1
|
Liu J, Zhang M, Zhou M, Wang Q, Jiang X, Huang Q. Exploring Biomaterial Scaffolds for Eyelid Reconstruction: A Synthesis of Experimental Findings. TISSUE ENGINEERING. PART B, REVIEWS 2025. [PMID: 40242856 DOI: 10.1089/ten.teb.2024.0364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
This review synthesizes experimental findings on various biomaterial scaffolds used in eyelid reconstruction. It examines the structural properties, cellular responses, and functional outcomes of scaffolds such as chitosan, poly(propylene glycol fumarate)-2-hydroxyethyl methacrylate, poly(propylene glycol fumarate) - type I collagen (PPF-Col), decellularized matrix-polycaprolactone, branched polyethylene, collagen, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate, and poly(lactic-co-glycolic acid. These scaffolds exhibit diverse mechanical and biological properties, with some demonstrating good biocompatibility, tunable properties, and potential for tissue repair. However, there are limitations, including concerns about long-term functionality and a lack of comprehensive evaluations. This review highlights the need for multifunctional scaffolds that combine lid replacement and ocular surface function restoration, as well as the establishment of standardized research methods. The goal is to guide future innovation in the field and improve the quality of life for patients with eyelid defects.
Collapse
Affiliation(s)
- Jincheng Liu
- School of Optometry, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, China
- National clinical research center for ocular diseases Jiangxi Province division, Nanchang, China
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Mange Zhang
- School of Optometry, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, China
- National clinical research center for ocular diseases Jiangxi Province division, Nanchang, China
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Mengling Zhou
- School of Optometry, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, China
- National clinical research center for ocular diseases Jiangxi Province division, Nanchang, China
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Qingyi Wang
- School of Optometry, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, China
- National clinical research center for ocular diseases Jiangxi Province division, Nanchang, China
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Xin Jiang
- School of Optometry, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, China
- National clinical research center for ocular diseases Jiangxi Province division, Nanchang, China
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Qin Huang
- School of Optometry, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, China
- National clinical research center for ocular diseases Jiangxi Province division, Nanchang, China
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| |
Collapse
|
2
|
Lee H, Park YH, Kang HJ, Lee H. Three-Dimensional Bioprinting of Tarsal Plates with Adipose-Derived Mesenchymal Stem Cells: Evaluation of Meibomian Gland Reconstruction in a Rat Model. Biomedicines 2024; 12:2567. [PMID: 39595133 PMCID: PMC11591950 DOI: 10.3390/biomedicines12112567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/17/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The aim of this study was to develop 3D-bioprinted scaffolds embedded with human adipose-derived stem cells (hADSCs) to reconstruct the tarsal plate in a rat model. Methods: Scaffolds were printed using a 3D bioprinter with a bioink composed of atelocollagen and alginate. hADSCs (5 × 105 cells/mL) were embedded within the bioink. A total of 30 male Sprague Dawley (SD) rats (300 g) were divided into three groups: group 1 (normal control, n = 10), group 2 (3D-bioprinted scaffolds, n = 10), and group 3 (3D-bioprinted scaffolds with hADSCs, n = 10). Four weeks after surgery, a histopathological analysis was performed using hematoxylin and eosin (H&E) staining, Masson's trichrome (MT) staining, and immunofluorescence staining. Gene expression of SREBP-1, PPAR-γ, FADS-2, and FAS was assessed via real-time polymerase chain reaction (PCR). Results: No abnormalities were observed in the operated eyelids of any of the 30 rats. The histopathological analysis revealed lipid-secreting cells resembling meibocytes in both group 2 and group 3, with more pronounced meibocyte-like cells in group 3. Immunofluorescence staining for phalloidin expression showed a significant increase in group 3. Additionally, the RNA expression of SREBP-1, PPAR-γ, FADS-2, and FAS, all related to lipid metabolism, was elevated in group 3. Conclusions: The 3D-printed scaffolds combined with hADSCs were effective for tarsal plate reconstruction, with the hADSCs notably contributing to the generation of cells associated with lipid metabolism.
Collapse
Affiliation(s)
- Hyunkyu Lee
- Department of Ophthalmology, Korea University College of Medicine, Anam Hospital, Seoul 02841, Republic of Korea;
| | - Yoon Hee Park
- Medical Science Research Center, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea;
| | - Hyo Jin Kang
- Department of Biomedical Laboratory Science, Honam University, Gwangju 62399, Republic of Korea
| | - Hwa Lee
- Department of Ophthalmology, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea
| |
Collapse
|
3
|
Wu KY, Fujioka JK, Goodyear E, Tran SD. Polymers and Biomaterials for Posterior Lamella of the Eyelid and the Lacrimal System. Polymers (Basel) 2024; 16:352. [PMID: 38337241 PMCID: PMC10857064 DOI: 10.3390/polym16030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The application of biopolymers in the reconstruction of the posterior lamella of the eyelid and the lacrimal system marks a significant fusion of biomaterial science with clinical advancements. This review assimilates research spanning 2015 to 2023 to provide a detailed examination of the role of biopolymers in reconstructing the posterior lamella of the eyelid and the lacrimal system. It covers the anatomy and pathophysiology of eyelid structures, the challenges of reconstruction, and the nuances of surgical intervention. This article progresses to evaluate the current gold standards, alternative options, and the desirable properties of biopolymers used in these intricate procedures. It underscores the advancements in the field, from decellularized grafts and acellular matrices to innovative natural and synthetic polymers, and explores their applications in lacrimal gland tissue engineering, including the promise of 3D bioprinting technologies. This review highlights the importance of multidisciplinary collaboration between material scientists and clinicians in enhancing surgical outcomes and patient quality of life, emphasizing that such cooperation is pivotal for translating benchtop research into bedside applications. This collaborative effort is vital for restoring aesthetics and functionality for patients afflicted with disfiguring eyelid diseases, ultimately aiming to bridge the gap between innovative materials and their clinical translation.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrook, QC J1G 2E8, Canada;
| | - Jamie K. Fujioka
- Faculty of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Emilie Goodyear
- Department of Ophthalmology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 0A9, Canada
- Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
4
|
Ren ZW, Wang ZY, Ding YW, Dao JW, Li HR, Ma X, Yang XY, Zhou ZQ, Liu JX, Mi CH, Gao ZC, Pei H, Wei DX. Polyhydroxyalkanoates: the natural biopolyester for future medical innovations. Biomater Sci 2023; 11:6013-6034. [PMID: 37522312 DOI: 10.1039/d3bm01043k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are a family of natural microbial biopolyesters with the same basic chemical structure and diverse side chain groups. Based on their excellent biodegradability, biocompatibility, thermoplastic properties and diversity, PHAs are highly promising medical biomaterials and elements of medical devices for applications in tissue engineering and drug delivery. However, due to the high cost of biotechnological production, most PHAs have yet to be applied in the clinic and have only been studied at laboratory scale. This review focuses on the biosynthesis, diversity, physical properties, biodegradability and biosafety of PHAs. We also discuss optimization strategies for improved microbial production of commercial PHAs via novel synthetic biology tools. Moreover, we also systematically summarize various medical devices based on PHAs and related design approaches for medical applications, including tissue repair and drug delivery. The main degradation product of PHAs, 3-hydroxybutyrate (3HB), is recognized as a new functional molecule for cancer therapy and immune regulation. Although PHAs still account for only a small percentage of medical polymers, up-and-coming novel medical PHA devices will enter the clinical translation stage in the next few years.
Collapse
Affiliation(s)
- Zi-Wei Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Ze-Yu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jin-Wei Dao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, 678400, China
| | - Hao-Ru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xue Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xin-Yu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zi-Qi Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jia-Xuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Chen-Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zhe-Chen Gao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an, 710069, China
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong, 643002, Sichuan, China
| |
Collapse
|
5
|
Xu P, Chen P, Gao Q, Sun Y, Cao J, Wu H, Ye J. Azithromycin-carrying and microtubule-orientated biomimetic poly (lactic-co-glycolic acid) scaffolds for eyelid reconstruction. Front Med (Lausanne) 2023; 10:1129606. [PMID: 37261116 PMCID: PMC10227510 DOI: 10.3389/fmed.2023.1129606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction Tarsal plate repair is the major challenge of eyelid reconstruction for the oculoplastic surgeon. The ideal synthetic tarsal plate substitute should imitate the microstructure and mechanical strength of the natural eyelid. The aim of this work was to develop a novel bionic substitute for eyelid reconstruction. Methods Three types of poly(lactic-co-glycolic acid) (PLGA) scaffolds (random, oriented, and azithromycin-loaded oriented scaffolds) were prepared using an improved thermal-induced phase separation technique. The microstructure of the scaffolds was examined by scanning electron microscopy. In vitro cytotoxicity was assessed using scaffold extracts. Fibroblast and primary rat meibomian gland epithelial cells (rMGCs) were cultured within the scaffolds, and their behavior was observed using fluorescence staining. Three types of PLGA scaffolds were implanted into rabbit eyelid defect in vivo to evaluate their inductive tissue repair function. Results We successfully fabricated three types of PLGA scaffolds with varying pore architectures, and the axially aligned scaffold demonstrated interconnected and vertically parallel channels. In vitro cytotoxicity tests using scaffold extracts revealed no apparent cytotoxicity. Fluorescence staining showed that both Fibroblast and rMGCs could adhere well onto the pore walls, with fibroblast elongating along the axially aligned porous structure. At 8 weeks post-implantation, all scaffolds were well integrated by fibrovascular tissue. The axially aligned scaffold groups exhibited faster degradation compared to the random scaffold group, with smaller fragments surrounded by mature collagen fibers. Conclusion The study found that the axially aligned scaffolds could well support and guide cellular activities in vitro and in vivo. Moreover, the axially aligned scaffold group showed a faster degradation rate with a matched integration rate compared to the random scaffold group. The findings suggest that the oriented scaffold is a promising alternative for eyelid tarsal plate substitutes.
Collapse
|
6
|
Yan Y, Ji Q, Fu R, Liu C, Yang J, Yin X, Li Q, Huang R. Biomaterials and tissue engineering strategies for posterior lamellar eyelid reconstruction: Replacement or regeneration? Bioeng Transl Med 2023. [DOI: 10.1002/btm2.10497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Affiliation(s)
- Yuxin Yan
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Qiumei Ji
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Rao Fu
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Chuanqi Liu
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jing Yang
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiya Yin
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
- Department of Plastic and Burn Surgery West China Hospital, Sichuan University Chengdu China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Ru‐Lin Huang
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
7
|
[Beyond esthetics-Regenerative medicine for severe diseases of the adnexa oculi]. DIE OPHTHALMOLOGIE 2022; 119:878-890. [PMID: 35925347 DOI: 10.1007/s00347-022-01643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Restoration of eyelid and lacrimal functions are important steps on the way to an intact ocular surface. Clinically available substitute tissues or therapeutic options for eyelid reconstruction and lacrimal gland regeneration often reach their limits in patients with severe diseases of the adnexa oculi. Several approaches in regenerative medicine have been intensively researched and clinically tested in recent years. These range from reconstructive approaches with novel tissue matrices in the field of eyelid surgery to stem cell therapies to regenerate lacrimal gland function. MATERIAL AND METHODS The state of the art in the current literature is presented and an overview of clinically applied or currently researched tissues for eyelid reconstruction is given. Furthermore, approaches in stem cell therapy of the lacrimal gland as well as own results are presented. RESULTS Acellular dermis has been successfully used for eyelid reconstruction and represents a viable option in cases of limited availability of autologous tissue. In vitro grown cellular constructs or tissues with genetically modified cells have already been successfully applied in dermatology for the treatment of burns or severe genodermatoses. First studies on stem cell therapy for severe dry eye in Sjögren syndrome showed a safe and effective application of mesenchymal stem cells by injection into the lacrimal gland. CONCLUSION Due to the limitations of currently available replacement tissues, there is a clinical need for the development of new materials for adnexa oculi reconstruction. Constructs grown in vitro with allogeneic and/or genetically engineered cells are slowly making their way into clinical practice. The efficacy and mode of action of stem cells in severe dry eye are subject matters of current clinical trials.
Collapse
|
8
|
Adeleye AT, Odoh CK, Enudi OC, Banjoko OO, Osiboye OO, Toluwalope Odediran E, Louis H. Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Recent developments in regenerative ophthalmology. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1450-1490. [PMID: 32621058 DOI: 10.1007/s11427-019-1684-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/21/2020] [Indexed: 12/13/2022]
Abstract
Regenerative medicine (RM) is one of the most promising disciplines for advancements in modern medicine, and regenerative ophthalmology (RO) is one of the most active fields of regenerative medicine. This review aims to provide an overview of regenerative ophthalmology, including the range of tools and materials being used, and to describe its application in ophthalmologic subspecialties, with the exception of surgical implantation of artificial tissues or organs (e.g., contact lens, artificial cornea, intraocular lens, artificial retina, and bionic eyes) due to space limitations. In addition, current challenges and limitations of regenerative ophthalmology are discussed and future directions are highlighted.
Collapse
|
10
|
Chen L, Yan D, Wu N, Zhang W, Yan C, Yao Q, Zouboulis CC, Sun H, Fu Y. 3D-Printed Poly-Caprolactone Scaffolds Modified With Biomimetic Extracellular Matrices for Tarsal Plate Tissue Engineering. Front Bioeng Biotechnol 2020; 8:219. [PMID: 32269990 PMCID: PMC7109479 DOI: 10.3389/fbioe.2020.00219] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/04/2020] [Indexed: 11/19/2022] Open
Abstract
Tarsal plate regeneration has always been a challenge in the treatment of eyelid defects. The commonly used clinical treatments such as hard palate mucosa grafts cannot achieve satisfactory repair effects. Tissue engineering has been considered as a promising technology. However, tarsal plate tissue engineering is difficult to achieve due to its complex structure and lipid secretion function. Three-dimensional (3D) printing technology has played a revolutionary role in tissue engineering because it can fabricate complex scaffolds through computer aided design (CAD). In this study, it was novel in applying 3D printing technology to the fabrication of tarsal plate scaffolds using poly-caprolactone (PCL). The decellularized matrix of adipose-derived mesenchymal stromal cells (DMA) was coated on the surface of the scaffold, and its biofunction was further studied. Immortalized human SZ95 sebocytes were seeded on the scaffolds so that neutral lipids were secreted for replacing meibocytes. In vitro experiments revealed excellent biocompatibility of DMA-PCL scaffolds with sebocytes. In vivo experiments revealed excellent sebocytes proliferation on the DMA-PCL scaffolds. Meanwhile, sebocytes seeded on the scaffolds secreted abundant neutral lipid in vitro and in vivo. In conclusion, a 3D-printed PCL scaffold modified with DMA was found to be a promising substitute for tarsal plate tissue engineering.
Collapse
Affiliation(s)
- Liangbo Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Dan Yan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Nianxuan Wu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Weijie Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Chenxi Yan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Qinke Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - Hao Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
11
|
Xu P, Feng X, Zheng H, Feng Z, Fu Z, Gao C, Ye J. A tarsus construct of a novel branched polyethylene with good elasticity for eyelid reconstruction in vivo. Regen Biomater 2020; 7:259-269. [PMID: 32523728 PMCID: PMC7266665 DOI: 10.1093/rb/rbaa001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/19/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Branched polyethylene (B-PE) elastomer was investigated for its potential medical application as a tarsus construct. The in vitro results showed that the B-PE and processed B-PE films or scaffolds did not exhibit noticeable cytotoxicity to the NIH3T3 fibroblasts and human vascular endothelial cells (ECs). The B-PE scaffolds with a pore size of 280–480 µm were prepared by using a gelatin porogen-leaching method. The porous scaffolds implanted subcutaneously in rats exhibited mild inflammatory response, collagen deposition and fast fibrovascularization, suggesting their good biocompatibility. Quantitative real-time PCR analysis showed low expression of pro-inflammatory genes and up-regulated expressions of collagen deposition and vascularization-related genes, validating the results of historical evaluation in a molecular level. The B-PE scaffolds and Medpor controls were transplanted in rabbits with eyelid defects. The B-PE scaffolds exhibited a similar elastic modulus and provided desirable repair effects with mild fibrous capsulation, less eyelid deformities, and were well integrated with the fibrovascular tissue compared with the Medpor controls.
Collapse
Affiliation(s)
- Peifang Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xue Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Honghao Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhongwei Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhisheng Fu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Juan Ye
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
12
|
Sun MT, O’Connor AJ, Milne I, Biswas D, Casson R, Wood J, Selva D. Development of Macroporous Chitosan Scaffolds for Eyelid Tarsus Tissue Engineering. Tissue Eng Regen Med 2019; 16:595-604. [PMID: 31824822 PMCID: PMC6879684 DOI: 10.1007/s13770-019-00201-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 10/26/2022] Open
Abstract
Background Reconstruction of large eyelid defects remains challenging due to the lack of suitable eyelid tarsus tissue substitutes. We aimed to evaluate a novel bioengineered chitosan scaffold for use as an eyelid tarsus substitute. Methods Three-dimensional macroporous chitosan hydrogel scaffold were produced via cryogelation with specific biomechanical properties designed to directly match characteristics of native eyelid tarsus tissue. Scaffolds were characterized by confocal microscopy and tensile mechanical testing. To optimise biocompatibility, human eyelid skin fibroblasts were cultured from biopsy-sized samples of fresh eyelid skin. Immunological and gene expression analysis including specific fibroblast-specific markers were used to determine the rate of fibroblast de-differentiation in vitro and characterize cells cultured. Eyelid skin fibroblasts were then cultured over the chitosan scaffolds and the resultant adhesion and growth of cells were characterized using immunocytochemical staining. Results The chitosan scaffolds were shown to support the attachment and proliferation of NIH 3T3 mouse fibroblasts and human orbital skin fibroblasts in vitro. Our novel bioengineered chitosan scaffold has demonstrated biomechanical compatibility and has the ability to support human eyelid skin fibroblast growth and proliferation. Conclusions This bioengineered tissue has the potential to be used as a tarsus substitute during eyelid reconstruction, offering the opportunity to pre-seed the patient's own cells and represents a truly personalised approach to tissue engineering.
Collapse
Affiliation(s)
- Michelle T. Sun
- Discipline of Ophthalmology and Visual Sciences, South Australian Institute of Ophthalmology, The University of Adelaide and Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000 Australia
| | - Andrea J. O’Connor
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Monash Road, Victoria, 3010 Australia
| | - Imogen Milne
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Monash Road, Victoria, 3010 Australia
| | - Dhee Biswas
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Monash Road, Victoria, 3010 Australia
| | - Robert Casson
- Discipline of Ophthalmology and Visual Sciences, South Australian Institute of Ophthalmology, The University of Adelaide and Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000 Australia
| | - John Wood
- Discipline of Ophthalmology and Visual Sciences, South Australian Institute of Ophthalmology, The University of Adelaide and Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000 Australia
| | - Dinesh Selva
- Discipline of Ophthalmology and Visual Sciences, South Australian Institute of Ophthalmology, The University of Adelaide and Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000 Australia
| |
Collapse
|
13
|
Xu P, Gao Q, Feng X, Lou L, Zhu T, Gao C, Ye J. A biomimetic tarso-conjunctival biphasic scaffold for eyelid reconstruction in vivo. Biomater Sci 2019; 7:3373-3385. [PMID: 31233046 DOI: 10.1039/c9bm00431a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conventional 3D porous scaffolds used as tarsal plate substitute may cause corneal irritation and conjunctival mucoid discharge, and even lead to blindness and cicatricial blepharon deformities. In this study, collagen/chitosan (Col/CS) sponges with thickness of 240 μm, 466 μm, and 724 μm were composited onto poly(propylene fumarate)-co-2-hydroxyethyl methacrylate (PPF-HEMA) polymer networks to obtain the corresponding biphasic scaffolds, which simulate the natural anatomy of posterior lamella of eyelid. These three scaffolds exhibited a porous structure with porosity of ∼90%, simulated elastic modulus, appropriate degradation rate and good biocompatibility. Composited with Col/CS sponge of difference thickness, the scaffolds induced different cellular behaviors such as proliferation, distribution and stratification, by regulating the mechanical properties cells sensed as effective modulus. In a rabbit tarso-conjunctival defect model, the grafted biphasic scaffolds promoted re-epithelization with functional regenerated conjunctiva. Hence, the biphasic composite scaffolds may be a promising substitute for tarso-conjunctival repair.
Collapse
Affiliation(s)
- Peifang Xu
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, Zhejiang 310009, China.
| | - Qi Gao
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, Zhejiang 310009, China.
| | - Xue Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Lixia Lou
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, Zhejiang 310009, China.
| | - Tiepei Zhu
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, Zhejiang 310009, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Juan Ye
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
14
|
Wang L, Yang Z, Fan F, Sun S, Wu X, Lu H, Lu X. PHBHHx Facilitated the Residence, Survival and Stemness Maintain of Transplanted Neural Stem Cells in Traumatic Brain Injury Rats. Biomacromolecules 2019; 20:3294-3302. [DOI: 10.1021/acs.biomac.9b00408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leilei Wang
- Key Laboratory
of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People’s Republic of China
| | - Zhiqian Yang
- First Affiliated Hospital of Guangdong Pharmaceutics University, Guangzhou 510080, Guangdong, People’s Republic of China
| | - Fan Fan
- Key Laboratory
of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People’s Republic of China
| | - Shuhong Sun
- Key Laboratory
of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People’s Republic of China
| | - Xingjuan Wu
- Key Laboratory
of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People’s Republic of China
| | - Haixia Lu
- Key Laboratory of
Environment and Genes Related to Diseases of the Ministry of Education,
Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Centre, Xi’an 710061, Shaanxi, People’s Republic of China
| | - Xiaoyun Lu
- Key Laboratory
of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People’s Republic of China
| |
Collapse
|
15
|
Polyhydroxyalkanoates (PHA) for therapeutic applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2017.12.035] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Tissue Engineering in Ophthalmology: Implications for Eyelid Reconstruction. Ophthalmic Plast Reconstr Surg 2017; 33:157-162. [PMID: 27749619 DOI: 10.1097/iop.0000000000000792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE Bioengineering aims to produce functional tissue replacements to repair defects and has been widely investigated over the past few decades. We aimed to review the available literature on the application of tissue engineering in ophthalmology, with a particular focus on ophthalmic plastic surgery and potential applications for eyelid reconstruction. METHODS A literature search was performed on the MEDLINE database using the keywords "bioengineering," "tissue engineering," and "ophthalmology." Articles written in English were included. RESULTS There is a substantial body of work on tissue engineering of the cornea. Other structures in ophthalmology investigated include the conjunctiva, lacrimal gland, and orbital bone. We also discuss the potential application of tissue engineering in eyelid reconstruction. CONCLUSION Tissue engineering represents the future of regenerative and reconstructive medicine, with significant potential applications in ophthalmic plastic surgery.
Collapse
|
17
|
Chen GQ, Zhang J. Microbial polyhydroxyalkanoates as medical implant biomaterials. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1-18. [DOI: 10.1080/21691401.2017.1371185] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing, China
- Department of Chemical Engineering, MOE Key Lab of Industrial Biocatalysis, Tsinghua University, Beijing, China
| | - Junyu Zhang
- Laboratory of Fear and Anxiety Disorders, Institute of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Ke Y, Zhang X, Ramakrishna S, He L, Wu G. Reactive blends based on polyhydroxyalkanoates: Preparation and biomedical application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:1107-1119. [DOI: 10.1016/j.msec.2016.03.114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/06/2016] [Accepted: 03/31/2016] [Indexed: 01/11/2023]
|
19
|
Affiliation(s)
- Hwa Lee
- Department of Ophthalmology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| |
Collapse
|
20
|
Shishatskaya EI, Nikolaeva ED, Vinogradova ON, Volova TG. Experimental wound dressings of degradable PHA for skin defect repair. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:165. [PMID: 27655431 DOI: 10.1007/s10856-016-5776-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
The present study reports construction of wound dressing materials from degradable natural polymers such as hydroxy derivatives of carboxylic acids (PHAs) and 3-hydroxybutyrate/4-hydroxybutyrate [P(3HB/4HB)] as copolymer. The developed polymer films and electrospun membranes were evaluated for its wound healing properties with Grafts-elastic nonwoven membranes carrying fibroblast cells derived from adipose tissue multipotent mesenchymal stem cells. The efficacy of nonwoven membranes of P(3HB/4HB) carrying the culture of allogenic fibroblasts was assessed against model skin defects in Wistar rats. The morphological, histological and molecular studies revealed the presence of fibroblasts on dressing materials which facilitated wound healing, vascularization and regeneration. Further it was also observed that cells secreted extracellular matrix proteins which formed a layer on the surface of membranes and promoted the migration of epidermal cells from the neighboring tissues surrounding the wound. The wounds under the P(3HB/4HB) membrane carrying cells healed 1.4 times faster than the wounds under the cell-free membrane and 3.5 times faster than the wounds healing under the eschar (control).The complete wound healing process was achieved at Day 14. Thus the study highlights the importance of nonwoven membranes developed from degradable P(3HB/4HB) polymers in reducing inflammation, enhancing angiogenic properties of skin and facilitating better wound healing process.
Collapse
Affiliation(s)
- Ekaterina I Shishatskaya
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, 50-50 Akademgorodok, Krasnoyarsk, 660036, Russia
- Siberian Federal University, 79 Svobodniy Ave., Krasnoyarsk, 660041, Russia
| | - Elena D Nikolaeva
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, 50-50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Olga N Vinogradova
- Siberian Federal University, 79 Svobodniy Ave., Krasnoyarsk, 660041, Russia
| | - Tatiana G Volova
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, 50-50 Akademgorodok, Krasnoyarsk, 660036, Russia.
- Siberian Federal University, 79 Svobodniy Ave., Krasnoyarsk, 660041, Russia.
| |
Collapse
|
21
|
The Biomechanics of eyelid tarsus tissue. J Biomech 2015; 48:3455-9. [DOI: 10.1016/j.jbiomech.2015.05.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/26/2015] [Accepted: 05/24/2015] [Indexed: 11/20/2022]
|
22
|
Gao Q, Hu B, Ning Q, Ye C, Xie J, Ye J, Gao C. A primary study of poly(propylene fumarate)-2-hydroxyethyl methacrylate copolymer scaffolds for tarsal plate repair and reconstruction in rabbit eyelids. J Mater Chem B 2015; 3:4052-4062. [PMID: 32262627 DOI: 10.1039/c5tb00285k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eyelid reconstruction includes anterior lamella reconstruction and posterior lamella reconstruction. As an important skeletal component of the posterior lamella, tarsal plates repair is the key issue for eyelid reconstruction. Presently, neither traditional surgery nor autograft/allograft has achieved satisfactory repair effects. Poly(propylene fumarate)-co-2-hydroxyethyl methacrylate (PPF-HEMA) networks with mass ratios of 1 : 0.5, 1 : 1 and 1 : 2 were synthesized and used as the tarsal substitute in this study. Their chemical compositions, swelling ability, and mechanical properties were characterized. Porous scaffolds were fabricated by a gelatin particle leaching method. The in vitro studies of cytotoxicity on human dermal fibroblasts (HDFs) and degradation demonstrated that PPF-HEMA scaffolds did not have noticeable cell cytotoxicity and their degradation rates correlated with the ratio of PPF to HEMA. The PPF-HEMA networks, with mass ratios of 1 : 1 and 1 : 2, and an ADM control were implanted in rabbits with tarsal plate defects for in vivo biocompatibility and degradation behavior evaluation. PPF-HEMA scaffolds provided satisfactory repair results with mild tissue response and biocompatibility to fibroblast growth and fibrous capsulation compared to the ADM control. The tissue compatible and biodegradable PPF-HEMA networks with elastic mechanical properties were proven to be a suitable candidate for tarsal repair.
Collapse
Affiliation(s)
- Qi Gao
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, Zhejiang 310009, China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Biazar E. Polyhydroxyalkanoates as Potential Biomaterials for Neural Tissue Regeneration. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2014.886227] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Chang HM, Wang ZH, Luo HN, Xu M, Ren XY, Zheng GX, Wu BJ, Zhang XH, Lu XY, Chen F, Jing XH, Wang L. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based scaffolds for tissue engineering. ACTA ACUST UNITED AC 2014; 47:533-9. [PMID: 25003631 PMCID: PMC4123831 DOI: 10.1590/1414-431x20143930] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/12/2014] [Indexed: 01/18/2023]
Abstract
Development and selection of an ideal scaffold is of importance for tissue engineering. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) is a biocompatible bioresorbable copolymer that belongs to the polyhydroxyalkanoate family. Because of its good biocompatibility, PHBHHx has been widely used as a cell scaffold for tissue engineering. This review focuses on the utilization of PHBHHx-based scaffolds in tissue engineering. Advances in the preparation, modification, and application of PHBHHx scaffolds are discussed.
Collapse
Affiliation(s)
- H M Chang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Z H Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - H N Luo
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - M Xu
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - X Y Ren
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - G X Zheng
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - B J Wu
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - X H Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - X Y Lu
- School of Life Science and Technology of Xi'an Jiaotong University, Xi'an, China
| | - F Chen
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - X H Jing
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - L Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
25
|
A glucose-utilizing strain, Cupriavidus euthrophus B-10646: growth kinetics, characterization and synthesis of multicomponent PHAs. PLoS One 2014; 9:e87551. [PMID: 24586280 PMCID: PMC3933330 DOI: 10.1371/journal.pone.0087551] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/22/2013] [Indexed: 12/27/2022] Open
Abstract
This study investigates kinetic and production parameters of a glucose-utilizing bacterial strain, C. eutrophus B-10646, and its ability to synthesize PHA terpolymers. Optimization of a number of parameters of bacterial culture (cell concentration in the inoculum, physiological activity of the inoculum, determined by the initial intracellular polymer content, and glucose concentration in the culture medium during cultivation) provided cell concentrations and PHA yields reaching 110 g/L and 80%, respectively, under two-stage batch culture conditions. Addition of precursor substrates (valerate, hexanoate, propionate, γ-butyrolactone) to the culture medium enabled synthesis of PHA terpolymers, P(3HB/3HV/4HB) and P(3HB/3HV/3HHx), with different composition and different molar fractions of 3HB, 3HV, 4HB, and 3HHx. Different types of PHA terpolymers synthesized by C. eutrophus B-10646 were used to prepare films, whose physicochemical and physical-mechanical properties were investigated. The properties of PHA terpolymers were significantly different from those of the P3HB homopolymer: they had much lower degrees of crystallinity and lower melting points and thermal decomposition temperatures, with the difference between these temperatures remaining practically unchanged. Films prepared from all PHA terpolymers had higher mechanical strength and elasticity than P3HB films. In spite of dissimilar surface structures, all films prepared from PHA terpolymers facilitated attachment and proliferation of mouse fibroblast NIH 3T3 cells more effectively than polystyrene and the highly crystalline P3HB.
Collapse
|
26
|
Sakar M, Korkusuz P, Demirbilek M, Cetinkaya DU, Arslan S, Denkbaş EB, Temuçin ÇM, Bilgiç E, Hazer DB, Bozkurt G. The effect of poly(3-hydroxybutyrate-co-3- hydroxyhexanoate) (PHBHHx) and human mesenchymal stem cell (hMSC) on axonal regeneration in experimental sciatic nerve damage. Int J Neurosci 2014; 124:685-96. [PMID: 24350993 DOI: 10.3109/00207454.2013.876636] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study is designed to evaluate the treatment effect of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and human mesenchymal stem cells (hMSC) on axonal regeneration in experimental rat sciatic nerve damage, and compare the results of this modality with autologous nerve grafting. In Spraque-Dawley albino rats, 10-mm-long experimental nerve gaps were created. Three groups were constituted, the gap was repaired with autologous nerve graft (autograft group), PHBHHx nerve graft alone (PHBHHx alone group), and PHBHHx nerve graft with hMSCs inside (PHBHHx with hMSC group), respectively. The results were evaluated with functional recovery, electrophysiological evaluation, and histological evaluation either with light microscopy and transmission electron microscopy for axonal regeneration and myelin formation. In functional evaluation, autograft and PHBHHx with hMSC groups showed functional improvement with time, whereas PHBHHx alone group did not. Electrophysiological evaluation showed better results in autograft and PHBHHx with hMSC groups when compared to PHBHHx alone group. There was no statistical difference between autograft and PHBHHx with hMSC groups. Histological evaluation showed regenerated axons in each group. Autograft group was better than the others, and PHBHHx with hMSC group was better than PHBHHx alone group both for axonal regeneration and myelin formation. This study showed that the nerve grafts which were prepared from PHBHHx with oriented nanofiber three-dimensional surfaces aided to nerve regeneration, either used alone or with hMSC. PHBHHx provided better nerve regeneration when used with hMSCs inside than alone, and reached the same statistical treatment effect in functional evaluation and electrophysiological evaluation when compared to autografting.
Collapse
|
27
|
Mendonça T, Gomez J, Buffoni E, Sánchez Rodriguez R, Schripsema J, Lopes M, Silva L. Exploring the potential of Burkholderia sacchari
to produce polyhydroxyalkanoates. J Appl Microbiol 2013; 116:815-29. [DOI: 10.1111/jam.12406] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 11/21/2013] [Accepted: 11/21/2013] [Indexed: 11/28/2022]
Affiliation(s)
- T.T. Mendonça
- Departamento de Microbiologia; Instituto de Ciências Biomédicas; Universidade de São Paulo; São Paulo Brasil
| | - J.G.C. Gomez
- Departamento de Microbiologia; Instituto de Ciências Biomédicas; Universidade de São Paulo; São Paulo Brasil
| | - E. Buffoni
- Departamento de Microbiologia; Instituto de Ciências Biomédicas; Universidade de São Paulo; São Paulo Brasil
| | - R.J. Sánchez Rodriguez
- Centro de Ciências e Tecnologia; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes Brasil
| | - J. Schripsema
- Grupo Metabolômica; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes Brasil
| | - M.S.G. Lopes
- Departamento de Microbiologia; Instituto de Ciências Biomédicas; Universidade de São Paulo; São Paulo Brasil
| | - L.F. Silva
- Departamento de Microbiologia; Instituto de Ciências Biomédicas; Universidade de São Paulo; São Paulo Brasil
| |
Collapse
|
28
|
Medical applications of biopolyesters polyhydroxyalkanoates. CHINESE JOURNAL OF POLYMER SCIENCE 2013. [DOI: 10.1007/s10118-013-1280-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
The Implantable and Biodegradable PHBHHx 3D Scaffolds Loaded with Protein-Phospholipid Complex for Sustained Delivery of Proteins. Pharm Res 2012; 30:1077-85. [DOI: 10.1007/s11095-012-0944-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 11/19/2012] [Indexed: 11/26/2022]
|
30
|
Effects of carbon substrates on biodegradable polymer composition and stability produced by Delftia tsuruhatensis Bet002 isolated from palm oil mill effluent. Polym Degrad Stab 2012. [DOI: 10.1016/j.polymdegradstab.2012.05.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Zhijiang C, Chengwei H, Guang Y. Poly(3-hydroxubutyrate-co-4-hydroxubutyrate)/bacterial cellulose composite porous scaffold: Preparation, characterization and biocompatibility evaluation. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.08.037] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
32
|
Peng Q, Zhang ZR, Gong T, Chen GQ, Sun X. A rapid-acting, long-acting insulin formulation based on a phospholipid complex loaded PHBHHx nanoparticles. Biomaterials 2011; 33:1583-8. [PMID: 22112760 DOI: 10.1016/j.biomaterials.2011.10.072] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/27/2011] [Indexed: 02/06/2023]
Abstract
The application of poly(hydroxybutyrate-co-hydroxyhexanoate) (PHBHHx) for sustained and controlled delivery of hydrophilic insulin was made possible by preparing insulin phospholipid complex loaded biodegradable PHBHHx nanoparticles (INS-PLC-NPs). The INS-PLC-NPs produced by a solvent evaporation method showed a spherical shape with a mean particle size, zeta potential and entrapment efficiency of 186.2 nm, -38.4 mv and 89.73%, respectively. In vitro studies demonstrated that only 20% of insulin was released within 31 days with a burst release of 5.42% in the first 8 h. The hypoglycaemic effect in STZ induced diabetic rats lasted for more than 3 days after the subcutaneous injection of INS-PLC-NPs, which significantly prolonged the therapeutic effect compared with the administration of insulin solution. The pharmacological bioavailability (PA) of INS-PLC-NPs relative to insulin solution was over 350%, indicating that the bioavailability of insulin was significantly enhanced by INS-PLC-NPs. Therefore, the INS-PLC-NPs system is promising to serve as a long lasting insulin release formulation, by which the patient compliance can be enhanced significantly. This study also showed that phospholipid complex loaded biodegradable nanoparticles (PLC-NPs) have a great potential to be used as a sustained delivery system for hydrophilic proteins to be encapsulated in hydrophobic polymers.
Collapse
Affiliation(s)
- Qiang Peng
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, PR China
| | | | | | | | | |
Collapse
|