1
|
Yin W, Yang C, Liu D, Cha S, Cai L, Ye G, Song X, Zhang J, Qiu X. Mussel shell-derived pro-regenerative scaffold with conductive porous multi-scale-patterned microenvironment for spinal cord injury repair. Biomed Mater 2024; 19:035041. [PMID: 38626779 DOI: 10.1088/1748-605x/ad3f63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
It is well-established that multi-scale porous scaffolds can guide axonal growth and facilitate functional restoration after spinal cord injury (SCI). In this study, we developed a novel mussel shell-inspired conductive scaffold for SCI repair with ease of production, multi-scale porous structure, high flexibility, and excellent biocompatibility. By utilizing the reducing properties of polydopamine, non-conductive graphene oxide (GO) was converted into conductive reduced graphene oxide (rGO) and crosslinkedin situwithin the mussel shells.In vitroexperiments confirmed that this multi-scale porous Shell@PDA-GO could serve as structural cues for enhancing cell adhesion, differentiation, and maturation, as well as promoting the electrophysiological development of hippocampal neurons. After transplantation at the injury sites, the Shell@PDA-GO provided a pro-regenerative microenvironment, promoting endogenous neurogenesis, triggering neovascularization, and relieving glial fibrosis formation. Interestingly, the Shell@PDA-GO could induce the release of endogenous growth factors (NGF and NT-3), resulting in the complete regeneration of nerve fibers at 12 weeks. This work provides a feasible strategy for the exploration of conductive multi-scale patterned scaffold to repair SCI.
Collapse
Affiliation(s)
- Wenming Yin
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Chang Yang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, People's Republic of China
| | - Dan Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Shuhan Cha
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou 510630, People's Republic of China
| | - Liu Cai
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Genlan Ye
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, People's Republic of China
| | - Xiaoping Song
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, People's Republic of China
| | - Jifeng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou 510630, People's Republic of China
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| |
Collapse
|
2
|
Yan J, Huang L, Feng J, Yang X. The Recent Applications of PLGA-Based Nanostructures for Ischemic Stroke. Pharmaceutics 2023; 15:2322. [PMID: 37765291 PMCID: PMC10535132 DOI: 10.3390/pharmaceutics15092322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
With the accelerated development of nanotechnology in recent years, nanomaterials have become increasingly prevalent in the medical field. The poly (lactic acid-glycolic acid) copolymer (PLGA) is one of the most commonly used biodegradable polymers. It is biocompatible and can be fabricated into various nanostructures, depending on requirements. Ischemic stroke is a common, disabling, and fatal illness that burdens society. There is a need for further improvement in the diagnosis and treatment of this disease. PLGA-based nanostructures can facilitate therapeutic compounds' passage through the physicochemical barrier. They further provide both sustained and controlled release of therapeutic compounds when loaded with drugs for the treatment of ischemic stroke. The clinical significance and potential of PLGA-based nanostructures can also be seen in their applications in cell transplantation and imaging diagnostics of ischemic stroke. This paper summarizes the synthesis and properties of PLGA and reviews in detail the recent applications of PLGA-based nanostructures for drug delivery, disease therapy, cell transplantation, and the imaging diagnosis of ischemic stroke.
Collapse
Affiliation(s)
- Jun Yan
- Department of Neurology, Fushun Central Hospital, Fushun 113000, China;
| | - Lei Huang
- Department of Cardiac Function, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xue Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
3
|
Xu W, Xu X, Yao L, Xue B, Xi H, Cao X, Piao G, Lin S, Wang X. VEGFA-modified DPSCs combined with LC-YE-PLGA NGCs promote facial nerve injury repair in rats. Heliyon 2023; 9:e14626. [PMID: 37095964 PMCID: PMC10121407 DOI: 10.1016/j.heliyon.2023.e14626] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Objective The aim of this research was to investigate the effect of vascular endothelial growth factor A (VEGFA)-overexpressing rat dental pulp stem cells (rDPSCs) combined with laminin-coated and yarn-encapsulated poly(l-lactide-co-glycolide) (PLGA) nerve guidance conduit (LC-YE-PLGA NGC) in repairing 10 mm facial nerve injury in rats. Study Design rDPSCs isolated from rat mandibular central incisor were cultured and identified in vitro and further transfected with the lentiviral vectors (Lv-VEGFA). To investigate the role and mechanisms of VEGFA in neurogenic differentiation in vitro, semaxanib (SU5416), Cell Counting Kit-8 (CCK-8), real-time quantitative polymerase chain reaction (qPCR) and Western blotting were performed. Ten-millimeter facial nerve defect models in rats were established and bridged by LC-YE-PLGA NGCs. The repair effects were detected by transmission electron microscopy (TEM), compound muscle action potential (CMAP), immunohistochemistry and immunofluorescence. Results Extracted cells exhibited spindle-shaped morphology, presented typical markers (CD44+CD90+CD34-CD45-), and presented multidirectional differentiation potential. The DPSCs with VEGFA overexpression were constructed successfully. VEGFA enhanced the proliferation and neural differentiation ability of rDPSCs, and the expression of neuron-specific enolase (NSE) and βIII-tubulin was increased. However, these trends were reversed with the addition of SU5416. This suggests that VEGFA mediates the above effects mainly through vascular endothelial growth factor receptor 2 (VEGFR2) binding. The LC-YE-NGC basically meet the requirements of facial nerve repair. For the in vivo experiment, the CMAP latency period was shorter in DPSCS-VEGFA-NGC group in comparison with other experimental groups, while the amplitude was increased. Such functional recovery correlated well with an increase in histological improvement. Further study suggested that VEGFA-modified DPSCs could increase the myelin number, thickness and axon diameter of facial nerve. NSE, βIII-tubulin and S100 fluorescence intensity and immunohistochemical staining intensity were significantly enhanced. Conclusion VEGFA-modified rDPSCs combined with LC-YE-PLGA NGCs have certain advantages in the growth and functional recovery of facial nerves in rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiumei Wang
- Corresponding author. Department of Dentistry, The Second Affiliated Hospital of Harbin Medical University, 148 Baojian Road, Harbin, 150001, China.
| |
Collapse
|
4
|
Klabukov I, Tenchurin T, Shepelev A, Baranovskii D, Mamagulashvili V, Dyuzheva T, Krasilnikova O, Balyasin M, Lyundup A, Krasheninnikov M, Sulina Y, Gomzyak V, Krasheninnikov S, Buzin A, Zayratyants G, Yakimova A, Demchenko A, Ivanov S, Shegay P, Kaprin A, Chvalun S. Biomechanical Behaviors and Degradation Properties of Multilayered Polymer Scaffolds: The Phase Space Method for Bile Duct Design and Bioengineering. Biomedicines 2023; 11:745. [PMID: 36979723 PMCID: PMC10044742 DOI: 10.3390/biomedicines11030745] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
This article reports the electrospinning technique for the manufacturing of multilayered scaffolds for bile duct tissue engineering based on an inner layer of polycaprolactone (PCL) and an outer layer either of a copolymer of D,L-lactide and glycolide (PLGA) or a copolymer of L-lactide and ε-caprolactone (PLCL). A study of the degradation properties of separate polymers showed that flat PCL samples exhibited the highest resistance to hydrolysis in comparison with PLGA and PLCL. Irrespective of the liquid-phase nature, no significant mass loss of PCL samples was found in 140 days of incubation. The PLCL- and PLGA-based flat samples were more prone to hydrolysis within the same period of time, which was confirmed by the increased loss of mass and a significant reduction of weight-average molecular mass. The study of the mechanical properties of developed multi-layered tubular scaffolds revealed that their strength in the longitudinal and transverse directions was comparable with the values measured for a decellularized bile duct. The strength of three-layered scaffolds declined significantly because of the active degradation of the outer layer made of PLGA. The strength of scaffolds with the PLCL outer layer deteriorated much less with time, both in the axial (p-value = 0.0016) and radial (p-value = 0.0022) directions. A novel method for assessment of the physiological relevance of synthetic scaffolds was developed and named the phase space approach for assessment of physiological relevance. Two-dimensional phase space (elongation modulus and tensile strength) was used for the assessment and visualization of the physiological relevance of scaffolds for bile duct bioengineering. In conclusion, the design of scaffolds for the creation of physiologically relevant tissue-engineered bile ducts should be based not only on biodegradation properties but also on the biomechanical time-related behavior of various compositions of polymers and copolymers.
Collapse
Affiliation(s)
- Ilya Klabukov
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249031 Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI, 115409 Obninsk, Russia
| | - Timur Tenchurin
- National Research Centre “Kurchatov Institute”, 1, Akademika Kurchatova pl., 123182 Moscow, Russia
| | - Alexey Shepelev
- National Research Centre “Kurchatov Institute”, 1, Akademika Kurchatova pl., 123182 Moscow, Russia
| | - Denis Baranovskii
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249031 Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Vissarion Mamagulashvili
- National Research Centre “Kurchatov Institute”, 1, Akademika Kurchatova pl., 123182 Moscow, Russia
| | - Tatiana Dyuzheva
- Department of Hospital Surgery, Sklifosovsky Institute of Clinical Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Olga Krasilnikova
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249031 Obninsk, Russia
| | - Maksim Balyasin
- Research and Educational Resource Center for Cellular Technologies, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Alexey Lyundup
- Research and Educational Resource Center for Cellular Technologies, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- N.P. Bochkov Research Centre for Medical Genetics, 115478 Moscow, Russia
| | - Mikhail Krasheninnikov
- Research and Educational Resource Center for Cellular Technologies, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Lomonosov Institute of Fine Chemical Technologies, Russian Technological University MIREA, 119454 Moscow, Russia
| | - Yana Sulina
- Department of Obstetrics and Gynecology, Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Vitaly Gomzyak
- National Research Centre “Kurchatov Institute”, 1, Akademika Kurchatova pl., 123182 Moscow, Russia
| | - Sergey Krasheninnikov
- National Research Centre “Kurchatov Institute”, 1, Akademika Kurchatova pl., 123182 Moscow, Russia
| | - Alexander Buzin
- National Research Centre “Kurchatov Institute”, 1, Akademika Kurchatova pl., 123182 Moscow, Russia
- Laboratory of the Structure of Polymer Materials, Enikolopov Institute of Synthetic Polymer Materials RAS, 117393 Moscow, Russia
| | - Georgiy Zayratyants
- Department of Pathology, Moscow State University of Medicine and Dentistry, Delegatskaya st., 20, p. 1, 127473 Moscow, Russia
| | - Anna Yakimova
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249031 Obninsk, Russia
| | - Anna Demchenko
- N.P. Bochkov Research Centre for Medical Genetics, 115478 Moscow, Russia
| | - Sergey Ivanov
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249031 Obninsk, Russia
| | - Peter Shegay
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249031 Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Andrey Kaprin
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249031 Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Sergei Chvalun
- National Research Centre “Kurchatov Institute”, 1, Akademika Kurchatova pl., 123182 Moscow, Russia
- Laboratory of the Structure of Polymer Materials, Enikolopov Institute of Synthetic Polymer Materials RAS, 117393 Moscow, Russia
| |
Collapse
|
5
|
Sousa JPM, Stratakis E, Mano J, Marques PAAP. Anisotropic 3D scaffolds for spinal cord guided repair: Current concepts. BIOMATERIALS ADVANCES 2023; 148:213353. [PMID: 36848743 DOI: 10.1016/j.bioadv.2023.213353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
A spinal cord injury (SCI) can be caused by unforeseen events such as a fall, a vehicle accident, a gunshot, or a malignant illness, which has a significant impact on the quality of life of the patient. Due to the limited regenerative potential of the central nervous system (CNS), SCI is one of the most daunting medical challenges of modern medicine. Great advances have been made in tissue engineering and regenerative medicine, which include the transition from two-dimensional (2D) to three-dimensional (3D) biomaterials. Combinatory treatments that use 3D scaffolds may significantly enhance the repair and regeneration of functional neural tissue. In an effort to mimic the chemical and physical properties of neural tissue, scientists are researching the development of the ideal scaffold made of synthetic and/or natural polymers. Moreover, in order to restore the architecture and function of neural networks, 3D scaffolds with anisotropic properties that replicate the native longitudinal orientation of spinal cord nerve fibres are being designed. In an effort to determine if scaffold anisotropy is a crucial property for neural tissue regeneration, this review focuses on the most current technological developments relevant to anisotropic scaffolds for SCI. Special consideration is given to the architectural characteristics of scaffolds containing axially oriented fibres, channels, and pores. By analysing neural cell behaviour in vitro and tissue integration and functional recovery in animal models of SCI, the therapeutic efficacy is evaluated for its successes and limitations.
Collapse
Affiliation(s)
- Joana P M Sousa
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, Portugal; Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), Heraklion, Greece; CICECO - Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), Heraklion, Greece
| | - João Mano
- CICECO - Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Paula A A P Marques
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, Portugal.
| |
Collapse
|
6
|
Mohammadalizadeh M, Dabirian S, Akrami M, Hesari Z. SPION based magnetic PLGA nanofibers for neural differentiation of mesenchymal stem cells. NANOTECHNOLOGY 2022; 33:375101. [PMID: 35623211 DOI: 10.1088/1361-6528/ac7402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Recently, magnetic platforms have been widely investigated in diagnostic, therapeutic and research applications due to certain properties, such as cell and tissue tracking and imaging, thermal therapy and being dirigible. In this study, the incorporation of magnetic nanoparticles (MNPs) in nanofibers has been proposed to combine the advantages of both nanofibers and MNPs to induce neural differentiation of mesenchymal stem cells. Magnetic poly (lactic-co-glycolic acid) nanofibers (containing 0%, 5% and 10% SPION) were fabricated and utilized as the matrix for the differentiation of mesenchymal stem cells (MSCs). Morphological, magnetic and mechanical properties were analyzed using FESEM, VSM and tensile test, respectively. The expression of neural markers (TUJ-1, NSE, MAP-2) was assessed quantitative and qualitatively utilizing RT-PCR and immunocytochemistry. Results confirmed the incorporation of MNPs in nanofibrous scaffold, presenting a saturation magnetization of 9.73 emu g-1. Also, with increase in magnetic particle concentration (0%-10%), tensile strength increased from 4.08 to 5.85 MPa, whereas the percentage of elongation decreased. TUJ-1 expression was 3.8 and 1.8 fold for 10% and 5% magnetic scaffold (versus non-magnetic scaffold) respectively, and the expression of NSE was 6.3 and 1.2-fold for 10% and 5%, respectively. Consequently, it seems that incorporation of magnetic biomaterial can promote the neural differentiation of MSCs, during which the augmentation of super paramagnetic iron oxide concentration from 0% to 10% accelerates the neural differentiation process.
Collapse
Affiliation(s)
- Mahdieh Mohammadalizadeh
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Dabirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Institute of Biomaterials, University of Tehran & Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran
| | - Zahra Hesari
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
7
|
Xin L, Xu W, Wang J, Yu F, Fan S, Xu X, Yang Y. Proteoglycan-depleted regions of annular injury promote nerve ingrowth in a rabbit disc degeneration model. Open Med (Wars) 2021; 16:1616-1627. [PMID: 34761113 PMCID: PMC8565593 DOI: 10.1515/med-2021-0363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/30/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
Background To assess the effects of proteoglycan-depleted regions of annular disruptions on nerve ingrowth in the injury site in vivo. Methods New Zealand white rabbits (n = 18) received annular injuries at L3/4, L4/5, and L5/6. The experimental discs were randomly assigned to four groups: (a) an annular defect was created; (b) an annular defect implanted with a poly lactic-co-glycolic acid (PLGA)/fibrin/PBS plug; (c) an annular defect implanted with a PLGA/fibrin/chondroitinase ABC (chABC) plug; and (d) an uninjured L2/3 disc (control). Disc degeneration was evaluated by radiography, MRI, histology, and analysis of the proteoglycan (PG) content. Immunohistochemical detection of nerve fibers and chondroitin sulfate (CS) was performed. Results The injured discs produced progressive and reliable disc degeneration. In the defective discs, the lamellated appearance of AF (Annulus fibrosus) was replaced by extensive fibrocartilaginous-like tissue formation outside the injured sites. In contrast, newly formed tissue was distributed along small fissures, and small blood vessels appeared in the outer part of the disrupted area in the PLGA/fibrin/PBS discs. More sprouting nerve fibers grew further into the depleted annulus regions in the PLGA/fibrin/chABC discs than in the control discs and those receiving PLGA/fibrin/PBS. In addition, the innervation scores of the PLGA/fibrin/chABC discs were significantly increased compared with those of the PLGA/fibrin/PBS discs and defected discs. Conclusion ChABC-based PLGA/fibrin gel showed promising results by achieving biointegration with native annulus tissue and providing a local source for the sustained release of active chABC. Disc-derived PG-mediated inhibition of nerve and blood vessel ingrowth was abrogated by chABC enzymatic deglycosylation in an annular-injured rabbit disc degeneration model.
Collapse
Affiliation(s)
- Long Xin
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Weixin Xu
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Jian Wang
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Fang Yu
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Shunwu Fan
- Department of Spine Surgery, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310020, Zhejiang Province, China
| | - Xinwei Xu
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Yang Yang
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Hangzhou 310012, Zhejiang Province, China
| |
Collapse
|
8
|
Lai BQ, Zeng X, Han WT, Che MT, Ding Y, Li G, Zeng YS. Stem cell-derived neuronal relay strategies and functional electrical stimulation for treatment of spinal cord injury. Biomaterials 2021; 279:121211. [PMID: 34710795 DOI: 10.1016/j.biomaterials.2021.121211] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 01/06/2023]
Abstract
The inability of adult mammals to recover function lost after severe spinal cord injury (SCI) has been known for millennia and is mainly attributed to a failure of brain-derived nerve fiber regeneration across the lesion. Potential approaches to re-establishing locomotor function rely on neuronal relays to reconnect the segregated neural networks of the spinal cord. Intense research over the past 30 years has focused on endogenous and exogenous neuronal relays, but progress has been slow and the results often controversial. Treatments with stem cell-derived neuronal relays alone or together with functional electrical stimulation offer the possibility of improved repair of neuronal networks. In this review, we focus on approaches to recovery of motor function in paralyzed patients after severe SCI based on novel therapies such as implantation of stem cell-derived neuronal relays and functional electrical stimulation. Recent research progress offers hope that SCI patients will one day be able to recover motor function and sensory perception.
Collapse
Affiliation(s)
- Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Wei-Tao Han
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ming-Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ying Ding
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan, School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Yang Z, Yang Y, Xu Y, Jiang W, Shao Y, Xing J, Chen Y, Han Y. Biomimetic nerve guidance conduit containing engineered exosomes of adipose-derived stem cells promotes peripheral nerve regeneration. Stem Cell Res Ther 2021; 12:442. [PMID: 34362437 PMCID: PMC8343914 DOI: 10.1186/s13287-021-02528-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/18/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Efficient and stable delivery of neurotrophic factors (NTFs) is crucial to provide suitable microenvironment for peripheral nerve regeneration. Neurotrophin-3 (NT-3) is an important NTF during peripheral nerve regeneration which is scarce in the first few weeks of nerve defect. Exosomes are nanovesicles and have been served as promising candidate for biocarrier. In this work, NT-3 mRNA was encapsulated in adipose-derived stem cell (ADSC)-derived exosomes (ExoNT-3). These engineered exosomes were applied as NT-3 mRNA carrier and then were loaded in nerve guidance conduit (ExoNT-3-NGC) to bridge rat sciatic nerve defect. METHOD NT-3 mRNA was encapsulated in exosomes by forcedly expression of NT-3 mRNA in the donor ADSCs. ExoNT-3 were co-cultured with SCs in vitro; after 24 h of culture, the efficiency of NT-3 mRNA delivery was evaluated by qPCR, western blotting and ELISA. Then, ExoNT-3 were loaded in alginate hydrogel to construct the nerve guidance conduits (ExoNT-3-NGC). ExoNT-3-NGC were implanted in vivo to reconstruct 10 mm rat sciatic nerve defect. The expression of NT-3 was measured 2 weeks after the implantation operation. The sciatic nerve functional index (SFI) was examined at 2 and 8 weeks after the operation. Moreover, the therapeutic effect of ExoNT-3-NGC was also evaluated by morphology assay, immunofluorescence staining of regenerated nerves, function evaluation of gastrocnemius muscles after 8 weeks of implantation. RESULTS The engineered exosomes could deliver NT-3 mRNA to the recipient cells efficiently and translated into functional protein. The constructed NGC could realize stable release of exosomes at least for 2 weeks. After NGC implantation in vivo, ExoNT-3-NGC group significantly promote nerve regeneration and improve the function recovery of gastrocnemius muscles compared with control exosomes (Exoempty-NGC) group. CONCLUSION In this work, NGC was constructed to allow exosome-mediated NT-3 mRNA delivery. After ExoNT-3-NGC implantation in vivo, the level of NT-3 could restore which enhance the nerve regeneration. Our study provide a potential approach to improve nerve regeneration.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Plastic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.,Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yang Yang
- Xi'an Daxing Hospital, Xi'an, 710016, Shaanxi, China
| | - Yichi Xu
- Department of Plastic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Weiqian Jiang
- Department of Plastic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.,Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yan Shao
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jiahua Xing
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Youbai Chen
- Department of Plastic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan Han
- Department of Plastic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
10
|
Xue W, Zhang H, Fan Y, Xiao Z, Zhao Y, Liu W, Xu B, Yin Y, Chen B, Li J, Cui Y, Shi Y, Dai J. Upregulation of Apol8 by Epothilone D facilitates the neuronal relay of transplanted NSCs in spinal cord injury. Stem Cell Res Ther 2021; 12:300. [PMID: 34039405 PMCID: PMC8157417 DOI: 10.1186/s13287-021-02375-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/09/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Microtubule-stabilizing agents have been demonstrated to modulate axonal sprouting during neuronal disease. One such agent, Epothilone D, has been used to treat spinal cord injury (SCI) by promoting axonal sprouting at the lesion site after SCI. However, the role of Epothilone D in the differentiation of neural stem cells (NSCs) in SCI repair is unknown. In the present study, we mainly explored the effects and mechanisms of Epothilone D on the neuronal differentiation of NSCs and revealed a potential new SCI treatment. METHODS In vitro differentiation assays, western blotting, and quantitative real-time polymerase chain reaction were used to detect the effects of Epothilone D on NSC differentiation. Retrograde tracing using a pseudotyped rabies virus was then used to detect neuronal circuit construction. RNA sequencing (RNA-Seq) was valuable for exploring the target gene involved in the neuronal differentiation stimulated by Epothilone D. In addition, lentivirus-induced overexpression and RNA interference technology were applied to demonstrate the function of the target gene. Last, an Apol8-NSC-linear ordered collagen scaffold (LOCS) graft was prepared to treat a mouse model of SCI, and functional and electrophysiological evaluations were performed. RESULTS We first revealed that Epothilone D promoted the neuronal differentiation of cultured NSCs and facilitated neuronal relay formation in the injured site after SCI. Furthermore, the RNA-Seq results demonstrated that Apol8 was upregulated during Epothilone D-induced neuronal relay formation. Lentivirus-mediated Apol8 overexpression in NSCs (Apol8-NSCs) promoted NSC differentiation toward neurons, and an Apol8 interference assay showed that Apol8 had a role in promoting neuronal differentiation under the induction of Epothilone D. Last, Apol8-NSC transplantation with LOCS promoted the neuronal differentiation of transplanted NSCs in the lesion site as well as synapse formation, thus improving the motor function of mice with complete spinal cord transection. CONCLUSIONS Epothilone D can promote the neuronal differentiation of NSCs by upregulating Apol8, which may provide a promising therapeutic target for SCI repair.
Collapse
Affiliation(s)
- Weiwei Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haipeng Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of the Chinese Academy of Sciences, Beijing, 100190, China
| | - Yongheng Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of the Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weiyuan Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of the Chinese Academy of Sciences, Beijing, 100190, China
| | - Bai Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanyun Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiayin Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Cui
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China
| | - Ya Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
11
|
Xue W, Fan C, Chen B, Zhao Y, Xiao Z, Dai J. Direct neuronal differentiation of neural stem cells for spinal cord injury repair. STEM CELLS (DAYTON, OHIO) 2021; 39:1025-1032. [PMID: 33657255 DOI: 10.1002/stem.3366] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/05/2021] [Indexed: 11/07/2022]
Abstract
Spinal cord injury (SCI) typically results in long-lasting functional deficits, largely due to primary and secondary white matter damage at the site of injury. The transplantation of neural stem cells (NSCs) has shown promise for re-establishing communications between separated regions of the spinal cord through the insertion of new neurons between the injured axons and target neurons. However, the inhibitory microenvironment that develops after SCI often causes endogenous and transplanted NSCs to differentiate into glial cells rather than neurons. Functional biomaterials have been shown to mitigate the effects of the adverse SCI microenvironment and promote the neuronal differentiation of NSCs. A clear understanding of the mechanisms of neuronal differentiation within the injury-induced microenvironment would likely allow for the development of treatment strategies designed to promote the innate ability of NSCs to differentiate into neurons. The increased differentiation of neurons may contribute to relay formation, facilitating functional recovery after SCI. In this review, we summarize current strategies used to enhance the neuronal differentiation of NSCs through the reconstruction of the SCI microenvironment and to improve the intrinsic neuronal differentiation abilities of NSCs, which is significant for SCI repair.
Collapse
Affiliation(s)
- Weiwei Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Caixia Fan
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| |
Collapse
|
12
|
Bai YR, Lai BQ, Han WT, Sun JH, Li G, Ding Y, Zeng X, Ma YH, Zeng YS. Decellularized optic nerve functional scaffold transplant facilitates directional axon regeneration and remyelination in the injured white matter of the rat spinal cord. Neural Regen Res 2021; 16:2276-2283. [PMID: 33818513 PMCID: PMC8354131 DOI: 10.4103/1673-5374.310696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Axon regeneration and remyelination of the damaged region is the most common repair strategy for spinal cord injury. However, achieving good outcome remains difficult. Our previous study showed that porcine decellularized optic nerve better mimics the extracellular matrix of the embryonic porcine optic nerve and promotes the directional growth of dorsal root ganglion neurites. However, it has not been reported whether this material promotes axonal regeneration in vivo. In the present study, a porcine decellularized optic nerve was seeded with neurotrophin-3-overexpressing Schwann cells. This functional scaffold promoted the directional growth and remyelination of regenerating axons. In vitro, the porcine decellularized optic nerve contained many straight, longitudinal channels with a uniform distribution, and microscopic pores were present in the channel wall. The spatial micro topological structure and extracellular matrix were conducive to the adhesion, survival and migration of neural stem cells. The scaffold promoted the directional growth of dorsal root ganglion neurites, and showed strong potential for myelin regeneration. Furthermore, we transplanted the porcine decellularized optic nerve containing neurotrophin-3-overexpressing Schwann cells in a rat model of T10 spinal cord defect in vivo. Four weeks later, the regenerating axons grew straight, the myelin sheath in the injured/transplanted area recovered its structure, and simultaneously, the number of inflammatory cells and the expression of chondroitin sulfate proteoglycans were reduced. Together, these findings suggest that porcine decellularized optic nerve loaded with Schwann cells overexpressing neurotrophin-3 promotes the directional growth of regenerating spinal cord axons as well as myelin regeneration. All procedures involving animals were conducted in accordance with the ethical standards of the Institutional Animal Care and Use Committee of Sun Yat-sen University (approval No. SYSU-IACUC-2019-B034) on February 28, 2019.
Collapse
Affiliation(s)
- Yu-Rong Bai
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province; Institute of Spinal Cord Injury; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wei-Tao Han
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jia-Hui Sun
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ying Ding
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education; Department of Histology and Embryology, Zhongshan School of Medicine; Institute of Spinal Cord Injury; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education; Department of Histology and Embryology, Zhongshan School of Medicine; Institute of Spinal Cord Injury; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuan-Huan Ma
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education; Department of Histology and Embryology, Zhongshan School of Medicine; Institute of Spinal Cord Injury; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province; Institute of Spinal Cord Injury; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
13
|
Ranjan VD, Qiu L, Lee JWL, Chen X, Jang SE, Chai C, Lim KL, Tan EK, Zhang Y, Huang WM, Zeng L. A microfiber scaffold-based 3D in vitro human neuronal culture model of Alzheimer's disease. Biomater Sci 2020; 8:4861-4874. [PMID: 32789337 DOI: 10.1039/d0bm00833h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increasing evidence indicates superiority of three-dimensional (3D) in vitro cell culture systems over conventional two-dimensional (2D) monolayer cultures in mimicking native in vivo microenvironments. Tissue-engineered 3D culture models combined with stem cell technologies have advanced Alzheimer's disease (AD) pathogenesis studies. However, existing 3D neuronal models of AD overexpress mutant genes or have heterogeneities in composition, biological properties and cell differentiation stages. Here, we encapsulate patient induced pluripotent stem cell (iPSC) derived neural progenitor cells (NPC) in poly(lactic-co-glycolic acid) (PLGA) microtopographic scaffolds fabricated via wet electrospinning to develop a novel 3D culture model of AD. First, we enhanced cellular infiltration and distribution inside the scaffold by optimizing various process parameters such as fiber diameter, pore size, porosity and hydrophilicity. Next, we compared key neural stem cell features including viability, proliferation and differentiation in 3D culture with 2D monolayer controls. The 3D microfibrous substrate reduces cell proliferation and significantly accelerates neuronal differentiation within seven days of culture. Furthermore, 3D culture spontaneously enhanced pathogenic amyloid-beta 42 (Aβ42) and phospho-tau levels in differentiated neurons carrying familial AD (FAD) mutations, compared with age-matched healthy controls. Overall, our tunable scaffold-based 3D neuronal culture platform serves as a suitable in vitro model that robustly recapitulates and accelerates the pathogenic characteristics of FAD-iPSC derived neurons.
Collapse
Affiliation(s)
- Vivek Damodar Ranjan
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798, Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Superior Synaptogenic Effect of Electrospun PLGA-PEG Nanofibers Versus PLGA Nanofibers on Human Neural SH-SY5Y Cells in a Three-Dimensional Culture System. J Mol Neurosci 2020; 70:1967-1976. [PMID: 32436197 DOI: 10.1007/s12031-020-01596-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
Synapses are touted as the main structural and functional components of neural cells within in the nervous system, providing tissue connectivity and integration via the formation of perineuronal nets. In the present study, we evaluated the synaptogenic activity of electrospun PLGA and PLGA-PEG nanofibers on human SH-SY5Y cells after 14 days in vitro. Electrospun PLGA and PLGA-PEG nanofibers were fabricated and physicochemical properties were examined using the HNMR technique. The cells were classified into three random groups, i.e., control (laminin-coated surface), PLGA, and PLGA-PEG. Scaffolds' features, cell morphology, attachment, and alignment were monitored by SEM imaging. We performed MTT assay to measure cell survival rate. To evaluate neurite formation and axonal outgrowth, cells were stained with an antibody against β-tubulin III using immunofluorescence imaging. Antibodies against synapsin-1 and synaptophysin were used to explore the impact of PLGA and PLGA-PEG scaffolds on synaptogenesis and functional activity of synapses. According to SEM analysis, the PLGA-PEG scaffold had less thick nanofibers compared with the PLGA scaffold. Cell attachment, expansion, neurite outgrowth, and orientation were promoted in the PLGA-PEG group in comparison with the PLGA substrate (p < 0.05). MTT assay revealed that both scaffolds did not exert any neurotoxic effects on cell viability. Notably, PLGA-PEG surface increased cell viability compared to PLGA by time (p < 0.05). Immunofluorescence staining indicated an increased β-tubulin III level in the PLGA-PEG group days coincided with axonal outgrowth and immature neuron marker after seven compared with the PLGA and control groups (p < 0.05). Based on our data, both synaptogenesis and functional connectivity were induced in cells plated on the PLGA-PEG surface that coincide with the increase of synapsin-1 and synaptophysin in comparsion with the PLGA and control groups (p < 0.05). Taken together, our results imply that the PLGA-PEG nanofibers could provide the desirable microenvironment to develop perineuronal net formation, contributing to efficient synaptogenesis and neuron-to-neuron crosstalk.
Collapse
|
15
|
Chen X, Wu J, Sun R, Zhao Y, Li Y, Pan J, Chen Y, Wang X. Tubular scaffold with microchannels and an H-shaped lumen loaded with bone marrow stromal cells promotes neuroregeneration and inhibits apoptosis after spinal cord injury. J Tissue Eng Regen Med 2020; 14:397-411. [PMID: 31821733 PMCID: PMC7155140 DOI: 10.1002/term.2996] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022]
Abstract
As a result of its complex histological structure, regeneration patterns of grey and white matter are quite different in the spinal cord. Therefore, tissue engineering scaffolds for repairing spinal cord injury must be able to adapt to varying neural regeneration patterns. The aim of the present study was to improve a previously reported spinal cord‐mimicking partition‐type scaffold by adding microchannels on a single tubular wall along its longitudinal axis, thus integrating the two architectures of a single H‐shaped central tube and many microchannels. Next, the integrated scaffold was loaded with bone marrow stromal cells (BMSCs) and transplanted to bridge the 5‐mm defect of a complete transverse lesion in the thoracic spinal cord of rats. Subsequently, effects on nerve regeneration, locomotion function recovery, and early neuroprotection were observed. After 1 year of repair, the integrated scaffold could guide the regeneration of axons appearing in the debris of degraded microchannels, especially serotonin receptor 1A receptor‐positive axonal tracts, which were relatively orderly arranged. Moreover, a network of nerve fibres was present, and a few BMSCs expressed neuronal markers in tubular lumens. Functionally, electrophysiological and locomotor functions of rats were partially recovered. In addition, we found that BMSCs could protect neurons and oligodendrocytes from apoptosis during the early stage of implantation. Taken together, our results demonstrate the potential of this novel integrated scaffold loaded with BMSCs to promote spinal cord regeneration through mechanical guidance and neuroprotective mechanisms.
Collapse
Affiliation(s)
- Xue Chen
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China.,Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian Wu
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Rongcheng Sun
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Yahong Zhao
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Yi Li
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Jingying Pan
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Ying Chen
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Xiaodong Wang
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu, China.,Key Laboratory for Neuroregeneration of Ministry of Education and Co-innovation Center for Neuroregeneration of Jiangsu Province, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
16
|
Devising micro/nano-architectures in multi-channel nerve conduits towards a pro-regenerative matrix for the repair of spinal cord injury. Acta Biomater 2019; 86:194-206. [PMID: 30586646 DOI: 10.1016/j.actbio.2018.12.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 11/23/2022]
Abstract
Multi-channel nerve conduits have shown significant advantages in guidance of axonal growth and functional restoration after spinal cord injury (SCI). It was realized that the micro/nano-architectures of these implanted conduits can effectively tune the lesion-induced biological responses, including inflammation and scar formation. In this work, two PLLA multi-channel conduits were fabricated with ladder-like porous channel wall (labelled as LNCs) and nano-fibrous channel wall (labelled as NNCs), respectively, and transferred into complete spinal cord transected injury model in rats. The implantation of such two scaffolds significantly alleviated the infiltration of macrophages/microglia and accumulation of astrocyte and collagen scar, especially in the NNCs group. Meanwhile, recruitment of endogenous stem cells and axonal growth was observed in both of the multi-channel conduits. Compared to the LNCs, the extracellular matrix (ECM) - mimicry nanostructures in the NNCs promoted directional nerve fiber growth within the channels. Moreover, a relatively denser nano-architecture in the channel wall confined the nerve fiber extension within the channels. These results from in vivo evaluations suggested that the NNCs implants possess a great potential in future application for SCI treatment and nerve regeneration. STATEMENTS OF SIGNIFICANCE: The implantation of biocompatible and degradable polymeric scaffolds holds great potential in clinical treatment and tissue regeneration after spinal cord injury (SCI). In this work, the ladder-like nerve conduits (LNCs) and nano-fibrous nerve conduits (NNCs) were fabricated and implanted into completely spinal cord transected rats, respectively. In vivo characteristics showed significant reduction in post-injury inflammation and scar formation, with elevated nerve stem cells (NSCs) recruitment and nerve fiber growth, hence both conduits resulted in significant functional restoration after implantation. Remarkably, we noticed that not only the multi-channels in the conduits can guide nerve fiber regeneration, their micro-/nano-structured walls also played a critical role in modulating the post-implantation biological responses.
Collapse
|
17
|
Jin H, Zhang YT, Yang Y, Wen LY, Wang JH, Xu HY, Lai BQ, Feng B, Che MT, Qiu XC, Li ZL, Wang LJ, Ruan JW, Jiang B, Zeng X, Deng QW, Li G, Ding Y, Zeng YS. Electroacupuncture Facilitates the Integration of Neural Stem Cell-Derived Neural Network with Transected Rat Spinal Cord. Stem Cell Reports 2019; 12:274-289. [PMID: 30661994 PMCID: PMC6373172 DOI: 10.1016/j.stemcr.2018.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
The hostile environment of an injured spinal cord makes it challenging to achieve higher viability in a grafted tissue-engineered neural network used to reconstruct the spinal cord circuit. Here, we investigate whether cell survival and synaptic transmission within an NT-3 and TRKC gene-overexpressing neural stem cell-derived neural network scaffold (NN) transplanted into transected spinal cord could be promoted by electroacupuncture (EA) through improving the microenvironment. Our results showed that EA facilitated the cell survival, neuronal differentiation, and synapse formation of a transplanted NN. Pseudorabies virus tracing demonstrated that EA strengthened synaptic integration of the transplanted NN with the host neural circuit. The combination therapy also promoted axonal regeneration, spinal conductivity, and functional recovery. The findings highlight EA as a potential and safe supplementary therapeutic strategy to reinforce the survival and synaptogenesis of a transplanted NN as a neuronal relay to bridge the two severed ends of an injured spinal cord. EA promotes the survival and synapse formation of NSC-derived neurons in grafted NN EA strengthens synaptic integration of grafted NN with the spinal cord neural circuit EA enhances NT-3 level and activates NT-3/TRKC/AKT pathway in the injury/graft site The combination therapy increases axonal regeneration and spinal functional recovery
Collapse
Affiliation(s)
- Hui Jin
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yu-Ting Zhang
- Center of Reproductive Medicine of Shunde Hospital, Southern Medical University, Shunde, Guangdong 528300, China
| | - Yang Yang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Lan-Yu Wen
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun-Hua Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hao-Yu Xu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Bi-Qin Lai
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo Feng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Ming-Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Xue-Cheng Qiu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhi-Ling Li
- Department of Acupuncture, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Lai-Jian Wang
- Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing-Wen Ruan
- Department of Acupuncture, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiang Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing-Wen Deng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ge Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Ding
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
18
|
Lai B, Feng B, Che M, Wang L, Cai S, Huang M, Gu H, Jiang B, Ling E, Li M, Zeng X, Zeng Y. A Modular Assembly of Spinal Cord-Like Tissue Allows Targeted Tissue Repair in the Transected Spinal Cord. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800261. [PMID: 30250785 PMCID: PMC6145267 DOI: 10.1002/advs.201800261] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/08/2018] [Indexed: 05/02/2023]
Abstract
Tissue engineering-based neural construction holds promise in providing organoids with defined differentiation and therapeutic potentials. Here, a bioengineered transplantable spinal cord-like tissue (SCLT) is assembled in vitro by simulating the white matter and gray matter composition of the spinal cord using neural stem cell-based tissue engineering technique. Whether the organoid would execute targeted repair in injured spinal cord is evaluated. The integrated SCLT, assembled by white matter-like tissue (WMLT) module and gray matter-like tissue (GMLT) module, shares architectural, phenotypic, and functional similarities to the adult rat spinal cord. Organotypic coculturing with the dorsal root ganglion or muscle cells shows that the SCLT embraces spinal cord organogenesis potentials to establish connections with the targets, respectively. Transplantation of the SCLT into the transected spinal cord results in a significant motor function recovery of the paralyzed hind limbs in rats. Additionally, targeted spinal cord tissue repair is achieved by the modular design of SCLT, as evidenced by an increased remyelination in the WMLT area and an enlarged innervation in the GMLT area. More importantly, the pro-regeneration milieu facilitates the formation of a neuronal relay by the donor neurons, allowing the conduction of descending and ascending neural inputs.
Collapse
Affiliation(s)
- Bi‐Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Bo Feng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
| | - Ming‐Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
| | - Lai‐Jian Wang
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Song Cai
- Department of Human AnatomyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Meng‐Yao Huang
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Huai‐Yu Gu
- Department of Human AnatomyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Bing Jiang
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Eng‐Ang Ling
- Department of AnatomyYong Loo Lin School of MedicineNational University of SingaporeSingapore117594Singapore
| | - Meng Li
- Neuroscience and Mental Health Research InstituteSchool of MedicineCardiff UniversityCardiffCF24 4HQUK
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Institute of Spinal Cord InjurySun Yat‐sen UniversityGuangzhou510120China
| | - Yuan‐Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Institute of Spinal Cord InjurySun Yat‐sen UniversityGuangzhou510120China
| |
Collapse
|
19
|
Tian T, Yu Z, Zhang N, Chang Y, Zhang Y, Zhang L, Zhou S, Zhang C, Feng G, Huang F. Modified acellular nerve-delivering PMSCs improve functional recovery in rats after complete spinal cord transection. Biomater Sci 2018; 5:2480-2492. [PMID: 29106428 DOI: 10.1039/c7bm00485k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to the poor regeneration capacity of neurons and the inhibitory microenvironment, spontaneous regeneration in spinal cord injury (SCI) remains challenging. Tissue engineering is considered a promising approach for enhancing the regeneration of SCI by reconstructing the inherent structure and improving the microenvironment. In this study, the possibility of engineering a nerve complex, which is constructed by acellular nerve delivering placenta mesenchymal stem cells (PMSCs), was assessed for the recovery of a transected spinal cord. Modified acellular nerve grafts were developed, and PMSCs labeled with green fluorescent protein (GFP) were seeded on the graft to construct the engineered nerve complex. Then, the engineered nerve complex was implanted into a 2 mm-length transected gap of the spinal cord. Four weeks after the transplantation, numerous surviving PMSCs were observed in the lesion cavity by immunofluorescence staining. Moreover, co-localization between GFP and neurofilament-200 (NF200) and Neuronal Class III β-Tubulin (Tuj1) was observed at the bridge interface. The PMSCs-graft group exhibited significant function improvement as evaluated by the Basso, Beattie and Bresnahan (BBB) locomotion score and footprint analysis. Eight weeks after surgery, the evoked response was restored in the PMSCs-graft group and numerous thick myelin sheathes were observed compared to that in the control groups. Collectively, our findings suggest that the nerve complex prepared by acellular nerve delivering PMSCs enhanced the structure and function regeneration of the spinal cord after SCI.
Collapse
Affiliation(s)
- Ting Tian
- Institute of Human Anatomy and Histology and Embryology, Otology & Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Laishan District, Shandong Province 264003, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dobos A, Grandhi TSP, Godeshala S, Meldrum DR, Rege K. Parallel fabrication of macroporous scaffolds. Biotechnol Bioeng 2018; 115:1729-1742. [DOI: 10.1002/bit.26593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/06/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Andrew Dobos
- Biomedical Engineering; Arizona State University; Tempe Arizona
| | | | | | - Deirdre R. Meldrum
- Center for Biosignatures Discovery Automation, Biodesign Institute; Arizona State University; Tempe Arizona
| | - Kaushal Rege
- Chemical Engineering; Arizona State University; Tempe Arizona
| |
Collapse
|
21
|
Martins C, Sousa F, Araújo F, Sarmento B. Functionalizing PLGA and PLGA Derivatives for Drug Delivery and Tissue Regeneration Applications. Adv Healthc Mater 2018; 7. [PMID: 29171928 DOI: 10.1002/adhm.201701035] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/27/2017] [Indexed: 12/16/2022]
Abstract
Poly(lactic-co-glycolic) acid (PLGA) is one of the most versatile biomedical polymers, already approved by regulatory authorities to be used in human research and clinics. Due to its valuable characteristics, PLGA can be tailored to acquire desirable features for control bioactive payload or scaffold matrix. Moreover, its chemical modification with other polymers or bioconjugation with molecules may render PLGA with functional properties that make it the Holy Grail among the synthetic polymers to be applied in the biomedical field. In this review, the physical-chemical properties of PLGA, its synthesis, degradation, and conjugation with other polymers or molecules are revised in detail, as well as its applications in drug delivery and regeneration fields. A particular focus is given to successful examples of products already on the market or at the late stages of trials, reinforcing the potential of this polymer in the biomedical field.
Collapse
Affiliation(s)
- Cláudia Martins
- I3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Rua Alfredo Allen 208 4200-393 Porto Portugal
- INEB - Instituto de Engenharia Biomédica; Universidade do Porto; Rua Alfredo Allen 208 4200-393 Porto Portugal
| | - Flávia Sousa
- I3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Rua Alfredo Allen 208 4200-393 Porto Portugal
- INEB - Instituto de Engenharia Biomédica; Universidade do Porto; Rua Alfredo Allen 208 4200-393 Porto Portugal
- ICBAS - Instituto Ciências Biomédicas Abel Salazar; Universidade do Porto; Rua de Jorge Viterbo Ferreira 228 4050-313 Porto Portugal
| | - Francisca Araújo
- I3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Rua Alfredo Allen 208 4200-393 Porto Portugal
- INEB - Instituto de Engenharia Biomédica; Universidade do Porto; Rua Alfredo Allen 208 4200-393 Porto Portugal
| | - Bruno Sarmento
- I3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Rua Alfredo Allen 208 4200-393 Porto Portugal
- INEB - Instituto de Engenharia Biomédica; Universidade do Porto; Rua Alfredo Allen 208 4200-393 Porto Portugal
- CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde; Rua Central de Gandra 1317 4585-116 Gandra Portugal
| |
Collapse
|
22
|
Deng Y, Zhang M, Chen X, Pu X, Liao X, Huang Z, Yin G. A novel akermanite/poly (lactic-co-glycolic acid) porous composite scaffold fabricated via a solvent casting-particulate leaching method improved by solvent self-proliferating process. Regen Biomater 2017; 4:233-242. [PMID: 28798869 PMCID: PMC5544913 DOI: 10.1093/rb/rbx014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/25/2017] [Accepted: 04/28/2017] [Indexed: 01/08/2023] Open
Abstract
Desirable scaffolds for tissue engineering should be biodegradable carriers to supply suitable microenvironments mimicked the extracellular matrices for desired cellular interactions and to provide supports for the formation of new tissues. In this work, a kind of slightly soluble bioactive ceramic akermanite (AKT) powders were aboratively selected and introduced in the PLGA matrix, a novel l-lactide modified AKT/poly (lactic-co-glycolic acid) (m-AKT/PLGA) composite scaffold was fabricated via a solvent casting-particulate leaching method improved by solvent self-proliferating process. The effects of m-AKT contents on properties of composite scaffolds and on MC3T3-E1 cellular behaviors in vitro have been primarily investigated. The fabricated scaffolds exhibited three-dimensional porous networks, in which homogenously distributed cavities in size of 300–400 μm were interconnected by some smaller holes in a size of 100–200 μm. Meanwhile, the mechanical structure of scaffolds was reinforced by the introduction of m-AKT. Moreover, alkaline ionic products released by m-AKT could neutralize the acidic degradation products of PLGA, and the apatite-mineralization ability of scaffolds could be largely improved. More valuably, significant promotions on adhesion, proliferation, and differentiation of MC3T3-E1 have been observed, which implied the calcium, magnesium and especially silidous ions released sustainably from composite scaffolds could regulate the behaviors of osteogenesis-related cells.
Collapse
Affiliation(s)
- Yao Deng
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, PR China
| | - Mengjiao Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, PR China
| | - Xianchun Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, PR China
| | - Ximing Pu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, PR China
| | - Xiaoming Liao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, PR China
| | - Zhongbing Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, PR China
| | - Guangfu Yin
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
23
|
Xin L, Xu W, Yu L, Fan S, Wang W, Yu F, Wang Z. Effects of annulus defects and implantation of poly(lactic-co-glycolic acid) (PLGA)/fibrin gel scaffolds on nerves ingrowth in a rabbit model of annular injury disc degeneration. J Orthop Surg Res 2017; 12:73. [PMID: 28499451 PMCID: PMC5429511 DOI: 10.1186/s13018-017-0572-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 04/26/2017] [Indexed: 12/01/2022] Open
Abstract
Background Growth of nerve fibers has been shown to occur in a rabbit model of intravertebral disc degeneration (IVD) induced by needle puncture. As nerve growth may underlie the process of chronic pain in humans affected by disc degeneration, we sought to investigate the factors underlying nerve ingrowth in a minimally invasive annulotomy rabbit model of IVD by comparing the effects of empty disc defects with those of defects filled with poly(lactic-co-glycolic acid)/fibrin gel (PLGA) plugs. Methods New Zealand white rabbits (n = 24) received annular injuries at three lumbar levels (L3/4, L4/5, and L5/6). The discs were randomly assigned to four groups: (a) annular defect (1.8-mm diameter; 4-mm depth) by mini-trephine, (b) annular defect implanted with a PLGA scaffold containing a fibrin gel, (c) annular puncture by a 16G needle (5-mm depth), and (d) uninjured L2/3 disc (control). Disc degeneration was evaluated by radiography, MRI, histology, real-time PCR, and analysis of proteoglycan (PG) content. Nerve ingrowth into the discs was assessed by immunostaining with the nerve marker protein gene product 9.5. Results Injured discs showed a progressive disc space narrowing with significant disc degeneration and proteoglycan loss, as confirmed by imaging results, molecular and compositional analysis, and histological examinations. In 16G punctured discs, nerve ingrowth was observed on the surface of scar tissue. In annular defects, nerve fibers were found to be distributed along small fissures within the fibrocartilaginous-like tissue that filled the AF. In discs filled with PLGA/ fibrin gel, more nerve fibers were observed growing deeper into the inner AF along the open annular track. In addition, innervations scores showed significantly higher than those of punctured discs and empty defects. A limited vascular proliferation was found in the injured sites and regenerated tissues. Conclusions Nerve ingrowth was significantly higher in PLGA/fibrin-filled discs than in empty defects. Possible explanations include (i) annular fissures along the defect and early loss of proteoglycan may facilitate the ingrowth process and (ii) biodegradable PLGA/fibrin gel may promote adverse growth of nerves and blood vessels into deeper parts of injured disc. The rabbit annular defect model of disc degeneration appears suitable to investigate the effects of nerve ingrowth in relation to pain generation.
Collapse
Affiliation(s)
- Long Xin
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Weixing Xu
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Leijun Yu
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Shunwu Fan
- Department of Orthopedics, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, China
| | - Wei Wang
- Department of Polymer Materials Science and Engineering, School of Material Science and Engineering, Tianjin University, Tianjin, China
| | - Fang Yu
- Department of Mental Health, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhenbin Wang
- Orthopedics Laboratory, Department of Spine Surgery, The Fourth Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, 830000, China.
| |
Collapse
|
24
|
A multi-walled silk fibroin/silk sericin nerve conduit coated with poly(lactic-co-glycolic acid) sheath for peripheral nerve regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 73:319-332. [PMID: 28183615 DOI: 10.1016/j.msec.2016.12.085] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 11/24/2016] [Accepted: 12/17/2016] [Indexed: 12/20/2022]
Abstract
The linearly oriented multi-walled silk fibroin/silk sericin (SF/SS) nerve conduits (NCs) can provide physical cues similar to native peripheral nerve fasciculi, but the mechanical properties of which are not excellent enough. In this study, NCs with a novel and bionic design with dual structures were developed. The important features of our NCs is that the internal skeleton (the multi-walled SF/SS conduits) has a bionic structure similar to the architecture of native peripheral nerve fasciculi, which is beneficial for nerve regeneration, and the outer sheath (the hollow poly(lactic-co-glycolic acid) [PLGA] conduits) could provide strong mechanical protection for the internal skeleton. The linearly oriented multi-walled SF/SS conduit was fabricated and inserted in the hollow PLGA sheath lumen and then used for the bridge across the sciatic nerve defect in rats. The outcome of the peripheral nerve repair post implantation was evaluated. The functional and morphological parameters were examined and showed that the novel PLGA-coated SF/SS NCs could promote peripheral nerve regeneration, approaching those elicited by nerve autografts that are the first candidate for repair of peripheral nerve defects. Thus, these updated NCs have potential usefulness to enhance functional recovery after repair of peripheral nerve defect.
Collapse
|
25
|
Lai BQ, Che MT, Du BL, Zeng X, Ma YH, Feng B, Qiu XC, Zhang K, Liu S, Shen HY, Wu JL, Ling EA, Zeng YS. Transplantation of tissue engineering neural network and formation of neuronal relay into the transected rat spinal cord. Biomaterials 2016; 109:40-54. [DOI: 10.1016/j.biomaterials.2016.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/13/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022]
|
26
|
Lin XY, Lai BQ, Zeng X, Che MT, Ling EA, Wu W, Zeng YS. Cell Transplantation and Neuroengineering Approach for Spinal Cord Injury Treatment: A Summary of Current Laboratory Findings and Review of Literature. Cell Transplant 2016; 25:1425-38. [DOI: 10.3727/096368916x690836] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Spinal cord injury (SCI) can cause severe traumatic injury to the central nervous system (CNS). Current therapeutic effects achieved for SCI in clinical medicine show that there is still a long way to go to reach the desired goal of full or significant functional recovery. In basic medical research, however, cell transplantation, gene therapy, application of cytokines, and biomaterial scaffolds have been widely used and investigated as treatments for SCI. All of these strategies when used separately would help rebuild, to some extent, the neural circuits in the lesion area of the spinal cord. In light of this, it is generally accepted that a combined treatment may be a more effective strategy. This review focuses primarily on our recent series of work on transplantation of Schwann cells and adult stem cells, and transplantation of stem cell-derived neural network scaffolds with functional synapses. Arising from this, an artificial neural network (an exogenous neuronal relay) has been designed and fabricated by us—a biomaterial scaffold implanted with Schwann cells modified by the neurotrophin-3 (NT-3) gene and adult stem cells modified with the TrkC (receptor of NT-3) gene. More importantly, experimental evidence suggests that the novel artificial network can integrate with the host tissue and serve as an exogenous neuronal relay for signal transfer and functional improvement of SCI.
Collapse
Affiliation(s)
- Xin-Yi Lin
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Ming-Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Jinan University–Hong Kong University Joint Laboratory, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, China
- Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Biomaterial Applications in Cell-Based Therapy in Experimental Stroke. Stem Cells Int 2016; 2016:6810562. [PMID: 27274738 PMCID: PMC4870368 DOI: 10.1155/2016/6810562] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/11/2016] [Accepted: 04/04/2016] [Indexed: 01/08/2023] Open
Abstract
Stroke is an important health issue corresponding to the second cause of mortality and first cause of severe disability with no effective treatments after the first hours of onset. Regenerative approaches such as cell therapy provide an increase in endogenous brain structural plasticity but they are not enough to promote a complete recovery. Tissue engineering has recently aroused a major interesting development of biomaterials for use into the central nervous system. Many biomaterials have been engineered based on natural compounds, synthetic compounds, or a mix of both with the aim of providing polymers with specific properties. The mechanical properties of biomaterials can be exquisitely regulated forming polymers with different stiffness, modifiable physical state that polymerizes in situ, or small particles encapsulating cells or growth factors. The choice of biomaterial compounds should be adapted for the different applications, structure target, and delay of administration. Biocompatibilities with embedded cells and with the host tissue and biodegradation rate must be considerate. In this paper, we review the different applications of biomaterials combined with cell therapy in ischemic stroke and we explore specific features such as choice of biomaterial compounds and physical and mechanical properties concerning the recent studies in experimental stroke.
Collapse
|
28
|
Li G, Che MT, Zhang K, Qin LN, Zhang YT, Chen RQ, Rong LM, Liu S, Ding Y, Shen HY, Long SM, Wu JL, Ling EA, Zeng YS. Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury. Biomaterials 2016; 83:233-48. [DOI: 10.1016/j.biomaterials.2015.11.059] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/10/2015] [Accepted: 11/29/2015] [Indexed: 12/11/2022]
|
29
|
Hot melt extruded and injection moulded disulfiram-loaded PLGA millirods for the treatment of glioblastoma multiforme via stereotactic injection. Int J Pharm 2015; 494:73-82. [PMID: 26235918 DOI: 10.1016/j.ijpharm.2015.07.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
Glioblastoma multiforme (GBM) has a poor prognosis and is one of the most common primary malignant brain tumours in adults. Stereotactic injections have been used to deliver chemotherapeutic drugs directly into brain tumours. This paper describes the development of disulfiram (DSF)-loaded biodegradable millirods manufactured using hot melt extrusion (HME) and injection moulding (IM). The paper demonstrates that the stability of the DSF within the millirods is dependent on the manufacturing technique used as well as the drug loading. The physical state of the DSF within the millirods was dependent on the fabrication process, with the DSF in the HME millirods being either completely amorphous within the PLGA, while the DSF within the IM millirods retained between 54 and 66% of its crystallinity. Release of DSF from the millirods was dependent on the degradation rate of the PLGA, the manufacturing technique used as well as the DSF loading. DSF in the 10% (w/w) DSF loaded HME millirods and the 20% (w/w) DSF-loaded HME and IM millirods had a similar cytotoxicity against a GBM cell line compared to the unprocessed DSF control. However, the 10% (w/w) DSF-loaded IM millirods had a significantly lower cytotoxicity when compared to the unprocessed control.
Collapse
|
30
|
Integration of donor mesenchymal stem cell-derived neuron-like cells into host neural network after rat spinal cord transection. Biomaterials 2015; 53:184-201. [DOI: 10.1016/j.biomaterials.2015.02.073] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/08/2015] [Accepted: 02/15/2015] [Indexed: 12/27/2022]
|
31
|
Hydrogels and Cell Based Therapies in Spinal Cord Injury Regeneration. Stem Cells Int 2015; 2015:948040. [PMID: 26124844 PMCID: PMC4466497 DOI: 10.1155/2015/948040] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/14/2014] [Indexed: 01/01/2023] Open
Abstract
Spinal cord injury (SCI) is a central nervous system- (CNS-) related disorder for which there is yet no successful treatment. Within the past several years, cell-based therapies have been explored for SCI repair, including the use of pluripotent human stem cells, and a number of adult-derived stem and mature cells such as mesenchymal stem cells, olfactory ensheathing cells, and Schwann cells. Although promising, cell transplantation is often overturned by the poor cell survival in the treatment of spinal cord injuries. Alternatively, the therapeutic role of different cells has been used in tissue engineering approaches by engrafting cells with biomaterials. The latter have the advantages of physically mimicking the CNS tissue, while promoting a more permissive environment for cell survival, growth, and differentiation. The roles of both cell- and biomaterial-based therapies as single therapeutic approaches for SCI repair will be discussed in this review. Moreover, as the multifactorial inhibitory environment of a SCI suggests that combinatorial approaches would be more effective, the importance of using biomaterials as cell carriers will be herein highlighted, as well as the recent advances and achievements of these promising tools for neural tissue regeneration.
Collapse
|
32
|
Zembko I, Ahmed I, Farooq A, Dail J, Tawari P, Wang W, Mcconville C. Development of Disulfiram-Loaded Poly(Lactic-co-Glycolic Acid) Wafers for the Localised Treatment of Glioblastoma Multiforme: A Comparison of Manufacturing Techniques. J Pharm Sci 2015; 104:1076-86. [DOI: 10.1002/jps.24304] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/19/2014] [Accepted: 11/19/2014] [Indexed: 11/06/2022]
|
33
|
Faroni A, Mobasseri SA, Kingham PJ, Reid AJ. Peripheral nerve regeneration: experimental strategies and future perspectives. Adv Drug Deliv Rev 2015; 82-83:160-7. [PMID: 25446133 DOI: 10.1016/j.addr.2014.11.010] [Citation(s) in RCA: 400] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/01/2014] [Accepted: 11/08/2014] [Indexed: 12/15/2022]
Abstract
Peripheral nerve injuries represent a substantial clinical problem with insufficient or unsatisfactory treatment options. This review summarises all the events occurring after nerve damage at the level of the cell body, the site of injury and the target organ. Various experimental strategies to improve neuronal survival, axonal regeneration and target reinnervation are described including pharmacological approaches and cell-based therapies. Given the complexity of nerve regeneration, further studies are needed to address the biology of nerve injury, to improve the interaction with implantable scaffolds, and to implement cell-based therapies in nerve tissue engineering.
Collapse
|
34
|
Landers J, Turner JT, Heden G, Carlson AL, Bennett NK, Moghe PV, Neimark AV. Carbon nanotube composites as multifunctional substrates for in situ actuation of differentiation of human neural stem cells. Adv Healthc Mater 2014; 3:1745-52. [PMID: 24753391 DOI: 10.1002/adhm.201400042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/17/2014] [Indexed: 12/23/2022]
Affiliation(s)
- John Landers
- Department of Chemical and Biochemical Engineering; Rutgers University; 98 Brett Rd Piscataway NJ 08854 USA
| | - Jeffrey T. Turner
- Department of Chemical and Biochemical Engineering; Rutgers University; 98 Brett Rd Piscataway NJ 08854 USA
- Department of Biomedical Engineering; Rutgers University; 599 Taylor Road Piscataway NJ 08854 USA
| | - Greg Heden
- Department of Chemical and Biochemical Engineering; Rutgers University; 98 Brett Rd Piscataway NJ 08854 USA
| | - Aaron L. Carlson
- Department of Chemical and Biochemical Engineering; Rutgers University; 98 Brett Rd Piscataway NJ 08854 USA
- Department of Biomedical Engineering; Rutgers University; 599 Taylor Road Piscataway NJ 08854 USA
| | - Neal K. Bennett
- Department of Chemical and Biochemical Engineering; Rutgers University; 98 Brett Rd Piscataway NJ 08854 USA
- Department of Biomedical Engineering; Rutgers University; 599 Taylor Road Piscataway NJ 08854 USA
| | - Prabhas V. Moghe
- Department of Chemical and Biochemical Engineering; Rutgers University; 98 Brett Rd Piscataway NJ 08854 USA
- Department of Biomedical Engineering; Rutgers University; 599 Taylor Road Piscataway NJ 08854 USA
| | - Alexander V. Neimark
- Department of Chemical and Biochemical Engineering; Rutgers University; 98 Brett Rd Piscataway NJ 08854 USA
| |
Collapse
|
35
|
Du BL, Zeng X, Ma YH, Lai BQ, Wang JM, Ling EA, Wu JL, Zeng YS. Graft of the gelatin sponge scaffold containing genetically-modified neural stem cells promotes cell differentiation, axon regeneration, and functional recovery in rat with spinal cord transection. J Biomed Mater Res A 2014; 103:1533-45. [DOI: 10.1002/jbm.a.35290] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/04/2014] [Accepted: 07/18/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Bao-Ling Du
- Department of Histology and Embryology; Zhongshan School of Medicine, Sun Yat-sen University; Guangzhou Guangdong China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education; Sun Yat-sen University; Guangzhou Guangdong China
| | - Yuan-Huan Ma
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education; Sun Yat-sen University; Guangzhou Guangdong China
| | - Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education; Sun Yat-sen University; Guangzhou Guangdong China
| | - Jun-Mei Wang
- Department of Histology and Embryology; Zhongshan School of Medicine, Sun Yat-sen University; Guangzhou Guangdong China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine; National University of Singapore; Singapore Singapore
| | - Jin-Lang Wu
- Department of Electron Microscope, Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou Guangdong China
| | - Yuan-Shan Zeng
- Department of Histology and Embryology; Zhongshan School of Medicine, Sun Yat-sen University; Guangzhou Guangdong China
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education; Sun Yat-sen University; Guangzhou Guangdong China
- Institute of Spinal Cord Injury, Sun Yat-sen University; Guangzhou Guangdong China
- Co-innovation Center of Neuroregeneration; Nantong Jiangsu China
| |
Collapse
|
36
|
Siddiqui N, Pramanik K. Effects of micro and nano β-TCP fillers in freeze-gelled chitosan scaffolds for bone tissue engineering. J Appl Polym Sci 2014. [DOI: 10.1002/app.41025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nadeem Siddiqui
- Department of Biotechnology and Medical Engineering; National Institute of Technology; Rourkela Odisha 769008 India
| | - Krishna Pramanik
- Department of Biotechnology and Medical Engineering; National Institute of Technology; Rourkela Odisha 769008 India
| |
Collapse
|
37
|
Choi S, Hong Y, Lee I, Huh D, Jeon TJ, Kim SM. Effects of various extracellular matrix proteins on the growth of HL-1 cardiomyocytes. Cells Tissues Organs 2014; 198:349-56. [PMID: 24662367 DOI: 10.1159/000358755] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2014] [Indexed: 11/19/2022] Open
Abstract
We present the physical and biochemical effects of extracellular matrixes (ECMs) on HL-1 cardiomyocytes. ECMs play major roles in cell growth, adhesion and the maintenance of native cell functions. We investigated the effects of 6 different cell culture systems: 5 different ECM-treated surfaces (fibronectin, laminin, collagen I, gelatin and a gelatin/fibronectin mixture) and 1 nontreated surface. Surface morphology was scanned and analyzed using atomic force microscopy in order to investigate the physical effects of ECMs. The attachment, growth, viability, proliferation and phenotype of the cells were analyzed using phase-contrast microscopy and immunocytochemistry to elucidate the biochemical effects of ECMs. Our study provides basic information for understanding cell-ECM interactions and should be utilized in future cardiac cell research and tissue engineering.
Collapse
Affiliation(s)
- Seongkyun Choi
- Department of Mechanical Engineering, Inha University, Incheon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
38
|
Zeng CG, Xiong Y, Xie G, Dong P, Quan D. Fabrication and evaluation of PLLA multichannel conduits with nanofibrous microstructure for the differentiation of NSCs in vitro. Tissue Eng Part A 2014; 20:1038-48. [PMID: 24138342 PMCID: PMC3938950 DOI: 10.1089/ten.tea.2013.0277] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022] Open
Abstract
Nerve conduits (NCs) with multiple longitudinally aligned channels, being mimicking the natural nerves anatomical structure, have been attracted more and more attentions. However, some specific structural parameters of a conduit that would be beneficial for further improvement of neural tissue regeneration were not comprehensively considered. Using a systematized device and combining low-pressure injection molding and thermal-induced phase separation, we fabricated 33-channel NCs (outer diameter 3.5 mm, channel diameter 200 μm) with different well-defined microscopic features, including NCs with a nano-fibrous microstructure (NNC), NCs with microspherical pores and nano-fibrous pore walls (MNC), and NCs with a ladder-like microstructure (LNC). The porosities of these NCs were ∼90% and were independent of the fine microstructures, whereas the pore size distributions were clearly distinct. The adsorption of bovine serum albumin for the NNC was a result of having the highest specific surface area, which was 3.5 times that of the LNC. But the mechanical strength of NNC was lower than that of two groups because of a relative high crystallinity and brittle characteristics. In vitro nerve stem cells (NSCs) incubation revealed that 14 days after seeding the NSCs, 31.32% cells were Map2 positive in the NNC group, as opposed to 15.76% in the LNC group and 23.29% in the MNC group. Addition of NGF into the culture medium, being distinctive specific surface area and a high adsorption of proteon for NNC, 81.11% of neurons derived from the differentiation of the seeded NSCs was obtained. As a result of imitating the physical structure of the basement membrane of the neural matrix, the nanofibrous structure of the NCs has facilitated the differentiation of NSCs into neurons.
Collapse
Affiliation(s)
- Chen-guang Zeng
- DSAPM and PCFM Lab, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Yi Xiong
- Shenzhen-PKU-HKUST Medical Center, Biomedical Research Institute, Shenzhen, China
| | - Gaoyi Xie
- DSAPM and PCFM Lab, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Peng Dong
- DSAPM and PCFM Lab, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Daping Quan
- DSAPM and PCFM Lab, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
39
|
Lai BQ, Wang JM, Ling EA, Wu JL, Zeng YS. Graft of a tissue-engineered neural scaffold serves as a promising strategy to restore myelination after rat spinal cord transection. Stem Cells Dev 2014; 23:910-21. [PMID: 24325427 DOI: 10.1089/scd.2013.0426] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Remyelination remains a challenging issue in spinal cord injury (SCI). In the present study, we cocultured Schwann cells (SCs) and neural stem cells (NSCs) with overexpression of neurotrophin-3 (NT-3) and its high affinity receptor tyrosine kinase receptor type 3 (TrkC), respectively, in a gelatin sponge (GS) scaffold. This was aimed to generate a tissue-engineered neural scaffold and to investigate whether it could enhance myelination after a complete T10 spinal cord transection in adult rats. Indeed, many NT-3 overexpressing SCs (NT-3-SCs) in the GS scaffold assumed the formation of myelin. More strikingly, a higher incidence of NSCs overexpressing TrkC differentiating toward myelinating cells was induced by NT-3-SCs. By transmission electron microscopy, the myelin sheath showed distinct multilayered lamellae formed by the seeded cells. Eighth week after the scaffold was transplanted, some myelin basic protein (MBP)-positive processes were observed within the transplantation area. Remarkably, certain segments of myelin derived from NSC-derived myelinating cells and NT-3-SCs were found to ensheath axons. In conclusion, we show here that transplantation of the GS scaffold promotes exogenous NSC-derived myelinating cells and SCs to form myelins in the injury/transplantation area of spinal cord. These findings thus provide a neurohistological basis for the future application or transplantation using GS neural scaffold to repair SCI.
Collapse
Affiliation(s)
- Bi-Qin Lai
- 1 Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University , Guangzhou, China
| | | | | | | | | |
Collapse
|
40
|
Tabatabaei Mirakabad FS, Nejati-Koshki K, Akbarzadeh A, Yamchi MR, Milani M, Zarghami N, Zeighamian V, Rahimzadeh A, Alimohammadi S, Hanifehpour Y, Joo SW. PLGA-Based Nanoparticles as Cancer Drug Delivery Systems. Asian Pac J Cancer Prev 2014; 15:517-35. [DOI: 10.7314/apjcp.2014.15.2.517] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
41
|
Wan F, Wu JX, Bohr A, Baldursdottir SG, Maltesen MJ, Bjerregaard S, Foged C, Rantanen J, Yang M. Impact of PLGA molecular behavior in the feed solution on the drug release kinetics of spray dried microparticles. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.08.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Mammadov B, Sever M, Guler MO, Tekinay AB. Neural differentiation on synthetic scaffold materials. Biomater Sci 2013; 1:1119-1137. [PMID: 32481935 DOI: 10.1039/c3bm60150a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The potential of stem cells to differentiate into a variety of subgroups of neural cells makes stem cell differentiation and transplantation a promising candidate for neurodegenerative disorder therapies. However, selective differentiation of stem cells to neurons while preventing glial scar formation is a complex process. Mimicking the natural environment of neural tissue is pivotal, thus various synthetic materials have been developed for this purpose. The synthetic scaffolds can direct stem cells into a neural lineage by including extracellular factors that act on cell fate, which are mainly soluble signals, extracellular matrix proteins and physical factors (e.g. elasticity and topography). This article reviews synthetic materials developed for neural regeneration in terms of their extracellular matrix mimicking properties. Functionalization of synthetic materials by addition of bioactive chemical groups and adjustment of physical properties such as topography, electroactivity and elasticity are discussed.
Collapse
Affiliation(s)
- Busra Mammadov
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey 06800.
| | | | | | | |
Collapse
|
43
|
Zamani F, Amani-Tehran M, Latifi M, Shokrgozar MA, Zaminy A. Promotion of spinal cord axon regeneration by 3D nanofibrous core-sheath scaffolds. J Biomed Mater Res A 2013; 102:506-13. [DOI: 10.1002/jbm.a.34703] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 01/06/2013] [Accepted: 02/19/2013] [Indexed: 11/08/2022]
Affiliation(s)
- F. Zamani
- Department of Textile Engineering; Textile Research and Excellence Centers, Amirkabir University of Technology; Tehran Iran
| | - M. Amani-Tehran
- Department of Textile Engineering; Textile Research and Excellence Centers, Amirkabir University of Technology; Tehran Iran
| | - M. Latifi
- Department of Textile Engineering; Textile Research and Excellence Centers, Amirkabir University of Technology; Tehran Iran
| | | | - A. Zaminy
- Department of Anatomy and cell Biology; School of Medicine, Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
44
|
Du BL, Zeng CG, Zhang W, Quan DP, Ling EA, Zeng YS. A comparative study of gelatin sponge scaffolds and PLGA scaffolds transplanted to completely transected spinal cord of rat. J Biomed Mater Res A 2013; 102:1715-25. [PMID: 23776140 DOI: 10.1002/jbm.a.34835] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/31/2013] [Accepted: 06/05/2013] [Indexed: 11/09/2022]
Abstract
This study sought to investigate whether gelatin sponge (GS) scaffold would produce less acidic medium in injured spinal cord, as compared with poly(lactic-co-glycolic acid) (PLGA) scaffold, to determine which of the two scaffolds as the biomaterial is more suitable for transplantation into spinal cord. GS scaffold or PLGA scaffold was transplanted into a transected spinal cord in this study. Two months after transplantation of scaffolds, acid sensing ion channel 1a (ASIC1a) positive cells expressing microtubule associated protein 2 (Map2) were observed as well as expressing adenomatous polyposis coli (APC) in spinal cord. GFAP positive cells were distributed at the rostral and caudal of the injury/graft area in the GS and PLGA groups. Western blot showed ASIC1a and GFAP expression of injured spinal cord was downregulated in the GS group. The number of CD68 positive cells was fewer and NF nerve fibers were more in the GS group. Nissl staining and cell counting showed that the number of survival neurons was comparable between the GS and PLGA groups in the pyramidal layer of sensorimotor cortex and the red nucleus of midbrain. However, in the Clarke's nucleus at L1 spinal segment, the surviving neurons in the GS group were more numerous than that in the PLGA group. H&E staining showed that the tissue cavities in the GS group were smaller in size than that in the PLGA group. The results suggest that GS scaffold is more suitable for transplantation to promote the recovery of spinal cord injury compared with PLGA scaffold.
Collapse
Affiliation(s)
- Bao-ling Du
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | | | | | | | | | | |
Collapse
|
45
|
Zamani F, Amani-Tehran M, Latifi M, Shokrgozar MA. The influence of surface nanoroughness of electrospun PLGA nanofibrous scaffold on nerve cell adhesion and proliferation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1551-1560. [PMID: 23494618 DOI: 10.1007/s10856-013-4905-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 03/04/2013] [Indexed: 06/01/2023]
Abstract
Electrospun nanofibrous scaffolds in neural tissue engineering provide an alternative approach for neural regeneration. Since the topography of a surface affects the microscopic behaviour of material; the creation of nanoscale surface features, which mimic the natural roughness of live tissue, on polymer surfaces can promote an appropriate cell growth and proliferation. In this research, a unique PLGA nanofibrous structure was fabricated without any post-electrospinning treatment. Scaffolds were prepared in two general groups: cylindrical and ribbon-shaped electrospun fibres, with smooth and rough (porous and grooved) surfaces. The experiments about nerve cell culture have demonstrated that the nanoroughness of PLGA electrospun scaffolds can increase the cell growing rate to 50 % in comparison with smooth and conventional electrospun scaffolds. SEM and AFM images and MTT assay results have shown that the roughened cylindrical scaffolds enhance the nerve growth and proliferation compared to smooth and ribbon-shaped nanofibrous scaffolds. A linear interaction has been found between cell proliferation and surface features. This helps to approximate MTT assay results by roughness parameters.
Collapse
Affiliation(s)
- Fatemeh Zamani
- Department of Textile Engineering, Textile Research and Excellence Centers, Amirkabir University of Technology, Tehran, Iran
| | | | | | | |
Collapse
|
46
|
García-Parra P, Maroto M, Cavaliere F, Naldaiz-Gastesi N, Álava JI, García AG, López de Munain A, Izeta A. A neural extracellular matrix-based method for in vitro hippocampal neuron culture and dopaminergic differentiation of neural stem cells. BMC Neurosci 2013; 14:48. [PMID: 23594371 PMCID: PMC3639926 DOI: 10.1186/1471-2202-14-48] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/13/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The ability to recreate an optimal cellular microenvironment is critical to understand neuronal behavior and functionality in vitro. An organized neural extracellular matrix (nECM) promotes neural cell adhesion, proliferation and differentiation. Here, we expanded previous observations on the ability of nECM to support in vitro neuronal differentiation, with the following goals: (i) to recreate complex neuronal networks of embryonic rat hippocampal cells, and (ii) to achieve improved levels of dopaminergic differentiation of subventricular zone (SVZ) neural progenitor cells. METHODS Hippocampal cells from E18 rat embryos were seeded on PLL- and nECM-coated substrates. Neurosphere cultures were prepared from the SVZ of P4-P7 rat pups, and differentiation of neurospheres assayed on PLL- and nECM-coated substrates. RESULTS When seeded on nECM-coated substrates, both hippocampal cells and SVZ progenitor cells showed neural expression patterns that were similar to their poly-L-lysine-seeded counterparts. However, nECM-based cultures of both hippocampal neurons and SVZ progenitor cells could be maintained for longer times as compared to poly-L-lysine-based cultures. As a result, nECM-based cultures gave rise to a more branched neurite arborization of hippocampal neurons. Interestingly, the prolonged differentiation time of SVZ progenitor cells in nECM allowed us to obtain a purer population of dopaminergic neurons. CONCLUSIONS We conclude that nECM-based coating is an efficient substrate to culture neural cells at different stages of differentiation. In addition, neural ECM-coated substrates increased neuronal survival and neuronal differentiation efficiency as compared to cationic polymers such as poly-L-lysine.
Collapse
Affiliation(s)
- Patricia García-Parra
- Tissue Engineering Laboratory, Department of Bioengineering, Instituto Biodonostia, Hospital Universitario Donostia, San Sebastian, 20014, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Lai BQ, Wang JM, Duan JJ, Chen YF, Gu HY, Ling EA, Wu JL, Zeng YS. The integration of NSC-derived and host neural networks after rat spinal cord transection. Biomaterials 2013; 34:2888-901. [DOI: 10.1016/j.biomaterials.2012.12.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 12/30/2012] [Indexed: 12/27/2022]
|
48
|
Ding Y, Yan Q, Ruan JW, Zhang YQ, Li WJ, Zeng X, Huang SF, Zhang YJ, Wu JL, Fisher D, Dong H, Zeng YS. Electroacupuncture Promotes the Differentiation of Transplanted Bone Marrow Mesenchymal Stem Cells Overexpressing TrkC into Neuron-Like Cells in Transected Spinal Cord of Rats. Cell Transplant 2013; 22:65-86. [DOI: 10.3727/096368912x655037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Our previous study indicated that electroacupuncture (EA) could increase neurotrophin-3 (NT-3) levels in the injured spinal cord, stimulate the differentiation of transplanted bone marrow mesenchymal stem cells (MSCs), and improve functional recovery in the injured spinal cord of rats. However, the number of neuron-like cells derived from the MSCs is limited. It is known that NT-3 promotes the survival and differentiation of neurons by preferentially binding to its receptor TrkC. In this study, we attempted to transplant TrkC gene-modified MSCs (TrkC-MSCs) into the spinal cord with transection to investigate whether EA treatment could promote NT-3 secretion in the injured spinal cord and to determine whether increased NT-3 could further enhance transplanted MSCs overexpressing TrkC to differentiate into neuron-like cells, resulting in increased axonal regeneration and functional improvement in the injured spinal cord. Our results showed that EA increased NT-3 levels; furthermore, it promoted neuron-phenotype differentiation, synaptogenesis, and myelin formation of transplanted TrkC-MSCs. In addition, TrkC-MSC transplantation combined with EA (the TrkC-MSCs + EA group) treatment promoted the growth of the descending BDA-labeled corticospinal tracts (CSTs) and 5-HT-positive axonal regeneration across the lesion site into the caudal cord. In addition, the conduction of cortical motor-evoked potentials (MEPs) and hindlimb locomotor function increased as compared to controls (treated with the LacZ-MSCs, TrkC-MSCs, and LacZ-MSCs + EA groups). In the TrkC-MSCs + EA group, the injured spinal cord also showed upregulated expression of the proneurogenic factors laminin and GAP-43 and downregulated GFAP and chondroitin sulfate proteoglycans (CSPGs), major inhibitors of axonal growth. Together, our data suggest that TrkC-MSC transplantation combined with EA treatment spinal cord injury not only increased MSC survival and differentiation into neuron-like cells but also promoted CST regeneration across injured sites to the caudal cord and functional improvement, perhaps due to increase of NT-3 levels, upregulation of laminin and GAP-43, and downregulation of GFAP and CSPG proteins.
Collapse
Affiliation(s)
- Ying Ding
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qing Yan
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jing-Wen Ruan
- Department of Acupuncture of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan-Qing Zhang
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wen-Jie Li
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Si-Fan Huang
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yu-Jiao Zhang
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jin-Lang Wu
- Department of Electron Microscope, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Danny Fisher
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Yuan-Shan Zeng
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
49
|
Wang M, Chen X, Schreyer DJ. Spinal Cord Repair by Means of Tissue Engineered Scaffolds. EMERGING TRENDS IN CELL AND GENE THERAPY 2013:485-547. [DOI: 10.1007/978-1-62703-417-3_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
50
|
Lu X, Wang L, Yang Z, Lu H. Strategies of polyhydroxyalkanoates modification for the medical application in neural regeneration/nerve tissue engineering. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.46097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|