1
|
Snyder Y, Jana S. Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds. PROGRESS IN MATERIALS SCIENCE 2023; 139:101173. [PMID: 37981978 PMCID: PMC10655624 DOI: 10.1016/j.pmatsci.2023.101173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The current clinical solutions, including mechanical and bioprosthetic valves for valvular heart diseases, are plagued by coagulation, calcification, nondurability, and the inability to grow with patients. The tissue engineering approach attempts to resolve these shortcomings by producing heart valve scaffolds that may deliver patients a life-long solution. Heart valve scaffolds serve as a three-dimensional support structure made of biocompatible materials that provide adequate porosity for cell infiltration, and nutrient and waste transport, sponsor cell adhesion, proliferation, and differentiation, and allow for extracellular matrix production that together contributes to the generation of functional neotissue. The foundation of successful heart valve tissue engineering is replicating native heart valve architecture, mechanics, and cellular attributes through appropriate biomaterials and scaffold designs. This article reviews biomaterials, the fabrication of heart valve scaffolds, and their in-vitro and in-vivo evaluations applied for heart valve tissue engineering.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Kyriakou S, Lubig A, Sandhoff CA, Kuhn Y, Jockenhoevel S. Influence of Diameter and Cyclic Mechanical Stimulation on the Beating Frequency of Myocardial Cell-Laden Fibers. Gels 2023; 9:677. [PMID: 37754359 PMCID: PMC10528042 DOI: 10.3390/gels9090677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Atrioventricular block (AVB) is a severe disease for pediatric patients. The repetitive operations needed in the case of the pacemaker implantation to maintain the electrical signal at the atrioventricular node (AVN) affect the patient's life quality. In this study, we present a method of biofabrication of multi-cell-laden cylindrical fibrin-based fibers that can restore the electrical signal at the AVN. We used human umbilical vein smooth muscle cells (HUVSMCs), human umbilical vein endothelial cells (HUVECs) and induced pluripotent stem cell cardiomyocytes (iPSC-CMs) cultivated either statically or dynamically to mimic the native AVN. We investigated the influence of cell composition, construct diameter and cyclic stretch on the function of the fibrin hydrogels in vitro. Immunohistochemistry analyses showed the maturity of the iPSC-CMs in the constructs through the expression of sarcomeric alpha actinin (SAA) and electrical coupling through Connexin 43 (Cx43) signal. Simultaneously, the beating frequency of the fibrin hydrogels was higher and easy to maintain whereas the concentration of iPSC-CMs was higher compared with the other types of cylindrical constructs. In total, our study highlights that the combination of fibrin with the cell mixture and geometry is offering a feasible biofabrication method for tissue engineering approaches for the treatment of AVB.
Collapse
Affiliation(s)
- Stavroula Kyriakou
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany; (S.K.); (C.A.S.); (Y.K.)
| | - Andreas Lubig
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany; (S.K.); (C.A.S.); (Y.K.)
| | - Cilia A. Sandhoff
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany; (S.K.); (C.A.S.); (Y.K.)
| | - Yasmin Kuhn
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany; (S.K.); (C.A.S.); (Y.K.)
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany; (S.K.); (C.A.S.); (Y.K.)
- AMIBM-Aachen-Maastricht-Institute for Biobased Materials, Maastricht University, 186260 Geleen, The Netherlands
| |
Collapse
|
3
|
Natural Polymers in Heart Valve Tissue Engineering: Strategies, Advances and Challenges. Biomedicines 2022; 10:biomedicines10051095. [PMID: 35625830 PMCID: PMC9139175 DOI: 10.3390/biomedicines10051095] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
In the history of biomedicine and biomedical devices, heart valve manufacturing techniques have undergone a spectacular evolution. However, important limitations in the development and use of these devices are known and heart valve tissue engineering has proven to be the solution to the problems faced by mechanical and prosthetic valves. The new generation of heart valves developed by tissue engineering has the ability to repair, reshape and regenerate cardiac tissue. Achieving a sustainable and functional tissue-engineered heart valve (TEHV) requires deep understanding of the complex interactions that occur among valve cells, the extracellular matrix (ECM) and the mechanical environment. Starting from this idea, the review presents a comprehensive overview related not only to the structural components of the heart valve, such as cells sources, potential materials and scaffolds fabrication, but also to the advances in the development of heart valve replacements. The focus of the review is on the recent achievements concerning the utilization of natural polymers (polysaccharides and proteins) in TEHV; thus, their extensive presentation is provided. In addition, the technological progresses in heart valve tissue engineering (HVTE) are shown, with several inherent challenges and limitations. The available strategies to design, validate and remodel heart valves are discussed in depth by a comparative analysis of in vitro, in vivo (pre-clinical models) and in situ (clinical translation) tissue engineering studies.
Collapse
|
4
|
Karakaya C, van Asten JGM, Ristori T, Sahlgren CM, Loerakker S. Mechano-regulated cell-cell signaling in the context of cardiovascular tissue engineering. Biomech Model Mechanobiol 2022; 21:5-54. [PMID: 34613528 PMCID: PMC8807458 DOI: 10.1007/s10237-021-01521-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
Cardiovascular tissue engineering (CVTE) aims to create living tissues, with the ability to grow and remodel, as replacements for diseased blood vessels and heart valves. Despite promising results, the (long-term) functionality of these engineered tissues still needs improvement to reach broad clinical application. The functionality of native tissues is ensured by their specific mechanical properties directly arising from tissue organization. We therefore hypothesize that establishing a native-like tissue organization is vital to overcome the limitations of current CVTE approaches. To achieve this aim, a better understanding of the growth and remodeling (G&R) mechanisms of cardiovascular tissues is necessary. Cells are the main mediators of tissue G&R, and their behavior is strongly influenced by both mechanical stimuli and cell-cell signaling. An increasing number of signaling pathways has also been identified as mechanosensitive. As such, they may have a key underlying role in regulating the G&R of tissues in response to mechanical stimuli. A more detailed understanding of mechano-regulated cell-cell signaling may thus be crucial to advance CVTE, as it could inspire new methods to control tissue G&R and improve the organization and functionality of engineered tissues, thereby accelerating clinical translation. In this review, we discuss the organization and biomechanics of native cardiovascular tissues; recent CVTE studies emphasizing the obtained engineered tissue organization; and the interplay between mechanical stimuli, cell behavior, and cell-cell signaling. In addition, we review past contributions of computational models in understanding and predicting mechano-regulated tissue G&R and cell-cell signaling to highlight their potential role in future CVTE strategies.
Collapse
Affiliation(s)
- Cansu Karakaya
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jordy G M van Asten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
5
|
Nguyen N, Thurgood P, Sekar NC, Chen S, Pirogova E, Peter K, Baratchi S, Khoshmanesh K. Microfluidic models of the human circulatory system: versatile platforms for exploring mechanobiology and disease modeling. Biophys Rev 2021; 13:769-786. [PMID: 34777617 DOI: 10.1007/s12551-021-00815-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
The human circulatory system is a marvelous fluidic system, which is very sensitive to biophysical and biochemical cues. The current animal and cell culture models do not recapitulate the functional properties of the human circulatory system, limiting our ability to fully understand the complex biological processes underlying the dysfunction of this multifaceted system. In this review, we discuss the unique ability of microfluidic systems to recapitulate the biophysical, biochemical, and functional properties of the human circulatory system. We also describe the remarkable capacity of microfluidic technologies for exploring the complex mechanobiology of the cardiovascular system, mechanistic studying of cardiovascular diseases, and screening cardiovascular drugs with the additional benefit of reducing the need for animal models. We also discuss opportunities for further advancement in this exciting field.
Collapse
Affiliation(s)
- Ngan Nguyen
- School of Engineering, RMIT University, Melbourne, Australia
| | - Peter Thurgood
- School of Engineering, RMIT University, Melbourne, Australia
| | - Nadia Chandra Sekar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Sheng Chen
- School of Engineering, RMIT University, Melbourne, Australia
| | - Elena Pirogova
- School of Engineering, RMIT University, Melbourne, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Cardiometabolic Health, The University of Melbourne, Parkville, Australia
| | - Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | | |
Collapse
|
6
|
Taghizadeh B, Ghavami L, Derakhshankhah H, Zangene E, Razmi M, Jaymand M, Zarrintaj P, Zarghami N, Jaafari MR, Moallem Shahri M, Moghaddasian A, Tayebi L, Izadi Z. Biomaterials in Valvular Heart Diseases. Front Bioeng Biotechnol 2020; 8:529244. [PMID: 33425862 PMCID: PMC7793990 DOI: 10.3389/fbioe.2020.529244] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/16/2020] [Indexed: 01/07/2023] Open
Abstract
Valvular heart disease (VHD) occurs as the result of valvular malfunction, which can greatly reduce patient's quality of life and if left untreated may lead to death. Different treatment regiments are available for management of this defect, which can be helpful in reducing the symptoms. The global commitment to reduce VHD-related mortality rates has enhanced the need for new therapeutic approaches. During the past decade, development of innovative pharmacological and surgical approaches have dramatically improved the quality of life for VHD patients, yet the search for low cost, more effective, and less invasive approaches is ongoing. The gold standard approach for VHD management is to replace or repair the injured valvular tissue with natural or synthetic biomaterials. Application of these biomaterials for cardiac valve regeneration and repair holds a great promise for treatment of this type of heart disease. The focus of the present review is the current use of different types of biomaterials in treatment of valvular heart diseases.
Collapse
Affiliation(s)
- Bita Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laleh Ghavami
- Laboratory of Biophysics and Molecular Biology, Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Zangene
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mahdieh Razmi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Payam Zarrintaj
- Polymer Engineering Department, Faculty of Engineering, Urmia University, Urmia, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matin Moallem Shahri
- Cardiology Department, Taleghani Trauma Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, United States
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Regenerative Medicine, Cell Science Research Center, Academic Center for Education, Culture and Research (ACECR), Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| |
Collapse
|
7
|
Ravishankar P, Ozkizilcik A, Husain A, Balachandran K. Anisotropic Fiber-Reinforced Glycosaminoglycan Hydrogels for Heart Valve Tissue Engineering. Tissue Eng Part A 2020; 27:513-525. [PMID: 32723024 DOI: 10.1089/ten.tea.2020.0118] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study investigates polymer fiber-reinforced protein-polysaccharide-based hydrogels for heart valve tissue engineering applications. Polycaprolactone and gelatin (3:1) blends were jet-spun to fabricate aligned fibers that possessed fiber diameters in the range found in the native heart valve. These fibers were embedded in methacrylated hydrogels made from gelatin, sodium hyaluronate, and chondroitin sulfate to create fiber-reinforced hydrogel composites (HCs). The fiber-reinforced gelatin glycosaminoglycan (GAG)-based HC possessed interconnected porous structures and porosity higher than fiber-only conditions. These fiber-reinforced HCs exhibited compressive modulus and biaxial mechanical behavior comparable to that of native porcine aortic valves. The fiber-reinforced HCs were able to swell higher and degraded less than the hydrogels. Elution studies revealed that less than 20% of incorporated gelatin methacrylate and GAGs were released over 2 weeks, with a steady-state release after the first day. When cultured with porcine valve interstitial cells (VICs), the fiber-reinforced composites were able to maintain higher cell viability compared with fiber-only samples. Quiescent VICs expressed alpha smooth muscle actin and calponin showing an activated phenotype, along with a few cells expressing the proliferation marker Ki67 and negative expression for RUNX2, an osteogenic marker. Our study demonstrated that compared with the hydrogels and fibers alone, combining both components can yield durable, reinforced composites that mimic heart valve mechanical behavior, while maintaining high cell viability and expressing positive activation as well as proliferation markers.
Collapse
Affiliation(s)
- Prashanth Ravishankar
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Asya Ozkizilcik
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Anushae Husain
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kartik Balachandran
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
8
|
Gardin C, Ferroni L, Latremouille C, Chachques JC, Mitrečić D, Zavan B. Recent Applications of Three Dimensional Printing in Cardiovascular Medicine. Cells 2020; 9:E742. [PMID: 32192232 PMCID: PMC7140676 DOI: 10.3390/cells9030742] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
Three dimensional (3D) printing, which consists in the conversion of digital images into a 3D physical model, is a promising and versatile field that, over the last decade, has experienced a rapid development in medicine. Cardiovascular medicine, in particular, is one of the fastest growing area for medical 3D printing. In this review, we firstly describe the major steps and the most common technologies used in the 3D printing process, then we present current applications of 3D printing with relevance to the cardiovascular field. The technology is more frequently used for the creation of anatomical 3D models useful for teaching, training, and procedural planning of complex surgical cases, as well as for facilitating communication with patients and their families. However, the most attractive and novel application of 3D printing in the last years is bioprinting, which holds the great potential to solve the ever-increasing crisis of organ shortage. In this review, we then present some of the 3D bioprinting strategies used for fabricating fully functional cardiovascular tissues, including myocardium, heart tissue patches, and heart valves. The implications of 3D bioprinting in drug discovery, development, and delivery systems are also briefly discussed, in terms of in vitro cardiovascular drug toxicity. Finally, we describe some applications of 3D printing in the development and testing of cardiovascular medical devices, and the current regulatory frameworks that apply to manufacturing and commercialization of 3D printed products.
Collapse
Affiliation(s)
- Chiara Gardin
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy; (C.G.); (L.F.)
- Department of Medical Sciences, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy; (C.G.); (L.F.)
- Department of Medical Sciences, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Christian Latremouille
- Department of Cardiac Surgery Pompidou Hospital, Laboratory of Biosurgical Research, Carpentier Foundation, University Paris Descartes, 75105 Paris, France; (C.L.); (J.C.C.)
| | - Juan Carlos Chachques
- Department of Cardiac Surgery Pompidou Hospital, Laboratory of Biosurgical Research, Carpentier Foundation, University Paris Descartes, 75105 Paris, France; (C.L.); (J.C.C.)
| | - Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia;
| | - Barbara Zavan
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy; (C.G.); (L.F.)
- Department of Medical Sciences, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy
| |
Collapse
|
9
|
Ramaswamy AK, Sides RE, Cunnane EM, Lorentz KL, Reines LM, Vorp DA, Weinbaum JS. Adipose-derived stromal cell secreted factors induce the elastogenesis cascade within 3D aortic smooth muscle cell constructs. Matrix Biol Plus 2019; 4:100014. [PMID: 33543011 PMCID: PMC7852215 DOI: 10.1016/j.mbplus.2019.100014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
Objective Elastogenesis within the medial layer of the aortic wall involves a cascade of events orchestrated primarily by smooth muscle cells, including transcription of elastin and a cadre of elastin chaperone matricellular proteins, deposition and cross-linking of tropoelastin coacervates, and maturation of extracellular matrix fiber structures to form mechanically competent vascular tissue. Elastic fiber disruption is associated with aortic aneurysm; in aneurysmal disease a thin and weakened wall leads to a high risk of rupture if left untreated, and non-surgical treatments for small aortic aneurysms are currently limited. This study analyzed the effect of adipose-derived stromal cell secreted factors on each step of the smooth muscle cell elastogenesis cascade within a three-dimensional fibrin gel culture platform. Approach and results We demonstrate that adipose-derived stromal cell secreted factors induce an increase in smooth muscle cell transcription of tropoelastin, fibrillin-1, and chaperone proteins fibulin-5, lysyl oxidase, and lysyl oxidase-like 1, formation of extracellular elastic fibers, insoluble elastin and collagen protein fractions in dynamically-active 30-day constructs, and a mechanically competent matrix after 30 days in culture. Conclusion Our results reveal a potential avenue for an elastin-targeted small aortic aneurysm therapeutic, acting as a supplement to the currently employed passive monitoring strategy. Additionally, the elastogenesis analysis workflow explored here could guide future mechanistic studies of elastin formation, which in turn could lead to new non-surgical treatment strategies. Stromal cells stimulate smooth muscle cells (SMC) using paracrine signals. Stimulated SMC make RNA for both elastin and associated proteins. After protein synthesis, new elastic fibers form that contain insoluble elastin. Stromal cell products could promote elastin production in vivo.
Collapse
Key Words
- AA, aortic aneurysm
- ACA, epsilon-amino caproic acid
- ASC, adipose-derived stromal cell
- ASC-SF, ASC secreted factors
- Aneurysm
- Aorta
- ECM, extracellular matrix
- Elastin
- Extracellular matrix
- FBS, fetal bovine serum
- LOX, lysyl oxidase
- LOXL-1, LOX-like 1
- LTBP, latent TGF-β binding protein
- NCM, non-conditioned media
- NT, no treatment
- PBS, phosphate buffered saline
- RT, reverse transcriptase
- SMC, smooth muscle cell
- TGF-β, transforming growth factor-β
- Vascular regeneration
- qPCR, quantitative polymerase chain reaction
Collapse
Affiliation(s)
- Aneesh K. Ramaswamy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Rachel E. Sides
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Eoghan M. Cunnane
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Katherine L. Lorentz
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Leila M. Reines
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - David A. Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Justin S. Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Corresponding author at: Department of Bioengineering, University of Pittsburgh, Center for Bioengineering, Suite 300, 300 Technology Drive, Pittsburgh, PA 15261, United States of America.
| |
Collapse
|
10
|
Boyd R, Parisi F, Kalfa D. State of the Art: Tissue Engineering in Congenital Heart Surgery. Semin Thorac Cardiovasc Surg 2019; 31:807-817. [PMID: 31176798 DOI: 10.1053/j.semtcvs.2019.05.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/28/2019] [Indexed: 12/17/2022]
Abstract
Congenital heart disease is the leading cause of death secondary to congenital abnormalities in the United States and the incidence has increased significantly over the last 50 years. For those defects requiring surgical repair, bioprosthetic xenografts, allografts, and synthetic materials have traditionally been used. However, none of these modalities offer the potential for growth and accommodation within the pediatric population. Tissue engineering has been an area of great interest in a variety of cardiac applications as an innovative solution to create a product that can grow and regenerate within the body over time. Over the last 30 years, the original tissue engineering paradigm of a scaffold seeded with cells and cultured in a bioreactor has been expanded upon to include innovative methods of decellularization and production of "off-the-shelf" tissue-engineered products capable of in situ host cell repopulation. Despite progress in conceptual design and promising clinical results, widespread use of tissue-engineered products remains limited due to both regulatory and ongoing scientific challenges. Here, we describe the current state of the art with regards to in vitro, in vivo, and in situ tissue engineering as applicable within the field of congenital heart surgery and provide a brief overview of challenges and future directions.
Collapse
Affiliation(s)
- Rebekah Boyd
- Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, New York
| | - Frank Parisi
- Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, New York
| | - David Kalfa
- Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, New York.
| |
Collapse
|
11
|
Saidy NT, Wolf F, Bas O, Keijdener H, Hutmacher DW, Mela P, De-Juan-Pardo EM. Biologically Inspired Scaffolds for Heart Valve Tissue Engineering via Melt Electrowriting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900873. [PMID: 31058444 DOI: 10.1002/smll.201900873] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/14/2019] [Indexed: 06/09/2023]
Abstract
Heart valves are characterized to be highly flexible yet tough, and exhibit complex deformation characteristics such as nonlinearity, anisotropy, and viscoelasticity, which are, at best, only partially recapitulated in scaffolds for heart valve tissue engineering (HVTE). These biomechanical features are dictated by the structural properties and microarchitecture of the major tissue constituents, in particular collagen fibers. In this study, the unique capabilities of melt electrowriting (MEW) are exploited to create functional scaffolds with highly controlled fibrous microarchitectures mimicking the wavy nature of the collagen fibers and their load-dependent recruitment. Scaffolds with precisely-defined serpentine architectures reproduce the J-shaped strain stiffening, anisotropic and viscoelastic behavior of native heart valve leaflets, as demonstrated by quasistatic and dynamic mechanical characterization. They also support the growth of human vascular smooth muscle cells seeded both directly or encapsulated in fibrin, and promote the deposition of valvular extracellular matrix components. Finally, proof-of-principle MEW trileaflet valves display excellent acute hydrodynamic performance under aortic physiological conditions in a custom-made flow loop. The convergence of MEW and a biomimetic design approach enables a new paradigm for the manufacturing of scaffolds with highly controlled microarchitectures, biocompatibility, and stringent nonlinear and anisotropic mechanical properties required for HVTE.
Collapse
Affiliation(s)
- Navid T Saidy
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Frederic Wolf
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Onur Bas
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
- ARC ITTC in Additive Biomanufacturing, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Hans Keijdener
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Dietmar W Hutmacher
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
- ARC ITTC in Additive Biomanufacturing, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
- Institute for Advanced Study, Technische Universität München, D-85748, Garching, Germany
| | - Petra Mela
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
- Medical Materials and Medical Implant Design, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching,
| | - Elena M De-Juan-Pardo
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| |
Collapse
|
12
|
Fernández-Colino A, Iop L, Ventura Ferreira MS, Mela P. Fibrosis in tissue engineering and regenerative medicine: treat or trigger? Adv Drug Deliv Rev 2019; 146:17-36. [PMID: 31295523 DOI: 10.1016/j.addr.2019.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/11/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
Fibrosis is a life-threatening pathological condition resulting from a dysfunctional tissue repair process. There is no efficient treatment and organ transplantation is in many cases the only therapeutic option. Here we review tissue engineering and regenerative medicine (TERM) approaches to address fibrosis in the cardiovascular system, the kidney, the lung and the liver. These strategies have great potential to achieve repair or replacement of diseased organs by cell- and material-based therapies. However, paradoxically, they might also trigger fibrosis. Cases of TERM interventions with adverse outcome are also included in this review. Furthermore, we emphasize the fact that, although organ engineering is still in its infancy, the advances in the field are leading to biomedically relevant in vitro models with tremendous potential for disease recapitulation and development of therapies. These human tissue models might have increased predictive power for human drug responses thereby reducing the need for animal testing.
Collapse
|
13
|
Bonetti A, Marchini M, Ortolani F. Ectopic mineralization in heart valves: new insights from in vivo and in vitro procalcific models and promising perspectives on noncalcifiable bioengineered valves. J Thorac Dis 2019; 11:2126-2143. [PMID: 31285908 DOI: 10.21037/jtd.2019.04.78] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ectopic calcification of native and bioprosthetic heart valves represents a major public health problem causing severe morbidity and mortality worldwide. Valve procalcific degeneration is known to be caused mainly by calcium salt precipitation onto membranes of suffering non-scavenged cells and dead-cell-derived products acting as major hydroxyapatite nucleators. Although etiopathogenesis of calcification in native valves is still far from being exhaustively elucidated, it is well known that bioprosthesis mineralization may be primed by glutaraldehyde-mediated toxicity for xenografts, cryopreservation-related damage for allografts and graft immune rejection for both. Instead, mechanical valves, which are free from calcification, are extremely thrombogenic, requiring chronic anticoagulation therapies for transplanted patients. Since surgical substitution of failed valves is still the leading therapeutic option, progressive improvements in tissue engineering techniques are crucial to attain readily available valve implants with good biocompatibility, proper functionality and long-term durability in order to meet the considerable clinical demand for valve substitutes. Bioengineered valves obtained from acellular non-valvular scaffolds or decellularized native valves are proving to be a compelling alternative to mechanical and bioprosthetic valve implants, as they appear to permit repopulation by the host's own cells with associated tissue remodelling, growth and repair, besides showing less propensity to calcification and adequate hemodynamic performances. In this review, insights into valve calcification onset as revealed by in vivo and in vitro procalcific models are updated as well as advances in the field of valve bioengineering.
Collapse
|
14
|
Cardiac Valve Bioreactor for Physiological Conditioning and Hydrodynamic Performance Assessment. Cardiovasc Eng Technol 2018; 10:80-94. [PMID: 30311149 DOI: 10.1007/s13239-018-00382-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Tissue engineered heart valves (TEHV) are being investigated to address the limitations of currently available valve prostheses. In order to advance a wide variety of TEHV approaches, the goal of this study was to develop a cardiac valve bioreactor system capable of conditioning living valves with a range of hydrodynamic conditions as well as capable of assessing hydrodynamic performance to ISO 5840 standards. METHODS A bioreactor system was designed based on the Windkessel approach. Novel features including a purpose-built valve chamber and pressure feedback control were incorporated to maintain asepsis while achieving a range of hydrodynamic conditions. The system was validated by testing hydrodynamic conditions with a bioprosthesis and by operating with cell culture medium for 4 weeks and living cells for 2 weeks. RESULTS The bioreactor system was able to produce a range of pressure and flow conditions from static to resting adult left ventricular outflow tract to pathological including hypertension. The system operated aseptically for 4 weeks and cell viability was maintained for 2 weeks. The system was also able to record the pressure and flow data needed to calculate effective orifice area and regurgitant fraction. CONCLUSIONS We have developed a single bioreactor system that allows for step-wise conditioning protocols to be developed for each unique TEHV design as well as allows for hydrodynamic performance assessment.
Collapse
|
15
|
Quantitative Characterization of Aortic Valve Endothelial Cell Viability and Morphology In Situ Under Cyclic Stretch. Cardiovasc Eng Technol 2018; 10:173-180. [PMID: 30141125 DOI: 10.1007/s13239-018-00375-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
Abstract
Current protocols for mechanical preconditioning of tissue engineered heart valves have focused on application of pressure, flexure and fluid flow to stimulate collagen production, ECM remodeling and improving mechanical performance. The aim of this study was to determine if mechanical preconditioning with cyclic stretch could promote an intact endothelium that resembled the viability and morphology of a native valve. Confocal laser scanning microscopy was used to image endothelial cells on aortic valve strips subjected to static incubation or physiological strain regimens. An automated image analysis program was designed and implemented to detect and analyze live and dead cells in images captured of a live aortic valve endothelium. The images were preprocessed, segmented, and quantitatively analyzed for live/dead cell ratio, minimum neighbor distance and circularity. Significant differences in live/dead cellular ratio and the minimum distance between cells were observed between static and strained endothelia, indicating that cyclic strain is an important stimulus for maintaining a healthy endothelium. In conclusion, in vitro application of physiological levels of cyclic strain to tissue engineered heart valves seeded with autologous endothelial cells would be advantageous.
Collapse
|
16
|
Serruys PW, Miyazaki Y, Katsikis A, Abdelghani M, Leon MB, Virmani R, Carrel T, Cox M, Onuma Y, Soliman OII. Restorative valve therapy by endogenous tissue restoration: tomorrow's world? Reflection on the EuroPCR 2017 session on endogenous tissue restoration. EUROINTERVENTION 2018; 13:AA68-AA77. [PMID: 28942388 DOI: 10.4244/eij-d-17-00509] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The current standard of treatment of valvular diseases with severe functional and/or clinical consequences is the repair or replacement of the valve, which is usually surgical or, in specific scenarios, percutaneous. The available prosthetic valves, however, are not a magic bullet in the physicians' arsenal for the management of valvular diseases, since the age-dependent structural valve deterioration (SVD) and the need for prolonged systemic anticoagulation in the case of metallic prosthetic valves are not inconsequential during the lifespan of a patient with an implanted prosthetic valve. Based on decades of research combining the scientific disciplines of supramolecular chemistry, electrospinning and regenerative medicine, endogenous tissue restoration has emerged as a very promising domain to provide this magic bullet, in the form of valves, which enables functional restoration by the body itself. The concept of a restorative material that will set the framework for the creation of a new, endogenous valve is very appealing and, recently, proof of concept studies have been completed at both preclinical and clinical levels. These studies have shown favourable pathologic, anatomic and haemodynamic characteristics compared to currently available prosthetic valves, in sheep and in young children undergoing right ventricular outflow tract reconstruction, and may represent an alternative to the bioprosthesis made of xenopericardial tissue. The present manuscript reviews the rationale, background knowledge and historic development of endogenous tissue restoration and presents preliminary data about the Xeltis valve, which appears to have the potential to make restorative valve therapy a reality in clinical practice.
Collapse
|
17
|
Liu MM, Flanagan TC, Jockenhovel S, Black A, Lu CC, French AT, Argyle DJ, Corcoran BM. Development and Evaluation of a Tissue-Engineered Fibrin-based Canine Mitral Valve Three-dimensional Cell Culture System. J Comp Pathol 2018; 160:23-33. [PMID: 29729718 DOI: 10.1016/j.jcpa.2018.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/09/2018] [Accepted: 02/21/2018] [Indexed: 01/03/2023]
Abstract
Myxomatous mitral valve disease is the most common cardiac disease of the dog, but examination of the associated cellular and molecular events has relied on the use of cadaveric valve tissue, in which functional studies cannot be undertaken. The aim of this study was to develop a three-dimensional (3D) cell co-culture model as an experimental platform to examine disease pathogenesis. Mitral valve interstitial (VIC) and endothelial (VEC) cells were cultured from normal and diseased canine (VIC only) valves. VICs were embedded in a fibrin-based hydrogel matrix and one surface was lined with VECs. The 3D static cultures (constructs) were examined qualitatively and semiquantitatively by light microscopy, immunofluorescence microscopy and protein immunoblotting. Some constructs were manipulated and the endothelium damaged, and the response examined. The construct gross morphology and histology demonstrated native tissue-like features and comparable expression patterns of cellular (α-smooth muscle actin [SMA] and embryonic smooth muscle myosin heavy chain [SMemb]) and extracellular matrix associated markers (matrix metalloproteinase [MMP]-1 and MMP-3), reminiscent of diseased valves. There were no differences between constructs containing normal valve VICs and VECs (type 1) and those containing diseased valve VICs and normal valve VECs (type 2). Mechanical manipulation and endothelial damage (type 3) tended to decrease α-SMA and SMemb expression, suggesting reversal of VIC activation, but with retention of SMemb+ cells adjacent to the wounded endothelium consistent with response to injury. Fibrin-based 3D mitral valve constructs can be produced using primary cell cultures derived from canine mitral valves, and show a phenotype reminiscent of diseased valves. The constructs demonstrate a response to endothelial damage indicating their utility as experimental platforms.
Collapse
Affiliation(s)
- M-M Liu
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Mid-Lothian, Scotland, UK
| | - T C Flanagan
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin, Ireland
| | - S Jockenhovel
- Department of Tissue Engineering and Textile Implants, AME - Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - A Black
- Department of Anatomy, National University of Ireland Galway, Galway, Ireland
| | - C-C Lu
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Mid-Lothian, Scotland, UK
| | - A T French
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Mid-Lothian, Scotland, UK
| | - D J Argyle
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Mid-Lothian, Scotland, UK
| | - B M Corcoran
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Mid-Lothian, Scotland, UK.
| |
Collapse
|
18
|
Fibrin-Based Biomaterial Applications in Tissue Engineering and Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:253-261. [DOI: 10.1007/978-981-13-0445-3_16] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Lim KS, Martens P, Poole-Warren L. Biosynthetic Hydrogels for Cell Encapsulation. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/978-3-662-57511-6_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Motta SE, Lintas V, Fioretta ES, Hoerstrup SP, Emmert MY. Off-the-shelf tissue engineered heart valves for in situ regeneration: current state, challenges and future directions. Expert Rev Med Devices 2017; 15:35-45. [PMID: 29257706 DOI: 10.1080/17434440.2018.1419865] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Transcatheter aortic valve replacement (TAVR) is continuously evolving and is expected to surpass surgical valve implantation in the near future. Combining durable valve substitutes with minimally invasive implantation techniques might increase the clinical relevance of this therapeutic option for younger patient populations. Tissue engineering offers the possibility to create tissue engineered heart valves (TEHVs) with regenerative and self-repair capacities which may overcome the pitfalls of current TAVR prostheses. AREAS COVERED This review focuses on off-the-shelf TEHVs which rely on a clinically-relevant in situ tissue engineering approach and which have already advanced into preclinical or first-in-human investigation. EXPERT COMMENTARY Among the off-the-shelf in situ TEHVs reported in literature, the vast majority covers pulmonary valve substitutes, and only few are combined with transcatheter implantation technologies. Hence, further innovations should include the development of transcatheter tissue engineered aortic valve substitutes, which would considerably increase the clinical relevance of such prostheses.
Collapse
Affiliation(s)
- Sarah E Motta
- a Institute for Regenerative Medicine (IREM) , University of Zurich , Zurich , Switzerland
| | - Valentina Lintas
- a Institute for Regenerative Medicine (IREM) , University of Zurich , Zurich , Switzerland
| | - Emanuela S Fioretta
- a Institute for Regenerative Medicine (IREM) , University of Zurich , Zurich , Switzerland
| | - Simon P Hoerstrup
- a Institute for Regenerative Medicine (IREM) , University of Zurich , Zurich , Switzerland.,b Wyss Translational Center Zurich , University and ETH Zurich , Zurich , Switzerland
| | - Maximilian Y Emmert
- a Institute for Regenerative Medicine (IREM) , University of Zurich , Zurich , Switzerland.,b Wyss Translational Center Zurich , University and ETH Zurich , Zurich , Switzerland.,c Heart Center Zurich , University Hospital Zurich , Zurich , Switzerland
| |
Collapse
|
21
|
Brougham CM, Levingstone TJ, Shen N, Cooney GM, Jockenhoevel S, Flanagan TC, O'Brien FJ. Freeze-Drying as a Novel Biofabrication Method for Achieving a Controlled Microarchitecture within Large, Complex Natural Biomaterial Scaffolds. Adv Healthc Mater 2017; 6. [PMID: 28758358 DOI: 10.1002/adhm.201700598] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Indexed: 01/01/2023]
Abstract
The biofabrication of large natural biomaterial scaffolds into complex 3D shapes which have a controlled microarchitecture remains a major challenge. Freeze-drying (or lyophilization) is a technique used to generate scaffolds in planar 3D geometries. Here we report the development of a new biofabrication process to form a collagen-based scaffold into a large, complex geometry which has a large height to width ratio, and a controlled porous microarchitecture. This biofabrication process is validated through the successful development of a heart valve shaped scaffold, fabricated from a collagen-glycosaminoglycan co-polymer. Notably, despite the significant challenges in using freeze-drying to create such a structure, the resultant scaffold has a uniform, homogenous pore architecture throughout. This is achieved through optimization of the freeze-drying mold and the freezing parameters. We believe this to be the first demonstration of using freeze-drying to create a large, complex scaffold geometry with a controlled, porous architecture for natural biomaterials. This study validates the potential of using freeze-drying for development of organ-specific scaffold geometries for tissue engineering applications, which up until now might not have been considered feasible.
Collapse
Affiliation(s)
- Claire M. Brougham
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland; 123 St. Stephen's Green Dublin 2 Ireland
- School of Mechanical and Design Engineering; Dublin Institute of Technology; Bolton St Dublin 1 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; Royal College of Surgeons in Ireland and Trinity College Dublin; Dublin 2 Ireland
| | - Tanya J. Levingstone
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland; 123 St. Stephen's Green Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; Royal College of Surgeons in Ireland and Trinity College Dublin; Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Dublin 2 Ireland
- School of Mechanical and Manufacturing Engineering; Dublin City University; Dublin 9 Ireland
| | - Nian Shen
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland; 123 St. Stephen's Green Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Dublin 2 Ireland
- Department of Women's Health; Research Institute of Women's Health; University Hospital of the Eberhard Karls University Tübingen; 72074 Tübingen Germany
- Department of Cell and Tissue Engineering; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; 70569 Stuttgart Germany
| | - Gerard M. Cooney
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland; 123 St. Stephen's Green Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Dublin 2 Ireland
| | - Stefan Jockenhoevel
- Department of Biohybrid and Medical Textiles (BioTex) at AME-Helmholtz Institute for Biomedical Engineering and ITA-Institut für Textiltechnik; RWTH Aachen University; 52074 Aachen Germany
| | | | - Fergal J. O'Brien
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland; 123 St. Stephen's Green Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; Royal College of Surgeons in Ireland and Trinity College Dublin; Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Dublin 2 Ireland
| |
Collapse
|
22
|
Malischewski A, Moreira R, Hurtado L, Gesché V, Schmitz-Rode T, Jockenhoevel S, Mela P. Umbilical cord as human cell source for mitral valve tissue engineering - venous vs. arterial cells. ACTA ACUST UNITED AC 2017; 62:457-466. [PMID: 28453437 DOI: 10.1515/bmt-2016-0218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 03/01/2017] [Indexed: 11/15/2022]
Abstract
Around 2% of the population in developed nations are affected by mitral valve disease and available valvular replacements are not designed for the atrioventricular position. Recently our group developed the first tissue-engineered heart valve (TEHV) specifically designed for the mitral position - the TexMi valve. The valve recapitulates the main components of the native valve, i.e. annulus, asymmetric leaflets and the crucial chordae tendineae. In the present study, we evaluated the human umbilical cord as a clinically applicable cell source for the TexMi valve. Valves produced with cells isolated from human umbilical cord veins (HUVs) and human umbilical cord arteries (HUAs) were conditioned for 21 days in custom-made bioreactors and evaluated in terms of extracellular matrix (ECM) composition and mechanical properties. In addition, static cell-laden fibrin discs were molded to investigate cell-mediated tissue contraction and differences in ECM production. HUA and HUV cells were able to deliver functional valves with a rich ECM composed mainly of collagen. Particularly noteworthy was the synthesis of elastin, which has been observed rarely in TEHV. The elastin synthesis was significantly higher in TexMi valves produced with HUV cells and therefore the HUV is considered to be the preferred cell source.
Collapse
|
23
|
Stefani I, Asnaghi M, Cooper-White J, Mantero S. A double chamber rotating bioreactor for enhanced tubular tissue generation from human mesenchymal stem cells: a promising tool for vascular tissue regeneration. J Tissue Eng Regen Med 2017; 12:e42-e52. [DOI: 10.1002/term.2341] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/18/2016] [Accepted: 10/20/2016] [Indexed: 12/26/2022]
Affiliation(s)
- I. Stefani
- Giulio Natta Department of Chemistry, Materials, and Chemical Engineering; Politecnico di Milano; Milan 20133 Italy
- Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; Brisbane QLD 4072 Australia
| | - M.A. Asnaghi
- Giulio Natta Department of Chemistry, Materials, and Chemical Engineering; Politecnico di Milano; Milan 20133 Italy
- Departments of Surgery and of Biomedicine; University Hospital Basel, University of Basel; Basel 4031 Switzerland
| | - J.J. Cooper-White
- Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; Brisbane QLD 4072 Australia
- School of Chemical Engineering; The University of Queensland; QLD 4072 Australia
- Biomedical Manufacturing, Manufacturing Flagship, CSIRO; Clayton VIC 3169 Australia
| | - S. Mantero
- Giulio Natta Department of Chemistry, Materials, and Chemical Engineering; Politecnico di Milano; Milan 20133 Italy
| |
Collapse
|
24
|
Zhang X, Xu B, Puperi DS, Wu Y, West JL, Grande-Allen KJ. Application of hydrogels in heart valve tissue engineering. J Long Term Eff Med Implants 2016; 25:105-34. [PMID: 25955010 DOI: 10.1615/jlongtermeffmedimplants.2015011817] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
With an increasing number of patients requiring valve replacements, there is heightened interest in advancing heart valve tissue engineering (HVTE) to provide solutions to the many limitations of current surgical treatments. A variety of materials have been developed as scaffolds for HVTE including natural polymers, synthetic polymers, and decellularized valvular matrices. Among them, biocompatible hydrogels are generating growing interest. Natural hydrogels, such as collagen and fibrin, generally show good bioactivity but poor mechanical durability. Synthetic hydrogels, on the other hand, have tunable mechanical properties; however, appropriate cell-matrix interactions are difficult to obtain. Moreover, hydrogels can be used as cell carriers when the cellular component is seeded into the polymer meshes or decellularized valve scaffolds. In this review, we discuss current research strategies for HVTE with an emphasis on hydrogel applications. The physicochemical properties and fabrication methods of these hydrogels, as well as their mechanical properties and bioactivities are described. Performance of some hydrogels including in vitro evaluation using bioreactors and in vivo tests in different animal models are also discussed. For future HVTE, it will be compelling to examine how hydrogels can be constructed from composite materials to replicate mechanical properties and mimic biological functions of the native heart valve.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Bioengineering, Rice University, Houston, TX 77030, USA; Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Bin Xu
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Daniel S Puperi
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Yan Wu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
25
|
Seghaye MC. Management of children with congenital heart defect: state of the art and future prospects. Future Cardiol 2016; 13:65-79. [PMID: 27936920 DOI: 10.2217/fca-2016-0039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The treatment of children with congenital heart defects has evolved in the last 60 years from conservative care to a highly specialized management where advances in imaging, surgical, interventional and support techniques meet together to ensure satisfactory development and good quality of life to the child and to the upcoming grown up. Management of congenital heart defects best begins before birth with the aim, whenever possible, to maintain or establish biventricular physiology or, if this is excluded, to optimize the conditions for univentricular physiology. Current research in the field of genetics, device bioengineering and miniaturization, stem cell therapy, and fusion imaging technology is expected to help to improve further patient outcome. In this review, current management strategies and future prospects are discussed.
Collapse
Affiliation(s)
- Marie-Christine Seghaye
- Department of Pediatrics-Pediatric Cardiology, University Hospital Liège, Rue de Gaillarmont 600, B. 4032 Liège, Belgium
| |
Collapse
|
26
|
Sadeghi-Ataabadi M, Mostafavi-Pour Z, Vojdani Z, Sani M, Latifi M, Talaei-Khozani T. Fabrication and characterization of platelet-rich plasma scaffolds for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:372-380. [PMID: 27987720 DOI: 10.1016/j.msec.2016.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/27/2016] [Accepted: 10/01/2016] [Indexed: 01/08/2023]
Abstract
Platelet-Rich Plasma (PRP), as a rich source of growth factor, can form a fibrin gel that recapitulates the extracellular matrix of the tissues. The aim of this study was to evaluate the effects of different concentrations of CaCl2 on the PRP scaffold structure which in turn could change the cell's behavior. PRP was mixed with 2.5, 5 and 10% (w/v) CaCl2. Then, the tensile strength, biodegradability and water content of the scaffolds were evaluated. We also performed immunostaining for assessment of the actin stress fiber orientation and SEM for detecting the cell phenotype and physical properties of the fibers. Cell viability, attachment and migration were also evaluated. The highest cell attachment and short term proliferation rate was observed on the scaffolds with 2.5% CaCl2. The cells cultured on the scaffold with higher CaCl2 concentration had fusiform phenotype with few cell processes and parallel arrangement of stress fibers while those cultured on the other scaffolds were fibroblast-like with more processes and net-like stress fibers. The scaffolds with 10% CaCl2 demonstrated the highest osmolarity (358.75±4.99mOsmole), fiber thickness (302.1±54.3nm), pore size (332.1±118.9nm2) and the longest clotting time (12.2±0.776min) compared with the other scaffolds. Water content, branching angle, porosity, orientation and tensile strength did not change by gelation with different CaCl2 concentrations. In conclusion, the cell shape, viability and proliferation were modified by culturing on the PRP scaffolds prepared with various concentrations of CaCl2, and as a result, the scaffolds showed different physical and biological properties.
Collapse
Affiliation(s)
- Mahmoud Sadeghi-Ataabadi
- Tissue engineering Lab, Anatomy department, Medical School, Shiraz University of Medical Sciences, Iran
| | - Zohreh Mostafavi-Pour
- Recombinant protein lab, Department of Biochemistry, Medical School, Shiraz University of Medical Sciences, Iran
| | - Zahra Vojdani
- Tissue engineering Lab, Anatomy department, Medical School, Shiraz University of Medical Sciences, Iran
| | - Mahsa Sani
- Tissue engineering Lab, Anatomy department, Medical School, Shiraz University of Medical Sciences, Iran
| | - Mona Latifi
- Tissue Engineering Department, National Institute of Genetic Engineering and Biotechnoloy, Iran; Tissue engineering Lab, Anatomy department, Medical School, Shiraz University of Medical Sciences, Iran
| | - Tahereh Talaei-Khozani
- Tissue engineering Lab, Anatomy department, Medical School, Shiraz University of Medical Sciences, Iran.
| |
Collapse
|
27
|
Hasan A, Saliba J, Pezeshgi Modarres H, Bakhaty A, Nasajpour A, Mofrad MRK, Sanati-Nezhad A. Micro and nanotechnologies in heart valve tissue engineering. Biomaterials 2016; 103:278-292. [PMID: 27414719 DOI: 10.1016/j.biomaterials.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/26/2016] [Accepted: 07/01/2016] [Indexed: 02/04/2023]
Abstract
Due to the increased morbidity and mortality resulting from heart valve diseases, there is a growing demand for off-the-shelf implantable tissue engineered heart valves (TEHVs). Despite the significant progress in recent years in improving the design and performance of TEHV constructs, viable and functional human implantable TEHV constructs have remained elusive. The recent advances in micro and nanoscale technologies including the microfabrication, nano-microfiber based scaffolds preparation, 3D cell encapsulated hydrogels preparation, microfluidic, micro-bioreactors, nano-microscale biosensors as well as the computational methods and models for simulation of biological tissues have increased the potential for realizing viable, functional and implantable TEHV constructs. In this review, we aim to present an overview of the importance and recent advances in micro and nano-scale technologies for the development of TEHV constructs.
Collapse
Affiliation(s)
- Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - John Saliba
- Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada; Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, 208A Stanley Hall, Berkeley, CA 94720-1762, USA
| | - Ahmed Bakhaty
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, 208A Stanley Hall, Berkeley, CA 94720-1762, USA
| | - Amir Nasajpour
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, 208A Stanley Hall, Berkeley, CA 94720-1762, USA; Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada.
| |
Collapse
|
28
|
Thiebes AL, Reddemann MA, Palmer J, Kneer R, Jockenhoevel S, Cornelissen CG. Flexible Endoscopic Spray Application of Respiratory Epithelial Cells as Platform Technology to Apply Cells in Tubular Organs. Tissue Eng Part C Methods 2016; 22:322-31. [PMID: 26739252 PMCID: PMC4827297 DOI: 10.1089/ten.tec.2015.0381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Introduction: Inoperable airway stenoses are currently treated by placing stents. A major problem of covered stents is missing mucociliary clearance, which is caused by covering the native respiratory epithelium. By coating a stent with respiratory epithelium, this problem can be overcome. However, no methods are available for efficient endoscopic cell seeding. Methods: We designed a flexible endoscopic spraying device based on a bronchoscope and tested it with respiratory epithelial cells. With this device cells can also be applied in a thin layer of fibrin glue. We evaluated the survival rate directly after spray application with a live-dead staining and the long-term differentiation capacity with histology and electron microscopy. Furthermore, the random distribution of cells when applied in a tube was analyzed and the macroscopic and microscopic characteristics of the endoscopic spray were investigated using high-speed visualization. Results: Spray visualization revealed a polydisperse character of the spray with the majority of droplets larger than epithelial cells. Spray application does not influence the survival rate and differentiation of respiratory epithelial cells. After 4 weeks, cells built up a pseudostratified epithelial layer with cilia and goblet cells. When cells are applied in a thin layer of fibrin gel into a tube, a nearest neighbor index of 1.2 is obtained, which suggests a random distribution of the cells. Conclusions: This spraying device is a promising tool for application of various cell types onto stents or implants with high survival rates and homogeneous distribution as shown in this study for ovine respiratory epithelial cells. The system could also be used for cell therapy to locally apply cells to the diseased parts of hollow organs. For the first time, the fluid dynamics of a spray device for cells were examined to validate in vitro results.
Collapse
Affiliation(s)
- Anja Lena Thiebes
- 1 Department of Tissue Engineering and Textile Implants, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University , Aachen, Germany
| | | | - Johannes Palmer
- 2 Institute of Heat and Mass Transfer, RWTH Aachen University , Aachen, Germany
| | - Reinhold Kneer
- 2 Institute of Heat and Mass Transfer, RWTH Aachen University , Aachen, Germany
| | - Stefan Jockenhoevel
- 1 Department of Tissue Engineering and Textile Implants, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University , Aachen, Germany .,3 Aachen-Maastricht Institute for Biobased Materials, Maastricht University at Chemelot Campus , Geleen, The Netherlands
| | - Christian Gabriel Cornelissen
- 1 Department of Tissue Engineering and Textile Implants, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University , Aachen, Germany .,4 Section for Pneumology, Department for Internal Medicine, RWTH Aachen University , Aachen, Germany
| |
Collapse
|
29
|
Kehl D, Weber B, Hoerstrup SP. Bioengineered living cardiac and venous valve replacements: current status and future prospects. Cardiovasc Pathol 2016; 25:300-305. [PMID: 27167776 DOI: 10.1016/j.carpath.2016.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 02/19/2016] [Accepted: 03/08/2016] [Indexed: 12/13/2022] Open
Abstract
Valvular heart disease remains to be a major cause of death worldwide with increasing prevalence, mortality, and morbidity. Current heart valve replacements are associated with several limitations due to their nonviable nature. In this regard, heart valve tissue engineering has shown to represent a promising concept in order to overcome these limitations and replace diseased cardiac valves with living, autologous constructs. These bioengineered valves hold potential for in situ remodeling, growth, and repair throughout the patient's lifetime without the risk of thromboembolic complications and adverse immune responses. For the fabrication of tissue-engineered heart valves, several concepts have been established, the "classical" in vitro tissue engineering approach, the in situ tissue engineering approach, and alternative approaches including three-dimensional printing and electrospinning. Besides first attempts have been conducted in order to produce a tissue-engineered venous valve for the treatment of deep venous valve insufficiency. Here we review basic principals and current scientific status of valvular tissue engineering, including a critical discussion and outlook for the future.
Collapse
Affiliation(s)
- Debora Kehl
- Institute for Regenerative Medicine, University of Zurich Center for Therapy Development/Good Manufacturing Practice, Moussonstrasse 13, CH-8044 Zurich, Switzerland
| | - Benedikt Weber
- Institute for Regenerative Medicine, University of Zurich Center for Therapy Development/Good Manufacturing Practice, Moussonstrasse 13, CH-8044 Zurich, Switzerland
| | - Simon Philipp Hoerstrup
- Institute for Regenerative Medicine, University of Zurich Center for Therapy Development/Good Manufacturing Practice, Moussonstrasse 13, CH-8044 Zurich, Switzerland.
| |
Collapse
|
30
|
Blose KJ, Pichamuthu JE, Weinbaum JS, Vorp DA. Design and Validation of a Vacuum Assisted Anchorage for the Uniaxial Tensile Testing of Soft Materials. SOFT MATERIALS 2016; 14:72-77. [PMID: 27795696 PMCID: PMC5082747 DOI: 10.1080/1539445x.2016.1141787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Current commercial tensile testing systems use spring-loaded or other compression-based grips to clamp materials in place posing a problem for very soft or delicate materials that cannot withstand this mechanical clamping force. In order to perform uniaxial tensile tests on soft tissues or materials, we have created a novel vacuum-assisted anchor (VAA). Fibrin gels were subjected to uniaxial extension, and the testing data was used to determine material mechanical properties. Utilizing the VAA, we achieved successful tensile breaks of soft fibrin gels while finding statistically significant differences between the mechanical properties of gels fabricated at two different fibrinogen concentrations.
Collapse
Affiliation(s)
- Kory J. Blose
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Joseph E. Pichamuthu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
- Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Justin S. Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - David A. Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
- Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
31
|
Saksena R, Gao C, Wicox M, de Mel A. Tubular organ epithelialisation. J Tissue Eng 2016; 7:2041731416683950. [PMID: 28228931 PMCID: PMC5308438 DOI: 10.1177/2041731416683950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 12/11/2022] Open
Abstract
Hollow, tubular organs including oesophagus, trachea, stomach, intestine, bladder and urethra may require repair or replacement due to disease. Current treatment is considered an unmet clinical need, and tissue engineering strategies aim to overcome these by fabricating synthetic constructs as tissue replacements. Smart, functionalised synthetic materials can act as a scaffold base of an organ and multiple cell types, including stem cells can be used to repopulate these scaffolds to replace or repair the damaged or diseased organs. Epithelial cells have not yet completely shown to have efficacious cell-scaffold interactions or good functionality in artificial organs, thus limiting the success of tissue-engineered grafts. Epithelial cells play an essential part of respective organs to maintain their function. Without successful epithelialisation, hollow organs are liable to stenosis, collapse, extensive fibrosis and infection that limit patency. It is clear that the source of cells and physicochemical properties of scaffolds determine the successful epithelialisation. This article presents a review of tissue engineering studies on oesophagus, trachea, stomach, small intestine, bladder and urethral constructs conducted to actualise epithelialised grafts.
Collapse
Affiliation(s)
- Rhea Saksena
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Chuanyu Gao
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Mathew Wicox
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Achala de Mel
- Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|
32
|
Huang J, Fu H, Wang Z, Meng Q, Liu S, Wang H, Zheng X, Dai J, Zhang Z. BMSCs-laden gelatin/sodium alginate/carboxymethyl chitosan hydrogel for 3D bioprinting. RSC Adv 2016. [DOI: 10.1039/c6ra24231f] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gelatin/sodium alginate/carboxymethyl chitosan hydrogel mixed with bone mesenchymal stem cells for 3D bioprinting.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- CAS Center for Excellence in Nanoscience
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
| | - Han Fu
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- CAS Center for Excellence in Nanoscience
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
| | - Zhiying Wang
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- CAS Center for Excellence in Nanoscience
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
| | - Qingyuan Meng
- State Key Laboratory of Molecular Developmental Biology
- Institute of Genetics and Developmental Biology
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Sumei Liu
- State Key Laboratory of Molecular Developmental Biology
- Institute of Genetics and Developmental Biology
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Heran Wang
- State Key Laboratory of Robotics
- Shenyang Institute of Automation
- Chinese Academy of Sciences
- Shenyang 110016
- P. R. China
| | - Xiongfei Zheng
- State Key Laboratory of Robotics
- Shenyang Institute of Automation
- Chinese Academy of Sciences
- Shenyang 110016
- P. R. China
| | - Jianwu Dai
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- CAS Center for Excellence in Nanoscience
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
| | - Zhijun Zhang
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- CAS Center for Excellence in Nanoscience
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
| |
Collapse
|
33
|
Rath S, Salinas M, Villegas AG, Ramaswamy S. Differentiation and Distribution of Marrow Stem Cells in Flex-Flow Environments Demonstrate Support of the Valvular Phenotype. PLoS One 2015; 10:e0141802. [PMID: 26536240 PMCID: PMC4633293 DOI: 10.1371/journal.pone.0141802] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/13/2015] [Indexed: 11/18/2022] Open
Abstract
For treatment of critical heart valve diseases, prosthetic valves perform fairly well in most adults; however, for pediatric patients, there is the added requirement that the replacement valve grows with the child, thus extremely limiting current treatment options. Tissue engineered heart valves (TEHV), such as those derived from autologous bone marrow stem cells (BMSCs), have the potential to recapitulate native valve architecture and accommodate somatic growth. However, a fundamental pre-cursor in promoting directed integration with native tissues rather than random, uncontrolled growth requires an understanding of BMSC mechanobiological responses to valve-relevant mechanical environments. Here, we report on the responses of human BMSC-seeded polymer constructs to the valve-relevant stress states of: (i) steady flow alone, (ii) cyclic flexure alone, and (iii) the combination of cyclic flexure and steady flow (flex-flow). BMSCs were seeded onto a PGA: PLLA polymer scaffold and cultured in static culture for 8 days. Subsequently, the aforementioned mechanical conditions, (groups consisting of steady flow alone-850ml/min, cyclic flexure alone-1 Hz, and flex-flow-850ml/min and 1 Hz) were applied for an additional two weeks. We found samples from the flex-flow group exhibited a valve-like distribution of cells that expressed endothelial (preference to the surfaces) and myofibroblast (preference to the intermediate region) phenotypes. We interpret that this was likely due to the presence of both appreciable fluid-induced shear stress magnitudes and oscillatory shear stresses, which were concomitantly imparted onto the samples. These results indicate that flex-flow mechanical environments support directed in vitro differentiation of BMSCs uniquely towards a heart valve phenotype, as evident by cellular distribution and expression of specific gene markers. A priori guidance of BMSC-derived, engineered tissue growth under flex-flow conditions may serve to subsequently promote controlled, engineered to native tissue integration processes in vivo necessary for successful long-term valve remodeling.
Collapse
Affiliation(s)
- Sasmita Rath
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, United States of America
| | - Manuel Salinas
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, United States of America
| | - Ana G. Villegas
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, United States of America
| | - Sharan Ramaswamy
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, United States of America
| |
Collapse
|
34
|
Reimer JM, Syedain ZH, Haynie BHT, Tranquillo RT. Pediatric tubular pulmonary heart valve from decellularized engineered tissue tubes. Biomaterials 2015; 62:88-94. [PMID: 26036175 PMCID: PMC4490908 DOI: 10.1016/j.biomaterials.2015.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/14/2015] [Indexed: 01/07/2023]
Abstract
Pediatric patients account for a small portion of the heart valve replacements performed, but a pediatric pulmonary valve replacement with growth potential remains an unmet clinical need. Herein we report the first tubular heart valve made from two decellularized, engineered tissue tubes attached with absorbable sutures, which can meet this need, in principle. Engineered tissue tubes were fabricated by allowing ovine dermal fibroblasts to replace a sacrificial fibrin gel with an aligned, cell-produced collagenous matrix, which was subsequently decellularized. Previously, these engineered tubes became extensively recellularized following implantation into the sheep femoral artery. Thus, a tubular valve made from these tubes may be amenable to recellularization and, ideally, somatic growth. The suture line pattern generated three equi-spaced leaflets in the inner tube, which collapsed inward when exposed to back pressure, per tubular valve design. Valve testing was performed in a pulse duplicator system equipped with a secondary flow loop to allow for root distention. All tissue-engineered valves exhibited full leaflet opening and closing, minimal regurgitation (<5%), and low systolic pressure gradients (<2.5 mmHg) under pulmonary conditions. Valve performance was maintained under various trans-root pressure gradients and no tissue damage was evident after 2 million cycles of fatigue testing.
Collapse
Affiliation(s)
- Jay M Reimer
- Department of Biomedical Engineering, University of Minnesota, USA
| | | | - Bee H T Haynie
- Department of Biomedical Engineering, University of Minnesota, USA
| | - Robert T Tranquillo
- Department of Biomedical Engineering, University of Minnesota, USA; Department of Chemical Engineering and Material Science, University of Minnesota, USA.
| |
Collapse
|
35
|
Cyclic Stretch and Perfusion Bioreactor for Conditioning Large Diameter Engineered Tissue Tubes. Ann Biomed Eng 2015; 44:1785-97. [PMID: 26307332 DOI: 10.1007/s10439-015-1437-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/19/2015] [Indexed: 01/19/2023]
Abstract
A cyclic stretch and perfusion bioreactor was designed to culture large diameter engineered tissue tubes for heart valve applications. In this bioreactor, tubular tissues consisting of dermal fibroblasts in a sacrificial fibrin gel scaffold were placed over porated latex support sleeves and mounted in a custom bioreactor. Pulsatile flow of culture medium into the system resulted in cyclic stretching as well as ablumenal, lumenal, and transmural flow (perfusion). In this study, lumenal remodeling, composition, and mechanical strength and stiffness were compared for tissues cyclically stretched in this bioreactor on either the porated latex sleeves or solid latex sleeves, which did not permit lumenal or transmural flow. Tissues cyclically stretched on porated sleeves had regions of increased lumenal remodeling and cellularity that were localized to the columns of pores in the latex sleeve. A CFD model was developed with COMSOL Multiphysics(®) to predict flow of culture medium in and around the tissue, and the predictions suggest that the enhanced lumenal remodeling was likely a result of elevated shear stresses and transmural velocity in these regions. This work highlights the beneficial effects of increased nutrient transport and flow stimulation for accelerating in vitro tissue remodeling.
Collapse
|
36
|
Schmidt JB, Chen K, Tranquillo RT. Effects of Intermittent and Incremental Cyclic Stretch on ERK Signaling and Collagen Production in Engineered Tissue. Cell Mol Bioeng 2015; 9:55-64. [PMID: 27114743 DOI: 10.1007/s12195-015-0415-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Intermittent cyclic stretching and incrementally increasing strain amplitude cyclic stretching were explored to overcome the reported adaptation of fibroblasts in response to constant amplitude cyclic stretching, with the goals of accelerating collagen production and understanding the underlying cell signaling. The effects of constant amplitude, intermittent, and incremental cyclic stretching regimens were investigated for dermal fibroblasts entrapped in a fibrin gel by monitoring the extracellular signal-regulated kinase (ERK1/2) and p38 pathways, collagen transcription, and finally the deposited collagen protein. Activation of ERK1/2, which has been shown to be necessary for stretch-induced collagen transcription, was maximal at 15 min and decayed by 1 h. ERK1/2 was reactivated by an additional onset of stretching or by an increment in the strain amplitude 6 h after the initial stimulus, which was approximately the lifetime of activated p38, a known ERK1/2 inhibitor. While both intermittent and incremental regimens reactivated ERK1/2, only incremental stretching increased collagen production compared to samples stretched with constant amplitude, resulting in a 37% increase in collagen per cell after 2 weeks. This suggests that a regimen with small, frequent increments in strain amplitude is optimal for this system and should be used in bioreactors for engineered tissues requiring high collagen content.
Collapse
Affiliation(s)
- Jillian B Schmidt
- Department of Chemical Engineering & Materials Science, University of Minnesota, 7-114 Nils Hasselmo Hall, 312 Church St. SE, Minneapolis, MN 55455, USA
| | - Kelley Chen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert T Tranquillo
- Department of Chemical Engineering & Materials Science, University of Minnesota, 7-114 Nils Hasselmo Hall, 312 Church St. SE, Minneapolis, MN 55455, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
37
|
Cheung DY, Duan B, Butcher JT. Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions. Expert Opin Biol Ther 2015; 15:1155-72. [PMID: 26027436 DOI: 10.1517/14712598.2015.1051527] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Heart valve disease is an increasingly prevalent and clinically serious condition. There are no clinically effective biological diagnostics or treatment strategies. The only recourse available is replacement with a prosthetic valve, but the inability of these devices to grow or respond biologically to their environments necessitates multiple resizing surgeries and life-long coagulation treatment, especially in children. Tissue engineering has a unique opportunity to impact heart valve disease by providing a living valve conduit, capable of growth and biological integration. AREAS COVERED This review will cover current tissue engineering strategies in fabricating heart valves and their progress towards the clinic, including molded scaffolds using naturally derived or synthetic polymers, decellularization, electrospinning, 3D bioprinting, hybrid techniques, and in vivo engineering. EXPERT OPINION Whereas much progress has been made to create functional living heart valves, a clinically viable product is not yet realized. The next leap in engineered living heart valves will require a deeper understanding of how the natural multi-scale structural and biological heterogeneity of the tissue ensures its efficient function. Related, improved fabrication strategies must be developed that can replicate this de novo complexity, which is likely instructive for appropriate cell differentiation and remodeling whether seeded with autologous stem cells in vitro or endogenously recruited cells.
Collapse
Affiliation(s)
- Daniel Y Cheung
- Cornell University, Department of Biomedical Engineering , Ithaca, NY , USA
| | | | | |
Collapse
|
38
|
Thiebes AL, Albers S, Klopsch C, Jockenhoevel S, Cornelissen CG. Spraying Respiratory Epithelial Cells to Coat Tissue-Engineered Constructs. Biores Open Access 2015; 4:278-87. [PMID: 26309803 PMCID: PMC4497665 DOI: 10.1089/biores.2015.0015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Applying cells in a spray can overcome current hurdles in coating tissue engineered constructs with a thin layer of endo- or epithelial cells. We report here a structured study on the influences of spray application with a medical spray device on vascular smooth muscle cells (vSMCs) and respiratory epithelial cells (RECs) with and without fibrin gel. Next to viability and cytotoxicity assays, the in vitro differentiation capacity after spray processing was analyzed. For vSMC, no influence of air pressures till 0.8 bar could be shown, whereas the viability decreased for higher pressures. The viability of RECs was reduced to 88.5% with 0.4 bar air pressure. Lactate dehydrogenase-levels in the culture medium increased the first day after spraying but normalized afterward. In the short term, no differences by means of morphology and expression-specific markers for vSMCs and RECs were seen between the control and study group. In addition, in a long-term study for 28 days with the air–liquid interface, RECs differentiated and built up an organized epithelial layer with ciliary development that was comparable to the control for cells sprayed without fibrin gel. When spraying within fibrin gel, ciliary development was lower at 28 days. Thus, spraying of vSMCs and RECs was proved to be a suitable method for tissue engineering. Especially for RECs, this application is of special significance when coating luminal structures or other unfavorable topographies.
Collapse
Affiliation(s)
- Anja Lena Thiebes
- Department of Tissue Engineering and Textile Implants, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University , Aachen, Germany
| | - Stefanie Albers
- Department of Tissue Engineering and Textile Implants, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University , Aachen, Germany
| | - Christian Klopsch
- Clinic and Policlinic for Cardiac Surgery, University of Rostock , Rostock, Germany
| | - Stefan Jockenhoevel
- Department of Tissue Engineering and Textile Implants, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University , Aachen, Germany . ; Aachen-Maastricht Institute for Biobased Materials, Maastricht University at Chemelot Campus , Geleen, The Netherlands
| | - Christian G Cornelissen
- Department of Tissue Engineering and Textile Implants, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University , Aachen, Germany . ; Section for Pneumology, Department for Internal Medicine, Medical Faculty, RWTH Aachen University , Aachen, Germany
| |
Collapse
|
39
|
Weber M, Gonzalez de Torre I, Moreira R, Frese J, Oedekoven C, Alonso M, Rodriguez Cabello CJ, Jockenhoevel S, Mela P. Multiple-Step Injection Molding for Fibrin-Based Tissue-Engineered Heart Valves. Tissue Eng Part C Methods 2015; 21:832-40. [PMID: 25654448 PMCID: PMC4523041 DOI: 10.1089/ten.tec.2014.0396] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heart valves are elaborate and highly heterogeneous structures of the circulatory system. Despite the well accepted relationship between the structural and mechanical anisotropy and the optimal function of the valves, most approaches to create tissue-engineered heart valves (TEHVs) do not try to mimic this complexity and rely on one homogenous combination of cells and materials for the whole construct. The aim of this study was to establish an easy and versatile method to introduce spatial diversity into a heart valve fibrin scaffold. We developed a multiple-step injection molding process that enables the fabrication of TEHVs with heterogeneous composition (cell/scaffold material) of wall and leaflets without the need of gluing or suturing components together, with the leaflets firmly connected to the wall. The integrity of the valves and their functionality was proved by either opening/closing cycles in a bioreactor (proof of principle without cells) or with continuous stimulation over 2 weeks. We demonstrated the potential of the method by the two-step molding of the wall and the leaflets containing different cell lines. Immunohistology after stimulation confirmed tissue formation and demonstrated the localization of the different cell types. Furthermore, we showed the proof of principle fabrication of valves using different materials for wall (fibrin) and leaflets (hybrid gel of fibrin/elastin-like recombinamer) and with layered leaflets. The method is easy to implement, does not require special facilities, and can be reproduced in any tissue-engineering lab. While it has been demonstrated here with fibrin, it can easily be extended to other hydrogels.
Collapse
Affiliation(s)
- Miriam Weber
- 1 Department of Tissue Engineering and Textile Implants, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University , Aachen, Germany
| | | | - Ricardo Moreira
- 1 Department of Tissue Engineering and Textile Implants, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University , Aachen, Germany
| | - Julia Frese
- 1 Department of Tissue Engineering and Textile Implants, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University , Aachen, Germany
| | - Caroline Oedekoven
- 1 Department of Tissue Engineering and Textile Implants, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University , Aachen, Germany
| | - Matilde Alonso
- 2 G.I.R. Bioforge, University of Valladolid , CIBER-BBN, Valladolid, Spain
| | | | - Stefan Jockenhoevel
- 1 Department of Tissue Engineering and Textile Implants, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University , Aachen, Germany .,3 Institut für Textiltecknik, RWTH Aachen University , Aachen, Germany
| | - Petra Mela
- 1 Department of Tissue Engineering and Textile Implants, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University , Aachen, Germany
| |
Collapse
|
40
|
Moreira R, Velz T, Alves N, Gesche VN, Malischewski A, Schmitz-Rode T, Frese J, Jockenhoevel S, Mela P. Tissue-engineered heart valve with a tubular leaflet design for minimally invasive transcatheter implantation. Tissue Eng Part C Methods 2014; 21:530-40. [PMID: 25380414 DOI: 10.1089/ten.tec.2014.0214] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transcatheter aortic valve implantation of (nonviable) bioprosthetic valves has been proven a valid alternative to conventional surgical implantation in patients at high or prohibitive mortality risk. In this study we present the in vitro proof-of-principle of a newly developed tissue-engineered heart valve for minimally invasive implantation, with the ultimate aim of adding the unique advantages of a living tissue with regeneration capabilities to the continuously developing transcatheter technologies. The tube-in-stent is a fibrin-based tissue-engineered valve with a tubular leaflet design. It consists of a tubular construct sewn into a self-expandable nitinol stent at three commissural attachment points and along a circumferential line so that it forms three coaptating leaflets by collapsing under diastolic back pressure. The tubular constructs were molded with fibrin and human umbilical vein cells. After 3 weeks of conditioning in a bioreactor, the valves were fully functional with unobstructed opening (systolic phase) and complete closure (diastolic phase). Tissue analysis showed a homogeneous cell distribution throughout the valve's thickness and deposition of collagen types I and III oriented along the longitudinal direction. Immunohistochemical staining against CD31 and scanning electron microscopy revealed a confluent endothelial cell layer on the surface of the valves. After harvesting, the valves underwent crimping for 20 min to simulate the catheter-based delivery. This procedure did not affect the valvular functionality in terms of orifice area during systole and complete closure during diastole. No influence on the extracellular matrix organization, as assessed by immunohistochemistry, nor on the mechanical properties was observed. These results show the potential of combining tissue engineering and minimally invasive implantation technology to obtain a living heart valve with a simple and robust tubular design for transcatheter delivery. The effect of the in vivo remodeling on the functionality of the tube-in-stent valve remains to be tested.
Collapse
Affiliation(s)
- Ricardo Moreira
- 1Department of Tissue Engineering and Textile Implants, AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Thaddaeus Velz
- 1Department of Tissue Engineering and Textile Implants, AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Nuno Alves
- 1Department of Tissue Engineering and Textile Implants, AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | | | - Axel Malischewski
- 1Department of Tissue Engineering and Textile Implants, AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Thomas Schmitz-Rode
- 1Department of Tissue Engineering and Textile Implants, AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Julia Frese
- 1Department of Tissue Engineering and Textile Implants, AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Stefan Jockenhoevel
- 1Department of Tissue Engineering and Textile Implants, AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany.,2Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
| | - Petra Mela
- 1Department of Tissue Engineering and Textile Implants, AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
41
|
Kamel PI, Qu X, Geiszler AM, Nagrath D, Harmancey R, Taegtmeyer H, Grande-Allen KJ. Metabolic regulation of collagen gel contraction by porcine aortic valvular interstitial cells. J R Soc Interface 2014; 11:20140852. [PMID: 25320066 PMCID: PMC4223906 DOI: 10.1098/rsif.2014.0852] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/22/2014] [Indexed: 12/20/2022] Open
Abstract
Despite a high incidence of calcific aortic valve disease in metabolic syndrome, there is little information about the fundamental metabolism of heart valves. Cell metabolism is a first responder to chemical and mechanical stimuli, but it is unknown how such signals employed in valve tissue engineering impact valvular interstitial cell (VIC) biology and valvular disease pathogenesis. In this study porcine aortic VICs were seeded into three-dimensional collagen gels and analysed for gel contraction, lactate production and glucose consumption in response to manipulation of metabolic substrates, including glucose, galactose, pyruvate and glutamine. Cell viability was also assessed in two-dimensional culture. We found that gel contraction was sensitive to metabolic manipulation, particularly in nutrient-depleted medium. Contraction was optimal at an intermediate glucose concentration (2 g l(-1)) with less contraction with excess (4.5 g l(-1)) or reduced glucose (1 g l(-1)). Substitution with galactose delayed contraction and decreased lactate production. In low sugar concentrations, pyruvate depletion reduced contraction. Glutamine depletion reduced cell metabolism and viability. Our results suggest that nutrient depletion and manipulation of metabolic substrates impacts the viability, metabolism and contractile behaviour of VICs. Particularly, hyperglycaemic conditions can reduce VIC interaction with and remodelling of the extracellular matrix. These results begin to link VIC metabolism and macroscopic behaviour such as cell-matrix interaction.
Collapse
Affiliation(s)
- Peter I Kamel
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Xin Qu
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Andrew M Geiszler
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Deepak Nagrath
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | - Romain Harmancey
- Department of Internal Medicine, Division of Cardiology, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, Division of Cardiology, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | |
Collapse
|
42
|
Oh JH, Kim HJ, Kim TI, Woo KM. Comparative evaluation of the biological properties of fibrin for bone regeneration. BMB Rep 2014; 47:110-4. [PMID: 24257120 PMCID: PMC4163896 DOI: 10.5483/bmbrep.2014.47.2.156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 07/06/2013] [Accepted: 07/09/2013] [Indexed: 11/20/2022] Open
Abstract
Fibrin is a natural provisional matrix found in wound healing, while type I collagen is a major organic component of bone matrix. Despite the frequent use of fibrin and type I collagen in bone regenerative approaches, their comparative efficacies have not yet been evaluated. In the present study, we compared the effects of fibrin and collagen on the proliferation and differentiation of osteoblasts and protein adsorption. Compared to collagen, fibrin adsorbed approximately 6.7 times more serum fibronectin. Moreover, fibrin allowed the proliferation of larger MC3T3-E1 pre-osteoblasts, especially at a low cell density. Fibrin promoted osteoblast differentiation at higher levels than collagen, as confirmed by Runx2 expression and transcriptional activity, alkaline phosphatase activity, and calcium deposition. The results of the present study suggest that fibrin is superior to collagen in the support of bone regeneration. [BMB Reports 2014; 47(2): 110-114]
Collapse
Affiliation(s)
- Joung-Hwan Oh
- Department of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Korea
| | - Hye-Jin Kim
- Department of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Korea
| | - Tae-Il Kim
- Department of Periodontology, School of Dentistry, Seoul National University, Seoul 110-749, Korea
| | - Kyung Mi Woo
- Department of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Korea; Department of Dental Pharmacology & Therapeutics, School of Dentistry, Seoul National University, Seoul 110-749, Korea
| |
Collapse
|
43
|
Lueders C, Jastram B, Hetzer R, Schwandt H. Rapid manufacturing techniques for the tissue engineering of human heart valves. Eur J Cardiothorac Surg 2014; 46:593-601. [PMID: 25063052 DOI: 10.1093/ejcts/ezt510] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Three-dimensional (3D) printing technologies have reached a level of quality that justifies considering rapid manufacturing for medical applications. Herein, we introduce a new approach using 3D printing to simplify and improve the fabrication of human heart valve scaffolds by tissue engineering (TE). Custom-made human heart valve scaffolds are to be fabricated on a selective laser-sintering 3D printer for subsequent seeding with vascular cells from human umbilical cords. The scaffolds will be produced from resorbable polymers that must feature a number of specific properties: the structure, i.e. particle granularity and shape, and thermic properties must be feasible for the printing process. They must be suitable for the cell-seeding process and at the same time should be resorbable. They must be applicable for implementation in the human body and flexible enough to support the full functionality of the valve. The research focuses mainly on the search for a suitable scaffold material that allows the implementation of both the printing process to produce the scaffolds and the cell-seeding process, while meeting all of the above requirements. Computer tomographic data from patients were transformed into a 3D data model suitable for the 3D printer. Our current activities involve various aspects of the printing process, material research and the implementation of the cell-seeding process. Different resorbable polymeric materials have been examined and used to fabricate heart valve scaffolds by rapid manufacturing. Human vascular cells attached to the scaffold surface should migrate additionally into the inner structure of the polymeric samples. The ultimate intention of our approach is to establish a heart valve fabrication process based on 3D rapid manufacturing and TE. Based on the computer tomographic data of a patient, a custom-made scaffold for a valve will be produced on a 3D printer and populated preferably by autologous cells. The long-term goal is to support the growth of a new valve by a 3D structure resorbed by the human body in the course of the growth process. Our current activities can be characterized as basic research in which the fundamental steps of the technical process and its feasibility are investigated.
Collapse
Affiliation(s)
- Cora Lueders
- Deutsches Herzzentrum Berlin, Laboratory for Tissue Engineering, Berlin, Germany
| | - Ben Jastram
- Faculty of Mathematics and Natural Sciences, 3D Laboratory, Institute of Mathematics, MA 6-4, Technical University of Berlin, Berlin, Germany
| | - Roland Hetzer
- Deutsches Herzzentrum Berlin, Laboratory for Tissue Engineering, Berlin, Germany
| | - Hartmut Schwandt
- Faculty of Mathematics and Natural Sciences, 3D Laboratory, Institute of Mathematics, MA 6-4, Technical University of Berlin, Berlin, Germany
| |
Collapse
|
44
|
Duan B, Kapetanovic E, Hockaday LA, Butcher JT. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater 2014; 10:1836-46. [PMID: 24334142 DOI: 10.1016/j.actbio.2013.12.005] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/20/2013] [Accepted: 12/05/2013] [Indexed: 12/20/2022]
Abstract
Tissue engineering has great potential to provide a functional de novo living valve replacement, capable of integration with host tissue and growth. Among various valve conduit fabrication techniques, three-dimensional (3-D) bioprinting enables deposition of cells and hydrogels into 3-D constructs with anatomical geometry and heterogeneous mechanical properties. Successful translation of this approach, however, is constrained by the dearth of printable and biocompatible hydrogel materials. Furthermore, it is not known how human valve cells respond to these printed environments. In this study, 3-D printable formulations of hybrid hydrogels are developed, based on methacrylated hyaluronic acid (Me-HA) and methacrylated gelatin (Me-Gel), and used to bioprint heart valve conduits containing encapsulated human aortic valvular interstitial cells (HAVIC). Increasing Me-Gel concentration resulted in lower stiffness and higher viscosity, facilitated cell spreading, and better maintained HAVIC fibroblastic phenotype. Bioprinting accuracy was dependent upon the relative concentrations of Me-Gel and Me-HA, but when optimized enabled the fabrication of a trileaflet valve shape accurate to the original design. HAVIC encapsulated within bioprinted heart valves maintained high viability, and remodeled the initial matrix by depositing collagen and glyosaminoglycans. These findings represent the first rational design of bioprinted trileaflet valve hydrogels that regulate encapsulated human VIC behavior. The use of anatomically accurate living valve scaffolds through bioprinting may accelerate understanding of physiological valve cell interactions and progress towards de novo living valve replacements.
Collapse
Affiliation(s)
- B Duan
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - E Kapetanovic
- College of Human Ecology, Cornell University, Ithaca, NY, USA
| | - L A Hockaday
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - J T Butcher
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
45
|
Tremblay C, Ruel J, Bourget JM, Laterreur V, Vallières K, Tondreau MY, Lacroix D, Germain L, Auger FA. A new construction technique for tissue-engineered heart valves using the self-assembly method. Tissue Eng Part C Methods 2014; 20:905-15. [PMID: 24576074 DOI: 10.1089/ten.tec.2013.0698] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tissue engineering appears as a promising option to create new heart valve substitutes able to overcome the serious drawbacks encountered with mechanical substitutes or tissue valves. The objective of this article is to present the construction method of a new entirely biological stentless aortic valve using the self-assembly method and also a first assessment of its behavior in a bioreactor when exposed to a pulsatile flow. A thick tissue was created by stacking several fibroblast sheets produced with the self-assembly technique. Different sets of custom-made templates were designed to confer to the thick tissue a three-dimensional (3D) shape similar to that of a native aortic valve. The construction of the valve was divided in two sequential steps. The first step was the installation of the thick tissue in a flat preshaping template followed by a 4-week maturation period. The second step was the actual cylindrical 3D forming of the valve. The microscopic tissue structure was assessed using histological cross sections stained with Masson's Trichrome and Picrosirius Red. The thick tissue remained uniformly populated with cells throughout the construction steps and the dense extracellular matrix presented corrugated fibers of collagen. This first prototype of tissue-engineered heart valve was installed in a bioreactor to assess its capacity to sustain a light pulsatile flow at a frequency of 0.5 Hz. Under the light pulsed flow, it was observed that the leaflets opened and closed according to the flow variations. This study demonstrates that the self-assembly method is a viable option for the construction of complex 3D shapes, such as heart valves, with an entirely biological material.
Collapse
Affiliation(s)
- Catherine Tremblay
- 1 Département de génie mécanique, Faculté des sciences et de génie, Université Laval , Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Weber M, Heta E, Moreira R, Gesche VN, Schermer T, Frese J, Jockenhoevel S, Mela P. Tissue-engineered fibrin-based heart valve with a tubular leaflet design. Tissue Eng Part C Methods 2014; 20:265-75. [PMID: 23829551 PMCID: PMC3968886 DOI: 10.1089/ten.tec.2013.0258] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/26/2013] [Indexed: 11/12/2022] Open
Abstract
The general approach in heart valve tissue engineering is to mimic the shape of the native valve in the attempt to recreate the natural haemodynamics. In this article, we report the fabrication of the first tissue-engineered heart valve (TEHV) based on a tubular leaflet design, where the function of the leaflets of semilunar heart valves is performed by a simple tubular construct sutured along a circumferential line at the root and at three single points at the sinotubular junction. The tubular design is a recent development in pericardial (nonviable) bioprostheses, which has attracted interest because of the simplicity of the construction and the reliability of the implantation technique. Here we push the potential of the concept further from the fabrication and material point of view to realize the tube-in-tube valve: an autologous, living HV with remodelling and growing capability, physiological haemocompatibility, simple to construct and fast to implant. We developed two different fabrication/conditioning procedures and produced fibrin-based constructs embedding cells from the ovine umbilical cord artery according to the two different approaches. Tissue formation was confirmed by histology and immunohistology. The design of the tube-in-tube foresees the possibility of using a textile coscaffold (here demonstrated with a warp-knitted mesh) to achieve enhanced mechanical properties in vision of implantation in the aortic position. The tube-in-tube represents an attractive alternative to the conventional design of TEHVs aiming at reproducing the valvular geometry.
Collapse
Affiliation(s)
- Miriam Weber
- Department of Tissue Engineering and Textile Implants, Institute of Applied Medical Engineering, Helmholtz Institute of the RWTH Aachen University, Aachen, Germany
| | - Eriona Heta
- Department of Tissue Engineering and Textile Implants, Institute of Applied Medical Engineering, Helmholtz Institute of the RWTH Aachen University, Aachen, Germany
| | - Ricardo Moreira
- Department of Tissue Engineering and Textile Implants, Institute of Applied Medical Engineering, Helmholtz Institute of the RWTH Aachen University, Aachen, Germany
| | | | - Thomas Schermer
- Department of Tissue Engineering and Textile Implants, Institute of Applied Medical Engineering, Helmholtz Institute of the RWTH Aachen University, Aachen, Germany
| | - Julia Frese
- Department of Tissue Engineering and Textile Implants, Institute of Applied Medical Engineering, Helmholtz Institute of the RWTH Aachen University, Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Tissue Engineering and Textile Implants, Institute of Applied Medical Engineering, Helmholtz Institute of the RWTH Aachen University, Aachen, Germany
- Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
| | - Petra Mela
- Department of Tissue Engineering and Textile Implants, Institute of Applied Medical Engineering, Helmholtz Institute of the RWTH Aachen University, Aachen, Germany
| |
Collapse
|
47
|
Mol A, Smits AIPM, Bouten CVC, Baaijens FPT. Tissue engineering of heart valves: advances and current challenges. Expert Rev Med Devices 2014; 6:259-75. [DOI: 10.1586/erd.09.12] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Bordenave L, Menu P, Baquey C. Developments towards tissue-engineered, small-diameter arterial substitutes. Expert Rev Med Devices 2014; 5:337-47. [DOI: 10.1586/17434440.5.3.337] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
49
|
Glycosaminoglycan entrapment by fibrin in engineered heart valve tissues. Acta Biomater 2013; 9:8149-57. [PMID: 23791855 DOI: 10.1016/j.actbio.2013.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 05/27/2013] [Accepted: 06/06/2013] [Indexed: 02/05/2023]
Abstract
Tissue engineered heart valves (TEHVs) may provide a permanent solution to congenital heart valve disease by permitting somatic valve growth in the pediatric patient. However, to date, TEHV studies have focused primarily on collagen, the dominant component of valve extracellular matrix (ECM). Temporal decreases in other ECM components, such as the glycosaminoglycans (GAGs), generally decrease as cells produce more collagen under mechanically loaded states; nevertheless, GAGs represent a key component of the valve ECM, providing structural stability and hydration to the leaflets. In an effort to retain GAGs within the engineered constructs, here we investigated the utility of the protein fibrin in combination with a valve-like, cyclic flexure and steady flow (flex-flow) mechanical conditioning culture process using adult human periodontal ligament cells (PLCs). We found both fibrin and flex-flow mechanical components to be independently significant (p<0.05), and hence important in influencing the DNA, GAG and collagen contents of the engineered tissues. In addition, the interaction of fibrin with flex-flow was found to be significant in the case of collagen; specifically, the combination of these environments promoted PLC collagen production resulting in a significant difference compared to dynamic and statically cultured specimens without fibrin. Histological examination revealed that the GAGs were retained by fibrin entrapment and adhesion, which were subsequently confirmed by additional experiments on native valve tissues. We conclude that fibrin in the flex-flow culture of engineered heart valve tissues: (i) augments PLC-derived collagen production; and (ii) enhances retention of GAGs within the developing ECM.
Collapse
|
50
|
Tubular heart valves from decellularized engineered tissue. Ann Biomed Eng 2013; 41:2645-54. [PMID: 23897047 DOI: 10.1007/s10439-013-0872-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/17/2013] [Indexed: 02/03/2023]
Abstract
A novel tissue-engineered heart valve (TEHV) was fabricated from a decellularized tissue tube mounted on a frame with three struts, which upon back-pressure cause the tube to collapse into three coapting "leaflets." The tissue was completely biological, fabricated from ovine fibroblasts dispersed within a fibrin gel, compacted into a circumferentially aligned tube on a mandrel, and matured using a bioreactor system that applied cyclic distension. Following decellularization, the resulting tissue possessed tensile mechanical properties, mechanical anisotropy, and collagen content that were comparable to native pulmonary valve leaflets. When mounted on a custom frame and tested within a pulse duplicator system, the tubular TEHV displayed excellent function under both aortic and pulmonary conditions, with minimal regurgitant fractions and transvalvular pressure gradients at peak systole, as well as well as effective orifice areas exceeding those of current commercially available valve replacements. Short-term fatigue testing of one million cycles with pulmonary pressure gradients was conducted without significant change in mechanical properties and no observable macroscopic tissue deterioration. This study presents an attractive potential alternative to current tissue valve replacements due to its avoidance of chemical fixation and utilization of a tissue conducive to recellularization by host cell infiltration.
Collapse
|