment of chronic wounds, extensive research is ongoing to explore a variety of nanoplatforms, including metallic and nonmetallic NPs, nanofibers and self-accumulating nanocarriers. As the use of the magnetic nanoparticle (MNP)-entrenched pre-designed hydrogel sheet (MPS) is found to enhance wound healing, the bio-nanocomposites consisting of bacterial cellulose and magnetic nanoparticles (magnetite) are now successfully used for the healing of chronic wounds. With the objective of precise targeting, some kinds of "intelligent" nanoparticles are constructed to react according to the required environment, which are later incorporated in the dressings, so that the wound can be treated with nano-impregnated dressing material in situ. For the effective healing of skin wounds, high-expressing, transiently modified stem cells, controlled by nano 3D architectures, have been developed to encourage angiogenesis and tissue regeneration. In order to overcome the challenge of time and dose constraints during drug administration, the approach of combinatorial nano therapy is adopted, whereby AI will help to exploit the full potential of nanomedicine to treat chronic wounds.
Collapse
Affiliation(s)
- Suhasini Mallick
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia 741249, India;
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata 700156, India; (M.N.); (D.L.)
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata 700156, India; (M.N.); (D.L.)
| | - Soumya Pandit
- Department of Life Sciences, Sharda University, Noida 201310, India;
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda 732102, India;
| | - Siddhartha Pati
- NatNov Bioscience Private Limited, Balasore 756001, India;
- Skills Innovation & Academic Network (SIAN) Institute, Association for Biodiversity Conservation & Research (ABC), Balasore 756001, India
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand;
| | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Zulhisyam Abdul Kari
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli 17600, Malaysia
| | | | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia 741249, India;
| |
Collapse
|
14
|
Kim WK, Kim WH, Kweon OK, Kang BJ. Heat-Shock Proteins Can Potentiate the Therapeutic Ability of Cryopreserved Mesenchymal Stem Cells for the Treatment of Acute Spinal Cord Injury in Dogs. Stem Cell Rev Rep 2022; 18:1461-1477. [PMID: 35001344 DOI: 10.1007/s12015-021-10316-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are applied in the treatment of spinal cord injury (SCI) because of their neural tissue restoring ability. In the clinical setting, intravenous injection of cryopreserved cells is essential for the immediate treatment of SCI, exhibiting the disadvantage of reduced cell properties. METHODS In this study, we potentiated the characteristics of cryopreserved MSCs by heat-shock (HS) treatment to induce the expression of HS protein (HSP) HSP70/HSP27 and further improved antioxidant capacity by overexpressing HSP32 (heme oxygenase-1 [HO-1]). We randomly assigned 12 beagle dogs with acute SCI into three groups and transplanted cells intravenously: (i) F-MSCs (MSCs in frozen/thawed conditions); (ii) F-HSP-MSCs (HS-treated MSCs in frozen/thawed conditions); and (iii) F-HSP-HO-MSCs (HO-1-overexpressing and HS-treated MSCs in frozen/thawed conditions). RESULTS The potentiated MSCs exhibited increased growth factor-, anti-inflammatory-, antioxidant-, homing- and stemness-related gene expression. In the animal experiments, the HSP-induced groups showed significant improvement in hind-limb locomotion, highly expressed neural markers, less intervened fibrotic changes, and improved myelination. In particular, the HO-1-overexpression group was more prominent, controlling the initial inflammatory response with high antioxidant capabilities, suggesting that antioxidation was important to prevent secondary injury. Accordingly, HSPs not only successfully increased the ability of frozen MSCs but also demonstrated excellent neural protection and regeneration capacity in the case of acute SCI. CONCLUSIONS The application of HSP-induced cryopreserved MSCs in first-aid treatment for acute SCI is considered to help early neural sparing and further hind-limb motor function restoration.
Collapse
Affiliation(s)
- Woo Keyoung Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.,BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Wan Hee Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.,BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Oh-Kyeong Kweon
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Byung-Jae Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea. .,BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
15
|
Karacan I, Milthorpe B, Ben-Nissan B, Santos J. Stem Cells and Proteomics in Biomaterials and Biomedical Applications. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2022:125-157. [DOI: 10.1007/978-981-16-7435-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
Manivasagam VK, Popat KC. Hydrothermally treated titanium surfaces for enhanced osteogenic differentiation of adipose derived stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112315. [PMID: 34474866 DOI: 10.1016/j.msec.2021.112315] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/20/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Implant surface plays a crucial role in improving osseointegration and long-term implant life. When the implant comes in contact with the bone tissue, the bone marrow mesenchymal cells interact with the implant surface and the surface properties such as morphology, wettability, mechanical properties and chemistry influences cell migration, proliferation and differentiation. Different surface modification strategies such as ceramic coatings, surface dealloying, and surface topography modifications for improving osteointegration have been investigated. However, studies have not yet established which of the surface property is more influential. In this study, titanium surfaces were treated hydrothermally with sodium hydroxide and sulfuric acid separately. This treatment led to the development of two unique surface topography at nanoscale. These modified surfaces were characterized for surface morphology, wettability, chemistry, and crystallinity. Cytotoxicity, cell adhesion, proliferation, morphology, and differentiation of adipose derived stem cells on modified surfaces was investigated. The results indicate that wettability does influence initial cell adhesion. However, the surface morphology can play major role in cell spreading, proliferation and differentiation. The results indicate that titanium surfaces treated hydrothermally with sodium hydroxide led to a nanoporous architecture that promoted appropriate cell interaction with the surface promoting osteoblastic lineage.
Collapse
Affiliation(s)
- Vignesh K Manivasagam
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Ketul C Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
17
|
Almeida GHDR, Iglesia RP, Araújo MS, Carreira ACO, Dos Santos EX, Calomeno CVAQ, Miglino MA. Uterine Tissue Engineering: Where We Stand and the Challenges Ahead. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:861-890. [PMID: 34476997 DOI: 10.1089/ten.teb.2021.0062] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tissue engineering is an innovative approach to develop allogeneic tissues and organs. The uterus is a very sensitive and complex organ, which requires refined techniques to properly regenerate and even, to rebuild itself. Many therapies were developed in 20th century to solve reproductive issues related to uterus failure and, more recently, tissue engineering techniques provided a significant evolution in this issue. Herein we aim to provide a broad overview and highlights of the general concepts involved in bioengineering to reconstruct the uterus and its tissues, focusing on strategies for tissue repair, production of uterine scaffolds, biomaterials and reproductive animal models, highlighting the most recent and effective tissue engineering protocols in literature and their application in regenerative medicine. In addition, we provide a discussion about what was achieved in uterine tissue engineering, the main limitations, the challenges to overcome and future perspectives in this research field.
Collapse
Affiliation(s)
- Gustavo Henrique Doná Rodrigues Almeida
- University of São Paulo, Faculty of Veterinary and Animal Science, Professor Orlando Marques de Paiva Avenue, 87, Butantã, SP, Sao Paulo, São Paulo, Brazil, 05508-900.,University of São Paulo Institute of Biomedical Sciences, 54544, Cell and Developmental Biology, Professor Lineu Prestes Avenue, 1374, Butantã, SP, Sao Paulo, São Paulo, Brazil, 05508-900;
| | - Rebeca Piatniczka Iglesia
- University of São Paulo Institute of Biomedical Sciences, 54544, Cell and Developmental Biology, Sao Paulo, São Paulo, Brazil;
| | - Michelle Silva Araújo
- University of São Paulo, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil., São Paulo, São Paulo, Brazil;
| | - Ana Claudia Oliveira Carreira
- University of São Paulo, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, SP, Brazil, São Paulo, São Paulo, Brazil;
| | - Erika Xavier Dos Santos
- State University of Maringá, 42487, Department of Morphological Sciences, State University of Maringá, Maringá, PR, Brazil, Maringa, PR, Brazil;
| | - Celso Vitor Alves Queiroz Calomeno
- State University of Maringá, 42487, Department of Morphological Sciences, State University of Maringá, Maringá, PR, Brazil, Maringa, PR, Brazil;
| | - Maria Angélica Miglino
- University of São Paulo, Faculty of Veterinary and Animal Science Professor Orlando Marques de Paiva Avenue, 87 Butantã SP Sao Paulo, São Paulo, BR 05508-900, São Paulo, São Paulo, Brazil;
| |
Collapse
|
18
|
Cai Q, Yin F, Hao L, Jiang W. Research Progress of Mesenchymal Stem Cell Therapy for Severe COVID-19. Stem Cells Dev 2021; 30:459-472. [PMID: 33715385 DOI: 10.1089/scd.2020.0198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Corona virus disease 2019 (COVID-19) refers to a type of pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Sixty million confirmed cases have been reported worldwide until November 29, 2020. Unfortunately, the novel coronavirus is extremely contagious and the mortality rate of severe and critically ill patients is high. Thus, there is no definite and effective treatment in clinical practice except for antiviral therapy and supportive therapy. Mesenchymal stem cells (MSCs) are not only characterized by low immunogenicity and homing but also have anti-inflammatory and immunomodulation characteristics. Furthermore, they can inhibit the occurrence and development of a cytokine storm, inhibit lung injury, and exert antipulmonary fibrosis and antioxidative stress, therefore MSC therapy is expected to become one of the effective therapies to treat severe COVID-19. This article will review the possible mechanisms of MSCs in the treatment of severe COVID-19.
Collapse
Affiliation(s)
- Qiqi Cai
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Fei Yin
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Liming Hao
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Wenhua Jiang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| |
Collapse
|
19
|
Hong P, Xu X, Hu X, Yang H, Wu Y, Chen J, Li K, Tang Z. Therapeutic potential of small extracellular vesicles derived from lipoma tissue in adipose tissue regeneration-an in vitro and in vivo study. Stem Cell Res Ther 2021; 12:222. [PMID: 33789709 PMCID: PMC8011093 DOI: 10.1186/s13287-021-02291-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To explore the adipogenic effects of the small extracellular vesicles derived from the lipoma tissues (sEV-LT), and to find a new cell-free therapeutic approach for adipose tissue regeneration. METHODS Adipose tissue-derived stem cells (ADSCs) and small extracellular vesicles derived from the adipose tissues (sEV-AT) were isolated from human adipose tissue, while sEV-LT were isolated from human lipomatous tissue. ADSCs were characterized by using flow cytometric analysis and adipogenic and osteogenic differentiation assays. sEV was identified by electron microscopy, nanoparticle tracking, and western blotting. ADSCs were treated with sEV-LT and sEV-AT, respectively. Fluorescence confocal microscopy was used to investigate whether sEV-LT and sEV-AT could be taken by ADSCs. The proliferation and migration abilities and adipogenic differentiation assay of ADSCs were evaluated by CCK-8 assays, scratch test, and oil red O staining test, and the expression levels of adipogenic-related genes C/EBP-δ, PPARγ2, and Adiponectin in ADSCs were assessed by real-time quantitative PCR (RT-PCR). The sEV-LT and sEV-AT transplantation tubes were implanted subcutaneously in SD rats, and the neotissues were qualitatively and histologically evaluated at 2, 4, 8, and 12 weeks after transplantation. Hematoxylin and eosin (H&E) staining was subsequently used to observe and compare the adipogenesis and angiogenesis in neotissues, while immunohistochemistry was used to examine the expression and the distribution of C/EBP-α, PPARγ, Adiponectin, and CD31 at the 4th week. RESULTS The in vitro experiments showed that both sEV-LT and sEV-AT could be taken up by ADSCs via endocytosis. The scratch experiment and CCK-8 experiment showed that the migration area and proliferation number of ADSCs in sEV-LT group and sEV-AT group were significantly higher than those in the non-sEV group (p < 0.05). Compared with sEV-AT group, sEV-LT group had larger migration area and proliferation number of ADSCs (p < 0.05). Oil red O staining and RT-PCR experiments showed that, compared with the non-sEVs group, the lipid droplets and the mRNA expression levels of adipogenesis-related genes PPARγ2 and Adiponectin of ADSCs in sEV-LT group and sEV-AT group were significantly upregulated (p < 0.05); however, there was no statistical significance in the expression level of C/EBP-δ (p > 0.05). In addition, no significant difference in the amount of lipid droplets and adipogenesis-related genes between the sEV-LT groups and sEV-AT was seen (p > 0.05). At 2, 4, 8, and 12 weeks, the adipocyte area and the number of capillaries in neotissues in the sEV-LT groups and sEV-AT groups were significantly increased compared with the Matrigel group (p < 0.05); however, there was no dramatic difference between sEV-LT groups and sEV-AT groups (p > 0.05). At the 4th week, neotissues in the sEV-LT groups and sEV-AT groups all showed upregulated expression of C/EBP-α, PPARγ, Adiponectin, and CD31 protein, while neotissues in the Matrigel group only showed positive expression of CD31 protein. CONCLUSIONS This study demonstrated that sEV-LT exerted promotion effects on adipose tissue regeneration by accelerating the proliferation, migration, and adipogenic differentiation of ADSCs in vitro and recruiting adipocytes and promoting angiogenesis in vivo. The sEV-LT could serve as an alternative cell-free therapeutic strategy for generating adipose tissue, thus providing a promising application prospect in tissue engineering.
Collapse
Affiliation(s)
- Pengyu Hong
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoyang Xu
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Xin Hu
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Yang
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Yue Wu
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Juan Chen
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Kun Li
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008, Hunan, China.
| | - Zhangui Tang
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
20
|
Yang J, Zhou C, Fu J, Yang Q, He T, Tan Q, Lv Q. In situ Adipogenesis in Biomaterials Without Cell Seeds: Current Status and Perspectives. Front Cell Dev Biol 2021; 9:647149. [PMID: 33763426 PMCID: PMC7982583 DOI: 10.3389/fcell.2021.647149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/08/2021] [Indexed: 02/05/2023] Open
Abstract
For cosmetic and reconstructive purposes in the setting of small-volume adipose tissue damage due to aging, traumatic defects, oncological resections, and degenerative diseases, the current strategies for soft tissue replacement involve autologous fat grafts and tissue fillers with synthetic, bioactive, or tissue-engineered materials. However, they all have drawbacks such as volume shrinkage and foreign-body responses. Aiming to regenerate bioactive vascularized adipose tissue on biomaterial scaffolds, adipose tissue engineering (ATE) has emerged as a suitable substitute for soft tissue repair. The essential components of ATE include scaffolds as support, cells as raw materials for fat formation, and a tolerant local environment to allow regeneration to occur. The commonly loaded seeding cells are adipose-derived stem cells (ASCs), which are expected to induce stable and predictable adipose tissue formation. However, defects in stem cell enrichment, such as donor-site sacrifice, limit their wide application. As a promising alternative approach, cell-free bioactive scaffolds recruit endogenous cells for adipogenesis. In biomaterials without cell seeds, the key to sufficient adipogenesis relies on the recruitment of endogenous host cells and continuous induction of cell homing to scaffolds. Regeneration, rather than repair, is the fundamental dominance of an optimal mature product. To induce in situ adipogenesis, many researchers have focused on the mechanical and biochemical properties of scaffolds. In addition, efforts to regulate an angiogenic and adipogenic microenvironment in cell-free settings involve integrating growth factors or extracellular matrix (ECM) proteins onto bioactive scaffolds. Despite the theoretical feasibility and encouraging results in animal models, few of the reported cell-free biomaterials have been tested in humans, and failures of decellularized adipose tissues in adipogenesis have also been reported. In these cases, the most likely reason was the lack of supporting vasculature. This review summarizes the current status of biomaterials without cell seeds. Related mechanisms and influencing factors of in situ adipogenesis in cell-free biomaterials, dilemma in the development of biomaterials, and future perspectives are also addressed.
Collapse
Affiliation(s)
- Jiqiao Yang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast Disease, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Zhou
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jingyang Fu
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu, China
| | - Qianru Yang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tao He
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuwen Tan
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Lv
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
How Surface Properties of Silica Nanoparticles Influence Structural, Microstructural and Biological Properties of Polymer Nanocomposites. MATERIALS 2021; 14:ma14040843. [PMID: 33578744 PMCID: PMC7916496 DOI: 10.3390/ma14040843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/02/2021] [Accepted: 02/04/2021] [Indexed: 11/26/2022]
Abstract
The aim of this work was to study effect of the type of silica nanoparticles on the properties of nanocomposites for application in the guided bone regeneration (GBR). Two types of nanometric silica particles with different size, morphology and specific surface area (SSA) i.e., high specific surface silica (hss-SiO2) and low specific surface silica (lss-SiO2), were used as nano-fillers for a resorbable polymer matrix: poly(L-lactide-co-D,L-lactide), called PLDLA. It was shown that higher surface specific area and morphology (including pore size distribution) recorded for hss-SiO2 influences chemical activity of the nanoparticle; in addition, hydroxyl groups appeared on the surface. The nanoparticle with 10 times lower specific surface area (lss-SiO2) characterized lower chemical action. In addition, a lack of hydroxyl groups on the surface obstructed apatite nucleation (reduced zeta potential in comparison to hss-SiO2), where an apatite layer appeared already after 48 h of incubation in the simulated body fluid (SBF), and no significant changes in crystallinity of PLDLA/lss-SiO2 nanocomposite material in comparison to neat PLDLA foil were observed. The presence and type of inorganic particles in the PLDLA matrix influenced various physicochemical properties such as the wettability, and the roughness parameter note for PLDLA/lss-SiO2 increased. The results of biological investigation show that the bioactive nanocomposites with hss-SiO2 may stimulate osteoblast and fibroblast cells’proliferation and secretion of collagen type I. Additionally, both nanocomposites with the nanometric silica inducted differentiation of mesenchymal cells into osteoblasts at a proliferation stage in in vitro conditions. A higher concentration of alkaline phosphatase (ALP) was observed on the material modified with hss-SiO2 silica.
Collapse
|
22
|
Biostimulative effect of laser on growth of mesenchymal stem/stromal cells in vitro. Postepy Dermatol Alergol 2020; 37:771-780. [PMID: 33240019 PMCID: PMC7675089 DOI: 10.5114/ada.2020.100487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/14/2020] [Indexed: 12/23/2022] Open
Abstract
Introduction Human adipose tissue-derived mesenchymal stem/stromal cells (hAT-MSCs) are multipotent stromal cells with a high potential application in tissue engineering and regenerative medicine. Laser irradiation of the place where the cells were implanted can stimulate their proliferation, increase the secretion of growth factors and thus increase the therapeutic effect. Aim To evaluate the influence of two lasers: Er:YAG and diode on the growth of hAT-MSCs in vitro. Material and methods hAT-MSCs were isolated from human subcutaneous adipose tissue. Immunophenotype of hAT-MSCs was confirmed by flow cytometry. Multipotency of hAT-MSCs was confirmed by differentiation into adipogenic, osteogenic and chondrogenic lineages. hAT-MSCs were irradiated with Er:YAG laser (wavelength 2940 nm, frequency 5, 10 Hz, doses: 0.1–1.2 J/cm2) for 2 s and 4 s and diode laser (wavelength 635 nm and doses: 1–8 J/cm2) for 5, 10, 20, 30 and 40 s. Cell viability was analysed 24 h after the exposure using MTT assay. Results Growth stimulation of hAT-MSCs after 5 Hz Er:YAG laser exposure, 0.1 J/cm2 dose for 4 s and 0.3 J/cm2 dose for 4 s was shown in comparison with the control group. Significant growth stimulation of hAT-MSCs after diode laser irradiation in doses of 1–4 J/cm2 was demonstrated compared to the control group. Conclusions The presented results indicate that both lasers, Er:YAG and diode can be used to stimulate stem/stromal cell growth in vitro. The biostimulative effect of laser therapy on stromal cells may be used in the future in aesthetic dermatology in combined laser and cell therapy.
Collapse
|
23
|
West-Livingston LN, Park J, Lee SJ, Atala A, Yoo JJ. The Role of the Microenvironment in Controlling the Fate of Bioprinted Stem Cells. Chem Rev 2020; 120:11056-11092. [PMID: 32558555 PMCID: PMC7676498 DOI: 10.1021/acs.chemrev.0c00126] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The field of tissue engineering and regenerative medicine has made numerous advances in recent years in the arena of fabricating multifunctional, three-dimensional (3D) tissue constructs. This can be attributed to novel approaches in the bioprinting of stem cells. There are expansive options in bioprinting technology that have become more refined and specialized over the years, and stem cells address many limitations in cell source, expansion, and development of bioengineered tissue constructs. While bioprinted stem cells present an opportunity to replicate physiological microenvironments with precision, the future of this practice relies heavily on the optimization of the cellular microenvironment. To fabricate tissue constructs that are useful in replicating physiological conditions in laboratory settings, or in preparation for transplantation to a living host, the microenvironment must mimic conditions that allow bioprinted stem cells to proliferate, differentiate, and migrate. The advances of bioprinting stem cells and directing cell fate have the potential to provide feasible and translatable approach to creating complex tissues and organs. This review will examine the methods through which bioprinted stem cells are differentiated into desired cell lineages through biochemical, biological, and biomechanical techniques.
Collapse
Affiliation(s)
- Lauren N. West-Livingston
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Jihoon Park
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| |
Collapse
|
24
|
Fitzgerald SJ, Cobb JS, Janorkar AV. Comparison of the formation, adipogenic maturation, and retention of human adipose-derived stem cell spheroids in scaffold-free culture techniques. J Biomed Mater Res B Appl Biomater 2020; 108:3022-3032. [PMID: 32396702 PMCID: PMC8506838 DOI: 10.1002/jbm.b.34631] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 11/02/2023]
Abstract
While three-dimensional spheroids outperform traditional two-dimensional monolayer culture for human adipose-derived stem cells (hASCs), there is not a consensus on the most successful method for enhancing their adipogenic differentiation and minimizing the loss of physiologically relevant, fatty spheroids during culture. To this end, we compared three culture methods, namely, elastin-like polypeptide-polyethyleneimine (ELP-PEI) coated surfaces, ultra-low attachment static culture, and suspension culture for their ability to form and retain productive hASC spheroids. The ELP-PEI coatings used the ELP conjugated to two molecular weights of PEI (800 or 25,000 g/mol). FTIR spectroscopy, atomic force microscopy, and contact angle goniometry revealed that the ELP-PEI coatings had similar chemical structures, surface topography, and hydrophobicity. Time-lapse microscopy showed that increasing the PEI molecular weight resulted in smaller spheroids. Measurement of triglyceride content showed that the three methods induced comparable differentiation of hASCs toward the adipogenic lineage. DNA content and morphometric analysis revealed merging of spheroids to form larger spheroids in the ultra-low attachment static culture and suspension culture methods. In contrast, the retention of hASC spheroid sizes and numbers with a regular spheroid size (~100 μm) were best atop the ELP-PEI800 coatings. Overall, this research shows that the spheroid culture atop the ELP-PEI coatings is a suitable cell culture model for future studies involving long-term, three-dimensional culture of mature adipocytes derived from hASCs.
Collapse
Affiliation(s)
- Sarah J. Fitzgerald
- Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 N State St, Jackson, MS 39216
| | - Jared S. Cobb
- Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 N State St, Jackson, MS 39216
| | - Amol V. Janorkar
- Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 N State St, Jackson, MS 39216
| |
Collapse
|
25
|
Jeon EY, Joo KI, Cha HJ. Body temperature-activated protein-based injectable adhesive hydrogel incorporated with decellularized adipose extracellular matrix for tissue-specific regenerative stem cell therapy. Acta Biomater 2020; 114:244-255. [PMID: 32702528 DOI: 10.1016/j.actbio.2020.07.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/28/2020] [Accepted: 07/15/2020] [Indexed: 01/22/2023]
Abstract
Adipose tissue engineering represents a valuable alternative for reconstructive and cosmetic applications to restore soft tissue loss. Herein, for the development of a tissue-engineered adipose substitute, we designed an injectable thermoresponsive tissue adhesive hydrogel by grafting bioengineered mussel adhesive protein (MAP) with poly(N-isopropylacrylamide) (PNIPAM) and incorporating decellularized adipose tissue (DAT) powder as a biochemical cue. The body temperature-activated PNIPAM-grafted MAP (MAP-PNIPAM) hydrogel showed 3.2-times higher water retention ability, high porosity, and 8.4-times stronger tissue adhesive properties compared to the PNIPAM gel alone with pore collapse. Moreover, we found that the introduction of 5 wt% DAT powder had adipo-inductive and adipo-conductive effects, which might be due to the provision of biochemical substrates enriched in collagen and laminin for cell-cell and cell-matrix interactions. In vivo subcutaneous injection of the adipose-derived stem cell-laden DAT-incorporated MAP-PNIPAM hydrogel further demonstrated better volume maintenance, angiogenesis, and lipid accumulation than control injectable alginate gel or DAT powder only. Collectively, our injectable body temperature-activated tissue adhesive MAP-PNIPAM hydrogel system with a decellularized extracellular matrix source can be utilized as a promising alternative for tissue-specific regenerative stem cell therapy. STATEMENT OF SIGNIFICANCE: For adipose tissue engineering, we designed an injectable body temperature-activated adhesive hydrogel by grafting bioengineered mussel adhesive protein (MAP) with poly(N-isopropylacrylamide) (PNIPAM) and incorporating adipose-derived stem cells (ASCs) and decellularized adipose tissue (DAT) powder as regenerative cell and ECM sources. PNIPAM has been widely used for cell sheet engineering, but not for cell carriers due to its dramatic thermal contractive properties. By conjugation with hydrophilic MAP, water retention ability and tissue adhesiveness of the scaffold increased by a factor of 3.2- and 8.4-fold, respectively, which are highly required for survival of the transplanted cells and interfacial integration with host tissues. In vivo performance demonstrated that ASCs/DAT powder-laden MAP-PNIPAM hydrogel achieved better volume maintenance, neovascularization, and adipogenesis than control injectable groups.
Collapse
|
26
|
Elastin-Collagen Based Hydrogels as Model Scaffolds to Induce Three-Dimensional Adipocyte Culture from Adipose Derived Stem Cells. Bioengineering (Basel) 2020; 7:bioengineering7030110. [PMID: 32932577 PMCID: PMC7552710 DOI: 10.3390/bioengineering7030110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
This study aimed to probe the effect of formulation of scaffolds prepared using collagen and elastin-like polypeptide (ELP) and their resulting physico-chemical and mechanical properties on the adipogenic differentiation of human adipose derived stem cells (hASCs). Six different ELP-collagen scaffolds were prepared by varying the collagen concentration (2 and 6 mg/mL), ELP addition (6 mg/mL), or crosslinking of the scaffolds. FTIR spectroscopy indicated secondary bonding interactions between collagen and ELP, while scanning electron microscopy revealed a porous structure for all scaffolds. Increased collagen concentration, ELP addition, and presence of crosslinking decreased swelling ratio and increased elastic modulus and compressive strength of the scaffolds. The scaffold characteristics influenced cell morphology, wherein the hASCs seeded in the softer, non-crosslinked scaffolds displayed a spread morphology. We determined that stiffer and/or crosslinked elastin-collagen based scaffolds constricted the spreading of hASCs, leading to a spheroid morphology and yielded an enhanced adipogenic differentiation as indicated by Oil Red O staining. Overall, this study underscored the importance of spheroid morphology in adipogenic differentiation, which will allow researchers to create more physiologically-relevant three-dimensional, in vitro culture models.
Collapse
|
27
|
Monge P, Tvilum A, Søgaard AB, Løvschall KB, Jarlstad Olesen MT, Zelikin AN. Chemical Artificial Internalizing Receptors for Primary T Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001395. [PMID: 32999846 PMCID: PMC7509642 DOI: 10.1002/advs.202001395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/29/2020] [Indexed: 05/28/2023]
Abstract
The newest generation of cell-based technologies relies heavily on methods to communicate to the engineered cells using artificial receptors, specifically to deactivate the cells administered to a patient in the event of adverse effects. Herein, artificial synthetic internalizing receptors are engineered that function in mammalian cells in 2D and in 3D and afford targeted, specific intracellular drug delivery with nanomolar potency in the most challenging cell type, namely primary, donor-derived T cells. Receptor design comprises a lipid bilayer anchor for receptor integration into cell membrane and a small xenobiotic molecule as a recognition ligand. Artificial receptors are successfully targeted by the corresponding antibody-drug conjugate (ADC) and exhibit efficient cargo cell entry with ensuing intracellular effects. Receptor integration into cells is fast and robust and affords targeted cell entry in under 2 h. Through a combination of the receptor design and the use of ADC, combined benefits previously made available by chimeric artificial receptors (performance in T cells) and the chemical counterpart (robustness and simplicity) in a single functional platform is achieved. Artificial synthetic receptors are poised to facilitate the maturation of engineered cells as tools of biotechnology and biomedicine.
Collapse
Affiliation(s)
- Pere Monge
- Department of ChemistryAarhus UniversityLangelandsgade 140AarhusC 8000Denmark
| | - Anne Tvilum
- Department of ChemistryAarhus UniversityLangelandsgade 140AarhusC 8000Denmark
| | | | | | - Morten T. Jarlstad Olesen
- Department of ChemistryAarhus UniversityLangelandsgade 140AarhusC 8000Denmark
- iNano Interdisciplinary Nanoscience CentreAarhus UniversityLangelandsgade 140AarhusC 8000Denmark
| | - Alexander N. Zelikin
- Department of ChemistryAarhus UniversityLangelandsgade 140AarhusC 8000Denmark
- iNano Interdisciplinary Nanoscience CentreAarhus UniversityLangelandsgade 140AarhusC 8000Denmark
| |
Collapse
|
28
|
Suárez M, Fernández-García E, Fernández A, López-Píriz R, Díaz R, Torrecillas R. Novel antimicrobial phosphate-free glass-ceramic scaffolds for bone tissue regeneration. Sci Rep 2020; 10:13171. [PMID: 32826917 PMCID: PMC7442813 DOI: 10.1038/s41598-020-68370-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/24/2020] [Indexed: 12/25/2022] Open
Abstract
In this study a phosphate-free glass-ceramic porous scaffold was synthesized by a three-step methodology involving slurry preparation, induction of porosity by surfactant-assisted foaming following by freeze-drying and sintering. This inorganic scaffold was characterized by X-ray diffraction, scanning electron microscope (SEM), degradation and bioactivity. Thermal treatment at 750 °C showed two new crystalline phases, combeite and nepheline, into the glassy matrix responsible for its properties. The cell response of the scaffold was also evaluated for using as a bone graft substitute. A commercial Biphasic Calcium Phosphate, BCP, scaffold was assessed in parallel as reference material. Microstructures obtained by SEM showed the presence of macro, meso and microporosity. The glass-ceramic scaffold possesses an interconnected porosity around 31% with a crack-pore system that promote the protein adsorption and cell attachment. Glass-ceramic scaffold with high concentration of calcium ions shows an antimicrobial behavior against Escherichia coli after 24 h of contact. Nepheline phase present in the glass-ceramic structure is responsible for its high mechanical properties being around 87 MPa. Glass-ceramic scaffold promotes greater protein adsorption and therefore the attachment, spreading and osteodifferentiation of Adipose Derived Stem Cells than BCP scaffold. A higher calcification was induced by glass-ceramic scaffold compared to reference BCP material.
Collapse
Affiliation(s)
- M Suárez
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo (UO), Principado de Asturias, Avda de la Vega 4-6, 33940, El Entrego, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias, Av. Roma, s/n, 33011, Oviedo, Asturias, Spain.
| | - E Fernández-García
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo (UO), Principado de Asturias, Avda de la Vega 4-6, 33940, El Entrego, Spain
| | - A Fernández
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo (UO), Principado de Asturias, Avda de la Vega 4-6, 33940, El Entrego, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Av. Roma, s/n, 33011, Oviedo, Asturias, Spain
| | - R López-Píriz
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo (UO), Principado de Asturias, Avda de la Vega 4-6, 33940, El Entrego, Spain
| | - R Díaz
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo (UO), Principado de Asturias, Avda de la Vega 4-6, 33940, El Entrego, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Av. Roma, s/n, 33011, Oviedo, Asturias, Spain
| | - R Torrecillas
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo (UO), Principado de Asturias, Avda de la Vega 4-6, 33940, El Entrego, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Av. Roma, s/n, 33011, Oviedo, Asturias, Spain
| |
Collapse
|
29
|
Xie X, Li X, Lei J, Zhao X, Lyu Y, Mu C, Li D, Ge L, Xu Y. Oxidized starch cross-linked porous collagen-based hydrogel for spontaneous agglomeration growth of adipose-derived stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111165. [PMID: 32806308 DOI: 10.1016/j.msec.2020.111165] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/29/2022]
Abstract
Many strategies have been employed to artificially reconstruct adipose tissue in tissue engineering. The functionalization and survival of reconstructed adipose tissue depend on sufficient angiogenesis. Notably, agglomeration growth of adipose-derived stem cells (ASCs) is beneficial to promoting angiogenesis. Herein, we present a porous collagen-based hydrogel for spontaneous agglomeration growth of ASCs to promote angiogenesis. Oxidized starch with different oxidation degree was prepared and used to cross-link collagen to fabricate the porous hydrogel. The gelation time and pore size of hydrogels can be controlled by adjusting the oxidation degree of starch. Crosslinking enhances the mechanical properties, inhibits the swelling and biodegradation of the hydrogels. The hydrogels possess good blood compatibility and cytocompatibility. Significantly, ASCs tended to adhere to the hydrogels and spontaneously grew into spheres along with time. Effective expression of vascular endothelial growth and fibroblast growth factors were observed. Overall, the hydrogels have application prospects in vascularized adipose tissue engineering.
Collapse
Affiliation(s)
- Xiaofen Xie
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xinying Li
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, PR China
| | - Jinfeng Lei
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xi Zhao
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yongbo Lyu
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Changdao Mu
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Defu Li
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Liming Ge
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Yongbin Xu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, PR China.
| |
Collapse
|
30
|
Wu J, Li G, Ye T, Lu G, Li R, Deng L, Wang L, Cai M, Cui W. Stem cell-laden injectable hydrogel microspheres for cancellous bone regeneration. CHEMICAL ENGINEERING JOURNAL 2020; 393:124715. [DOI: 10.1016/j.cej.2020.124715] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
31
|
Leiva-Cepas F, Jimena I, Ruz-Caracuel I, Luque E, Villalba R, Peña-Amaro J. Histology of skeletal muscle reconstructed by means of the implantation of autologous adipose tissue: an experimental study. Histol Histopathol 2020; 35:457-474. [PMID: 31523800 DOI: 10.14670/hh-18-163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to determine the histological characteristics of a skeletal muscle reconstructed by means of the implantation of autologous adipose tissue following an experimentally-induced volumetric muscle loss. A cylindrical piece in the belly of the rat anterior tibial muscle was removed. In the hole, inguinal subcutaneous adipose tissue of the same rat was grafted. Animals were sacrificed 7, 14, 21, 28 and 60 days posttransplantation. Histological, histochemical, immunohistochemical and morphometric techniques were used. At all times analyzed, the regenerative muscle fibers formed from the edges of the muscle tissue showed histological, histochemical and immunohistochemical differences in comparison with the control group. These differences are related to delays in the maturation process and are related to problems in reinnervation and disorientation of muscle fibers. The stains for MyoD and desmin showed that some myoblasts and myotubes seem to derive from the transplanted adipose tissue. After 60 days, the transplant area was 20% occupied by fibrosis and by 80% skeletal muscle. However, the neo-muscle was chaotically organized showing muscle fiber disorientation and centronucleated fibers with irregular shape and size. Our results support the hypothesis that, at least from a morphological point of view, autologous adipose tissue transplantation favors reconstruction following a volumetric loss of skeletal muscle by combining the inherent regenerative response of the organ itself and the myogenic differentiation of the stem cells present in the adipose tissue. However, in our study, the formed neo-muscle exhibited histological differences in comparison with the normal skeletal muscle.
Collapse
Affiliation(s)
- Fernando Leiva-Cepas
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, University of Cordoba, Córdoba, Spain
- Research Group in Muscle Regeneration, University of Cordoba, Córdoba, Spain
- Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, Spain
- Present address: Department of Pathology, Reina Sofia University Hospital, Córdoba, Spain
| | - Ignacio Jimena
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, University of Cordoba, Córdoba, Spain
- Research Group in Muscle Regeneration, University of Cordoba, Córdoba, Spain
- Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Ignacio Ruz-Caracuel
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, University of Cordoba, Córdoba, Spain
- Research Group in Muscle Regeneration, University of Cordoba, Córdoba, Spain
- Present address: Department of Pathology, Ramón y Cajal University Hospital, Madrid, Spain
| | - Evelio Luque
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, University of Cordoba, Córdoba, Spain
- Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
| | - Rafael Villalba
- Tissue of Establishment of the Center for Transfusion, Tissues and Cells, Córdoba, Spain
| | - Jose Peña-Amaro
- Research Group in Muscle Regeneration, University of Cordoba, Córdoba, Spain
- Maimonides Institute for Biomedical Research IMIBIC, Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, University of Cordoba, Córdoba, Spain.
| |
Collapse
|
32
|
Hoefner C, Muhr C, Horder H, Wiesner M, Wittmann K, Lukaszyk D, Radeloff K, Winnefeld M, Becker M, Blunk T, Bauer-Kreisel P. Human Adipose-Derived Mesenchymal Stromal/Stem Cell Spheroids Possess High Adipogenic Capacity and Acquire an Adipose Tissue-like Extracellular Matrix Pattern. Tissue Eng Part A 2020; 26:915-926. [PMID: 32070231 DOI: 10.1089/ten.tea.2019.0206] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adipose-derived mesenchymal stromal/stem cells (ASCs) represent a commonly used cell source for adipose tissue engineering. In this context, ASCs have routinely been cultured in conventional 2D culture and applied as single cell suspension for seeding onto scaffold materials or direct injection. However, this approach is associated with the loss of their intrinsic 3D microenvironment and leads to impaired regenerative capacity of the cells. Thus, the application of ASCs as self-assembled 3D spheroids with cells residing in their own matrix is an attractive alternative. However, characterization of the structural features and differentiation capacity of the spheroids is necessary to effectively apply them as building blocks in adipose tissue engineering. In this study, we focus on extracellular matrix (ECM) development in ASC spheroids, as well as adipogenic differentiation in comparison to conventional 2D culture using different induction protocols. Reproducible assembly of ASCs into spheroids was achieved within 24 h using the liquid overlay technique. Undifferentiated spheroids displayed a stromal ECM pattern, with fibronectin, collagen V, and VI as the main components. In the course of adipogenesis, a dynamic shift in the ECM composition toward an adipogenic phenotype was observed, associated with enhanced expression of laminin, collagen I, IV, V, and VI, similar to native fat. Furthermore, adipogenic differentiation was enhanced in spheroids as compared with 2D cultured cells, with the spheroids needing a distinctly shorter adipogenic stimulus to sustain adipogenesis, which was demonstrated based on analysis of triglyceride content and adipogenic marker gene expression. In summary, culturing ASCs as spheroids can enhance their adipogenic capacity and generate adipose-like microtissues, which may be a promising cell delivery strategy for adipose tissue engineering approaches. Impact statement Adipose-derived mesenchymal stromal/stem cells (ASCs) as a widely used cell source for adipose tissue engineering have been shown to be limited in their regenerative capacity when applied as single cells. As an alternative approach, the delivery as spheroids, consisting of cells in a 3D context, may be favorable. However, insights into extracellular matrix (ECM) development and efficient adipogenic differentiation are required for their effective application. In this study, we show that differentiated ASC spheroids develop an ECM, resembling native adipose tissue. Furthermore, the ASC spheroids exhibited a superior differentiation capacity as compared with conventional 2D culture, and required only a short adipogenic induction stimulus. Our results identify ASC-derived spheroids as an attractive cell delivery method for adipose tissue engineering approaches.
Collapse
Affiliation(s)
- Christiane Hoefner
- Department of Trauma, Hand, Plastic and Reconstructive Surgery and University of Würzburg, Würzburg, Germany
| | - Christian Muhr
- Department of Trauma, Hand, Plastic and Reconstructive Surgery and University of Würzburg, Würzburg, Germany
| | - Hannes Horder
- Department of Trauma, Hand, Plastic and Reconstructive Surgery and University of Würzburg, Würzburg, Germany
| | - Miriam Wiesner
- Department of Trauma, Hand, Plastic and Reconstructive Surgery and University of Würzburg, Würzburg, Germany
| | - Katharina Wittmann
- Department of Trauma, Hand, Plastic and Reconstructive Surgery and University of Würzburg, Würzburg, Germany
| | - Daniel Lukaszyk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery and University of Würzburg, Würzburg, Germany
| | - Katrin Radeloff
- Department of Otorhinolaryngology, University of Würzburg, Würzburg, Germany
| | | | - Matthias Becker
- Institute for Medical Radiation and Cell Research, University of Würzburg, Würzburg, Germany
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery and University of Würzburg, Würzburg, Germany
| | - Petra Bauer-Kreisel
- Department of Trauma, Hand, Plastic and Reconstructive Surgery and University of Würzburg, Würzburg, Germany
| |
Collapse
|
33
|
Tissue Engineering and Regenerative Medicine in Craniofacial Reconstruction and Facial Aesthetics. J Craniofac Surg 2020; 31:15-27. [PMID: 31369496 DOI: 10.1097/scs.0000000000005840] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The craniofacial region is anatomically complex and is of critical functional and cosmetic importance, making reconstruction challenging. The limitations of current surgical options highlight the importance of developing new strategies to restore the form, function, and esthetics of missing or damaged soft tissue and skeletal tissue in the face and cranium. Regenerative medicine (RM) is an expanding field which combines the principles of tissue engineering (TE) and self-healing in the regeneration of cells, tissues, and organs, to restore their impaired function. RM offers many advantages over current treatments as tissue can be engineered for specific defects, using an unlimited supply of bioengineered resources, and does not require immunosuppression. In the craniofacial region, TE and RM are being increasingly used in preclinical and clinical studies to reconstruct bone, cartilage, soft tissue, nerves, and blood vessels. This review outlines the current progress that has been made toward the engineering of these tissues for craniofacial reconstruction and facial esthetics.
Collapse
|
34
|
Zhao D, Li YH, Yang ZY, Cai T, Wu XY, Xia Y, Zhou Z. [Effect of the local application of stem cells on repairing facial nerve defects: a systematic review]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:59-68. [PMID: 32037768 DOI: 10.7518/hxkq.2020.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
OBJECTIVE To systematically evaluate the repairing effect of stem cells on facial nerve defects. METHODS Articles regarding the regenerating effect of stem cells on facial nerves in animals were collected from the databases of Pubmed, Cochrane Library, Web of Science, Embase, Scopus, and CBM. Two professionals independently completed the article screening, data extraction, and bias risk assessment. RevMan 5.3 and random-effects models were used for the statistical analysis, and the results were presented in the form of mean differences (MD) with a 95%CI. The results of functional evaluation (vibrissae movement, facial paralysis) and histological evaluation (density of myelinated fibers, diameter of fibers, thickness of myelin sheath, G ratio) of facial nerve were Meta-analyzed. RESULTS A total of 4 614 articles were retrieved from the 6 databases, and 15 of these articles were included in the Meta-analysis. For vibrissae movement and facial paralysis, the stem cell group scored significantly higher than the non-stem cell group (P<0.05). The density of myelinated fibers and thickness of the myelin sheath in the stem cell group were higher than those in the non-stem cell group (P<0.05). The G ratio in the stem cell group was smaller than that in the non-stem cell group (P=0.001). There was no significant difference in fiber diameter (P=0.08). CONCLUSIONS Stem cells have potential in promoting facial nerve regeneration.
Collapse
Affiliation(s)
- Dan Zhao
- Dept. of Preventive Stomatology, Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Muni-cipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Yue-Heng Li
- Dept. of Preventive Stomatology, Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Muni-cipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Zheng-Yan Yang
- Dept. of Preventive Stomatology, Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Muni-cipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Ting Cai
- Dept. of Preventive Stomatology, Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Muni-cipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Xiao-Yan Wu
- Dept. of Preventive Stomatology, Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Muni-cipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Yu Xia
- Dept. of Preventive Stomatology, Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Muni-cipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Zhi Zhou
- Dept. of Preventive Stomatology, Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Muni-cipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| |
Collapse
|
35
|
Saito T, Sato T, Suzuki K. Isolation and culture of human adipose-derived mesenchymal stromal/stem cells harvested from postmortem adipose tissues. J Forensic Leg Med 2020; 69:101875. [DOI: 10.1016/j.jflm.2019.101875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 11/25/2022]
|
36
|
Kolodziej M, Strauss S, Lazaridis A, Bucan V, Kuhbier JW, Vogt PM, Könneker S. Influence of glucose and insulin in human adipogenic differentiation models with adipose-derived stem cells. Adipocyte 2019; 8:254-264. [PMID: 31280651 PMCID: PMC6768274 DOI: 10.1080/21623945.2019.1636626] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autologous fat grafting represents an attractive source for tissue engineering applications in the field of reconstructive medicine. However, in adipogenic differentiation protocols for human adipose-derived stem cells, the concentration of glucose and insulin varies considerably. With the intent to gain maximum tissue augmentation, we focused on the late phase of adipogenesis. In this study, we modified the differentiation protocol for adipose-derived stem cells by prolongation of the induction period and the application highly concentrated glucose and insulin. Human adipose-derived stem cells were isolated from subcutaneous depots and differentiated in a standard induction medium for the first two weeks, followed by two weeks with varying glucose and insulin concentrations. Morphological changes assessed using Oil-Red-O staining were examined for corresponding alterations in the expression of the adipogenic markers peroxisome proliferator-activated receptor gamma (PPARγ) and lipoprotein lipase (LPL). Furthermore, glucose and lactate levels in conditioned media were monitored over the period of differentiation. We found high-glucose media increasing the level of lipid accumulation and the size of single droplets whereas insulin significantly showed a dose-dependent negative effect on fat storage. However, whereas high glucose stimulated PPARγ transcription, expression levels in insulin-treated cells remained constant. Results permit assumptions that a high-glucose medium intensifies the degree of differentiation in mature adipocytes providing conditions to promote graft volume while we have identified highly concentrated insulin treatment as an inhibitor of lipid storage in the late adipogenic differentiation.
Collapse
Affiliation(s)
- Michaela Kolodziej
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hanover, Germany
| | - Sarah Strauss
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hanover, Germany
| | - Andrea Lazaridis
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hanover, Germany
| | - Vesna Bucan
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hanover, Germany
| | - Jörn W. Kuhbier
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hanover, Germany
| | - Peter M. Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hanover, Germany
| | - Sören Könneker
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hanover, Germany
| |
Collapse
|
37
|
Shao X, Ai G, Wang L, Qin J, Li Y, Jiang H, Zhang T, Zhou L, Gao Z, Cheng J, Cheng Z. Adipose-derived stem cells transplantation improves endometrial injury repair. ZYGOTE 2019; 27:367-374. [PMID: 31452481 DOI: 10.1017/s096719941900042x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Endometrial injury is an important cause of intrauterine adhesion (IUA), amenorrhea and infertility in women, with limited effective therapies. Recently, stem cells have been used in animal experiments to repair and improve injured endometrium. To date, our understanding of adipose-derived stem cells (ADSCs) in endometrial injury repair and their further therapeutic mechanisms is incomplete. Here, we examined the benefit of ADSCs in restoration of injured endometrium by applying a rat endometrial injury model. The results revealed by immunofluorescence showed that green fluorescent protein (GFP)-labelled ADSCs can differentiate into endometrial epithelial cells in vivo. At 30 days after ADSCs transplantation, injured endometrium was significantly improved, with increased microvessel density, endometrial thickness and glands when compared with the model group. Furthermore, the fertility of rats with injured endometrium in ADSCs group was improved and had a higher conception rate (60% vs 20%, P = 0.014) compared with the control phosphate-buffered saline (PBS) group. However, there was no difference in the control group compared with the sham group. In addition, expression levels of the oestrogen receptor Eα/β (ERα, ERβ) and progesterone receptor (PR) detected by western blot and enzyme-linked immunosorbent assay (ELISA) were higher in the ADSCs group than in the PBS group. Taken together, these results suggested that ADSC transplantation could improve endometrial injury as a novel therapy for IUA.
Collapse
Affiliation(s)
- Xiaowen Shao
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Guihai Ai
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lian Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jinlong Qin
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yue Li
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Huici Jiang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Tingting Zhang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Linlin Zhou
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhengliang Gao
- Lifeng Institute of Regenerative Medicine, Tongji University, Shanghai, 200092, China
| | - Jiajing Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| |
Collapse
|
38
|
Shahid MA, Kim WH, Kweon OK. Cryopreservation of heat-shocked canine adipose-derived mesenchymal stromal cells with 10% dimethyl sulfoxide and 40% serum results in better viability, proliferation, anti-oxidation, and in-vitro differentiation. Cryobiology 2019; 92:92-102. [PMID: 31785238 DOI: 10.1016/j.cryobiol.2019.11.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/17/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022]
Abstract
Cryopreserved canine adipose-derived mesenchymal stromal cells (Ad-MSCs) can be used instantly in dogs for clinical uses. However, cryopreservation results in a reduction of the cellular viability, proliferation, and anti-oxidation of post-thawed Ad-MSCs. Therefore, there is a need for in-vitro procedure to improve post-thawed Ad-MSCs' viability, proliferation, anti-oxidation, and differentiation capacity. In this study, fresh-Ad-MSCs were activated with heat shock, hypoxia (5% O2), or hypoxia (5% O2) + heat shock treatments. The results showed that compared to the other treatments, heat shock significantly improved the proliferation rate, anti-oxidation, heat shock proteins and growth factors expressions of canine-fresh-Ad-MSCs. Consequently, fresh-Ad-MSCs were heat-shocked and then cryopreserved with different combinations of dimethyl sulfoxide (Me2SO) and fetal bovine serum (FBS) to determine the combination that could effectively preserve the cellular viability, proliferation, anti-oxidation and differentiation capacity of Ad-MSCs after cryopreservation. We found that C-HST-Ad-MSCs cryopreserved with 10% Me2SO + 40% FBS presented significantly (p < 0.05) improved cellular viability, proliferation rate, anti-oxidant capacity, and differentiation potential as compared to C-HST-Ad-MSCs cryopreserved with 1% Me2SO + 10% FBS or 1% Me2SO alone or control. We concluded, heat shock treatment is much better to enhance the characteristics of fresh-Ad-MSCs than other treatments, moreover, C-HST-Ad-MSCs in 10% Me2SO + 40% FBS showed better results compared to other cryopreserved groups. However, future work is required to optimize the expression of heat shock proteins, which would further improve the characteristics of fresh- and cryopreserved-HST-Ad-MSCs and reduce the dependency on Me2SO and FBS.
Collapse
Affiliation(s)
- Muhammad Afan Shahid
- Research Institute for Veterinary Science and College of Veterinary Medicine Building 85, Room 623, Seoul National University, Gwanak-gu, Gwanak-ro 1, Seoul, 08826, South Korea.
| | - Wan Hee Kim
- Research Institute for Veterinary Science and College of Veterinary Medicine Building 85, Room 623, Seoul National University, Gwanak-gu, Gwanak-ro 1, Seoul, 08826, South Korea.
| | - Oh-Kyeong Kweon
- Research Institute for Veterinary Science and College of Veterinary Medicine Building 85, Room 623, Seoul National University, Gwanak-gu, Gwanak-ro 1, Seoul, 08826, South Korea.
| |
Collapse
|
39
|
Li Y, Wu M, Zhang Z, Xia J, Wang Z, Chen X, Xiao X, Lu F, Dong Z. Application of External Force Regulates the Migration and Differentiation of Adipose-Derived Stem/Progenitor Cells by Altering Tissue Stiffness. Tissue Eng Part A 2019; 25:1614-1622. [PMID: 30909828 DOI: 10.1089/ten.tea.2019.0046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Large soft-tissue defects are challenging to reconstruct surgically. Expansion of soft tissue using an external volume expansion (EVE) device is a noninvasive method to improve such reconstruction; however, the underlying mechanism is unclear. In this study, we created fat flaps in Sprague-Dawley rats, applied an external force of 3 or 6 kPa using an EVE device, and investigated the migration and differentiation of adipose-derived stem/progenitor cells (ASCs). In addition, we performed finite element analysis to explore the stiffness of adipose tissue. An external force of 3 kPa promoted the migration and adipogenic differentiation of ASCs. By comparison, an external force of 6 kPa had a larger effect on migration of ASCs, but a smaller effect on adipogenic differentiation of ASCs. External force affected adipose tissue stiffness. In conclusion, external force generated by an EVE device increases the stiffness of adipose tissue, which influences the migration and differentiation of ASCs. The size of the external force can be altered according to the tissue stiffness required at particular time points to promote long-term adipose tissue regeneration. Impact Statement Stem cell therapy in clinic mostly requires the addition of exogenous stem cells, therefore the safety and controllability is always defective. In this study, the external force of external volume expansion regulates adipose-derived stem/progenitor cells (ASCs) migration and differentiation through tissue stiffness. Using tissue engineering without exogenous ASCs can promote long-term adipose tissue regeneration. The findings of this study provide theoretical support for clinical tissue engineering applications and improvements in stem cell therapy.
Collapse
Affiliation(s)
- Ye Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Mengfan Wu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Ziang Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Jing Xia
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Zijue Wang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Xinyao Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Xiuyun Xiao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Ziqing Dong
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
40
|
Wang M, Yang Y, Han L, Xu F, Li F. Cell mechanical microenvironment for cell volume regulation. J Cell Physiol 2019; 235:4070-4081. [PMID: 31637722 DOI: 10.1002/jcp.29341] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/30/2019] [Indexed: 01/05/2023]
Abstract
Cell volume regulation, as one of the fundamental homeostasis of the cell, is associated with many cellular behaviors and functions. With the increased studies on the effect of environmental mechanical cues on cell volume regulation, the relationship between cell volume regulation and mechanotransduction becomes more and more clear. In this paper, we review the mechanisms and hypotheses by which cell maintains its volume homeostasis both in vivo and in constructed cell mechanical microenvironment (CMM) in vitro. We discuss how the growth-division regulation maintains the volume homeostasis of cells in the cell cycle and how the cell cortex/membrane tension mediates the effect of CMM (i.e., osmotic pressure, matrix stiffness, and mechanical force) on cell volume regulation. We also highlight the roles of cell volume as a perfect integrator of the downstream signals of mechanotransduction from different aspects of CMM and an effective indicator for the mechanical condition that cell confronts. This interdisciplinary perspective can provide new insight into biomechanics and may shed light on bioengineering and pathological research work. We hope this review can facilitate future studies on the investigation of the role of cell volume in mechanotransduction.
Collapse
Affiliation(s)
- Meng Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Yaowei Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Lichun Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China.,Department of Anesthesia, Xi'an Daxing Hospital, Xi'an, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
41
|
Alfotawi R, Elsafadi M, Muthurangan M, Siyal AA, Alfayez M, Mahmmod AA. A New Procedure in Bone Engineering Using Induced Adipose Tissue. J INVEST SURG 2019; 34:44-54. [PMID: 31558065 DOI: 10.1080/08941939.2019.1604915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background: Osteoporosis is associated with a metabolic imbalance between adipogenesis and osteogenesis. We hypothesized that implanting a carrier for differentiated stem cells and signaling molecules inside adipose tissues could be used to enable transdifferentiation between cells, upregulate osteogenesis, and support bone formation, which may regain the balance between osteogenesis and adipogenesis. Methodology: A CL1 human mesenchymal stem cell line was grown in an osteogenic medium to differentiate into osteoblasts, and the differentiated cells were then exposed to an adipogenic medium to stimulate differentiation into adipocytes. Osteogenic and adipogenic differentiation were confirmed by the following assays: alkaline phosphatase staining, Nile red Staining, and quantitative real-time polymerase chain reaction (qPCR). The ratio of adipocytes to osteocytes for both cases was calculated. To evaluate bone induction in vivo, a calcium sulfate/hydroxyapatite cement was prepared in a syringe and then seeded with 106 cells/mL of rat bone marrow stromal cells (rMSCs) and covered with 1 mL of tissue culture media containing 0.1 mg of bone morphogenetic protein 7 (BMP-7). The construct was injected into the abdominal fat tissue of 10 male Sprague-Dawley rats. Results: The conversion of osteocytes to adipocytes was 20-fold greater than the reverse conversion, and the area of bone regeneration was 15.7 ± 3.7%, the area of adipose tissue was 65.8 ± 13.1%, and the area of fibrous tissue was 18.3 ± 7.8%. Conclusion: Adipogenic interconversion and associated bone formation demonstrate the potential of a new therapy for balancing osteogenesis and adipogenesis.
Collapse
Affiliation(s)
- Randa Alfotawi
- Oral and Maxillofacial Department, King Saud University, Riyadh, Saudi Arabia
| | - Mona Elsafadi
- Stem Cell Unit, Anatomy Department, Medical School, King Saud University, Riyadh, Saudi Arabia
| | - Manikandan Muthurangan
- Stem Cell Unit, Anatomy Department, Medical School, King Saud University, Riyadh, Saudi Arabia
| | - Abdul-Aziz Siyal
- Stem Cell Unit, Anatomy Department, Medical School, King Saud University, Riyadh, Saudi Arabia
| | - Musaad Alfayez
- Stem Cell Unit, Anatomy Department, Medical School, King Saud University, Riyadh, Saudi Arabia
| | - Amer A Mahmmod
- Stem Cell Unit, Anatomy Department, Medical School, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
42
|
Sun H, Lu J, Li B, Chen S, Xiao X, Wang J, Wang J, Wang X. Partial regeneration of uterine horns in rats through adipose-derived stem cell sheets. Biol Reprod 2019; 99:1057-1069. [PMID: 29931041 DOI: 10.1093/biolre/ioy121] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 06/19/2018] [Indexed: 12/15/2022] Open
Abstract
Severe uterine damage and infection lead to intrauterine adhesions, which result in hypomenorrhea, amenorrhea and infertility. Cell sheet engineering has shown great promise in clinical applications. Adipose-derived stem cells (ADSCs) are emerging as an alternative source of stem cells for cell-based therapies. In the present study, we investigated the feasibility of applying ADSCs as seed cells to form scaffold-free cell sheet. Data showed that ADSC sheets expressed higher levels of FGF, Col I, TGFβ, and VEGF than ADSCs in suspension, while increased expression of this gene set was associated with stemness, including Nanog, Oct4, and Sox2. We then investigated the therapeutic effects of 3D ADSCs sheet on regeneration in a rat model. We found that ADSCs were mainly detected in the basal layer of the regenerating endometrium in the cell sheet group at 21 days after transplantation. Additionally, some ADSCs differentiated into stromal-like cells. Moreover, ADSC sheets transplanted into partially excised uteri promoted regeneration of the endometrium cells, muscle cells and stimulated angiogenesis, and also resulted in better pregnancy outcomes. Therefore, ADSC sheet therapy shows considerable promise as a new treatment for severe uterine damage.
Collapse
Affiliation(s)
- Huijun Sun
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Rd., Xian 710038, China
| | - Jie Lu
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Rd., Xian 710038, China
| | - Bo Li
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Rd., Xian 710038, China
| | - Shuqiang Chen
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Rd., Xian 710038, China
| | - Xifeng Xiao
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Rd., Xian 710038, China
| | - Jun Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Rd., Xian 710038, China
| | - Jingjing Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Rd., Xian 710038, China
| | - Xiaohong Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Rd., Xian 710038, China
| |
Collapse
|
43
|
Chun SY, Lim JO, Lee EH, Han MH, Ha YS, Lee JN, Kim BS, Park MJ, Yeo M, Jung B, Kwon TG. Preparation and Characterization of Human Adipose Tissue-Derived Extracellular Matrix, Growth Factors, and Stem Cells: A Concise Review. Tissue Eng Regen Med 2019; 16:385-393. [PMID: 31413942 DOI: 10.1007/s13770-019-00199-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/06/2019] [Indexed: 01/19/2023] Open
Abstract
Background Human adipose tissue is routinely discarded as medical waste. However, this tissue may have valuable clinical applications since methods have been devised to effectively isolate adipose-derived extracellular matrix (ECM), growth factors (GFs), and stem cells. In this review, we analyze the literature that devised these methods and then suggest an optimal method based on their characterization results. Methods Methods that we analyze in this article include: extraction of adipose tissue, decellularization, confirmation of decellularization, identification of residual active ingredients (ECM, GFs, and cells), removal of immunogens, and comparing structural/physiological/biochemical characteristics of active ingredients. Results Human adipose ECMs are composed of collagen type I-VII, laminin, fibronectin, elastin, and glycosaminoglycan (GAG). GFs immobilized in GAG include basic fibroblast growth factor (bFGF), transforming growth factor beta 1(TGF-b1), insulin like growth factor 1 (IGF-1), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), BMP4 (bone morphogenetic protein 4), nerve growth factor (NGF), hepatocyte growth factor (HGF), and epithermal growth factor (EGF). Stem cells in the stromal-vascular fraction display mesenchymal markers, self-renewal gene expression, and multi-differentiation potential. Conclusion Depending on the preparation method, the volume, biological activity, and physical properties of ECM, GFs, and adipose tissue-derived cells can vary. Thus, the optimal preparation method is dependent on the intended application of the adipose tissue-derived products.
Collapse
Affiliation(s)
- So Young Chun
- 1BioMedical Research Institute, Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu, 41940 Republic of Korea
| | - Jeong Ok Lim
- 1BioMedical Research Institute, Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu, 41940 Republic of Korea
| | - Eun Hye Lee
- 2Department of Pathology, School of Medicine, Kyungpook National University, Daegu, 41944 Republic of Korea
| | - Man-Hoon Han
- 2Department of Pathology, School of Medicine, Kyungpook National University, Daegu, 41944 Republic of Korea
| | - Yun-Sok Ha
- 3Department of Urology, School of Medicine, Kyungpook National University, Daegu, 41944 Republic of Korea
| | - Jun Nyung Lee
- 3Department of Urology, School of Medicine, Kyungpook National University, Daegu, 41944 Republic of Korea
| | - Bum Soo Kim
- 3Department of Urology, School of Medicine, Kyungpook National University, Daegu, 41944 Republic of Korea
| | - Min Jeong Park
- 4Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Cheombok-ro 80, Dong-gu, Daegu, 41061 Republic of Korea
| | - MyungGu Yeo
- 4Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Cheombok-ro 80, Dong-gu, Daegu, 41061 Republic of Korea
| | - Bongsu Jung
- 4Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Cheombok-ro 80, Dong-gu, Daegu, 41061 Republic of Korea
| | - Tae Gyun Kwon
- 3Department of Urology, School of Medicine, Kyungpook National University, Daegu, 41944 Republic of Korea
- 5Department of Urology, Kyungpook National University Chilgok Hospital, 807 Hoguk-ro, Buk-gu, Daegu, 41404 Republic of Korea
| |
Collapse
|
44
|
Ben-Arye T, Levenberg S. Tissue Engineering for Clean Meat Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00046] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
45
|
Contessi Negrini N, Bonnetier M, Giatsidis G, Orgill DP, Farè S, Marelli B. Tissue-mimicking gelatin scaffolds by alginate sacrificial templates for adipose tissue engineering. Acta Biomater 2019; 87:61-75. [PMID: 30654214 DOI: 10.1016/j.actbio.2019.01.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 01/02/2019] [Accepted: 01/11/2019] [Indexed: 12/15/2022]
Abstract
When adipose tissue (AT) is impaired by trauma or disease, AT engineering could provide a shelf-ready structural and functional restoration as alternative to current clinical treatments, which mainly aim at aesthetic replacement. Yet, the lack of an efficient vascular network within the scaffolds represents a major limitation to their translation application in patients. Here, we propose the use of microstructured crosslinked gelatin hydrogels with an embedded prevascular channel as scaffolding materials for AT engineering. The scaffolds are fabricated using - simultaneously - alginate-based microbeads and 3D printed filaments as sacrificial material encapsulated in gelatin at the point of material fabrication and removed post-crosslinking. This method yields the formation of microstructures that resemble the micro-architecture of physiological human fat tissue and of microvessels that can facilitate vascularization through anastomosis with patients' own blood vessels. The cytocompatible method used to prepare the gelatin scaffolds showed structural stability over time while allowing for cell infiltration and protease-based remodeling/degradation. Scaffolds' mechanical properties were also designed to mimic the one of natural breast adipose tissue, a key parameter for AT regeneration. Scaffold's embedded channel (∅ = 300-400 µm) allowed for cell infiltration and enabled blood flow in vitro when an anastomosis with a rat blood artery was performed using surgical glue. In vitro tests with human mesenchymal stem cells (hMSC) showed colonization of the porous structure of the gelatin hydrogels, differentiation into adipocytes and accumulation of lipid droplets, as shown by Oil Red O staining. STATEMENT OF SIGNIFICANCE: The potential clinical use of scaffolds for adipose tissue (AT) regeneration is currently limited by an unmet simultaneous achievement of adequate structural/morphological properties together with a promoted scaffold vascularization. Sacrificial materials, currently used either to obtain a tissue-mimicking structure or hollow channels to promote scaffold' vascularization, are powerful versatile tools for the fabrication of scaffolds with desired features. However, an integrated approach by means of sacrificial templates aiming at simultaneously achieving an adequate AT-mimicking structure and hollow channels for vascularization is missing. Here, we prove the suitability of crosslinked gelatin scaffolds obtained by using sacrificial alginate microbeads and 3D printed strands to achieve proper features and hollow channels useful for scaffolds vascularization.
Collapse
Affiliation(s)
- Nicola Contessi Negrini
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, United States; Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; INSTM, National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Mathilde Bonnetier
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, United States
| | - Giorgio Giatsidis
- Division of Plastic Surgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States
| | - Dennis P Orgill
- Division of Plastic Surgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, United States
| | - Silvia Farè
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; INSTM, National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Benedetto Marelli
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, United States.
| |
Collapse
|
46
|
Rogal J, Zbinden A, Schenke-Layland K, Loskill P. Stem-cell based organ-on-a-chip models for diabetes research. Adv Drug Deliv Rev 2019; 140:101-128. [PMID: 30359630 DOI: 10.1016/j.addr.2018.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/10/2018] [Accepted: 10/19/2018] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus (DM) ranks among the severest global health concerns of the 21st century. It encompasses a group of chronic disorders characterized by a dysregulated glucose metabolism, which arises as a consequence of progressive autoimmune destruction of pancreatic beta-cells (type 1 DM), or as a result of beta-cell dysfunction combined with systemic insulin resistance (type 2 DM). Human cohort studies have provided evidence of genetic and environmental contributions to DM; yet, these studies are mostly restricted to investigating statistical correlations between DM and certain risk factors. Mechanistic studies, on the other hand, aimed at re-creating the clinical picture of human DM in animal models. A translation to human biology is, however, often inadequate owing to significant differences between animal and human physiology, including the species-specific glucose regulation. Thus, there is an urgent need for the development of advanced human in vitro models with the potential to identify novel treatment options for DM. This review provides an overview of the technological advances in research on DM-relevant stem cells and their integration into microphysiological environments as provided by the organ-on-a-chip technology.
Collapse
Affiliation(s)
- Julia Rogal
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstrasse 12, 70569 Stuttgart, Germany
| | - Aline Zbinden
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany; Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, 675 Charles E. Young Drive South, MRL 3645, Los Angeles, CA, USA.
| | - Peter Loskill
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstrasse 12, 70569 Stuttgart, Germany
| |
Collapse
|
47
|
Kargozar S, Mozafari M, Hamzehlou S, Brouki Milan P, Kim HW, Baino F. Bone Tissue Engineering Using Human Cells: A Comprehensive Review on Recent Trends, Current Prospects, and Recommendations. APPLIED SCIENCES 2019; 9:174. [DOI: 10.3390/app9010174] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of proper cells for bone tissue engineering remains a major challenge worldwide. Cells play a pivotal role in the repair and regeneration of the bone tissue in vitro and in vivo. Currently, a large number of differentiated (somatic) and undifferentiated (stem) cells have been used for bone reconstruction alone or in combination with different biomaterials and constructs (e.g., scaffolds). Although the results of the cell transplantation without any supporting or adjuvant material have been very effective with regard to bone healing. Recent advances in bone scaffolding are now becoming new players affecting the osteogenic potential of cells. In the present study, we have critically reviewed all the currently used cell sources for bone reconstruction and discussed the new horizons that are opening up in the context of cell-based bone tissue engineering strategies.
Collapse
Affiliation(s)
- Saeid Kargozar
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran 14155-4777, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 144961-4535, Iran
| | - Sepideh Hamzehlou
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran 14155-6447, Iran
- Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 144961-4535, Iran
| | - Hae-Won Kim
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan 31116, Korea
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
48
|
Nordberg RC, Wang H, Wu Q, Loboa EG. Corin is a key regulator of endochondral ossification and bone development via modulation of vascular endothelial growth factor A expression. J Tissue Eng Regen Med 2018; 12:2277-2286. [PMID: 30352487 DOI: 10.1002/term.2760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 08/21/2018] [Accepted: 10/18/2018] [Indexed: 01/06/2023]
Abstract
Corin has been studied extensively within the vascular system and is known to regulate blood pressure. We have shown that corin is one of the most highly upregulated genes during osteogenic differentiation of human adipose-derived stem cells (hASCs). This study tested the hypothesis that, through modulation of angiogenic signalling pathways, corin is a critical regulator of osteogenic differentiation and endochondral ossification. In vitro, corin expression in hASC was suppressed via siRNA knockdown and vascular endothelial growth factor A (VEGF-A) expression was quantified via reverse transcription polymerase chain reaction. In vivo, a murine corin knockout model (female, 10 weeks) was used to determine the effect of corin deficiency on long bone development. Wild-type and corin knockout long bones were compared via haematoxylin and eosin staining to assess tissue characteristics and cellular organization, three-point bending to assess mechanical characteristics, and immunohistochemistry to visualize VEGF-A expression patterns. Corin knockdown significantly (p < 0.05) increased VEGF-A mRNA expression during osteogenic differentiation. In vivo, corin knockout reduced tibial growth plate thickness (p < 0.01) and severely diminished the hypertrophic region. Corin knockout femurs had significantly increased stiffness (p < 0.01) and maximum loads (p < 0.01) but reduced postyield deflections (p < 0.01). In corin knockout mice, VEGF-A expression was increased near the growth plate but was reduced throughout the tibial shaft and distal head of the tibiae. This is the first study to show that corin is a key regulator of bone development by modulation of VEGF-A expression. Further elucidation of this mechanism will aid in the development of optimized bone tissue engineering and regenerative medicine therapies.
Collapse
Affiliation(s)
- Rachel C Nordberg
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina
| | - Hao Wang
- Molecular Cardiology, Cleveland Clinic, Ohio
| | - Qingyu Wu
- Molecular Cardiology, Cleveland Clinic, Ohio
| | - Elizabeth G Loboa
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina.,College of Engineering, University of Missouri, Columbia, Missouri
| |
Collapse
|
49
|
Wang X, Gao L, Han Y, Xing M, Zhao C, Peng J, Chang J. Silicon-Enhanced Adipogenesis and Angiogenesis for Vascularized Adipose Tissue Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800776. [PMID: 30479923 PMCID: PMC6247030 DOI: 10.1002/advs.201800776] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/30/2018] [Indexed: 05/22/2023]
Abstract
The enhancement of adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and sufficient vascularization remain great challenges for the successful reconstruction of engineered adipose tissue. Here, the bioactive effects of silicon (Si) ions on adipogenic differentiation of human BMSCs (HBMSCs) and the stimulation of vascularization during adipose tissue regeneration are reported. The results show that Si ions can enhance adipogenic differentiation of HBMSCs through the stimulation of the expression of adipogenic differentiation switches such as peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α. Furthermore, Si ions can enhance both angiogenesis and adipogenesis, and inhibit dedifferentiation of cocultured adipocytes by regulating the interactions between HBMSC-derived adipocytes and human umbilical vein endothelial cells, in which the promotion of the expression of insulin-like growth factor 1 and vascular endothelial growth factor plays vital roles. The in vivo studies further demonstrate that the designed composite hydrogel with the ability to release bioactive Si ions clearly stimulates neovascularization and adipose tissue regeneration. The study suggests that Si ions released from biomaterials are important chemical cues for adipogenic differentiation and biomaterials with the ability to release Si ions can be designed for adipose tissue engineering.
Collapse
Affiliation(s)
- Xiaoya Wang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
| | - Long Gao
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- University of Chinese Academy of Sciences19 Yuquan RoadBeijing100049P. R. China
| | - Yan Han
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
| | - Min Xing
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- University of Chinese Academy of Sciences19 Yuquan RoadBeijing100049P. R. China
| | - Cancan Zhao
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- University of Chinese Academy of Sciences19 Yuquan RoadBeijing100049P. R. China
| | - Jinliang Peng
- School of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240P. R. China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
| |
Collapse
|
50
|
Regeneration of different types of tissues depends on the interplay of stem cells-laden constructs and microenvironments in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:938-948. [PMID: 30423782 DOI: 10.1016/j.msec.2018.10.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/23/2018] [Accepted: 10/07/2018] [Indexed: 01/14/2023]
Abstract
The ability of repair and regeneration of tissues or organs has been significantly improved by using biomaterials-based constructs. Our previous studies found the regeneration of both articular cartilage and subchondral bone by implantation of a poly(lactide-co-glycolide) (PLGA)/fibrin gel/bone marrow stem cells (BMSCs)/(lipofectamine/pDNA-transforming growth factor (TGF)-β1) construct in vivo, without the step of pre-induced differentiation of the laden stem cells in vitro. To substantiate the ability to regenerate multi-types of tissues by the same constructs, in this study the constructs were implanted into three types of tissues or tissue defects in vivo, including subcutaneous fascia layer, and ear cartilage and eyelid tarsal plate defects. The ear cartilage and eyelid tarsal plate defects were fully regenerated 8 w post-implantation, showing a similar morphology to the corresponding native tissues. In the neo ear cartilage, abundant chondrocytes with obvious lacunas and cartilage-specific extracellular matrices (ECMs) were found. Neo eyelid tarsal plate with mature meibomian gland acinar units was regenerated. Furthermore, expressions of the ECMs-specific genes and proteins, as well as the cell behavior modulatory factors, Sry related HMG box 9 (Sox9) and TGF-β1 were significantly up-regulated in the regenerated ear cartilages and eyelid tarsal plate than those in the subcutaneously implanted constructs, which were filled with fibrocytes, inflammatory cells, obvious vascularization and slight ECMs deposition. These results confirm firmly the ability to regenerate multi-types of tissues by a stem cells-laden construct via adapting to the microenvironments of corresponding tissues.
Collapse
|