1
|
Zhao Y, Wang X, Yang X, Li J, Han B. Insights into the history and trends of nanotechnology for the treatment of hepatocellular carcinoma: a bibliometric-based visual analysis. Discov Oncol 2025; 16:484. [PMID: 40192866 PMCID: PMC11977073 DOI: 10.1007/s12672-025-02145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/13/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Nanotechnology has great potential and advantages in the treatment of hepatocellular carcinoma (HCC), but the research trends and future directions are not yet clear. OBJECTIVES Analyze the development trajectory, research hotspots, and future trends of nanotechnology and HCC research globally in the past 20 years, providing a more comprehensive and intuitive reference for researchers in this field. METHODS Retrieve relevant literature on nanotechnology and HCC research in the Web of Science (WOS) Core Collection database, and conduct bibliometric analysis using software such as CiteSpace, VOSviewer, and SCImago Graphica. RESULTS A total of 852 English publications meeting the criteria were retrieved from the WOS database, with an overall increasing trend in the number of publications and citation frequency over the years. China leads in the number of publications and international collaborations, followed by the USA and India. The most influential research institution is the Chinese Academy of Sciences, the most influential scholar/team is the Rahman, Mahfoozur team, and the journal with the most publications is the International Journal of Nanomedicine. A comprehensive analysis reveals that the current main research directions include new types of nanoparticles, targeted drug delivery systems, photothermal/photodynamic therapy, gene delivery systems, diagnostics, and imaging. It is anticipated that further collaboration among scholars, institutions, and countries will accelerate the development of nanotechnology in the field of HCC research. CONCLUSION This study provides an in-depth analysis of the research status and development trends of nanotechnology in treating HCC from a bibliometric perspective, offering possible guidance for researchers to explore hot topics and frontiers, select suitable journals, and partners in this field.
Collapse
Affiliation(s)
- Yulei Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Xingxin Wang
- College of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaoman Yang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Jiaheng Li
- College of Health, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Bingbing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
| |
Collapse
|
2
|
Khan H, Shahab U, Alshammari A, Alyahyawi AR, Akasha R, Alharazi T, Ahmad R, Khanam A, Habib S, Kaur K, Ahmad S, Moinuddin. Nano-therapeutics: The upcoming nanomedicine to treat cancer. IUBMB Life 2024; 76:468-484. [PMID: 38440959 DOI: 10.1002/iub.2814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024]
Abstract
Nanotechnology is considered a successful approach for cancer diagnosis and treatment. Preferentially, cancer cell recognition and drug targeting via nano-delivery system include the penetration of anticancer agents into the cell membrane to damage the cancer cell by protein modification, DNA oxidation, or mitochondrial dysfunction. The past research on nano-delivery systems and their target has proven the beneficial achievement in a malignant tumor. Modern perceptions using inventive nanomaterials for cancer management have been offered by a multifunctional platform based on various nano-carriers with the probability of imaging and cancer therapy simultaneously. Emerging nano-delivery systems in cancer therapy still lack knowledge of the biological functions behind the interaction between nanoparticles and cancer cells. Since the potential of engineered nanoparticles addresses the various challenges, limiting the success of cancer therapy subsequently, it is a must to review the molecular targeting of a nano-delivery system to enhance the therapeutic efficacy of cancer. This review focuses on using a nano-delivery system, an imaging system, and encapsulated nanoparticles for cancer therapy.
Collapse
Affiliation(s)
- Hamda Khan
- Department of Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow, India
| | - Ahmed Alshammari
- Department of Internal Medicine, College of Medicine, University of Hail, Ha'il, Saudi Arabia
| | - Amjad R Alyahyawi
- Department of Diagnostic Radiology, College of Applied Medical Science, University of Hail, Ha'il, Saudi Arabia
- Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford, UK
| | - Rihab Akasha
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Ha'il, Saudi Arabia
| | - Talal Alharazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Ha'il, Saudi Arabia
| | - Rizwan Ahmad
- Department of Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Afreen Khanam
- Department of Biotechnology & Life Science, Institute of Biomedical Education & Research, Mangalayatan University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Kirtanjot Kaur
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Ha'il, Saudi Arabia
| | - Moinuddin
- Department of Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
3
|
Wang Q, Liu J, Chen Z, Zheng J, Wang Y, Dong J. Targeting metabolic reprogramming in hepatocellular carcinoma to overcome therapeutic resistance: A comprehensive review. Biomed Pharmacother 2024; 170:116021. [PMID: 38128187 DOI: 10.1016/j.biopha.2023.116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a heavy burden on human health with high morbidity and mortality rates. Systematic therapy is crucial for advanced and mid-term HCC, but faces a significant challenge from therapeutic resistance, weakening drug effectiveness. Metabolic reprogramming has gained attention as a key contributor to therapeutic resistance. Cells change their metabolism to meet energy demands, adapt to growth needs, or resist environmental pressures. Understanding key enzyme expression patterns and metabolic pathway interactions is vital to comprehend HCC occurrence, development, and treatment resistance. Exploring metabolic enzyme reprogramming and pathways is essential to identify breakthrough points for HCC treatment. Targeting metabolic enzymes with inhibitors is key to addressing these points. Inhibitors, combined with systemic therapeutic drugs, can alleviate resistance, prolong overall survival for advanced HCC, and offer mid-term HCC patients a chance for radical resection. Advances in metabolic research methods, from genomics to metabolomics and cells to organoids, help build the HCC metabolic reprogramming network. Recent progress in biomaterials and nanotechnology impacts drug targeting and effectiveness, providing new solutions for systemic therapeutic drug resistance. This review focuses on metabolic enzyme changes, pathway interactions, enzyme inhibitors, research methods, and drug delivery targeting metabolic reprogramming, offering valuable references for metabolic approaches to HCC treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Ziye Chen
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Jingjing Zheng
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Luo K, Gao Y, Yin S, Yao Y, Yu H, Wang G, Li J. Co-delivery of paclitaxel and STAT3 siRNA by a multifunctional nanocomplex for targeted treatment of metastatic breast cancer. Acta Biomater 2021; 134:649-663. [PMID: 34289420 DOI: 10.1016/j.actbio.2021.07.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/31/2022]
Abstract
Metastasis is one of the major causes of mortality in patients suffering from breast cancer. The signal transducer and activator of transcription 3 (STAT3) is closely related to cancer metastasis. Herein, a multifunctional nanocomplex was developed to simultaneously deliver paclitaxel (PTX) and STAT3 siRNA (siSTAT3) to inhibit tumor growth and prevent metastasis of breast cancer cells. PTX was encapsulated into the synthesized polyethyleneimine-polylactic acid-lipoic acid (PPL) micelle through hydrophobic interaction, while siSTAT3 was condensed onto polyethyleneimine through electrostatic interaction. The surface charge of the drug-loaded nanocomplex (siSTAT3PPLPTX) was then converted to negative by coating with hyaluronic acid (HA). The multifunctional nanocomplex (HA/siSTAT3PPLPTX) effectively entered CD44-overexpressed 4T1 cells via an active targeting mechanism. HA shell was degraded by the concentrated hyaluronidase in the endo/lysosome and the rapid drug release was triggered by the redox micro-environment of cytoplasm. Moreover, HA/siSTAT3PPLPTX showed enhanced cytotoxicity against tumor cells due to a synergistic effect of PTX and siSTAT3. The effective inhibition of tumor metastasis was confirmed by in vitro cell migration and invasion in 4T1 cells. More importantly, a superior antitumor efficacy was observed in orthotopic 4T1 tumor-bearing mice, with no side effects in major organs, and the lung metastasis was strongly inhibited in 4T1 metastasis model. In conclusion, the multifunctional nanocomplex provides a versatile platform for efficient treatment of metastatic cancer through tumor-targeted chemo-gene combined therapy. STATEMENT OF SIGNIFICANCE: Metastasis is one of the major causes of mortality in patients suffering from breast cancer. The signal transducer and activator of transcription 3 (STAT3) is closely related to cancer metastasis. In this study, a multifunctional nanocomplex co-loaded with paclitaxel (PTX) and STAT3 siRNA was constructed and characterized. The co-delivery system exhibited active tumor targeting, effective endo/lysosomal escape, and rapid intracellular drug release. Both in vitro and in vivo studies indicated that the nanocomplex could lead to superior tumor growth inhibition, as well as metastasis suppression by silencing expression of STAT3 and p-STAT3. This present study implies that the nanocomplex could be a potential platform for targeted treatment of metastatic cancer through chemo-gene combined therapy.
Collapse
Affiliation(s)
- Kaipei Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Gao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Shaoping Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Yawen Yao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China.
| | - Guangji Wang
- Center of Pharmacokinetics, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Juan Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
5
|
Wang X, Liu Z, Jin R, Cai B, Liu S, Bai Y, Chen X. Multifunctional hierarchical nanohybrids perform triple antitumor theranostics in a cascaded manner for effective tumor treatment. Acta Biomater 2021; 128:408-419. [PMID: 33878477 DOI: 10.1016/j.actbio.2021.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/31/2021] [Accepted: 04/10/2021] [Indexed: 12/12/2022]
Abstract
Gene therapy based on transfection of RNAs/DNAs offers tremendous promise for tumor treatment. However, the relatively weak therapeutic efficiency of current genetic nanohybrids in vivo has limited the application of this strategy. Herein, we fabricated multifunctional core-shell-corona nanohybrids by combining cascaded theranostics for enhanced gene therapy. The nanohybrids consist of polydopamine-modified Fe3O4 nanoparticles as core, anti-miRNA-21 oligonucleotides (anti-miRNA) strands as shell, and doxorubicin (DOX)-conjugated DNA-8pb (DOX-DNA-8bp) as corona. The polydopamine/Fe3O4 core not only serves as an active agent for local photothermal therapy under NIR irradiation, but it also provides magnetic targeting to tumor tissue for accurate treatment, which could enhance the therapeutic effect and reduce the undesired side effects to healthy tissues. The DOX-DNA-8bp corona was grafted on the anti-miRNA shell through base pairing, which could be replaced by overexpressed miRNA-21 in tumor cells due to the strong interaction between miRNA-21 and anti-miRNA, resulting in tumor-specific gene therapy through tumorigenic miRNA-21 consumption and tumor selective chemotherapy through miRNA-21-triggered DOX-DNA-8bp release in tumor cells. Moreover, the intelligent controlled release system can gradually stop the release of DOX to prevent side effects caused by drug overdose, once sufficient damage of tumor cells has occurred, due to the downregulation of miRNA-21. The results of both in vitro and in vivo analyses showed that the nanohybrids combining cascaded chemo-photo-gene therapy could effectively inhibit tumor growth, promote the survival of tumor-bearing mice, and show no visible adverse effects on these mice, resulting in a promising nanoplatform for tumor treatment. STATEMENT OF SIGNIFICANCE: Gene therapy based on transfection of RNAs/DNAs offers tremendous promise for cancer treatment. However, the relatively weak therapeutic efficiency of current genetic nanovectors in vivo that results in insufficient tumor targeting and easy decomposition/elimination of RNAs/DNAs during therapy has limited its application. Although some approaches have combined photothermal agents or antitumor drugs with RNA/DNA nanocarriers to achieve better treatment, the spatiotemporal differences in photothermal therapy, chemotherapy, and gene therapy using current nanohybrids may hinder their synergistic effect. In the present study, we fabricated multifunctional core-shell-corona nanohybrids (Fe3O4@PDA@anti-miRNA/DNA) to simultaneously perform on-demand photothermal therapy, miR-21-triggered chemotherapy, and miR-21-dependent gene therapy at the same location, which can achieve an efficient synergistic effect for precise and effective tumor treatment.
Collapse
Affiliation(s)
- Xiangdong Wang
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Shenzhen Research Institute, Xi'an Jiao Tong University, Xi'an, 714049, China; Xi'an Jiao Tong University Shenzhen Research School, High-Tech Zone, Shenzhen, 518057, China
| | - Zhongning Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, China
| | - Ronghua Jin
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Shenzhen Research Institute, Xi'an Jiao Tong University, Xi'an, 714049, China
| | - Bolei Cai
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology & National, Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yongkang Bai
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Shenzhen Research Institute, Xi'an Jiao Tong University, Xi'an, 714049, China
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Shenzhen Research Institute, Xi'an Jiao Tong University, Xi'an, 714049, China.
| |
Collapse
|
6
|
Rawal S, Patel M. Bio-Nanocarriers for Lung Cancer Management: Befriending the Barriers. NANO-MICRO LETTERS 2021; 13:142. [PMID: 34138386 PMCID: PMC8196938 DOI: 10.1007/s40820-021-00630-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/23/2021] [Indexed: 05/03/2023]
Abstract
Lung cancer is a complex thoracic malignancy developing consequential to aberrations in a myriad of molecular and biomolecular signaling pathways. It is one of the most lethal forms of cancers accounting to almost 1.8 million new annual incidences, bearing overall mortality to incidence ratio of 0.87. The dismal prognostic scenario at advanced stages of the disease and metastatic/resistant tumor cell populations stresses the requisite of advanced translational interdisciplinary interventions such as bionanotechnology. This review article deliberates insights and apprehensions on the recent prologue of nanobioengineering and bionanotechnology as an approach for the clinical management of lung cancer. The role of nanobioengineered (bio-nano) tools like bio-nanocarriers and nanobiodevices in secondary prophylaxis, diagnosis, therapeutics, and theranostics for lung cancer management has been discussed. Bioengineered, bioinspired, and biomimetic bio-nanotools of considerate translational value have been reviewed. Perspectives on existent oncostrategies, their critical comparison with bio-nanocarriers, and issues hampering their clinical bench side to bed transformation have also been summarized.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India
| | - Mayur Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
7
|
Zeb A, Rana I, Choi HI, Lee CH, Baek SW, Lim CW, Khan N, Arif ST, Sahar NU, Alvi AM, Shah FA, Din FU, Bae ON, Park JS, Kim JK. Potential and Applications of Nanocarriers for Efficient Delivery of Biopharmaceuticals. Pharmaceutics 2020; 12:E1184. [PMID: 33291312 PMCID: PMC7762162 DOI: 10.3390/pharmaceutics12121184] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
During the past two decades, the clinical use of biopharmaceutical products has markedly increased because of their obvious advantages over conventional small-molecule drug products. These advantages include better specificity, potency, targeting abilities, and reduced side effects. Despite the substantial clinical and commercial success, the macromolecular structure and intrinsic instability of biopharmaceuticals make their formulation and administration challenging and render parenteral delivery as the only viable option in most cases. The use of nanocarriers for efficient delivery of biopharmaceuticals is essential due to their practical benefits such as protecting from degradation in a hostile physiological environment, enhancing plasma half-life and retention time, facilitating absorption through the epithelium, providing site-specific delivery, and improving access to intracellular targets. In the current review, we highlight the clinical and commercial success of biopharmaceuticals and the overall applications and potential of nanocarriers in biopharmaceuticals delivery. Effective applications of nanocarriers for biopharmaceuticals delivery via invasive and noninvasive routes (oral, pulmonary, nasal, and skin) are presented here. The presented data undoubtedly demonstrate the great potential of combining nanocarriers with biopharmaceuticals to improve healthcare products in the future clinical landscape. In conclusion, nanocarriers are promising delivery tool for the hormones, cytokines, nucleic acids, vaccines, antibodies, enzymes, and gene- and cell-based therapeutics for the treatment of multiple pathological conditions.
Collapse
Affiliation(s)
- Alam Zeb
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Isra Rana
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Ho-Ik Choi
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Cheol-Ho Lee
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Seong-Woong Baek
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Chang-Wan Lim
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Namrah Khan
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Sadia Tabassam Arif
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Najam us Sahar
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Arooj Mohsin Alvi
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Fakhar ud Din
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Ok-Nam Bae
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Jeong-Sook Park
- Institute of Drug Research and Development, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Jin-Ki Kim
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| |
Collapse
|
8
|
Liang J, Yang X, Liu D, Cong M, Song Y, Bai S. Lipid/Hyaluronic Acid-Coated Doxorubicin-Fe 3O 4 as a Dual-Targeting Nanoparticle for Enhanced Cancer Therapy. AAPS PharmSciTech 2020; 21:235. [PMID: 32803528 DOI: 10.1208/s12249-020-01764-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Development of a delivery system to lower systemic toxicity and enhance doxorubicin (DOX) antitumor efficacy against multi-drug resistant (MDR) tumors is of great clinical significance. Here, lipid/hyaluronic acid (HA)-coated DOX-Fe3O4 was characterized to determine its optimal safety and efficacy on a tumor. DOX was first conjugated onto the Fe3O4 NPs surface, which was subsequently coated with phosphatidylcholine (PC) lipids, which consisted of a tumor cell-targeting HA ligand, to generate a dual-targeting nanoparticle (NP). DOX-Fe3O4 synthesis was validated by the Fourier-transform infrared (FT-IR) analysis results. Core-shell PC/HA@DOX-Fe3O4 formation, which had an average particle size of 48.2 nm, was observed based on the transmission electron microscopy (TEM) and dynamic laser light scattering (DLS) results. The saturation magnetization value of PC/HA@DOX-Fe3O4 was discovered to be 28 emu/g using vibrating-sample magnetometry. Furthermore, the designed PC/HA@DOX-Fe3O4 achieved greater MCF-7/ADR cellular uptake and cytotoxicity as compared with DOX. In addition, PC/HA@DOX-Fe3O4 exhibited significant DOX tumor-targeting capabilities and enhanced tumor growth inhibition activity in the xenograft MCF-7/ADR tumor-bearing nude mice following magnetic attraction and ligand-mediated targeting, with less cardiotoxicity. Therefore, PC/HA@DOX-Fe3O4 is a potential candidate for MDR tumor chemotherapy. Graphical abstract.
Collapse
|
9
|
Plasma polymerized nanoparticles effectively deliver dual siRNA and drug therapy in vivo. Sci Rep 2020; 10:12836. [PMID: 32732927 PMCID: PMC7393381 DOI: 10.1038/s41598-020-69591-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
Multifunctional nanocarriers (MNCs) promise to improve therapeutic outcomes by combining multiple classes of molecules into a single nanostructure, enhancing active targeting of therapeutic agents and facilitating new combination therapies. However, nanocarrier platforms currently approved for clinical use can still only carry a single therapeutic agent. The complexity and escalating costs associated with the synthesis of more complex MNCs have been major technological roadblocks in the pathway for clinical translation. Here, we show that plasma polymerized nanoparticles (PPNs), synthesised in reactive gas discharges, can bind and effectively deliver multiple therapeutic cargo in a facile and cost-effective process compatible with up scaled commercial production. Delivery of siRNA against vascular endothelial growth factor (siVEGF) at extremely low concentrations (0.04 nM), significantly reduced VEGF expression in hard-to-transfect cells when compared with commercial platforms carrying higher siRNA doses (6.25 nM). PPNs carrying a combination of siVEGF and standard of care Paclitaxel (PPN-Dual) at reduced doses (< 100 µg/kg) synergistically modulated the microenvironment of orthotopic breast tumors in mice, and significantly reduced tumor growth. We propose PPNs as a new nanomaterial for delivery of therapeutics, which can be easily functionalised in any laboratory setting without the need for additional wet-chemistry and purification steps.
Collapse
|
10
|
Chi X, Liu K, Luo X, Yin Z, Lin H, Gao J. Recent advances of nanomedicines for liver cancer therapy. J Mater Chem B 2020; 8:3747-3771. [DOI: 10.1039/c9tb02871d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review highlights recent advancements in nanomedicines for liver cancer therapy.
Collapse
Affiliation(s)
- Xiaoqin Chi
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma
- Zhongshan Hospital
- Xiamen University
- Xiamen 361004
- China
| | - Kun Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Xiangjie Luo
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Zhenyu Yin
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma
- Zhongshan Hospital
- Xiamen University
- Xiamen 361004
- China
| | - Hongyu Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Jinhao Gao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| |
Collapse
|
11
|
Co-delivery of paclitaxel and survivin siRNA with cationic liposome for lung cancer therapy. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Sun Y, Ma W, Yang Y, He M, Li A, Bai L, Yu B, Yu Z. Cancer nanotechnology: Enhancing tumor cell response to chemotherapy for hepatocellular carcinoma therapy. Asian J Pharm Sci 2019; 14:581-594. [PMID: 32104485 PMCID: PMC7032247 DOI: 10.1016/j.ajps.2019.04.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 03/06/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers due to its complexities, reoccurrence after surgical resection, metastasis and heterogeneity. In addition to sorafenib and lenvatinib for the treatment of HCC approved by FDA, various strategies including transarterial chemoembolization, radiotherapy, locoregional therapy and chemotherapy have been investigated in clinics. Recently, cancer nanotechnology has got great attention for the treatment of various cancers including HCC. Both passive and active targetings are progressing at a steady rate. Herein, we describe the lessons learned from pathogenesis of HCC and the understanding of targeted and non-targeted nanoparticles used for the delivery of small molecules, monoclonal antibodies, miRNAs and peptides. Exploring current efficacy is to enhance tumor cell response of chemotherapy. It highlights the opportunities and challenges faced by nanotechnologies in contemporary hepatocellular carcinoma therapy, where personalized medicine is increasingly becoming the mainstay. Overall objective of this review is to enhance our understanding in the design and development of nanotechnology for treatment of HCC.
Collapse
Affiliation(s)
- Yongbing Sun
- National Engineering Research Center for solid preparation technology of Chinese Medicines, Jiangxi University of Traditional Chinese Medicines, Nanchang 330006, China
| | - Wen Ma
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuanyuan Yang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mengxue He
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Aimin Li
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Lei Bai
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown 26506, USA
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
13
|
Khan AA, Alanazi AM, Jabeen M, Chauhan A, Ansari MA. Therapeutic potential of functionalized siRNA nanoparticles on regression of liver cancer in experimental mice. Sci Rep 2019; 9:15825. [PMID: 31676815 PMCID: PMC6825139 DOI: 10.1038/s41598-019-52142-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022] Open
Abstract
Short interfering RNA (siRNA) possesses special ability of silencing specific gene. To increase siRNA stability, transportation and its uptake by tumor cells, effective delivery to the appropriate target cells is a major challenge of siRNA-based therapy. In the present study, an effective, safe and biocompatible survivin siRNA encapsulated, GalNAc decorated PEGylated PLGA nanoconjugates (NCs) viz., GalNAc@PEG@siRNA-PLGA were engineered and their synergistic antitumor efficacy was evaluated for targeted delivery in HCC bearing experimental mice. GalNAc@PEG@siRNA-PLGA NCs were characterized for size, bioavailability, toxicity and biocompatibility. Their antitumor potential was evaluated considering gene silencing, apoptosis, histopathology and survival of treated mice. Exceptional accumulation of hepatocytes, reduction in survivin expression and prominent regression in tumor size confirmed the ASGPR-mediated uptake of ligand-anchored NCs and silencing of survivin gene in a targeted manner. Increased DNA fragmentation and potential modulation of caspase-3, Bax and Bcl-2 factors specified the induction of apoptosis that helped in significant inhibition of HCC progression. The potential synchronous and tumor selective delivery of versatile NCs indicated the effective payloads towards the target site, increased apoptosis in cancer cells and improved survival of treated animals.
Collapse
Affiliation(s)
- Azmat Ali Khan
- 0000 0004 1773 5396grid.56302.32Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Amer M. Alanazi
- 0000 0004 1773 5396grid.56302.32Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Mumtaz Jabeen
- 0000 0004 1937 0765grid.411340.3Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Arun Chauhan
- 0000 0004 1936 8163grid.266862.eDepartment of Neuroimmunology, School of Health and Medicine, University of North Dakota, Grand Forks, ND USA
| | - Mohammad Azam Ansari
- 0000 0004 0607 035Xgrid.411975.fDepartment of Epidemic Disease Research, Institutes of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia
| |
Collapse
|
14
|
Nanomedicine as a putative approach for active targeting of hepatocellular carcinoma. Semin Cancer Biol 2019; 69:91-99. [PMID: 31421265 DOI: 10.1016/j.semcancer.2019.08.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/04/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022]
Abstract
The effectiveness of chemotherapy in hepatocellular carcinoma (HCC) is restricted by chemo-resistance and systemic side effects. To improve the efficacy and safety of chemotherapeutics in HCC management, scientists have attempted to deliver these drugs to malignant tissues using targeted carriers as nanoparticles (NPs). Among the three types of NPs targeting (active, passive, and stimuli-responsive), active targeting is the most commonly investigated in HCC treatment. Despite the observed promising results so far, clinical research on nanomedicine targeting for HCC treatment still faces many challenges.These include batch-to-batch physicochemical properties' variations, limiting large scale production and insufficient data on human and environmental toxicities. This review summarized the characteristics of different nanocarriers, ligands, targeted receptors on HCC cells and provided recommendations to overcome the challenges, facing this novel line of treatment for HCC.
Collapse
|
15
|
Liu T, Chen S, Wu X, Han H, Zhang S, Wu P, Su X, Wu T, Yu S, Cai X. Folate-Targeted pH and Redox Dual Stimulation-Responsive Nanocarrier for Codelivering of Docetaxel and TFPI-2 for Nasopharyngeal Carcinoma Therapy. ACS APPLIED BIO MATERIALS 2019; 2:1830-1841. [PMID: 35030673 DOI: 10.1021/acsabm.8b00675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to the increasing incidence of tumor metastasis and multidrug resistance, even though a combined use of chemotherapy and radiotherapy is introduced, the 5-year average survival rate of an advanced nasopharyngeal carcinoma (NPC) patient still remains low. Hence, targeted slow-release anticancer drugs represent a potential therapy for advanced NPC. In this study, pH and redox dual stimulation-responsive folate-targeted folic acid - β-cyclodextrin - hyperbranched poly(amido amine)s (FA-DS-PAAs) nanocarriers for codelivery of docetaxel (DOC) and tissue factor pathway inhibitor 2 (TFPI-2) for NPC therapy are discussed. Physical and chemical properties, in vitro DOC-release properties, folic acid (FA)-targeting, transfection, Western blotting, DOC and TFPI-2 codelivery, therapeutic properties, targeted inhibition, and biocompatibility, in vivo FA-targeting, toxicity, and therapeutic properties of FA-DS-PAAs/DOC/TFPI2 nanoparticles are evaluated. The results indicate that the 200 nm low-toxicity FA-DS-PAAs/DOC/TFPI2 nanoparticles could enhance TFPI2 gene expression, make cancer cells more sensitive to DOC, induce cell apoptosis, and reduce cell invasion more effectively compared with monochemotherapy. With respect to the targeted release of drugs (DOC and TFPI2) in tumor cells, FA-DS-PAAs/DOC/TFPI2 is associated with the slowest growth rate of tumor and the smallest volume of tumor, so this study demonstrates the best synergetic antitumor effect. We anticipate that this study is important because it not only provides a potential new therapy approach for NPC but also paves the preclinical way for potential application of FA-DS-PAAs/DOC/TFPI2.
Collapse
Affiliation(s)
- Tao Liu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhongshan Second Road, 510080, Guangzhou, P.R. China
| | - Shaohua Chen
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhongshan Second Road, 510080, Guangzhou, P.R. China
| | - Xidong Wu
- Department of Pharmacology, Jiangxi Testing Center of Medical Instruments, No. 181, Nanjing East Road, 330029, Nanchang, P. R. China
| | - Hong Han
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhongshan Second Road, 510080, Guangzhou, P.R. China
| | - Siyi Zhang
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhongshan Second Road, 510080, Guangzhou, P.R. China
| | - Peina Wu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhongshan Second Road, 510080, Guangzhou, P.R. China
| | - Xiaomei Su
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhongshan Second Road, 510080, Guangzhou, P.R. China
| | - Ting Wu
- Department of Light Chemical Engineering, Guangdong Polytechnic, No. 20, Lanshi 2th Road, 528041, Chancheng District, Foshan, P.R. China
| | - Shaobin Yu
- The No. 1 Surgery Department, No. 5 People's Hospital of Foshan, No. 63, Xiqiao Zhen Jiang Pu Dong Road, 528211, Nanhai District, Foshan, Guangdong Province, P.R. China
| | - Xiang Cai
- Department of Light Chemical Engineering, Guangdong Polytechnic, No. 20, Lanshi 2th Road, 528041, Chancheng District, Foshan, P.R. China
| |
Collapse
|
16
|
Yugui F, Wang H, Sun D, Zhang X. Nasopharyngeal cancer combination chemoradiation therapy based on folic acid modified, gefitinib and yttrium 90 co-loaded, core-shell structured lipid-polymer hybrid nanoparticles. Biomed Pharmacother 2019; 114:108820. [PMID: 30951947 DOI: 10.1016/j.biopha.2019.108820] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/23/2019] [Accepted: 03/26/2019] [Indexed: 12/21/2022] Open
Abstract
Current treatment of advanced-stage nasopharyngeal carcinoma (NPC) is not satisfactory. Here, we developed a folic acid (FA) modified, gefitinib (GEF) and yttrium 90 (Y90) co-loaded, core-shell structured lipid-polymer hybrid nanoparticles (FA-GEF-Y90-LPNP). The size and zeta potential, drug release behavior, and uptake by tumor cells were investigated. The antitumor efficiency and toxicity of LPNP were evaluated in cancer cells and in tumor bearing mice. FA-GEF-Y90-LPNP with a mean size of 150 nm and zeta potential of -40 mV was able to enhance the accumulation in the NPC cells and exhibited the highest cytotoxicity. The AUC and T1/2 of FA-GEF-Y90-LPNP group was 217.62 ± 10.32 mg/L.h and 12.09 ± 0.43 h, respectively. FA-GEF-Y90-LPNP exhibited the best in vivo tumor inhibition ability, leading to a 221.2 ± 13.5 mm3 of tumor volume at day 21. FA-GEF-Y90-LPNP treatment resulted in almost no difference in the body weight. This may be the evidence that the systemic toxicity of FA-GEF-Y90-LPNP is low and may be used as safety system for the treatment of NPC.
Collapse
Affiliation(s)
- Fu Yugui
- Department of Otolaryngology, Linyi People's Hospital, Linyi, Shandong, China
| | - Hailan Wang
- Department of Internal Medicine, Linyi People's Hospital, Linyi, Shandong, China
| | - Dezhong Sun
- Department of Otolaryngology, Linyi People's Hospital, Linyi, Shandong, China
| | - Xiaoyan Zhang
- Department of Oncology, Linyi People's Hospital, Linyi, Shandong, China.
| |
Collapse
|
17
|
Rawal S, Patel MM. Threatening cancer with nanoparticle aided combination oncotherapy. J Control Release 2019; 301:76-109. [PMID: 30890445 DOI: 10.1016/j.jconrel.2019.03.015] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
Abstract
Employing combination therapy has become obligatory in cancer cases exhibiting high tumor load, chemoresistant tumor population, and advanced disease stages. Realization of this fact has now led many of the combination oncotherapies to become an integral part of anticancer regimens. Combination oncotherapy may encompass a combination of anticancer agents belonging to a similar therapeutic category or that of different therapeutic categories (e.g. chemotherapy + gene therapy). Differences in the physicochemical properties, pharmacokinetics and biodistribution pattern of different payloads are the major constraints that are faced by combination chemotherapy. Concordant efforts in the field of nanotechnology and oncology have emerged with several approaches to solve the major issues encountered by combination therapy. Unique colloidal behaviors of various types of nanoparticles and differential targeting strategies have accorded an unprecedented ability to optimize combination oncotherapeutic delivery. Nanocarrier based delivery of the various types of payloads such as chemotherapeutic agents and other anticancer therapeutics such as small interfering ribonucleic acid (siRNA), chemosensitizers, radiosensitizers, and antiangiogenic agents have been addressed in the present review. Various nano-delivery systems like liposomes, polymeric nanoparticles, polymerosomes, dendrimers, micelles, lipid based nanoparticles, prodrug based nanocarriers, polymer-drug conjugates, polymer-lipid hybrid nanoparticles, carbon nanotubes, nanosponges, supramolecular nanocarriers and inorganic nanoparticles (gold nanoparticles, silver nanoparticles, magnetic nanoparticles and mesoporous silica based nanoparticles) that have been extensively explored for the formulation of multidrug delivery is an imperative part of discussion in the review. The present review features the outweighing benefits of combination therapy over mono-oncotherapy and discusses several existent nanoformulation strategies that facilitate a successful combination oncotherapy. Several obstacles that may impede in transforming nanotechnology-based combination oncotherapy from bench to bedside, and challenges associated therein have also been discussed in the present review.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
18
|
Eftekhari RB, Maghsoudnia N, Samimi S, Zamzami A, Dorkoosh FA. Co-Delivery Nanosystems for Cancer Treatment: A Review. Pharm Nanotechnol 2019; 7:90-112. [PMID: 30907329 DOI: 10.2174/2211738507666190321112237] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/08/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Massive data available on cancer therapy more than ever lead our mind to the general concept that there is no perfect treatment for cancer. Indeed, the biological complexity of this disease is too excessive to be treated by a single therapeutic approach. Current delivery systems containing a specific drug or gene have their particular opportunities and restrictions. It is worth noting that a considerable number of studies suggest that single- drug delivery systems result in insufficient suppression of cancer growth. Therefore, one of the main ideas of co-delivery system designing is to enhance the intended response or to achieve the synergistic/combined effect compared to the single drug strategy. This review focuses on various strategies for co-delivery of therapeutic agents in the treatment of cancer. The primary approaches within the script are categorized into co-delivery of conventional chemotherapeutics, gene-based molecules, and plant-derived materials. Each one is explained in examples with the recent researches. In the end, a brief summary is provided to conclude the gist of the review.
Collapse
Affiliation(s)
- Reza Baradaran Eftekhari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Maghsoudnia
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shabnam Samimi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zamzami
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Wang F, Zhang L, Bai X, Cao X, Jiao X, Huang Y, Li Y, Qin Y, Wen Y. Stimuli-Responsive Nanocarrier for Co-delivery of MiR-31 and Doxorubicin To Suppress High MtEF4 Cancer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22767-22775. [PMID: 29897733 DOI: 10.1021/acsami.8b07698] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Gene interference-based therapeutics represent a fascinating challenge and show enormous potential for cancer treatment, in which microRNA is used to correct abnormal gene. On the basis of the above, we introduced microRNA-31 to bind to 3'-untranslated region of mtEF4, resulting in the downregulation of its messenger RNA and protein to trigger cancer cells apoptosis through mitochondria-related pathway. To achieve better therapeutic effect, a mesoporous silica nanoparticle-based controlled nanoplatform had been developed. This system was fabricated by conjugation of microRNA-31 onto doxorubicin-loaded mesoporous silica nanoparticles with a poly(ethyleneimine)/hyaluronic acid coating, and drug release was triggered by acidic environment of tumors. By feat of surface functionalization and tumor-specific conjugation to nanoparticles, our drug delivery system could promote intracellular accumulation of drugs via the active transport at tumor site. More importantly, microRNA-31 not only directly targeted to mtEF4 to promote cell's death, but had synergistic effects when used in combination with doxorubicin, and achieved excellent superadditive effects. As such, our research might provide new insights toward detecting high mtEF4 cancer and exploiting highly effective anticancer drugs.
Collapse
Affiliation(s)
- Fang Wang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
| | - Lingyun Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiufeng Bai
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
| | - Xintao Cao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiangyu Jiao
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - Yan Huang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - Yansheng Li
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - Yan Qin
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yongqiang Wen
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| |
Collapse
|
20
|
Dual Acting Polymeric Nano-Aggregates for Liver Cancer Therapy. Pharmaceutics 2018; 10:pharmaceutics10020063. [PMID: 29861445 PMCID: PMC6027472 DOI: 10.3390/pharmaceutics10020063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/16/2018] [Accepted: 05/24/2018] [Indexed: 11/17/2022] Open
Abstract
Liver cancer treatments are often hindered by poor drug physicochemical properties, hence there is a need for improvement in order to increase patient survival and outlook. Combination therapies have been studied in order to evaluate whether increased overall efficacy can be achieved. This study reports the combined treatment of liver cancer cells with a combination treatment of chemotherapeutic agent paclitaxel and pro-apoptotic protein cytochrome C. In order to administer both agents in a single formulation, a poly(allylamine)-based amphiphile has been fabricated with the incorporation of a hybrid iron oxide-gold nanoparticle into its structure. Here, the insoluble paclitaxel becomes incorporated into the hydrophobic core of the self-assemblies formed in an aqueous environment (256 nm), while the cytochrome C attaches irreversibly onto the hybrid nanoparticle surface via gold-thiol dative covalent binding. The self-assemblies were capable of solubilising up to 0.698 mg/mL of paclitaxel (700-fold improvement) with 0.012 mg/mL of cytochrome C also attached onto the hybrid iron oxide-gold nanoparticles (HNPs) within the hydrophobic core. The formulation was tested on a panel of liver cancer cells and cytotoxicity was measured. The findings suggested that indeed a significant improvement in combined therapy (33-fold) was observed when compared with free drug, which was double the enhancement observed after polymer encapsulation without the cytochrome C in hepatocellular carcinoma (Huh-7D12) cells. Most excitingly, the polymeric nanoparticles did result in improved cellular toxicity in human endothelian liver cancer (SK-hep1) cells, which proved completely resistant to the free drug.
Collapse
|
21
|
Liu T, Wu X, Wang Y, Zhang T, Wu T, Liu F, Wang W, Jiang G, Xie M. Folate-targeted star-shaped cationic copolymer co-delivering docetaxel and MMP-9 siRNA for nasopharyngeal carcinoma therapy. Oncotarget 2018; 7:42017-42030. [PMID: 27259274 PMCID: PMC5173113 DOI: 10.18632/oncotarget.9771] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/16/2016] [Indexed: 01/21/2023] Open
Abstract
The co-delivery of drug and gene has become the primary strategy in cancer therapy. Based on our previous work, to co-deliver docetaxel (DOC) and MMP-9 siRNA more efficiently for HNE-1 nasopharyngeal carcinoma therapy, a folate-modified star-shaped copolymer (FA-CD-PLLD) consisting of β-cyclodextrin (CD) and poly(L-lysine) dendron (PLLD) was synthesized, and then used for DOC and MMP-9 co-delivery. Different from commonly used amphiphilic copolymers micelles, the obtained CD derivative could be used directly for the combinatorial delivery of nucleic acid and hydrophobic DOC without a complicated micellization process. In vitro and in vivo assays are carried out to confirm the effectiveness of the target strategy and combined treatment. It was found that the conjugation of CD-PLLD with FA could enhance the DOC/MMP-9 delivery effect obviously, inducing a more significant apoptosis and decreasing invasive capacity of HEN-1 cells. In vivo assays showed that FA-CD-PLLD/DOC/MMP-9 could inhibit HNE-1 tumor growth and decrease PCNA expression effectively, indicating a promising strategy for nasopharyngeal carcinoma therapy. Moreover, the in vivo distribution of DOC and MMP-9, blood compatibility and toxicity are also explored.
Collapse
Affiliation(s)
- Tao Liu
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xidong Wu
- Department of Pharmacology, Jiangxi Institute of Materia Medica, Nanchang, 330029, China
| | - Yigang Wang
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tao Zhang
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Ting Wu
- Department of Light Chemical Engineering, Guangdong Polytechnic, Foshan, 528041, China
| | - Fang Liu
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Wansong Wang
- Medical College of Nanchang University, Nanchang, 330038, China
| | - Gang Jiang
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Minqiang Xie
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| |
Collapse
|
22
|
Da Silva CG, Peters GJ, Ossendorp F, Cruz LJ. The potential of multi-compound nanoparticles to bypass drug resistance in cancer. Cancer Chemother Pharmacol 2017; 80:881-894. [PMID: 28887666 PMCID: PMC5676819 DOI: 10.1007/s00280-017-3427-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/29/2017] [Indexed: 01/28/2023]
Abstract
PURPOSE The therapeutic efficacy of conventional chemotherapy against several solid tumors is generally limited and this is often due to the development of resistance or poor delivery of the drugs to the tumor. Mechanisms of resistance may vary between cancer types. However, with current development of genetic analyses, imaging, and novel delivery systems, we may be able to characterize and bypass resistance, e.g., by inhibition of the right target at the tumor site. Therefore, combined drug treatments, where one drug will revert or obstruct the development of resistance and the other will concurrently kill the cancer cell, are rational solutions. However, drug exposure of one drug will defer greatly from the other due to their physicochemical properties. In this sense, multi-compound nanoparticles are an excellent modality to equalize drug exposure, i.e., one common physicochemical profile. In this review, we will discuss novel approaches that employ nanoparticle technology that addresses specific mechanisms of resistance in cancer. METHODS The PubMed literature was consulted and reviewed. RESULTS Nanoparticle technology is emerging as a dexterous solution that may address several forms of resistance in cancer. For instance, we discuss advances that address mechanisms of resistance with multi-compound nanoparticles which co-deliver chemotherapeutics with an anti-resistance agent. Promising anti-resistance agents are (1) targeted in vivo gene silencing methods aimed to disrupt key resistance gene expression or (2) protein kinase inhibitors to disrupt key resistance pathways or (3) efflux pumps inhibitors to limit drug cellular efflux.
Collapse
Affiliation(s)
- C G Da Silva
- Translational Nanobiomaterials and Imaging, Department of Radiology, Bldg.1, C2-187h, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Bldg.1, C2-187h, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
23
|
Liu Z, Wang T, Zhang Z, Tang S, Feng S, Yue M, Hu M, Xuan L, Chen Y. Survivin downregulation using siRNA nanoliposomes inhibits cell proliferation and promotes the apoptosis of MHCC-97H hepatic cancer cells: An in vitro and in vivo study. Oncol Lett 2017; 13:2723-2730. [PMID: 28454458 PMCID: PMC5403348 DOI: 10.3892/ol.2017.5754] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/25/2016] [Indexed: 12/29/2022] Open
Abstract
At present, survivin is one of the most cancer-specific proteins that has been identified. The present study aimed to investigate the antitumor effects of novel survivin small interfering RNA (siRNA) nanoliposomes targeting survivin in human hepatocellular carcinoma MHCC-97H cells and xenograft mouse models. Survivin-targeted siRNA nanoliposomes were prepared and transfected into MHCC-97H cells and MHCC-97H-bearing nude mice. Survivin expression was analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. Cell viability was analyzed using an MTT assay and apoptosis was evaluated using Hoechst and Annexin V-fluorescein isothiocyanate/propidium iodide staining. Tumor growth in MHCC-97H-bearing mice was monitored following treatment and tumor samples were obtained for survivin expression analysis using RT-qPCR, western blotting and immunohistochemistry staining. Survivin expression levels were significantly downregulated by nanoliposome-mediated survivin siRNA delivery and this was associated with a significant inhibition of cell growth and an increase in the apoptosis of MHCC-97H cells. Downregulation of survivin expression using survivin siRNA nanoliposomes inhibited tumor growth in the MHCC-97H xenograft models without significant treatment-associated toxicity. Therefore, a cationic nanoliposome-based survivin siRNA delivery system was constructed and demonstrated to be efficient for survivin siRNA delivery in in vitro and in vivo studies. These results demonstrate that survivin downregulation was able to significantly attenuate cell proliferation and induce the apoptosis of MHCC-97H cells, as well as inhibit tumor cell growth in MHCC-97H xenograft models, indicating that survivin suppression using siRNA may contribute to the inhibition of tumor development by suppressing cell proliferation and promoting apoptosis.
Collapse
Affiliation(s)
- Ziqin Liu
- Department of Pediatrics, Capital Institute of Pediatrics, Chaoyang, Beijing 100020, P.R. China
| | - Tianyou Wang
- Department of Hematology and Oncology, Beijing Children's Hospital, Capital Medical University, Xicheng, Beijing 100045, P.R. China
| | - Zhaoxia Zhang
- Department of Hematology and Oncology, Capital Institute of Pediatrics, Chaoyang, Beijing 100020, P.R. China
| | - Suoqin Tang
- Department of Pediatrics, People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Shunqiao Feng
- Department of Hematology and Oncology, Capital Institute of Pediatrics, Chaoyang, Beijing 100020, P.R. China
| | - Mei Yue
- Department of Hematology and Oncology, Capital Institute of Pediatrics, Chaoyang, Beijing 100020, P.R. China
| | - Mengze Hu
- Department of Hematology and Oncology, Capital Institute of Pediatrics, Chaoyang, Beijing 100020, P.R. China
| | - Litian Xuan
- Department of Hematology and Oncology, Capital Institute of Pediatrics, Chaoyang, Beijing 100020, P.R. China
| | - Yanfei Chen
- Department of Hematology and Oncology, Capital Institute of Pediatrics, Chaoyang, Beijing 100020, P.R. China
| |
Collapse
|
24
|
Abstract
The intrinsic limits of conventional cancer therapies prompted the development and application of various nanotechnologies for more effective and safer cancer treatment, herein referred to as cancer nanomedicine. Considerable technological success has been achieved in this field, but the main obstacles to nanomedicine becoming a new paradigm in cancer therapy stem from the complexities and heterogeneity of tumour biology, an incomplete understanding of nano-bio interactions and the challenges regarding chemistry, manufacturing and controls required for clinical translation and commercialization. This Review highlights the progress, challenges and opportunities in cancer nanomedicine and discusses novel engineering approaches that capitalize on our growing understanding of tumour biology and nano-bio interactions to develop more effective nanotherapeutics for cancer patients.
Collapse
Affiliation(s)
- Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | | | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
25
|
Li Y, Wang H, Wang K, Hu Q, Yao Q, Shen Y, Yu G, Tang G. Targeted Co-delivery of PTX and TR3 siRNA by PTP Peptide Modified Dendrimer for the Treatment of Pancreatic Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602697. [PMID: 27762495 DOI: 10.1002/smll.201602697] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Indexed: 06/06/2023]
Abstract
A new type of tumor-targeted nanovehicle peptide-conjugated PSPG (PSPGP) is successfully synthesized for co-delivery of paclitaxel (PTX) and TR3 small interfering RNA (siRNA). In vitro and in vivo investigations demonstrate that the redox-responsive PSPGP exhibit enhanced endosomal escape and intracellular degradation, which facilitate PTX and TR3 siRNA release, effectively improving the antitumor efficacy.
Collapse
Affiliation(s)
- Yang Li
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310028, China
| | - Hebin Wang
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310028, China
- College of Life Sciences, Tarim University, Alar, 843300, China
| | - Kai Wang
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310028, China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Qi Yao
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310028, China
| | - Youqing Shen
- Center for Bionanoengineering and State Key Laboratory for Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Guping Tang
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310028, China
| |
Collapse
|
26
|
Kinetic and thermodynamic studies of methotrexate adsorption on chitosan-modified magnetic multi-walled carbon nanotubes. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1753-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Li M, Zhang W, Wang B, Gao Y, Song Z, Zheng QC. Ligand-based targeted therapy: a novel strategy for hepatocellular carcinoma. Int J Nanomedicine 2016; 11:5645-5669. [PMID: 27920520 PMCID: PMC5127222 DOI: 10.2147/ijn.s115727] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer with high morbidity and mortality worldwide. Chemotherapy is recommended to patients with intermediate or advanced stage cancer. However, the conventional chemotherapy yields low desired response rates due to multidrug resistance, fast clearance rate, nonspecific delivery, severe side effects, low drug concentration in cancer cells, and so on. Nanoparticle-mediated targeted drug delivery system can surmount the aforementioned obstacles through enhanced permeability and retention effect and active targeting as a novel approach of therapeutics for HCC in recent years. The active targeting is triggered by ligands on the delivery system, which recognize with and internalize into hepatoma cells with high specificity and efficiency. This review focuses on the latest targeted delivery systems for HCC and summarizes the ligands that can enhance the capacity of active targeting, to provide some insight into future research in nanomedicine for HCC.
Collapse
Affiliation(s)
- Min Li
- Department of Hepatobiliary Surgery, Union Hospital
| | - Weiyue Zhang
- The First Clinic Institute, Tongji Medical College, Huazhong University of Science and Technology
| | - Birong Wang
- Department of Breast and Thyroid Surgery, Puai Hospital, Wuhan, The People’s Republic of China
| | - Yang Gao
- Department of Hepatobiliary Surgery, Union Hospital
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital
| | | |
Collapse
|
28
|
|
29
|
Gupta P, Jani KA, Yang DH, Sadoqi M, Squillante E, Chen ZS. Revisiting the role of nanoparticles as modulators of drug resistance and metabolism in cancer. Expert Opin Drug Metab Toxicol 2016; 12:281-9. [DOI: 10.1517/17425255.2016.1145655] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, USA
| | - Khushboo A. Jani
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, USA
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, USA
| | - Mostafa Sadoqi
- Department of Physics, St. John’s College of Liberal Arts and Sciences, St. John’s University, Queens, New York, USA
| | - Emilio Squillante
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, USA
| |
Collapse
|
30
|
Wang Y, Wu B, Yang C, Liu M, Sum TC, Yong KT. Synthesis and Characterization of Mn:ZnSe/ZnS/ZnMnS Sandwiched QDs for Multimodal Imaging and Theranostic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:534-546. [PMID: 26663023 DOI: 10.1002/smll.201503352] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 06/05/2023]
Abstract
In this work, a facile aqueous synthesis method is optimized to produce Mn:ZnSe/ZnS/ZnMnS sandwiched quantum dots (SQDs). In this core-shell co-doped system, paramagnetic Mn(2+) ions are introduced as core and shell dopants to generate Mn phosphorescence and enhance the magnetic resonance imaging signal, respectively. T1 relaxivity of the nanoparticles can be improved and manipulated by raising the shell doping level. Steady state and time-resolved optical measurements suggest that, after high level shell doping, Mn phosphorescence of the core can be sustained by the sandwiched ZnS shell. Because the SQDs are free of toxic heavy metal compositions, excellent biocompatibility of the prepared nanocrystals is verified by in vitro MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. To explore the theranostic applications of SQDs, liposome-SQD assemblies are prepared and used for ex vivo optical and magnetic resonance imaging. In addition, these engineered SQDs as nanocarrier for gene delivery in therapy of Panc-1 cancer cells are employed. The therapeutic effects of the nanocrystals formulation are confirmed by gene expression analysis and cell viability assay.
Collapse
Affiliation(s)
- Yucheng Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Bo Wu
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Chengbin Yang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Maixian Liu
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Tze Chien Sum
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
31
|
Xu C, Ding Y, Ni J, Yin L, Zhou J, Yao J. Tumor-targeted docetaxel-loaded hyaluronic acid-quercetin polymeric micelles with p-gp inhibitory property for hepatic cancer therapy. RSC Adv 2016. [DOI: 10.1039/c6ra00460a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Herein, a novel targeted drug delivery nanosystem based on hyaluronic acid (HA) and quercetin (QU) was designed to improve the in vivo therapeutic efficacy of DTX on HC through HA-CD44 mediated targeting and QU-based p-gp efflux inhibition.
Collapse
Affiliation(s)
- Chenfeng Xu
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yu Ding
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jiang Ni
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Lifang Yin
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jing Yao
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
32
|
Amjad MW, Amin MCIM, Katas H, Butt AM, Kesharwani P, Iyer AK. In Vivo Antitumor Activity of Folate-Conjugated Cholic Acid-Polyethylenimine Micelles for the Codelivery of Doxorubicin and siRNA to Colorectal Adenocarcinomas. Mol Pharm 2015; 12:4247-58. [DOI: 10.1021/acs.molpharmaceut.5b00827] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Muhammad Wahab Amjad
- Center
for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Center
for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Haliza Katas
- Center
for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Adeel Masood Butt
- Center
for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Prashant Kesharwani
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, Michigan 48201, United States
| | - Arun K. Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, Michigan 48201, United States
| |
Collapse
|
33
|
Varshosaz J, Farzan M. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma. World J Gastroenterol 2015; 21:12022-12041. [PMID: 26576089 PMCID: PMC4641122 DOI: 10.3748/wjg.v21.i42.12022] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/31/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the 5th most common malignancy which is responsible for more than half million annual mortalities; also, it is the third leading cause of cancer related death. Unfavorable systemic side-effects of chemotherapeutic agents and susceptibility to the degradation of small interfering RNAs (siRNAs), which can knock down a specific gene involved in the disease, have hampered their clinical application. So, it could be beneficial to develop an efficient carrier for the stabilization and specific delivery of drugs and siRNA to cells. Targeted nanoparticles have gained considerable attention as an efficient drug and gene delivery system, which is due to their capability in achieving the highest accumulation of cytotoxic agents in tumor tissue, modifiable drug pharmacokinetic- and bio-distribution, improved effectiveness of treatment, and limited side-effects. Recent studies have shed more light on the advantages of novel drug loaded carrier systems vs free drugs. Most of the animal studies have reported improvement in treatment efficacy and survival rate using novel carrier systems. Targeted delivery may be achieved passively or actively. In passive targeting, no ligand as homing device is used, while targeting is achieved by incorporating the therapeutic agent into a macromolecule or nanoparticle that passively reaches the target organ. However, in active targeting, the therapeutic agent or carrier system is conjugated to a tissue or cell-specific receptor which is over-expressed in a special malignancy using a ligand called a homing device. This review covers a broad spectrum of targeted nanoparticles as therapeutic and non-viral siRNA delivery systems, which are developed for enhanced cellular uptake and targeted gene silencing in vitro and in vivo and their characteristics and opportunities for the clinical applications of drugs and therapeutic siRNA are discussed in this article. Asialoglycoprotein receptors, low-density lipoprotein, ganglioside GM1 cell surface ligand, epidermal growth factor receptor receptors, monoclonal antibodies, retinoic acid receptors, integrin receptors targeted by Arg-Gly-Asp peptide, folate, and transferrin receptors are the most widely studied cell surface receptors which are used for the site specific delivery of drugs and siRNA-based therapeutics in HCC and discussed in detail in this article.
Collapse
|
34
|
Zheng H, Tang C, Yin C. Oral delivery of shRNA based on amino acid modified chitosan for improved antitumor efficacy. Biomaterials 2015; 70:126-37. [DOI: 10.1016/j.biomaterials.2015.08.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/09/2015] [Accepted: 08/14/2015] [Indexed: 12/27/2022]
|
35
|
WITHDRAWN: Polymer assembly: Promising carriers as co-delivery systems for cancer therapy. Prog Polym Sci 2015. [DOI: 10.1016/j.progpolymsci.2015.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Shao Z, Shao J, Tan B, Guan S, Liu Z, Zhao Z, He F, Zhao J. Targeted lung cancer therapy: preparation and optimization of transferrin-decorated nanostructured lipid carriers as novel nanomedicine for co-delivery of anticancer drugs and DNA. Int J Nanomedicine 2015; 10:1223-33. [PMID: 25709444 PMCID: PMC4334334 DOI: 10.2147/ijn.s77837] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Nanostructured lipid carriers (NLC) represent an improved generation of lipid nanoparticles. They have specific nanostructures to accommodate drugs/genes, and thus achieve higher loading capacity. The aim of this study was to develop transferrin (Tf)-decorated NLC as multifunctional nanomedicine for co-delivery of paclitaxel (PTX) and enhanced green fluorescence protein plasmid. Methods Firstly, Tf-conjugated ligands were synthesized. Secondly, PTX- and DNA-loaded NLC (PTX-DNA-NLC) was prepared. Finally, Tf-containing ligands were used for the surface decoration of NLC. Their average size, zeta potential, drug, and gene loading were evaluated. Human non-small cell lung carcinoma cell line (NCl-H460 cells) was used for the testing of in vitro transfection efficiency, and in vivo transfection efficiency of NLC was evaluated on mice bearing NCl-H460 cells. Results Tf-decorated PTX and DNA co-encapsulated NLC (Tf-PTX-DNA-NLC) were nano-sized particles with positive zeta potential. Tf-PTX-DNA-NLC displayed low cytotoxicity, high gene transfection efficiency, and enhanced antitumor activity in vitro and in vivo. Conclusion The results demonstrated that Tf-PTX-DNA-NLC can achieve impressive antitumor activity and gene transfection efficiency. Tf decoration also enhanced the active targeting ability of the carriers to NCl-H460 cells. The novel drug and gene delivery system offers a promising strategy for the treatment of lung cancer.
Collapse
Affiliation(s)
- Zhenyu Shao
- Department of Radiotherapy, Cancer Centre, Qilu Hospital, Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Jingyu Shao
- Affiliated Hospital of Northwest Institute of Mechanical and Electrical Engineering, Xianyang, Shaanxi, People's Republic of China
| | - Bingxu Tan
- Department of Radiotherapy, Cancer Centre, Qilu Hospital, Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Shanghui Guan
- Department of Radiotherapy, Cancer Centre, Qilu Hospital, Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Zhulong Liu
- Department of Radiotherapy, Cancer Centre, Qilu Hospital, Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Zengjun Zhao
- Department of Radiotherapy, Cancer Centre, Qilu Hospital, Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Fangfang He
- Department of Radiotherapy, Cancer Centre, Qilu Hospital, Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Jian Zhao
- Department of Thoracic Surgery, Qilu Hospital, Shandong University, Ji'nan, Shandong, People's Republic of China
| |
Collapse
|
37
|
Shao D, Li J, Pan Y, Zhang X, Zheng X, Wang Z, Zhang M, Zhang H, Chen L. Noninvasive theranostic imaging of HSV-TK/GCV suicide gene therapy in liver cancer by folate-targeted quantum dot-based liposomes. Biomater Sci 2015. [DOI: 10.1039/c5bm00077g] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have successfully developed folate-targeting liposomes for effective and safe HSV-TK suicide gene theranostics.
Collapse
Affiliation(s)
- Dan Shao
- Department of Pharmacology
- Nanomedicine Engineering Laboratory of Jilin Province
- College of Basic Medical Sciences
- Jilin University
- Changchun 130021
| | - Jing Li
- Department of Pharmacology
- Nanomedicine Engineering Laboratory of Jilin Province
- College of Basic Medical Sciences
- Jilin University
- Changchun 130021
| | - Yue Pan
- Department of Pharmacology
- Nanomedicine Engineering Laboratory of Jilin Province
- College of Basic Medical Sciences
- Jilin University
- Changchun 130021
| | - Xin Zhang
- Department of Pharmacology
- Nanomedicine Engineering Laboratory of Jilin Province
- College of Basic Medical Sciences
- Jilin University
- Changchun 130021
| | - Xiao Zheng
- Department of Pharmacology
- Nanomedicine Engineering Laboratory of Jilin Province
- College of Basic Medical Sciences
- Jilin University
- Changchun 130021
| | - Zheng Wang
- Department of Pharmacology
- Nanomedicine Engineering Laboratory of Jilin Province
- College of Basic Medical Sciences
- Jilin University
- Changchun 130021
| | - Ming Zhang
- Department of Pharmacology
- Nanomedicine Engineering Laboratory of Jilin Province
- College of Basic Medical Sciences
- Jilin University
- Changchun 130021
| | - Hong Zhang
- Van't Hoff Institute for Molecular Sciences
- University of Amsterdam
- 1098 XH Amsterdam
- The Netherlands
| | - Li Chen
- Department of Pharmacology
- Nanomedicine Engineering Laboratory of Jilin Province
- College of Basic Medical Sciences
- Jilin University
- Changchun 130021
| |
Collapse
|
38
|
Wang GH, Yang HK, Zhao Y, Zhang DW, Zhang LM, Lin JT. Codelivery of doxorubicin and p53 by biodegradable micellar carriers based on chitosan derivatives. RSC Adv 2015. [DOI: 10.1039/c5ra19050a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, novel biodegradable cationic micelles were prepared based on poly-(N-ε-carbobenzyloxy-l-lysine) (PZLL) and chitosan (CS) by click reaction, and applied for co-delivery of doxorubicin (DOX) and p53 plasmid.
Collapse
Affiliation(s)
- Guan-Hai Wang
- Dongguan Scientific Research Center
- Guangdong Medical University
- Dongguan 523808
- China
- Guangdong Key Laboratory for Research and Development of Natural Drugs
| | - Hui-Kang Yang
- Department of Radiology
- Guangzhou First People’s Hospital
- Guangzhou Medical University
- Guangzhou 510180
- China
| | - Yi Zhao
- Department of Microbiology and Immunology
- School of Basic Medicine
- Guangdong Medical University
- Dongguan 523808
- China
| | - Da-Wei Zhang
- Department of Pharmacology
- School of Medicine
- Guangdong Medical University
- Dongguan 523808
- China
| | - Li-Ming Zhang
- DSAPM Lab
- PCFM Lab
- Institute of Polymer Science
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
| | - Jian-Tao Lin
- Dongguan Scientific Research Center
- Guangdong Medical University
- Dongguan 523808
- China
- Guangdong Key Laboratory for Research and Development of Natural Drugs
| |
Collapse
|
39
|
Active radar guides missile to its target: receptor-based targeted treatment of hepatocellular carcinoma by nanoparticulate systems. Tumour Biol 2014; 36:55-67. [PMID: 25424700 DOI: 10.1007/s13277-014-2855-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023] Open
Abstract
Patients with hepatocellular carcinoma (HCC) usually present at advanced stages and do not benefit from surgical resection, so drug therapy should deserve a prominent place in unresectable HCC treatment. But chemotherapy agents, such as doxorubicin, cisplatin, and paclitaxel, frequently encounter important problems such as low specificity and non-selective biodistribution. Recently, the development of nanotechnology led to significant breakthroughs to overcome these problems. Decorating the surfaces of nanoparticulate-based drug carriers with homing devices has demonstrated its potential in concentrating chemotherapy agents specifically to HCC cells. In this paper, we reviewed the current status of active targeting strategies for nanoparticulate systems based on various receptors such as asialoglycoprotein receptor, transferrin receptor, epidermal growth factor receptor, folate receptor, integrin, and CD44, which are abundantly expressed on the surfaces of hepatocytes or liver cancer cells. Furthermore, we pointed out their merits and defects and provided theoretical references for further research.
Collapse
|
40
|
Liang P, Wang CQ, Chen H, Zhuo RX, Cheng SX. Multi-functional heparin-biotin/heparin/calcium carbonate/calcium phosphate nanoparticles for targeted co-delivery of gene and drug. POLYM INT 2014. [DOI: 10.1002/pi.4824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ping Liang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry; Wuhan University; Wuhan 430072 People's Republic of China
| | - Chao-Qun Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry; Wuhan University; Wuhan 430072 People's Republic of China
| | - Hong Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry; Wuhan University; Wuhan 430072 People's Republic of China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry; Wuhan University; Wuhan 430072 People's Republic of China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry; Wuhan University; Wuhan 430072 People's Republic of China
| |
Collapse
|
41
|
Wang X, Li S, Shi Y, Chuan X, Li J, Zhong T, Zhang H, Dai W, He B, Zhang Q. The development of site-specific drug delivery nanocarriers based on receptor mediation. J Control Release 2014; 193:139-53. [DOI: 10.1016/j.jconrel.2014.05.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/13/2014] [Accepted: 05/17/2014] [Indexed: 01/28/2023]
|
42
|
HAN YIQUN, ZHANG PENG, CHEN YUANYUAN, SUN JIPING, KONG FANSHENG. Co-delivery of plasmid DNA and doxorubicin by solid lipid nanoparticles for lung cancer therapy. Int J Mol Med 2014; 34:191-6. [DOI: 10.3892/ijmm.2014.1770] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 04/08/2014] [Indexed: 11/06/2022] Open
|
43
|
Tan GR, Feng SS, Leong DT. The reduction of anti-cancer drug antagonism by the spatial protection of drugs with PLA–TPGS nanoparticles. Biomaterials 2014; 35:3044-51. [DOI: 10.1016/j.biomaterials.2013.12.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/13/2013] [Indexed: 12/14/2022]
|
44
|
Shen J, Sun H, Meng Q, Yin Q, Zhang Z, Yu H, Li Y. Simultaneous inhibition of tumor growth and angiogenesis for resistant hepatocellular carcinoma by co-delivery of sorafenib and survivin small hairpin RNA. Mol Pharm 2014; 11:3342-51. [PMID: 24495194 DOI: 10.1021/mp4006408] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The development of multidrug resistance (MDR) in human hepatocellular carcinoma (HCC) is one of the major obstacles for successful chemotherapy of HCC. Co-delivery of sorafenib (SF) and survivin shRNA (shSur) was postulated to achieve synergistic effects in reversing MDR, suppressing tumor growth and angiogenesis. For this purpose, in this work, SF and shSur co-loaded pluronic P85-polyethyleneimine/d-α-tocopheryl polyethylene glycol 1000 succinate nanocomplexes (SSNs) were first designed and developed for the treatment of drug resistant HCC. The experimental results showed that SSNs could achieve effective cellular internalization and shSur transfection efficiency, induce significant downregulation of the survivin protein, and cause remarkable cell arrest and cell apoptosis. The tube formulation assay demonstrated that SSNs completely disrupted the enclosed capillary networks formed by human microvascular endothelial cells. The in vivo antitumor efficacy showed that SSNs were superior to that of other treatments on drug resistant hepatocellular tumor models. Therefore, it could be an efficient strategy to co-deliver SF and shSur for therapy of drug resistant HCC.
Collapse
Affiliation(s)
- Jianan Shen
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Feng F, Li R, Zhang Q, Wang Y, Yang X, Duan H, Yang X. Preparation of reduction-triggered degradable microcapsules for intracellular delivery of anti-cancer drug and gene. POLYMER 2014. [DOI: 10.1016/j.polymer.2013.11.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Wu J, Liu Y, Li W, Wang C, Li Y, Tian Y, Sun J, Wang S, Wang X, Tang Y, Zhu H, Teng Z, Lu G. Magnetically guided survivin-siRNA delivery and simultaneous dual-modal imaging visualization based on Fe3O4@mTiO2nanospheres for breast cancer. J Mater Chem B 2014; 2:7756-7764. [PMID: 32261912 DOI: 10.1039/c4tb01264j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fe3O4@mTiO2/FMN-PEI as a siRNA delivery system can transfect survivin-siRNA to induce apoptosis, along with magnetic targeting, MRI and optical imaging.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Nuclear Medicine
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Ying Liu
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Wei Li
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433, P. R. China
| | - Chunyan Wang
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Yanjun Li
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Ying Tian
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Jing Sun
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Shouju Wang
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Xin Wang
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Yuxia Tang
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Hong Zhu
- Department of Nuclear Medicine
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Zhaogang Teng
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| | - Guangming Lu
- Department of Medical Imaging
- Jinling Hospital
- School of Medicine
- Nanjing University
- Nanjing 210002, P.R. China
| |
Collapse
|
47
|
Gao Y, Xie J, Chen H, Gu S, Zhao R, Shao J, Jia L. Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnol Adv 2013; 32:761-77. [PMID: 24211475 DOI: 10.1016/j.biotechadv.2013.10.013] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/19/2013] [Accepted: 10/29/2013] [Indexed: 12/21/2022]
Abstract
Traditional chemotherapy used today at clinics is mainly inherited from the thinking and designs made four decades ago when the Cancer War was declared. The potency of those chemotherapy drugs on in-vitro cancer cells is clearly demonstrated at even nanomolar levels. However, due to their non-specific effects in the body on normal tissues, these drugs cause toxicity, deteriorate patient's life quality, weaken the host immunosurveillance system, and result in an irreversible damage to human's own recovery power. Owing to their unique physical and biological properties, nanotechnology-based chemotherapies seem to have an ability to specifically and safely reach tumor foci with enhanced efficacy and low toxicity. Herein, we comprehensively examine the current nanotechnology-based pharmaceutical platforms and strategies for intelligent design of new nanomedicines based on targeted drug delivery system (TDDS) for cancer metastasis treatment, analyze the pros and cons of nanomedicines versus traditional chemotherapy, and evaluate the importance that nanomaterials can bring in to significantly improve cancer metastasis treatment.
Collapse
Affiliation(s)
- Yu Gao
- Cancer Metastasis Alert and Prevention Institute, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Jingjing Xie
- Cancer Metastasis Alert and Prevention Institute, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Haijun Chen
- Cancer Metastasis Alert and Prevention Institute, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, China; Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Fuzhou University, Fujian 350108, China
| | - Songen Gu
- Cancer Metastasis Alert and Prevention Institute, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Rongli Zhao
- Cancer Metastasis Alert and Prevention Institute, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Jingwei Shao
- Cancer Metastasis Alert and Prevention Institute, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Institute, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, China.
| |
Collapse
|
48
|
Livney YD, Assaraf YG. Rationally designed nanovehicles to overcome cancer chemoresistance. Adv Drug Deliv Rev 2013; 65:1716-30. [PMID: 23954781 DOI: 10.1016/j.addr.2013.08.006] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/08/2013] [Indexed: 02/07/2023]
Abstract
Drug resistance is a primary hindrance towards curative cancer chemotherapy. Nanotechnology holds great promise in establishing efficacious and innovative strategies to overcome chemoresistance, and markedly facilitate complementary treatments and cancer diagnostics. Various nanomedical devices are being introduced and evaluated, demonstrating encouraging results. While stealth liposomes serve as a benchmark, astonishing progress is witnessed in polymeric nanovehicles, sometimes combined with low molecular weight surfactants, some of which inhibit drug resistance in addition to solubilizing drugs. Cutting edge multifunctional or quadrugnostic nanoparticles currently developed offer simultaneous targeted delivery of chemotherapeutics and chemosensitizers or drug-resistance gene silencing cargo, along with diagnostic imaging agents, like metallic NPs. Viral and cellular components offer exciting new routes for cancer targeting and treatment. Targeting intracellular compartments is another challenging frontier spawning pioneering approaches and results. To further enhance rational design of nanomedicine for overcoming drug resistance, we review the latest thoughts and accomplishments in recent literature.
Collapse
|
49
|
Zhao F, Yin H, Li J. Supramolecular self-assembly forming a multifunctional synergistic system for targeted co-delivery of gene and drug. Biomaterials 2013; 35:1050-62. [PMID: 24189097 DOI: 10.1016/j.biomaterials.2013.10.044] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 10/12/2013] [Indexed: 01/13/2023]
Abstract
For developing a multifunctional bioreducible targeted and synergistic co-delivery system for anticancer drug paclitaxel (PTX) and p53 gene for potential cancer therapy, supramolecular self-assembled inclusion complex was prepared from PTX and star-shaped cationic polymer containing γ-cyclodextrin (γ-CD) and multiple oligoethylenimine (OEI) arms with folic acid (FA) conjugated via a disulfide linker. The inclusion complex, termed as γ-CD-OEI-SS-FA/PTX, was formed between PTX and the hydrophobic cavity of γ-CD core of the star polymer. The γ-CD-OEI-SS-FA/PTX complex further formed polyplexes with pDNA to give positively charged nanoparticles, becoming multifunctional supramolecular self-assembled co-delivery system for PTX and pDNA targeting to cancer cells that overexpress folate receptors (FRs). The results showed that the FA-targeted function induced higher gene transfection efficiency in the FR-positive KB cells. The redox-sensitive disulfide linker in the self-assembly system led to the detachment of the FA groups from the carrier after the FR-mediated endocytosis, which resulted in the release of the bound FRs followed by the recycling of the FRs from the cytosol onto the cell membrane surface, facilitating continuous FR-mediated endocytosis to achieve enhanced gene transfection. In addition, the complexed PTX was co-delivered to the cells with pDNA, which further enhanced the gene transfection even at low N/P ratios in the FR-positive KB cells. Further, the efficient delivery of wild-type p53 gene resulted in large cell population at sub G1 and G2/M phases, inducing significant cell apoptosis. Therefore, the multifunctional γ-CD-OEI-SS-FA/PTX self-assembly system with the synergistic effects of redox-sensitive FA-targeted and PTX-enhanced p53 gene delivery may be promising for cancer therapeutic application.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | | | | |
Collapse
|
50
|
Tian H, Chen J, Chen X. Nanoparticles for gene delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:2034-2044. [PMID: 23630123 DOI: 10.1002/smll.201202485] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/21/2012] [Indexed: 05/27/2023]
Abstract
Nanocarriers are a new type of nonviral gene carriers, many of which have demonstrated a broad range of pharmacological and biological properties, such as being biodegradable in the body, stimulus-responsive towards the surrounding environment, and an ability to specifically targeting certain disease sites. By summarizing some main types of nanocarriers, this Concept considers the current status and possible future directions of the potential clinical applications of multifunctional nanocarriers, with primary attention on the combination of such properties as biodegradability, targetability, transfection ability, and stimuli sensitivity.
Collapse
Affiliation(s)
- Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | | | | |
Collapse
|