1
|
Breitenstein P, Visser VL, Motta SE, Martin M, Generali M, Baaijens FPT, Loerakker S, Breuer CK, Hoerstrup SP, Emmert MY. Modulating biomechanical and integrating biochemical cues to foster adaptive remodeling of tissue engineered matrices for cardiovascular implants. Acta Biomater 2025; 197:48-67. [PMID: 40118167 DOI: 10.1016/j.actbio.2025.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Cardiovascular disease remains one of the leading causes of mortality in the Western world. Congenital heart disease affects nearly 1 % of newborns, with approximately one-fourth requiring reconstructive surgery during their lifetime. Current cardiovascular replacement options have significant limitations. Their inability to grow poses particular challenges for pediatric patients. Tissue Engineered Matrix (TEM)-based in situ constructs, with their self-repair and growth potential, offer a promising solution to overcome the limitations of current clinically used replacement options. Various functionalization strategies, involving the integration of biomechanical or biochemical components to enhance biocompatibility, have been developed for Tissue Engineered Vascular Grafts (TEVG) and Tissue Engineered Heart Valves (TEHV) to foster their capacity for in vivo remodeling. In this review, we present the current state of clinical translation for TEVG and TEHV, and provide a comprehensive overview of biomechanical and biochemical functionalization strategies for TEVG and TEHV. We discuss the rationale for functionalization, the implementation of functionalization cues in TEM-based TEVG and TEHV, and the interrelatedness of biomechanical and biochemical cues in the in vivo response. Finally, we address the challenges associated with functionalization and discuss how interdisciplinary research, especially when combined with in silico models, could enhance the translation of these strategies into clinical applications. STATEMENT OF SIGNIFICANCE: Cardiovascular disease remains one of the leading causes of mortality, with current replacements being unable to grow and regenerate. In this review, we present the current state of clinical translation for tissue engineered vascular grafts (TEVG) and heart valves (TEHV). Particularly, we discuss the rationale and implementation for functionalization cues in tissue engineered matrix-based TEVGs and TEHVs, and for the first time we introduce the interrelatedness of biomechanical and biochemical cues in the in-vivo response. These insights pave the way for next-generation cardiovascular implants that promise better durability, biocompatibility, and growth potential. Finally, we address the challenges associated with functionalization and discuss how interdisciplinary research, especially when combined with in silico models, could enhance the translation of these strategies into clinical applications .
Collapse
Affiliation(s)
- Pascal Breitenstein
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Valery L Visser
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Sarah E Motta
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Marcy Martin
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Melanie Generali
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Christopher K Breuer
- Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Surgery, Nationwide Children's Hospital, Columbus, OH, USA; Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland; Wyss Zurich Translational Center, University of Zurich and ETH Zurich, Zurich 8092, Switzerland
| | - Maximilian Y Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland; Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin 13353, Germany; Charité Universitätsmedizin Berlin, Berlin 10117, Germany.
| |
Collapse
|
2
|
Wang X, Li K, Yuan Y, Zhang N, Zou Z, Wang Y, Yan S, Li X, Zhao P, Li Q. Nonlinear Elasticity of Blood Vessels and Vascular Grafts. ACS Biomater Sci Eng 2024; 10:3631-3654. [PMID: 38815169 DOI: 10.1021/acsbiomaterials.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The transplantation of vascular grafts has emerged as a prevailing approach to address vascular disorders. However, the development of small-diameter vascular grafts is still in progress, as they serve in a more complicated mechanical environment than their counterparts with larger diameters. The biocompatibility and functional characteristics of small-diameter vascular grafts have been well developed; however, mismatch in mechanical properties between the vascular grafts and native arteries has not been accomplished, which might facilitate the long-term patency of small-diameter vascular grafts. From a point of view in mechanics, mimicking the nonlinear elastic mechanical behavior exhibited by natural blood vessels might be the state-of-the-art in designing vascular grafts. This review centers on elucidating the nonlinear elastic behavior of natural blood vessels and vascular grafts. The biological functionality and limitations associated with as-reported vascular grafts are meticulously reviewed and the future trajectory for fabricating biomimetic small-diameter grafts is discussed. This review might provide a different insight from the traditional design and fabrication of artificial vascular grafts.
Collapse
Affiliation(s)
- Xiaofeng Wang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Kecheng Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan Yuan
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Ning Zhang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Zifan Zou
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yun Wang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Shujie Yan
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Zhao
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Qian Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Sun L, Li X, Yang T, Lu T, Du P, Jing C, Chen Z, Lin F, Zhao G, Zhao L. Construction of spider silk protein small-caliber tissue engineering vascular grafts based on dynamic culture and its performance evaluation. J Biomed Mater Res A 2023; 111:71-87. [PMID: 36129207 DOI: 10.1002/jbm.a.37447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2022]
Abstract
Tissue engineering is an alternative method for preparing small-caliber (<6 mm) vascular grafts. Dynamic mechanical conditioning is being researched as a method to improve mechanical properties of tissue engineered blood vessels. This method attempts to induce unique reaction in implanted cells that regenerate the matrix around them, thereby improving the overall mechanical stability of the grafts. In this study, we used a bioreactor to seed endothelial cells and smooth muscle cells into the inner and outer layers of the electrospun spider silk protein scaffold respectively to construct vascular grafts. The cell proliferation, mechanical properties, blood compatibility and other indicators of the vascular grafts were characterized in vitro. Furthermore, the vascular grafts were implanted in Sprague Dawley rats, and the vascular grafts' patency, extracellular matrix formation, and inflammatory response were evaluated in vivo. We aimed to construct spider silk protein vascular grafts with the potential for in vivo implantation by using a pulsating flow bioreactor. The results showed that, when compared with the static culture condition, the dynamic culture condition improved cell proliferation on vascular scaffolds and enhanced mechanical function of vascular scaffolds. In vivo experiments also showed that the dynamic culture of vascular grafts was more beneficial for the extracellular matrix deposition and anti-thrombogenesis, as well as reducing the inflammatory response of vascular grafts. In conclusion, dynamic mechanical conditioning aid in the resolution of challenges impeding the application of electrospun scaffolds and have the potential to construct small-caliber blood vessels with regenerative function for cardiovascular tissue repair.
Collapse
Affiliation(s)
- Lulu Sun
- College of Life Science and Technology, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Xiafei Li
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Tuo Yang
- College of Life Science and Technology, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China.,Department of Cardiothoracic Surgery, Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Tian Lu
- College of Life Science and Technology, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China.,Department of Cardiothoracic Surgery, Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Pengchong Du
- College of Life Science and Technology, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China.,Department of Cardiothoracic Surgery, Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Changqin Jing
- College of Life Science and Technology, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Zhigang Chen
- Henan Engineering Research Center for Mitochondrion Biomedical of Heart, Henan Joint International Research Laboratory of Cardiovascular Injury and Repair, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Fei Lin
- Henan Engineering Research Center for Mitochondrion Biomedical of Heart, Henan Joint International Research Laboratory of Cardiovascular Injury and Repair, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Guoan Zhao
- Henan Engineering Research Center for Mitochondrion Biomedical of Heart, Henan Joint International Research Laboratory of Cardiovascular Injury and Repair, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Liang Zhao
- College of Life Science and Technology, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China.,Henan Engineering Research Center for Mitochondrion Biomedical of Heart, Henan Joint International Research Laboratory of Cardiovascular Injury and Repair, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China.,The Central Lab, The Third People Hospital of Datong, Datong, China
| |
Collapse
|
4
|
Retraction Note: Small Diameter Blood Vessels Bioengineered From Human Adipose-derived Stem Cells. Sci Rep 2022; 12:5669. [PMID: 35383283 PMCID: PMC8983753 DOI: 10.1038/s41598-022-10006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
5
|
Abstract
The field of Tissue Engineering and Regenerative Medicine has evolved rapidly over the past thirty years. This review will summarize its history, current status and direction through the lens of clinical need, its progress through science in the laboratory and application back into patients. We can take pride in the fact that much effort and progress began with the surgical problems of children and that many surgeons in the pediatric surgical specialties have become pioneers and investigators in this new field of science, engineering, and medicine. Although the field has yet to fulfill its great promise, there have been several examples where a therapy has progressed from the first idea to human application within a short span of time and, in many cases, it has been applied in the surgical care of children.
Collapse
|
6
|
Araque-Monrós MC, Gil-Santos L, Pradas MM, Más-Estellés J. New bioreactor for mechanical stimulation of cultured tendon-like constructs: design and validation. Expert Rev Med Devices 2020; 17:1115-1121. [PMID: 32938254 DOI: 10.1080/17434440.2020.1825072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Although several different types of bioreactors are currently available with mechanical stimulation of constructs or prostheses for tendon regeneration, they are in many cases expensive and difficult to operate. This paper proposes a simple bioreactor to mechanically stimulate up to three constructs for tendon and ligament repair, composed of a stainless-steel frame and an electric motor. METHODS The deformation is produced by a cam wheel, whose eccentricity defines the maximum deformation. The test samples, braids of PLA seeded in surface with mouse fibroblasts, are immersed in the culture medium during mechanical stimulation. RESULTS Its advantages over existing similar bioreactor designs include: easy renewal of the culture medium and an external electric motor to avoid heating and contamination issues. After 14 days of stretching, the culture samples showed enhanced cellular proliferation and cell fiber alignment in addition to higher production of type I collagen. The cells initially seeded on the braid surface migrated to the inside of the braid. CONCLUSION Although the results obtained have a poor statistical basis, they do suggest that the bioreactor could be usefully applied to stimulate constructs for tendon and ligament repair. Anyway, further experiments should be conducted in the future.
Collapse
Affiliation(s)
- María Carmen Araque-Monrós
- CIBER en Bioingeniería, Biomateriales Y Nanomedicina , Valencia, Spain.,Centro de Biomateriales e Ingeniería Tisular, Universitat Politécnica de València , Valencia, Spain
| | - Luis Gil-Santos
- Centro de Biomateriales e Ingeniería Tisular, Universitat Politécnica de València , Valencia, Spain.,Departamento de Cirugía, Instituto Universitario de Investigación en Enfermedades Músculo-esqueléticas Universidad Católica de Valencia, Camino de Vera s/n, 46022 , Valencia, Spain
| | - Manuel Monleón Pradas
- CIBER en Bioingeniería, Biomateriales Y Nanomedicina , Valencia, Spain.,Centro de Biomateriales e Ingeniería Tisular, Universitat Politécnica de València , Valencia, Spain
| | - Jorge Más-Estellés
- Centro de Biomateriales e Ingeniería Tisular, Universitat Politécnica de València , Valencia, Spain
| |
Collapse
|
7
|
Dehnavi N, Parivar K, Goodarzi V, Salimi A, Nourani MR. Systematically engineered electrospun conduit based on PGA/collagen/bioglass nanocomposites: The evaluation of morphological, mechanical, and bio‐properties. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4648] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Navid Dehnavi
- Department of Biology, Science and Research BranchIslamic Azad University Tehran Iran
| | - Kazem Parivar
- Department of Biology, Science and Research BranchIslamic Azad University Tehran Iran
| | - Vahabodin Goodarzi
- Nanobiotechnology Research CenterBaqiyatallah University of Medical Sciences Tehran Iran
| | - Ali Salimi
- Nanobiotechnology Research CenterBaqiyatallah University of Medical Sciences Tehran Iran
| | - Mohammad Reza Nourani
- Nanobiotechnology Research CenterBaqiyatallah University of Medical Sciences Tehran Iran
| |
Collapse
|
8
|
Wang Y, Wang W, Wang X, Wang Y, Wang J, Fu Q, Shi G. Tissue-engineered sling with adipose-derived stem cells under static mechanical strain. Exp Ther Med 2017; 14:1337-1342. [PMID: 28810594 PMCID: PMC5525904 DOI: 10.3892/etm.2017.4705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 03/17/2017] [Indexed: 12/29/2022] Open
Abstract
The implantation of a suburethral sling is an important treatment for stress urinary incontinence (SUI). However, the slings used current have a number of inherent limitations, such as tissue rejection and infection. The present study investigated the potential of engineering sling tissue in vitro using adipose-derived stem cells (ADSCs). The ADSCs were obtained from Sprague-Dawley rats and were characterized in vitro. The ADSCs were seeded on polyglycolic acid (PGA) fibers that formed a scaffold with a shape mimicking a sling complex. The results demonstrated that following in vitro culture for 12 weeks under static strain, neo-sling tissue could be generated using ADSCs. With increasing culture time, the engineered neo-sling tissue exhibited a significant improvement in biomechanical properties, including maximal load and Young's modulus (P<0.05), and the tissue and collagen structures matured. Furthermore, differentiated ADSCs cultured under static strain were maintained their myoblast phenotype within the PGA scaffolds. These results indicate that ADSCs may serve as a novel cell source for tissue sling engineering and could improve treatment for patients with SUI.
Collapse
Affiliation(s)
- Ying Wang
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Wei Wang
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Xilong Wang
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Yangyun Wang
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Jihong Wang
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qiang Fu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Guowei Shi
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
9
|
Aji K, Zhang Y, Aimaiti A, Wang Y, Rexiati M, Azhati B, Tusong H, Cui L, Wang C. MicroRNA-145 regulates the differentiation of human adipose-derived stem cells to smooth muscle cells via targeting Krüppel-like factor 4. Mol Med Rep 2017; 15:3787-3795. [PMID: 28440409 DOI: 10.3892/mmr.2017.6478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 11/04/2016] [Indexed: 11/05/2022] Open
Abstract
Understanding the molecular mechanisms underlying human adipose-derived stem cell (hASC) differentiation to smooth muscle may contribute to the development of effective therapies for relevant muscle defects, such as bladder wall and urethral defects. A previous study described the differentiation of hASCs to smooth muscle cells (SMCs) by transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein‑4 (BMP4) treatment. The present study investigated whether microRNA-145 (miR‑145) may be involved in the process of hASC differentiation. The expression of miR‑145 was significantly increased during differentiation of ASCs to SMCs. SMC‑specific genes and proteins, including a‑smooth muscle actin (α‑SMA), smooth muscle protein‑22α(SM22α), calponin and myosin heavy chain (SM‑MHC) were upregulated by transfection of a miR‑145 mimic. By contrast, these factors were downregulated following introduction of antisense oligonucleotides. In addition, Krüppel‑like factor 4 (KLF4) levels, which decreased during the differentiation of hASCs, were downregulated when the cells were transfected miR‑145 mimics. Futhermore, inhibition of KLF4 by treatment with short‑interfering‑RNA against KLF4, resulted in increased expression of SMC‑specific genes and proteins. In conclusion, the results of the present study demonstrated that by regulating KLF4, miR‑145 may be involved in regulating smooth muscle differentiation of ASCs induced by TGF‑β1 and BMP4.
Collapse
Affiliation(s)
- Kaisaier Aji
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yun Zhang
- Department of Orthopedics, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Abudusaimi Aimaiti
- Department of Joint Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yujie Wang
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Mulati Rexiati
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Baihetiya Azhati
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Hamulati Tusong
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Lei Cui
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Chen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
10
|
Merfeld-Clauss S, Lease BR, Lu H, March KL, Traktuev DO. Adipose stromal cells differentiation toward smooth muscle cell phenotype diminishes their vasculogenic activity due to induction of activin A secretion. J Tissue Eng Regen Med 2016; 11:3145-3156. [DOI: 10.1002/term.2223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/17/2016] [Accepted: 04/19/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Stephanie Merfeld-Clauss
- Department of Medicine; Indiana Center for Vascular Biology and Medicine
- Krannert Institute of Cardiology; Indiana University School of Medicine; Indianapolis IN 46202 USA
- VA Center for Regenerative Medicine; R.L. Roudebush VA Medical Center; Indianapolis IN 46202 USA
| | - Benjamin R. Lease
- VA Center for Regenerative Medicine; R.L. Roudebush VA Medical Center; Indianapolis IN 46202 USA
| | - Hongyan Lu
- Department of Medicine; Indiana Center for Vascular Biology and Medicine
- Krannert Institute of Cardiology; Indiana University School of Medicine; Indianapolis IN 46202 USA
- VA Center for Regenerative Medicine; R.L. Roudebush VA Medical Center; Indianapolis IN 46202 USA
| | - Keith L. March
- Department of Medicine; Indiana Center for Vascular Biology and Medicine
- Krannert Institute of Cardiology; Indiana University School of Medicine; Indianapolis IN 46202 USA
- VA Center for Regenerative Medicine; R.L. Roudebush VA Medical Center; Indianapolis IN 46202 USA
- Department of Cellular and Integrative Physiology; Indiana University School of Medicine; Indianapolis IN 46202 USA
| | - Dmitry O. Traktuev
- Department of Medicine; Indiana Center for Vascular Biology and Medicine
- Krannert Institute of Cardiology; Indiana University School of Medicine; Indianapolis IN 46202 USA
- VA Center for Regenerative Medicine; R.L. Roudebush VA Medical Center; Indianapolis IN 46202 USA
| |
Collapse
|
11
|
Hsia K, Yao CL, Chen WM, Chen JH, Lee H, Lu JH. Scaffolds and Cell-Based Tissue Engineering for Blood Vessel Therapy. Cells Tissues Organs 2016; 202:281-295. [PMID: 27548610 DOI: 10.1159/000448169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2016] [Indexed: 11/19/2022] Open
Abstract
The increasing morbidity of cardiovascular diseases in modern society has made it crucial to develop a small-caliber blood vessel. In the absence of appropriate autologous vascular grafts, an alternative prosthesis must be constructed for cardiovascular disease patients. The aim of this article is to describe the advances in making cell-seeded cardiovascular prostheses. It also discusses the combinations of types of scaffolds and cells, especially autologous stem cells, which are suitable for application in tissue-engineered vessels with the favorable properties of mechanical strength, antithrombogenicity, biocompliance, anti-inflammation, fatigue resistance and long-term durability. This article highlights the advancements in cellular tissue-engineered vessels in recent years.
Collapse
|
12
|
Spadaccio C, Nappi F, De Marco F, Sedati P, Sutherland FWH, Chello M, Trombetta M, Rainer A. Preliminary In Vivo Evaluation of a Hybrid Armored Vascular Graft Combining Electrospinning and Additive Manufacturing Techniques. Drug Target Insights 2016; 10:1-7. [PMID: 26949333 PMCID: PMC4772909 DOI: 10.4137/dti.s35202] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 11/05/2022] Open
Abstract
In this study, we tested in vivo effectiveness of a previously developed poly-l-lactide/poly-ε-caprolactone armored vascular graft releasing heparin. This bioprosthesis was designed in order to overcome the main drawbacks of tissue-engineered vascular grafts, mainly concerning poor mechanical properties, thrombogenicity, and endothelialization. The bioprosthesis was successfully implanted in an aortic vascular reconstruction model in rabbits. All grafts implanted were patent at four weeks postoperatively and have been adequately populated by endogenous cells without signs of thrombosis or structural failure and with no need of antiplatelet therapy. The results of this preliminary study might warrant for further larger controlled in vivo studies to further confirm these findings.
Collapse
Affiliation(s)
- Cristiano Spadaccio
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Clydebank, Dunbartonshire, UK
| | - Francesco Nappi
- Cardiac Surgery, Centre Cardiologique du Nord de Saint-Denis, Paris, France
| | - Federico De Marco
- Laboratory of Virology, The Regina Elena National Cancer Institute, Rome, Italy
| | - Pietro Sedati
- Unit of Imaging and Diagnostics, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fraser W H Sutherland
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Clydebank, Dunbartonshire, UK
| | - Massimo Chello
- Unit of Cardiac Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marcella Trombetta
- Tissue Engineering Laboratory, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Alberto Rainer
- Tissue Engineering Laboratory, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
13
|
Wang L, Hu J, Sorek CE, Chen EY, Ma PX, Yang B. Fabrication of tissue-engineered vascular grafts with stem cells and stem cell-derived vascular cells. Expert Opin Biol Ther 2015; 16:317-30. [PMID: 26560995 PMCID: PMC4928489 DOI: 10.1517/14712598.2016.1118460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cardiovascular disease is the leading cause of mortality worldwide. Current surgical treatments for cardiovascular disease include vascular bypass grafting and replacement with autologous blood vessels or synthetic vascular grafts. However, there is a call for better alternative biological grafts. AREAS COVERED Tissue-engineered vascular grafts (TEVGs) are promising novel alternatives to replace diseased vessels. However, obtaining enough functional and clinically usable vascular cells for fabrication of TEVGs remains a major challenge. New findings in adult stem cells and recent advances in pluripotent stem cells have opened a new avenue for stem cell-based vascular engineering. In this review, recent advances on stem cell sourcing for TEVGs including the use of adult stem cells and pluripotent stem cells and advantages, disadvantages, and possible future implementations of different types of stem cells will be discussed. In addition, current strategies used during the fabrication of TEVGs will be highlighted. EXPERT OPINION The application of patient-specific TEVGs constructed with vascular cells derived from immune-compatible stem cells possesses huge clinical potential. Advances in lineage-specific differentiation approaches and innovative vascular engineering strategies will promote the vascular regeneration field from bench to bedside.
Collapse
Affiliation(s)
- Lunchang Wang
- a Cardiac Surgery, University of Michigan , Ann Arbor , MI , USA
- b Vascular Surgery, The Second Xiangya Hospital , Xiangya School of Medicine, Central South University , Hunan , China
| | - Jiang Hu
- c Biologic and Materials Sciences, University of Michigan , Ann Arbor , MI , USA
| | - Claire E Sorek
- a Cardiac Surgery, University of Michigan , Ann Arbor , MI , USA
| | - Eugene Y Chen
- a Cardiac Surgery, University of Michigan , Ann Arbor , MI , USA
| | - Peter X Ma
- c Biologic and Materials Sciences, University of Michigan , Ann Arbor , MI , USA
- d Biomedical Engineering, University of Michigan , Ann Arbor , MI , USA
- e Macromolecular Science and Engineering Center, University of Michigan , Ann Arbor , MI , USA
- f Materials Science and Engineering, University of Michigan , Ann Arbor , MI , USA
| | - Bo Yang
- a Cardiac Surgery, University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
14
|
Stoppel WL, Ghezzi CE, McNamara SL, Black LD, Kaplan DL. Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Ann Biomed Eng 2015; 43:657-80. [PMID: 25537688 PMCID: PMC8196399 DOI: 10.1007/s10439-014-1206-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 11/26/2014] [Indexed: 01/05/2023]
Abstract
Naturally derived polymeric biomaterials, such as collagens, silks, elastins, alginates, and fibrins are utilized in tissue engineering due to their biocompatibility, bioactivity, and tunable mechanical and degradation kinetics. The use of these natural biopolymers in biomedical applications is advantageous because they do not release cytotoxic degradation products, are often processed using environmentally-friendly aqueous-based methods, and their degradation rates within biological systems can be manipulated by modifying the starting formulation or processing conditions. For these reasons, many recent in vivo investigations and FDA-approval of new biomaterials for clinical use have utilized natural biopolymers as matrices for cell delivery and as scaffolds for cell-free support of native tissues. This review highlights biopolymer-based scaffolds used in clinical applications for the regeneration and repair of native tissues, with a focus on bone, skeletal muscle, peripheral nerve, cardiac muscle, and cornea substitutes.
Collapse
Affiliation(s)
- Whitney L. Stoppel
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Chiara E. Ghezzi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Stephanie L. McNamara
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- The Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren D. Black
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
15
|
Li H, Liu Y, Lu J, Wei J, Li X. Micropatterned coculture of vascular endothelial and smooth muscle cells on layered electrospun fibrous mats toward blood vessel engineering. J Biomed Mater Res A 2014; 103:1949-60. [PMID: 25204306 DOI: 10.1002/jbm.a.35332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/31/2014] [Accepted: 09/05/2014] [Indexed: 11/09/2022]
Abstract
A major challenge in vascular engineering is the establishment of proper microenvironment to guide the spatial organization, growth, and extracellular matrix (ECM) productions of cells found in blood vessels. In the current study, micropatterned fibrous mats with distinct ridges and grooves of different width were created to load smooth muscle cells (SMCs), which were assembled by stacking on vascular endothelial cell (EC)-loaded flat fibrous mats to mimic the in vivo-like organized structure of blood vessels. SMCs were mainly distributed in the ridges, and aligned fibers in the patterned regions led to the formation of elongated cell bodies, intense actin filaments, and expressions of collagen I and α-smooth muscle actin in a parallel direction with fibers. ECs spread over the flat fibrous mats and expressed collagen IV and laminin with a cobblestone-like feature. A z-stack scanning of fluorescently stained fibrous mats indicated that SMCs effectively infiltrated into fibrous scaffolds at the depth of around 200 μm. Compared with SMCs cultured alone, the coculture with ECs enhanced the proliferation, infiltration, and cytoskeleton elongation of SMCs on patterned fibrous mats. Although the coculture of SMCs made no significant difference in the EC growth, the coculture system on patterned fibrous scaffolds promoted ECM productions of both ECs and SMCs. Thus, this patterned fibrous configuration not only offers a promising technology in the design of tissue engineering scaffolds to construct blood vessels with durable mechanical properties, but also provides a platform for patterned coculture to investigate cell-matrix and cell-cell interactions in highly organized tissues.
Collapse
Affiliation(s)
- Huinan Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Xu ZC, Zhang Q, Li H. Differentiation of human hair follicle stem cells into endothelial cells induced by vascular endothelial and basic fibroblast growth factors. Mol Med Rep 2013; 9:204-10. [PMID: 24247660 DOI: 10.3892/mmr.2013.1796] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/11/2013] [Indexed: 11/06/2022] Open
Abstract
Hair follicle stem cells (HFSCs) possess powerful expansion and multi‑differentiation potential, properties that place them at the forefront of the field of tissue engineering and stem cell‑based therapy. The aim of the present study was to investigate the differentiation of human HFSCs (hHFSCs) into cells of an endothelial lineage. hHFSCs were expanded to the second passage in vitro and then induced by the addition of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) to the culture medium. The expression levels of endothelial cell (EC)‑related markers, including von Willebrand factor (vWF), vascular endothelial cadherin (VE)‑cadherin and cluster of differentiation (CD)31, were detected by immunofluorescence staining, flow cytometric analysis and reverse transcription‑polymerase chain reaction. The hHFSCs expressed vWF, VE‑cadherin and CD31 when exposed to a differentiation medium, similar to the markers expressed by the human umbilical vein ECs. More significantly, differentiated cells were also able to take up low‑density lipoprotein. The data of the present study demonstrated that an efficient strategy may be developed for differentiating hHFSCs into ECs by stimulation with VEGF and bFGF. Thus, hHFSCs represent a novel cell source for vascular tissue engineering and studies regarding the treatment of various forms of ischaemic vascular disease.
Collapse
Affiliation(s)
- Zhi Cheng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, P.R. China
| | | | | |
Collapse
|
18
|
Xu ZC, Zhang Q, Li H. Human hair follicle stem cell differentiation into contractile smooth muscle cells is induced by transforming growth factor-β1 and platelet-derived growth factor BB. Mol Med Rep 2013; 8:1715-21. [PMID: 24084832 DOI: 10.3892/mmr.2013.1707] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 09/23/2013] [Indexed: 11/06/2022] Open
Abstract
Smooth muscle cells (SMCs) are important in vascular homeostasis and disease and thus, are critical elements in vascular tissue engineering. Although adult SMCs have been used as seed cells, such mature differentiated cells suffer from limited proliferation potential and cultural senescence, particularly when originating from older donors. By comparison, human hair follicle stem cells (hHFSCs) are a reliable source of stem cells with multi-differentiation potential. The aim of the present study, was to develop an efficient strategy to derive functional SMCs from hHFSCs. hHFSCs were obtained from scalp tissues of healthy adult patients undergoing cosmetic plastic surgery. The hHFSCs were expanded to passage 2 and induced by the administration of transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor BB (PDGF-BB) in combination with culture medium. Expression levels of SMC-related markers, including α-smooth muscle actin (α-SMA), α-calponin and smooth muscle myosin heavy chain (SM-MHC), were detected by immunofluorescence staining, flow cytometry analysis and reverse transcription-polymerase chain reaction (RT-PCR). When exposed to differentiation medium, hHFSCs expressed early, mid and late markers (α-SMA, α-calponin and SM-MHC, respectively) that were similar to the markers expressed by human umbilical artery SMCs. Notably, when entrapped inside a collagen matrix lattice, these SM differentiated cells showed a contractile function. Therefore, the present study developed an efficient strategy for differentiating hHFSCs into contractile SMCs by stimulation with TGF-β1 and PDGF-BB. The high yield of derivation suggests that this strategy facilitates the acquisition of the large numbers of cells that are required for blood vessel engineering and the study of vascular disease pathophysiology.
Collapse
Affiliation(s)
- Zhi Cheng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | | | | |
Collapse
|
19
|
Wanjare M, Kusuma S, Gerecht S. Perivascular cells in blood vessel regeneration. Biotechnol J 2013; 8:434-47. [PMID: 23554249 DOI: 10.1002/biot.201200199] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/19/2013] [Accepted: 03/05/2013] [Indexed: 12/21/2022]
Abstract
Vascular engineering seeks to design and construct functional blood vessels comprising endothelial cells (ECs) and perivascular cells (PCs), with the ultimate goal of clinical translation. While EC behavior has been extensively investigated, PCs play an equally significant role in the development of novel regenerative strategies, providing functionality and stability to vessels. The two major classes of PCs are vascular smooth muscle cells (vSMCs) and pericytes; vSMCs can be further sub-classified as either contractile or synthetic. The inclusion of these cell types is crucial for successful regeneration of blood vessels. Furthermore, understanding distinctions between vSMCs and pericytes will enable improved therapeutics in a tissue-specific manner. Here we focus on the approaches and challenges facing the use of PCs in vascular regeneration, including their characteristics, stem cell sources, and interactions with ECs. Finally, we discuss biochemical and microRNA (miR) regulators of PC behavior and engineering approaches that mimic various cues affecting PC function.
Collapse
Affiliation(s)
- Maureen Wanjare
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
20
|
Mun CH, Jung Y, Kim SH, Kim HC, Kim SH. Effects of pulsatile bioreactor culture on vascular smooth muscle cells seeded on electrospun poly (lactide-co-ε-caprolactone) scaffold. Artif Organs 2013; 37:E168-78. [PMID: 23834728 DOI: 10.1111/aor.12108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Electrospun nanofibrous scaffolds have several advantages, such as an extremely high surface-to-volume ratio, tunable porosity, and malleability to conform over a wide variety of sizes and shapes. However, there are limitations to culturing the cells on the scaffold, including the inability of the cells to infiltrate because of the scaffold's nano-sized pores. To overcome the limitations, we developed a controlled pulsatile bioreactor that produces static and dynamic flow, which improves transfer of such nutrients and oxygen, and a tubular-shaped vascular graft using cell matrix engineering. Electrospun scaffolds were seeded with smooth muscle cells (SMCs), cultured under dynamic or static conditions for 14 days, and analyzed. Mechanical examination revealed higher burst strength in the vascular grafts cultured under dynamic conditions than under static conditions. Also, immunohistology stain for alpa smooth muscle actin showed the difference of SMC distribution and existence on the scaffold between the static and dynamic culture conditions. The higher proliferation rate of SMCs in dynamic culture rather than static culture could be explained by the design of the bioreactor which mimics the physical environment such as media flow and pressure through the lumen of the construct. This supports regulation of collagen and leads to a significant increase in tensile strength of the engineered tissues. These results showed that the SMCs/electrospinning poly (lactide-co-ε-caprolactone) scaffold constructs formed tubular-shaped vascular grafts and could be useful in vascular tissue engineering.
Collapse
Affiliation(s)
- Cho Hay Mun
- Biomaterials Research Center, Division of Life & Health Sciences, Korea Institute of Science and Technology, Seoul, Korea; Department of Biomedical Engineering, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|
21
|
Liang MS, Koobatian M, Lei P, Swartz DD, Andreadis ST. Differential and synergistic effects of mechanical stimulation and growth factor presentation on vascular wall function. Biomaterials 2013; 34:7281-91. [PMID: 23810080 DOI: 10.1016/j.biomaterials.2013.05.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 05/27/2013] [Indexed: 01/04/2023]
Abstract
We investigated the hypothesis that immobilizing TGF-β1 within fibrin hydrogels may act in synergy with cyclic mechanical stimulation to enhance the properties of vascular grafts. To this end, we engineered a fusion TGF-β1 protein that can covalently anchor to fibrin during polymerization upon the action of factor XIII. We also developed a 24-well based bioreactor in which vascular constructs can be mechanically stimulated by distending the silastic mandrel in the middle of each well. TGF-β1 was either conjugated to fibrin or supplied in the culture medium and the fibrin-based constructs were cultured statically for a week followed by cyclic distention for another week. The tissues were examined for myogenic differentiation, vascular reactivity, mechanical properties and ECM content. Our results showed that some aspects of vascular function were differentially affected by growth factor presentation vs. pulsatile force application, while others were synergistically enhanced by both. Overall, this two-prong biomimetic approach improved ECM secretion, vascular reactivity and mechanical properties of vascular constructs. These findings may be applied in other tissue engineering applications such as cartilage, tendon or cardiac regeneration where growth factors TGF-β1 and mechano-stimulation play critical roles.
Collapse
Affiliation(s)
- Mao-Shih Liang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | | | | | | | | |
Collapse
|
22
|
Chen B, Wang B, Zhang WJ, Zhou G, Cao Y, Liu W. Macromolecular crowding effect on cartilaginous matrix production: a comparison of two-dimensional and three-dimensional models. Tissue Eng Part C Methods 2013; 19:586-95. [PMID: 23421450 DOI: 10.1089/ten.tec.2012.0408] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Macromolecular crowding (MMC) has been shown to have a beneficial effect on production and maturation of extracellular matrices in a monolayer cell culture model. To explore its potential in tissue engineering, a mixture of Ficoll 70 and Ficoll 400 is used to examine its MMC effect on cartilaginous matrix production of monolayer cultured porcine chondrocytes as well as on in vitro engineered cartilage formation using porcine chondrocytes and polyglycolic acid-unwoven fibers. The results showed that the production of total collagens and glycosaminoglycans production was enhanced by MMC in monolayer cultured cells (two-dimensional model), but the matrix production and tissue formation were significantly inhibited in the in vitro engineered cartilage (three-dimensional model) by the macromolecules. Further mechanism study on this phenomenon will be important for MMC applications in regenerative medicine.
Collapse
Affiliation(s)
- Bo Chen
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
Luo F, Hou TY, Zhang ZH, Xie Z, Wu XH, Xu JZ. Effects of initial cell density and hydrodynamic culture on osteogenic activity of tissue-engineered bone grafts. PLoS One 2013; 8:e53697. [PMID: 23326488 PMCID: PMC3543387 DOI: 10.1371/journal.pone.0053697] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 12/03/2012] [Indexed: 11/18/2022] Open
Abstract
This study aimed to study the effects of initial cell density and in vitro culture method on the construction of tissue-engineered bone grafts and osteogenic activities. Human mesenchymal stem cells (hMSCs) were seeded onto cubic scaffolds prepared from demineralized bone matrix (DBM) by three methods - static, hydrodynamic, or fibrin hydrogel-assisted seeding. The resulting cell-scaffold constructs were cultured in vitro by static flask culture or hydrodynamic culture. The initial cell density and the subsequent in vitro proliferation and alkaline phosphate activities of the constructs were analyzed. The constructs were also subcutaneously implanted in nude mice to examine their in vivo osteogenic activities. Hydrogel-assisted seeding gave the highest seeding efficiency, followed by hydrodynamic and conventional static seeding. During in vitro culture, hydrodynamic culture produced higher plateau cell densities, alkaline phosphatase (ALP) activities, and extracellular matrix production than static culture. After subcutaneous implantation in nude mice, the implants prepared by the combination of hydrogel-assisted seeding and hydrodynamic culture produced higher wet weight and bone mineral density than implants prepared by other methods. The results suggest that the hydrogel-assisted seeding can substantially increase the initial seed cell density in scaffolds. Subsequent hydrodynamic culture can promote the proliferation and osteoblastic differentiation of the seeded cells. Correspondingly, bone grafts produced by the combination of these two methods achieved the highest osteogenic activity among the three methods employed.
Collapse
Affiliation(s)
- Fei Luo
- Department of Orthopedics, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Tian-Yong Hou
- Department of Orthopedics, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Ze-Hua Zhang
- Department of Orthopedics, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Zhao Xie
- Department of Orthopedics, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Xue-Hui Wu
- Department of Orthopedics, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Jian-Zhong Xu
- Department of Orthopedics, Southwest Hospital, The Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
24
|
Wang C, Guo F, Zhou H, Zhang Y, Xiao Z, Cui L. Proteomic profiling of tissue-engineered blood vessel walls constructed by adipose-derived stem cells. Tissue Eng Part A 2012; 19:415-25. [PMID: 22963350 DOI: 10.1089/ten.tea.2011.0532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Adipose-derived stem cells (ASCs) can differentiate into smooth muscle cells and have been engineered into elastic small diameter blood vessel walls in vitro. However, the mechanisms involved in the development of three-dimensional (3D) vascular tissue remain poorly understood. The present study analyzed protein expression profiles of engineered blood vessel walls constructed by human ASCs using methods of two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS). These results were compared to normal arterial walls. A total of 1701±15 and 1265±26 protein spots from normal and engineered blood vessel wall extractions were detected by 2DE, respectively. A total of 20 spots with at least 2.0-fold changes in expression were identified, and 38 differently expressed proteins were identified by 2D electrophoresis and ion trap MS. These proteins were classified into seven functional categories: cellular organization, energy, signaling pathway, enzyme, anchored protein, cell apoptosis/defense, and others. These results demonstrated that 2DE, followed by ion trap MS, could be successfully utilized to characterize the proteome of vascular tissue, including tissue-engineered vessels. The method could also be employed to achieve a better understanding of differentiated smooth muscle protein expression in vitro. These results provide a basis for comparative studies of protein expression in vascular smooth muscles of different origin and could provide a better understanding of the mechanisms of action needed for constructing blood vessels that exhibit properties consistent with normal blood vessels.
Collapse
Affiliation(s)
- Chen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | | | | | | | | | | |
Collapse
|
25
|
Trends in tissue engineering for blood vessels. J Biomed Biotechnol 2012; 2012:956345. [PMID: 23251085 PMCID: PMC3518873 DOI: 10.1155/2012/956345] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/25/2012] [Indexed: 11/18/2022] Open
Abstract
Over the years, cardiovascular diseases continue to increase and affect not only human health but also the economic stability worldwide. The advancement in tissue engineering is contributing a lot in dealing with this immediate need of alleviating human health. Blood vessel diseases are considered as major cardiovascular health problems. Although blood vessel transplantation is the most convenient treatment, it has been delimited due to scarcity of donors and the patient's conditions. However, tissue-engineered blood vessels are promising alternatives as mode of treatment for blood vessel defects. The purpose of this paper is to show the importance of the advancement on biofabrication technology for treatment of soft tissue defects particularly for vascular tissues. This will also provide an overview and update on the current status of tissue reconstruction especially from autologous stem cells, scaffolds, and scaffold-free cellular transplantable constructs. The discussion of this paper will be focused on the historical view of cardiovascular tissue engineering and stem cell biology. The representative studies featured in this paper are limited within the last decade in order to trace the trend and evolution of techniques for blood vessel tissue engineering.
Collapse
|
26
|
Hu J, Xie C, Ma H, Yang B, Ma PX, Chen YE. Construction of vascular tissues with macro-porous nano-fibrous scaffolds and smooth muscle cells enriched from differentiated embryonic stem cells. PLoS One 2012; 7:e35580. [PMID: 22545119 PMCID: PMC3335865 DOI: 10.1371/journal.pone.0035580] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/18/2012] [Indexed: 12/31/2022] Open
Abstract
Vascular smooth muscle cells (SMCs) have been broadly used for constructing tissue-engineered blood vessels. However, the availability of mature SMCs from donors or patients is very limited. Derivation of SMCs by differentiating embryonic stem cells (ESCs) has been reported, but not widely utilized in vascular tissue engineering due to low induction efficiency and, hence, low SMC purity. To address these problems, SMCs were enriched from retinoic acid induced mouse ESCs with LacZ genetic labeling under the control of SM22α promoter as the positive sorting marker in the present study. The sorted SMCs were characterized and then cultured on three-dimensional macro-porous nano-fibrous scaffolds in vitro or implanted subcutaneously into nude mice after being seeded on the scaffolds. Our data showed that the LacZ staining, which reflected the corresponding SMC marker SM22α expression level, was efficient as a positive selection marker to dramatically enrich SMCs and eliminate other cell types. After the sorted cells were seeded into the three-dimensional nano-fibrous scaffolds, continuous retinoic acid treatment further enhanced the SMC marker gene expression level while inhibited pluripotent maker gene expression level during the in vitro culture. Meanwhile, after being implanted subcutaneously into nude mice, the implanted cells maintained the positive LacZ staining within the constructs and no teratoma formation was observed. In conclusion, our results demonstrated the potential of SMCs derived from ESCs as a promising cell source for therapeutic vascular tissue engineering and disease model applications.
Collapse
Affiliation(s)
- Jiang Hu
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Changqing Xie
- Department of Internal Medicine, Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Haiyun Ma
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bo Yang
- Department of Cardiac Surgery, Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Peter X. Ma
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (PXM); (YEC)
| | - Y. Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (PXM); (YEC)
| |
Collapse
|
27
|
McBane JE, Cai K, Labow RS, Santerre JP. Co-culturing monocytes with smooth muscle cells improves cell distribution within a degradable polyurethane scaffold and reduces inflammatory cytokines. Acta Biomater 2012; 8:488-501. [PMID: 21971418 DOI: 10.1016/j.actbio.2011.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/23/2011] [Accepted: 09/16/2011] [Indexed: 01/12/2023]
Abstract
Activated monocytes can promote inflammation or wound repair, depending on the nature of the implant environment. Recent work showed that a degradable, polar-hydrophobic-ionic polyurethane (D-PHI) induced an anti-inflammatory monocyte phenotype. In the current study it is hypothesized that wound-healing phenotype monocytes (activated by D-PHI material chemistry) will promote human vascular smooth muscle cells (hVSMC) to attach and migrate into porous D-PHI scaffolds. hVSMC migration is necessary for hVSMC population of the scaffold and tissue formation to occur, and then, once tissue formation is complete, the monocyte should promote contractile phenotype markers in the hVSMC. hVSMC were cultured for up to 28 days with or without monocytes and analyzed for cell viability, attachment (DNA) and migration. Lysates were analyzed for the hVSMC contractile phenotype markers calponin and α-smooth muscle actin (α-SMA) as well as urokinase plasminogen activator (uPA; pro-migration marker) using immunoblotting analysis. Histological staining showed that hVSMC alone remained around the perimeter of the scaffold, whereas co-culture samples had co-localization of monocytes with hVSMC in the pores, a more even cell distribution throughout the scaffold and increased total cell attachment (P<0.05). Co-culture samples had higher cell numbers and more DNA than the addition of both single cell cultures. The water-soluble tetrazolium-1 data suggested that cells were not dying over the 28 day culture period. Calponin, also linked to cell motility, was maintained up to 28 days in the co-culture and hVSMC alone, whereas α-SMA disappeared after 7 days. Co-cultures on D-PHI showed that monocytes were activated to a wound-healing phenotype (low TNF-α, elevated IL-10), while promoting uPA expression. In summary, this study showed that, by co-culturing monocytes with hVSMC, the latter showed increased total cell attachment and infiltration into the D-PHI scaffold compared with hVSMC alone, suggesting that monocytes may promote hVSMC migration, a condition necessary for ultimately achieving uniform tissue formation in porous scaffolds.
Collapse
Affiliation(s)
- Joanne E McBane
- Institute of Biomaterials and Biomedical Engineering, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada M5G 1G6
| | | | | | | |
Collapse
|
28
|
Shkilnyy A, Dubois J, Sabra G, Sharp J, Gagnon S, Proulx P, Vermette P. Bioreactor controlled by PI algorithm and operated with a perfusion chamber to support endothelial cell survival and proliferation. Biotechnol Bioeng 2011; 109:1305-13. [DOI: 10.1002/bit.24391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/09/2011] [Accepted: 11/16/2011] [Indexed: 01/09/2023]
|
29
|
Couet F, Meghezi S, Mantovani D. Fetal development, mechanobiology and optimal control processes can improve vascular tissue regeneration in bioreactors: an integrative review. Med Eng Phys 2011; 34:269-78. [PMID: 22133487 DOI: 10.1016/j.medengphy.2011.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 11/30/2022]
Abstract
Vascular tissue engineering aims to regenerate blood vessels to replace diseased arteries for cardiovascular patients. With the scaffold-based approach, cells are seeded on a scaffold showing specific properties and are expected to proliferate and self-organize into a functional vascular tissue. Bioreactors can significantly contribute to this objective by providing a suitable environment for the maturation of the tissue engineered blood vessel. It is recognized from the mechanotransduction principles that mechanical stimuli can influence the protein synthesis of the extra-cellular matrix thus leading to maturation and organization of the tissues. Up to date, no bioreactor is especially conceived to take advantage of the mechanobiology and optimize the construct maturation through an advanced control strategy. In this review, experimental strategies in the field of vascular tissue engineering are detailed, and a new approach inspired by fetal development, mechanobiology and optimal control paradigms is proposed. In this new approach, the culture conditions (i.e. flow, circumferential strain, pressure frequency, and others) are supposed to dynamically evolve to match the maturity of vascular constructs and maximize the efficiency of the regeneration process. Moreover, this approach allows the investigation of the mechanisms of growth, remodeling and mechanotransduction during the culture.
Collapse
Affiliation(s)
- Frédéric Couet
- Department of Materials Engineering & Research Centre, Quebec University Hospital, Laval University, Quebec City, Canada
| | | | | |
Collapse
|
30
|
Hajiali H, Shahgasempour S, Naimi-Jamal MR, Peirovi H. Electrospun PGA/gelatin nanofibrous scaffolds and their potential application in vascular tissue engineering. Int J Nanomedicine 2011; 6:2133-41. [PMID: 22114477 PMCID: PMC3215154 DOI: 10.2147/ijn.s24312] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND METHODS In this study, gelatin was blended with polyglycolic acid (PGA) at different ratios (0, 10, 30, and 50 wt%) and electrospun. The morphology and structure of the scaffolds were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry. The mechanical properties were also measured by the tensile test. Furthermore, for biocompatibility assessment, human umbilical vein endothelial cells and human umbilical artery smooth muscle cells were cultured on these scaffolds, and cell attachment and viability were evaluated. RESULTS PGA with 10 wt% gelatin enhanced the endothelial cells whilst PGA with 30 wt% gelatin increased smooth muscle cell adhesion, penetration, and viability compared with the other scaffold blends. Additionally, with the increase in gelatin content, the mechanical properties of the scaffolds were improved due to interaction between PGA and gelatin, as revealed by Fourier transform infrared spectroscopy and differential scanning calorimetry. CONCLUSION Incorporation of gelatin improves the biological and mechanical properties of PGA, making promising scaffolds for vascular tissue engineering.
Collapse
Affiliation(s)
- Hadi Hajiali
- Nanomedicine and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | | | |
Collapse
|
31
|
Tosun Z, Villegas-Montoya C, McFetridge PS. The influence of early-phase remodeling events on the biomechanical properties of engineered vascular tissues. J Vasc Surg 2011; 54:1451-60. [PMID: 21872418 DOI: 10.1016/j.jvs.2011.05.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/29/2011] [Accepted: 05/20/2011] [Indexed: 10/17/2022]
Abstract
OBJECTIVES During the last decade, the use of ex vivo-derived materials designed as implant scaffolds has increased significantly. This is particularly so in the area of regenerative medicine, or tissue engineering, where the natural chemical and biomechanical properties have been shown to be advantageous. By focusing on detailed events that occur during early-phase remodeling processes, our objective was to detail progressive changes in graft biomechanics to further our understanding of these processes. METHODS A perfusion bioreactor system and acellular human umbilical veins were used as a model three-dimensional vascular scaffold on which human myofibroblasts were seeded and cultured under static or defined pulsatile conditions. Cell function in relation to graft mechanical properties was assessed. RESULTS Cells doubled in density from approximately 1 × 10(6) to 2 ± 0.4 × 10(6) cells/cm ringlet, whereas static cultures remained unchanged. The material's compressive stiffness and ultimate tensile strength remained unchanged in both static and dynamic systems. However the Young's modulus values increased significantly in the physiologic range, whereas in the failure range, a significant reduction (66%) was shown under dynamic conditions. CONCLUSIONS As pulse and flow conditions are modulated, complex mechanical changes are occurring that modify the elastic modulus differentially in both physiologic and failure ranges. Mechanical properties play an important role in graft patency, and a dynamic relationship between structure and function occurs during graft remodeling. These investigations have shown that as cells migrate into this ex vivo scaffold model, significant variation in material elasticity occurs that may have important implications in our understanding of early-stage vascular remodeling events.
Collapse
Affiliation(s)
- Zehra Tosun
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-6131, USA
| | | | | |
Collapse
|
32
|
Xie C, Hu J, Ma H, Zhang J, Chang LJ, Chen YE, Ma PX. Three-dimensional growth of iPS cell-derived smooth muscle cells on nanofibrous scaffolds. Biomaterials 2011; 32:4369-75. [PMID: 21439638 PMCID: PMC3085599 DOI: 10.1016/j.biomaterials.2011.02.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 02/24/2011] [Indexed: 01/22/2023]
Abstract
Induced pluripotent stem cells (iPSCs) have been considered as the major component for personalized regenerative medicine. However, the potential of iPSCs in constructing tissue-engineered (TE) blood vessels has not been exploited. In the present study, we generated mouse iPSCs with the combination of over-expression of 4 iPS factors and knock-down of p53 gene. The established iPSCs were then directed to differentiate into smooth muscle cells (SMCs) with the treatment of 10(-5) (M) all-trans retinoid acid (RA). The vehicle dimethyl sulfoxide (DMSO) treatment served as a spontaneous differentiation control. The differentiated cells were then cultured on three-dimensional (3D) macro-porous nanofibrous (NF) poly(L-lactide) (PLLA) scaffolds in vitro. Our data showed that the expression of SMC specific marker genes, including myocardin, smoothelin, SM22α and SMMHC, were higher for the group induced by RA than for the group treated by DMSO, while pluripotent marker gene expression was repressed by the RA-treatment. Upon subcutaneous implantation, the implanted cells maintained the SMC phenotype. In conclusion, the data suggest that iPSCs-derived SMCs can be an important cell source for personalized vascular tissue engineering applications.
Collapse
Affiliation(s)
- Changqing Xie
- Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Jiang Hu
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Haiyun Ma
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Jifeng Zhang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Lung-Ji Chang
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL 32610
| | - Y. Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Peter X. Ma
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
33
|
Zahedmanesh H, Lally C. A multiscale mechanobiological modelling framework using agent-based models and finite element analysis: application to vascular tissue engineering. Biomech Model Mechanobiol 2011; 11:363-77. [DOI: 10.1007/s10237-011-0316-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 05/08/2011] [Indexed: 01/24/2023]
|
34
|
Bacterial cellulose as a potential vascular graft: Mechanical characterization and constitutive model development. J Biomed Mater Res B Appl Biomater 2011; 97:105-13. [DOI: 10.1002/jbm.b.31791] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Revised: 07/22/2010] [Accepted: 10/13/2010] [Indexed: 11/07/2022]
|
35
|
Schutte SC, Chen Z, Brockbank KGM, Nerem RM. Cyclic strain improves strength and function of a collagen-based tissue-engineered vascular media. Tissue Eng Part A 2011; 16:3149-57. [PMID: 20504073 DOI: 10.1089/ten.tea.2010.0009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tissue-engineered blood vessels may provide a solution to the lack of suitable blood vessels for coronary and peripheral vessel bypass grafting. Cyclic strain can be used to provide a more physiological environment that may result in tissue that more closely resembles native artery. In this study, cyclic strain is applied to a collagen-based, tissue-engineered vascular medium. An increased culture time was used to allow the tissue to adhere to the silastic sleeve and to eliminate longitudinal compaction. Cyclic strain improved tissue strength through increased collagen content as well as some radial tissue compaction. Mechanical stimulation promoted a more contractile phenotype and led to a greater contractile response to the vasoconstrictor endothelin-1.
Collapse
Affiliation(s)
- Stacey C Schutte
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | |
Collapse
|
36
|
Feng C, Xu YM, Fu Q, Zhu WD, Cui L, Chen J. Evaluation of the biocompatibility and mechanical properties of naturally derived and synthetic scaffolds for urethral reconstruction. J Biomed Mater Res A 2010; 94:317-25. [PMID: 20166222 DOI: 10.1002/jbm.a.32729] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The aim of this study was to evaluate the mechanical properties and biocompatibility of biomaterials, including bladder submucosa (BAMG), small intestinal submucosa (SIS), acellular corpus spongiosum matrix (ACSM), and polyglycolic acid (PGA), to identify the optimal scaffold for urethral tissue engineering. Tensile mechanical testing was conducted to evaluate mechanical properties of each scaffold. Rabbit corporal smooth muscle cells were cultured with the extracts of biomaterials and mitochondrial metabolic activity assay was used to determine the cytotoxicity of scaffold. The pore sizes of each scaffold were measured. Additionally, smooth muscle cells were seeded on biomaterials. Cell infiltration was evaluated. Mechanical evaluation showed that Young modulus, stress at break in ACSM were prior to those in other biomaterials (p < 0.05). MTT assay confirmed that all scaffolds supported normal cellular mitochondrial metabolic without inducing cytotoxic events. SEM demonstrated that PGA has the largest pore size (>200 microm). The ACSM has different pore sizes in urethral (<5 microm) and cavernosal surfaces (>10 microm). Widespread distribution of cells could be observed in PGA 14 days after seeding. Multilayer cellular coverage developed in BAMG and urethral surface of ACSM without any sign of cellular invasion. Moderated cellular penetration could be found in SIS and cavernosal surface of ACSM. Although each scaffold demonstrated suitable mechanical properties, which is similar to normal urethra, ACSM showed better response in some parameters than those in other biomaterials. It suggested that this scaffold may be an alternative for urethral reconstruction in the future. (c) 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010.
Collapse
Affiliation(s)
- Chao Feng
- Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Song Y, Wennink JWH, Kamphuis MMJ, Vermes I, Poot AA, Feijen J, Grijpma DW. Effective seeding of smooth muscle cells into tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering. J Biomed Mater Res A 2010; 95:440-6. [DOI: 10.1002/jbm.a.32859] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Wang C, Yin S, Cen L, Liu Q, Liu W, Cao Y, Cui L. Differentiation of adipose-derived stem cells into contractile smooth muscle cells induced by transforming growth factor-beta1 and bone morphogenetic protein-4. Tissue Eng Part A 2010; 16:1201-13. [PMID: 19895205 DOI: 10.1089/ten.tea.2009.0303] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Smooth muscle cells (SMCs) play an essential role in maintaining the structural and functional integrity of blood vessel and thus is a critical element for blood vessel construction via tissue engineering approach. Adipose-derived stem cells (ASCs) represent a reliable source of mesenchymal stem cells with multidifferentiation potential. In this study, the feasibility of differentiation of human ASCs (hASCs) into cells with phenotypic and functional properties of SMCs was explored. hASCs isolated from human lipoaspirate were expanded to passage 5 and then induced with administration of transforming growth factor-beta1 (TGF-beta1) and bone morphogenetic protein-4 (BMP4) either alone or in combination with culture medium. Expression of SMC-related markers including alpha-SM actin (alpha-SMA, SM22alpha, calponin, and SM myosin heavy chain) were detected by immunofluorescent staining, reverse transcription (RT)-polymerase chain reaction, and western blot analysis. It was found that only under the circumstance of a combined stimulation with TGF-beta1 and BMP4, both early and mid markers (alpha-SMA, SM22alpha, calponin) as well as a late marker (SM myosin heavy chain) of SMC differentiation were identified to similar levels as those in human umbilical artery SMCs. More importantly, these SM differentiated cells showed the function of contracting collagen matrix lattice when they were entrapped inside. The contractile function of differentiated hASCs was further enhanced by direct exposure to 60 mM KCl, consistent with what occurred in human umbilical artery SMCs. These results provide evidence that ASCs possess the potential to differentiate into contractile SM-like cells when stimulated by TGF-beta1 and BMP4 together. SMCs differentiated from hASCs may provide an abundant source as seed cells for blood vessel engineering.
Collapse
Affiliation(s)
- Chen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine , Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
39
|
Dan L, Chua CK, Leong KF. Fibroblast response to interstitial flow: A state-of-the-art review. Biotechnol Bioeng 2010; 107:1-10. [DOI: 10.1002/bit.22826] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Gauvin R, Ahsan T, Larouche D, Lévesque P, Dubé J, Auger FA, Nerem RM, Germain L. A Novel Single-Step Self-Assembly Approach for the Fabrication of Tissue-Engineered Vascular Constructs. Tissue Eng Part A 2010; 16:1737-47. [DOI: 10.1089/ten.tea.2009.0313] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Robert Gauvin
- Laboratoire d'Organogénèse Expérimentale/LOEX, Centre de Recherche FRSQ du CHA Universitaire de Québec and Département de Chirurgie, Université Laval, Québec, QC, Canada
| | - Taby Ahsan
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| | - Danielle Larouche
- Laboratoire d'Organogénèse Expérimentale/LOEX, Centre de Recherche FRSQ du CHA Universitaire de Québec and Département de Chirurgie, Université Laval, Québec, QC, Canada
| | - Philippe Lévesque
- Laboratoire d'Organogénèse Expérimentale/LOEX, Centre de Recherche FRSQ du CHA Universitaire de Québec and Département de Chirurgie, Université Laval, Québec, QC, Canada
| | - Jean Dubé
- Laboratoire d'Organogénèse Expérimentale/LOEX, Centre de Recherche FRSQ du CHA Universitaire de Québec and Département de Chirurgie, Université Laval, Québec, QC, Canada
| | - François A. Auger
- Laboratoire d'Organogénèse Expérimentale/LOEX, Centre de Recherche FRSQ du CHA Universitaire de Québec and Département de Chirurgie, Université Laval, Québec, QC, Canada
| | - Robert M. Nerem
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology and Georgia Tech-Emory Center for the Engineering of Living Tissues, Atlanta, Georgia
| | - Lucie Germain
- Laboratoire d'Organogénèse Expérimentale/LOEX, Centre de Recherche FRSQ du CHA Universitaire de Québec and Département de Chirurgie, Université Laval, Québec, QC, Canada
| |
Collapse
|
41
|
Xie S, Zhu Q, Wang B, Gu H, Liu W, Cui L, Cen L, Cao Y. Incorporation of tripolyphosphate nanoparticles into fibrous poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 2010; 31:5100-9. [PMID: 20347132 DOI: 10.1016/j.biomaterials.2010.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 03/02/2010] [Indexed: 11/27/2022]
Abstract
Poly(lactide-co-glycolide) (PLGA) has been widely used for scaffolding materials in tissue engineering. It degrades mainly via hydrolysis of the ester bonds into lactic acid and glycolic acid leading to the decrease in pH of the surrounding microenvironment. The current study was designed to quickly neutralize the acidic degradation products of PLGA fibrous scaffolds by incorporating tripolyphosphate (TPP) nanoparticles into PLGA fibers. A homogeneous mixture of PLGA and TPP was first obtained by water-in-oil emulsion-dispersion followed by freeze-drying. The dried blend was melt-spun to yield fibers which were processed into scaffolds and subsequently immersed into phosphate-buffered saline (PBS) to verify the degradation properties. The pH of the saline was monitored for a duration of 80 days. The amount of TPP was optimized to obtain a PLGA based scaffolds without acidic degradation problems. Cellular compatibility of the modified and pristine scaffolds was evaluated using rabbit adipose-derived stem cells (rASCs). It was shown that TPP particles within the fibers were roughly 100nm in diameter and mainly located inside fibers instead of on the superficial layer. The acidic degradation of PT-16 and PT-64 (PT-X is termed when the monomer molar ratio of TPP to PLGA was 1:X) was significantly improved as the pH values of their respective solutions were maintained in a well neutralized state during the degradation. PT-64 and PT-16 scaffolds could well support the attachment and proliferation of rASCs. Hence, the incorporation of TPP nanoparticles via an emulsion-dispersion method could be an effective strategy to improve/adjust the acidic degradation of PLGA and further pave the way for clinical applications of such polyesters.
Collapse
Affiliation(s)
- Shujun Xie
- National Tissue Engineering Center of China, No.100, Qin Zhou Road, Shanghai 200235, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Centola M, Rainer A, Spadaccio C, De Porcellinis S, Genovese JA, Trombetta M. Combining electrospinning and fused deposition modeling for the fabrication of a hybrid vascular graft. Biofabrication 2010; 2:014102. [PMID: 20811117 DOI: 10.1088/1758-5082/2/1/014102] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Tissue engineering of blood vessels is a promising strategy in regenerative medicine with a broad spectrum of potential applications. However, many hurdles for tissue-engineered vascular grafts, such as poor mechanical properties, thrombogenicity and cell over-growth inside the construct, need to be overcome prior to the clinical application. To surmount these shortcomings, we developed a poly-L-lactide (PLLA)/poly-epsilon-caprolactone (PCL) scaffold releasing heparin by a combination of electrospinning and fused deposition modeling technique. PLLA/heparin scaffolds were produced by electrospinning in tubular shape and then fused deposition modeling was used to armor the tube with a single coil of PCL on the outer layer to improve mechanical properties. Scaffolds were then seeded with human mesenchymal stem cells (hMSCs) and assayed in terms of morphology, mechanical tensile strength, cell viability and differentiation. This particular scaffold design allowed the generation of both a drug delivery system amenable to surmount thrombogenic issues and a microenvironment able to induce endothelial differentiation. At the same time, the PCL external coiling improved mechanical resistance of the microfibrous scaffold. By the combination of two notable techniques in biofabrication--electrospinning and FDM--and exploiting the biological effects of heparin, we developed an ad hoc differentiating device for hMSCs seeding, able to induce differentiation into vascular endothelium.
Collapse
Affiliation(s)
- M Centola
- Laboratory of Chemistry and Biomaterials, CIR-Center of Integrated Research, University Campus Bio-Medico of Rome, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Xu L, Cao D, Liu W, Zhou G, Zhang WJ, Cao Y. In vivo engineering of a functional tendon sheath in a hen model. Biomaterials 2010; 31:3894-902. [PMID: 20170958 DOI: 10.1016/j.biomaterials.2010.01.106] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 01/18/2010] [Indexed: 10/19/2022]
Abstract
Repair of injured tendon sheath remains a major challenge and this study explored the possibility of in vivo reconstruction of a tendon sheath with tendon sheath derived cells and polyglycolic acid (PGA) fibers in a Leghorn hen model. Total 55 Leghorn hens with a 1cm tendon sheath defect created in the left middle toe of each animal were randomly assigned into: (1) experimental group (n=19) that received a cell-PGA construct; (2) scaffold control group (n=18) that received a cell-free PGA scaffold; (3) blank control group (n=18) with the defect untreated. Tendon sheath cells were isolated, in vitro expanded, and seeded onto PGA scaffolds. After in vitro culture for 7 days, the constructs were in vivo implanted to repair the sheath defects. Alcian blue staining confirmed the ability of cultured cells to produce specific matrices containing acidic carboxyl mucopolysaccharide (mainly hyaluronic acid). In addition, the engineered sheath formed a relatively mature structure at 12 weeks post-surgery, which was similar to that of native counterpart, including a smooth inner surface, a well-developed sheath histological structure with a clear space between the tendon and the engineered sheath. More importantly, Work of Flexion assay revealed that the tendons needed less power consumption to glide inside the engineered sheath when compared to the tendons which were surrounded by scar-repaired tissues, indicating that the engineered sheaths had gained the function to a certain extent of preventing tendon adhesion. Taken together, these results suggest that tendon sheaths that are functionally and structurally similar to native sheaths are possible to be engineered in vivo using tendon sheath cells and PGA scaffolds.
Collapse
Affiliation(s)
- Liang Xu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
44
|
Chouinard JA, Gagnon S, Couture MG, Lévesque A, Vermette P. Design and validation of a pulsatile perfusion bioreactor for 3D high cell density cultures. Biotechnol Bioeng 2009; 104:1215-23. [DOI: 10.1002/bit.22477] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
45
|
Wang C, Cen L, Yin S, Liu Q, Liu W, Cao Y, Cui L. A small diameter elastic blood vessel wall prepared under pulsatile conditions from polyglycolic acid mesh and smooth muscle cells differentiated from adipose-derived stem cells. Biomaterials 2009; 31:621-30. [PMID: 19819545 DOI: 10.1016/j.biomaterials.2009.09.086] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 09/23/2009] [Indexed: 11/19/2022]
Abstract
Smooth muscle layer plays an important role in maintaining homeostasis of blood vessels, thus generating a functional smooth muscle layer is a prerequisite for successful construction of blood vessels via tissue-engineering approach. In this study, we investigated the feasibility of constructing an elastic vessel wall in small diameter (less than 6 mm) using smooth muscle cells (SMCs) differentiated from human adipose-derived stem cells (hASCs) under pulsatile stimulation in a bioreactor. With the induction of transforming growth factor-beta1 (TGF-beta1) and bone morphogenetic protein-4 (BMP4) in combination for 7 days, hASCs were found to acquire an SMC phenotype characterized by the expression of SMC-related markers including smooth muscle alpha actin (alpha-SMA), calponin, and smooth muscle myosin heavy chain (SM-MHC). The SMCs derived from hASCs were seeded in polyglycolic acid (PGA) unwoven mesh and the cell-scaffold complex were subjected to pulsatile stimulation in a bioreactor for 8 weeks. The vessel walls engineered under the dynamic stimulation for 8 weeks showed a dense and well-organized structure similar to that of native vessels. The differentiated hASCs with dynamic loading were found to maintain their SMC phenotype within 3-dimensional PGA scaffold with a high level of collagen deposition close to that of native ones. Vessels constructed in the static condition showed a loose histological structure with less expression of contractile proteins. More importantly, the engineered vessel under pulsatile stimulation exhibited significant improvement in biomechanical properties over that generated from static conditions. Our results demonstrated that hASCs can serve as a new cell source for SMCs in blood vessel engineering, and an elastic small-diameter vessel wall could be engineered by in vitro culture of SMC-differentiated hASCs on the PGA scaffold with matchable biomechanical strength to that of normal blood vessels under pulsatile stimulation.
Collapse
Affiliation(s)
- Chen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | | | | | | | | | | | | |
Collapse
|
46
|
Walker PA, Aroom KR, Jimenez F, Shah SK, Harting MT, Gill BS, Cox CS. Advances in progenitor cell therapy using scaffolding constructs for central nervous system injury. Stem Cell Rev Rep 2009; 5:283-300. [PMID: 19644777 PMCID: PMC2874887 DOI: 10.1007/s12015-009-9081-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 06/18/2009] [Indexed: 01/16/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality in the United States. Current clinical therapy is focused on optimization of the acute/subacute intracerebral milieu, minimizing continued cell death, and subsequent intense rehabilitation to ameliorate the prolonged physical, cognitive, and psychosocial deficits that result from TBI. Adult progenitor (stem) cell therapies have shown promise in pre-clinical studies and remain a focus of intense scientific investigation. One of the fundamental challenges to successful translation of the large body of pre-clinical work is the delivery of progenitor cells to the target location/organ. Classically used vehicles such as intravenous and intra arterial infusion have shown low engraftment rates and risk of distal emboli. Novel delivery methods such as nanofiber scaffold implantation could provide the structural and nutritive support required for progenitor cell proliferation, engraftment, and differentiation. The focus of this review is to explore the current state of the art as it relates to current and novel progenitor cell delivery methods.
Collapse
Affiliation(s)
- Peter A. Walker
- Department of Surgery, University of Texas Medical School at Houston, Houston, TX, USA. Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 5.236, Houston, TX 77030, USA
| | - Kevin R. Aroom
- Department of Surgery, University of Texas Medical School at Houston, Houston, TX, USA. Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 5.236, Houston, TX 77030, USA
| | - Fernando Jimenez
- Department of Surgery, University of Texas Medical School at Houston, Houston, TX, USA. Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 5.236, Houston, TX 77030, USA
| | - Shinil K. Shah
- Department of Surgery, University of Texas Medical School at Houston, Houston, TX, USA. Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 5.236, Houston, TX 77030, USA
| | - Matthew T. Harting
- Department of Surgery, University of Texas Medical School at Houston, Houston, TX, USA. Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 5.236, Houston, TX 77030, USA
| | - Brijesh S. Gill
- Department of Surgery, University of Texas Medical School at Houston, Houston, TX, USA
| | - Charles S. Cox
- Department of Surgery, University of Texas Medical School at Houston, Houston, TX, USA. Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 5.236, Houston, TX 77030, USA
| |
Collapse
|