1
|
Heo S, Noh M, Kim Y, Park S. Stem Cell-Laden Engineered Patch: Advances and Applications in Tissue Regeneration. ACS APPLIED BIO MATERIALS 2025; 8:62-87. [PMID: 39701826 DOI: 10.1021/acsabm.4c01427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Stem cell-based therapies are emerging as significant approaches in tissue engineering and regenerative medicine, applicable to both fundamental scientific research and clinical practice. Despite remarkable results in clinical studies, challenges such as poor standardization of graft tissues, limited sources, and reduced functionality have hindered the effectiveness of these therapies. In this review, we summarize the engineering approaches involved in fabricating stem cell assisted patches and the substantial strategies for designing stem cell-laden engineered patches (SCP) to complement the existing stem cell-based therapies. We then outline the potential applications of SCP in advancing tissue regeneration and regenerative medicine. By combining living stem cells with engineered patches, SCP can enhance the functions of both components, particularly for tissue engineering applications. Finally, we addressed current challenges, such as ethical considerations, high costs, and regulatory hurdles and proposed future research directions to overcome these barriers.
Collapse
Affiliation(s)
- Seyeong Heo
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| | - Minhyeok Noh
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| | - Yeonseo Kim
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| | - Sunho Park
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
2
|
Dalfino S, Olaret E, Piazzoni M, Savadori P, Stancu I, Tartaglia G, Dolci C, Moroni L. Polycaprolactone/β-Tricalcium Phosphate Composite Scaffolds with Advanced Pore Geometries Promote Human Mesenchymal Stromal Cells' Osteogenic Differentiation. Tissue Eng Part A 2025; 31:13-28. [PMID: 38613813 DOI: 10.1089/ten.tea.2024.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024] Open
Abstract
Critical-sized mandibular bone defects, arising from, for example, resections after tumor surgeries, are currently treated with autogenous bone grafts. This treatment is considered very invasive and is associated with limitations such as morbidity and graft resorption. Tissue engineering approaches propose to use 3D scaffolds that combine structural features, biomaterial properties, cells, and biomolecules to create biomimetic constructs. However, mimicking the complex anatomy and composition of the mandible poses a challenge in scaffold design. In our study, we evaluated the dual effect of complex pore geometry and material composition on the osteogenic potential of 3D printed scaffolds. The scaffolds were made of polycaprolactone (PCL) alone (TCP0), or with a high concentration of β-tricalcium phosphate (β-TCP) up to 40% w/w (TCP40), with two complex pore geometries, namely a star- (S) and a diamond-like (D) shape. Scanning electron microscopy and microcomputed tomography images confirmed high fidelity during the printing process. The D-scaffolds displayed higher compressive moduli than the corresponding S-scaffolds. TCP40 scaffolds in simulated body fluid showed deposition of minerals on the surface after 28 days. Subsequently, we assessed the differentiation of seeded bone marrow-derived human mesenchymal stromal cells (hMSCs) over 28 days. The early expression of RUNX2 in the cell nuclei confirmed the commitment toward an osteogenic phenotype. Moreover, alkaline phosphatase (ALP) activity and collagen deposition displayed an increasing trend in the D-scaffolds. Collagen type I was mainly present in the deposited extracellular matrix (ECM), confirming deposition of bone matrix. Finally, Alizarin Red staining showed successful mineralization on all the TCP40 samples, with higher values for the S-shaped scaffolds. Taken together, our study demonstrated that the complex pore architectures of scaffolds comprised TCP40 stimulated osteogenic differentiation and mineralization of hMSCs in vitro. Future research will aim to validate these findings in vivo.
Collapse
Affiliation(s)
- Sophia Dalfino
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, The Netherlands
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milano, Italy
| | - Elena Olaret
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania
| | - Marco Piazzoni
- Department of Physics, Università degli Studi di Milano, Milano, Italy
| | - Paolo Savadori
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milano, Italy
| | - Izabela Stancu
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania
| | - Gianluca Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milano, Italy
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico di Milano, Milano, Italy
| | - Claudia Dolci
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, The Netherlands
| |
Collapse
|
3
|
Ehlen Q, Costello JP, Mirsky NA, Slavin BV, Parra M, Ptashnik A, Nayak VV, Coelho PG, Witek L. Treatment of Bone Defects and Nonunion via Novel Delivery Mechanisms, Growth Factors, and Stem Cells: A Review. ACS Biomater Sci Eng 2024; 10:7314-7336. [PMID: 39527574 PMCID: PMC11632667 DOI: 10.1021/acsbiomaterials.4c01279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Bone nonunion following a fracture represents a significant global healthcare challenge, with an overall incidence ranging between 2 and 10% of all fractures. The management of nonunion is not only financially prohibitive but often necessitates invasive surgical interventions. This comprehensive manuscript aims to provide an extensive review of the published literature involving growth factors, stem cells, and novel delivery mechanisms for the treatment of fracture nonunion. Key growth factors involved in bone healing have been extensively studied, including bone morphogenic protein (BMP), vascular endothelial growth factor (VEGF), and platelet-derived growth factor. This review includes both preclinical and clinical studies that evaluated the role of growth factors in acute and chronic nonunion. Overall, these studies revealed promising bridging and fracture union rates but also elucidated complications such as heterotopic ossification and inferior mechanical properties associated with chronic nonunion. Stem cells, particularly mesenchymal stem cells (MSCs), are an extensively studied topic in the treatment of nonunion. A literature search identified articles that demonstrated improved healing responses, osteogenic capacity, and vascularization of fractures due to the presence of MSCs. Furthermore, this review addresses novel mechanisms and materials being researched to deliver these growth factors and stem cells to nonunion sites, including natural/synthetic polymers and bioceramics. The specific mechanisms explored in this review include BMP-induced osteoblast differentiation, VEGF-mediated angiogenesis, and the role of MSCs in multilineage differentiation and paracrine signaling. While these therapeutic modalities exhibit substantial preclinical promise in treating fracture nonunion, there remains a need for further research, particularly in chronic nonunion and large animal models. This paper seeks to identify such translational hurdles which must be addressed in order to progress the aforementioned treatments from the lab to the clinical setting.
Collapse
Affiliation(s)
- Quinn
T. Ehlen
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Joseph P. Costello
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Nicholas A. Mirsky
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Blaire V. Slavin
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Marcelo Parra
- Center
of Excellence in Morphological and Surgical Studies (CEMyQ), Faculty
of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
- Department
of Comprehensive Adult Dentistry, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
| | - Albert Ptashnik
- Biomaterials
Division, NYU Dentistry, New York, New York 10010, United States
| | - Vasudev Vivekanand Nayak
- Department
of Biochemistry and Molecular Biology, University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Paulo G. Coelho
- Department
of Biochemistry and Molecular Biology, University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
- Division
of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Lukasz Witek
- Biomaterials
Division, NYU Dentistry, New York, New York 10010, United States
- Department
of Biomedical Engineering, NYU Tandon School
of Engineering, Brooklyn, New York 11201, United States
- Hansjörg
Wyss Department of Plastic Surgery, NYU
Grossman School of Medicine, New
York, New York 10016, United States
| |
Collapse
|
4
|
Ghezzi B, Matera B, Meglioli M, Rossi F, Duraccio D, Faga MG, Zappettini A, Macaluso GM, Lumetti S. Composite PCL Scaffold With 70% β-TCP as Suitable Structure for Bone Replacement. Int Dent J 2024; 74:1220-1232. [PMID: 38614878 PMCID: PMC11551565 DOI: 10.1016/j.identj.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 04/15/2024] Open
Abstract
OBJECTIVES The purpose of this work was to optimise printable polycaprolactone (PCL)/β-tricalcium phosphate (β-TCP) biomaterials with high percentages of β-TCP endowed with balanced mechanical characteristics to resemble human cancellous bone, presumably improving osteogenesis. METHODS PCL/β-TCP scaffolds were obtained from customised filaments for fused deposition modelling (FDM) 3D printing with increasing amounts of β-TCP. Samples mechanical features, surface topography and wettability were evaluated as well as cytocompatibility assays, cell adhesion and differentiation. RESULTS The parameters of the newly fabricated materila were optimal for PCL/β-TCP scaffold fabrication. Composite surfaces showed higher hydrophilicity compared with the controls, and their surface roughness sharply was higher, possibly due to the presence of β-TCP. The Young's modulus of the composites was significantly higher than that of pristine PCL, indicating that the intrinsic strength of β-TCP is beneficial for enhancing the elastic modulus of the composite biomaterials. All novel composite biomaterials supported greater cellular growth and stronger osteoblastic differentiation compared with the PCL control. CONCLUSIONS This project highlights the possibility to fabricat, through an FDM solvent-free approach, PCL/β-TCP scaffolds of up to 70 % concentrations of β-TCP. overcoming the current lmit of 60 % stated in the literature. The combination of 3D printing and customised biomaterials allowed production of highly personalised scaffolds with optimal mechanical and biological features resembling the natural structure and the composition of bone. This underlines the promise of such structures for innovative approaches for bone and periodontal regeneration.
Collapse
Affiliation(s)
- Benedetta Ghezzi
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy; Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Biagio Matera
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Matteo Meglioli
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy.
| | - Francesca Rossi
- Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Donatella Duraccio
- Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili, Consiglio Nazionale delle Ricerche, Torino, Italy
| | - Maria Giulia Faga
- Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili, Consiglio Nazionale delle Ricerche, Torino, Italy
| | - Andrea Zappettini
- Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Guido Maria Macaluso
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy; Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Simone Lumetti
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy; Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| |
Collapse
|
5
|
Hejazi F, Zare F, Asgari M. Enhanced differentiation of mesenchymal stem cells in coral-incorporated PCL/elastin scaffold enables 3D defect healing in osteoporosis rat model. Int J Biol Macromol 2024; 277:134483. [PMID: 39102909 DOI: 10.1016/j.ijbiomac.2024.134483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/14/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
In osteoporosis, bone quality adversely affects the tissue structural competence which increases the risk of a complicated fracture healing. In the present study highly potent scaffold containing natural coral particles was designed and considered for the healing of critical size bone defect in osteoporosis rat model. Scaffold morphological evaluation confirmed the porous nanofibrous structure. Water uptake of about 900 % was obtained for the fabricated scaffold as the result of its composition and three-dimensional structure. Mechanical analysis revealed the compressive modulus of about 50 kPa for the fabricated coral-incorporated nanofibrous structure. In vitro cellular assessments revealed that the designed scaffold induces no toxicity and provides the proper substrate for cell attachment together with increased and prolonged cell proliferation. In vivo experiments demonstrated that implantation of the fabricated scaffold in the femoral defects of osteoporotic rats significantly increased the number of osteocytes and osteoblasts, and enhanced the BTV, and BMP-2 expression compared with the control group. Furthermore, it was observed that seeding the scaffolds with MSCs prior to implantation, resulted in substantial improvements in mRNA expression of the BMP-2 and VEGF genes and considerable enhancement in stereological findings such as significantly higher number of osteoblasts, osteocytes, TVB, and BTV.
Collapse
Affiliation(s)
- Fatemeh Hejazi
- Faculty of advanced technologies, Shiraz University, Shiraz, Iran.
| | - Fatemeh Zare
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Asgari
- Department of Anatomy, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
6
|
Hassan MN, Eltawila AM, Mohamed-Ahmed S, Amin WM, Suliman S, Kandil S, Yassin MA, Mustafa K. Correlation between Ca Release and Osteoconduction by 3D-Printed Hydroxyapatite-Based Templates. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28056-28069. [PMID: 38795033 PMCID: PMC11163400 DOI: 10.1021/acsami.4c01472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/27/2024]
Abstract
The application of hydroxyapatite (HA)-based templates is quite often seen in bone tissue engineering since that HA is an osteoconductive bioceramic material, which mimics the inorganic component of mineralized tissues. However, the reported osteoconductivity varies in vitro and in vivo, and the levels of calcium (Ca) release most favorable to osteoconduction have yet to be determined. In this study, HA-based templates were fabricated by melt-extrusion 3D-printing and characterized in order to determine a possible correlation between Ca release and osteoconduction. The HA-based templates were blended with poly(lactide-co-trimethylene carbonate) (PLATMC) at three different HA ratios: 10, 30, and 50%. The printability and physical properties of the HA templates were compared with those of pristine PLATMC. In vitro, osteoconductivity was assessed using seeded human bone marrow-derived mesenchymal stem cells. A mild rate of Ca release was observed for HA10 templates, which exhibited higher mineralized extracellular matrix (ECM) secretion than PLATMC at 14 and 21 days. In contrast, the high rate of Ca release exhibited by HA30 and HA50 templates was associated with reduced osteoconduction and impeded mineralized ECM secretion in vitro. Similar results were observed in vivo. In the calvarial defect model in rabbit, PLATMC and HA10 templates exhibited the highest amount of new bone formation, with obvious contact osteogenesis on their surfaces. In contrast, HA30 and HA50 exhibited distant osteogenesis and reduced amounts of new bone ingrowth. It is concluded that HA-based templates are osteoconductive only at low rates of Ca release.
Collapse
Affiliation(s)
- Mohamad N. Hassan
- Centre
for Translational Oral Research (TOR), Department of Clinical Dentistry,
Faculty of Medicine, University of Bergen, Årstadveien 19, Bergen 5009, Norway
- Orthopedic
Clinic, Haukeland University Hospital, Helse Bergen, Haukelandsveien 28, Bergen 5021, Norway
| | - Ahmed M. Eltawila
- Department
of Materials Science, Institute of Graduate
Studies and Research (IGSR), Alexandria University, El-Shatby, Alexandria 21526, Egypt
- Department
of Dental Biomaterials, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Coastal International Road, Gamasa 11152, Egypt
| | - Samih Mohamed-Ahmed
- Centre
for Translational Oral Research (TOR), Department of Clinical Dentistry,
Faculty of Medicine, University of Bergen, Årstadveien 19, Bergen 5009, Norway
| | - Wessam M. Amin
- Department
of Materials Science, Institute of Graduate
Studies and Research (IGSR), Alexandria University, El-Shatby, Alexandria 21526, Egypt
| | - Salwa Suliman
- Centre
for Translational Oral Research (TOR), Department of Clinical Dentistry,
Faculty of Medicine, University of Bergen, Årstadveien 19, Bergen 5009, Norway
| | - Sherif Kandil
- Department
of Materials Science, Institute of Graduate
Studies and Research (IGSR), Alexandria University, El-Shatby, Alexandria 21526, Egypt
| | - Mohammed A. Yassin
- Centre
for Translational Oral Research (TOR), Department of Clinical Dentistry,
Faculty of Medicine, University of Bergen, Årstadveien 19, Bergen 5009, Norway
- Biomaterials
Section, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, Bergen 5009, Norway
| | - Kamal Mustafa
- Centre
for Translational Oral Research (TOR), Department of Clinical Dentistry,
Faculty of Medicine, University of Bergen, Årstadveien 19, Bergen 5009, Norway
| |
Collapse
|
7
|
Safiaghdam H, Baniameri S, Aminianfar H, Mohajeri SF, Dehghan MM, Tayebi L, Nokhbatolfoghahaei H, Khojasteh A. Evaluating osteogenic potential of a 3D-printed bioceramic-based scaffold for critical-sized defect treatment: an in vivo and in vitro investigation. In Vitro Cell Dev Biol Anim 2024; 60:657-666. [PMID: 38743380 DOI: 10.1007/s11626-024-00912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
The integration of precision medicine principles into bone tissue engineering has ignited a wave of research focused on customizing intricate scaffolds through advanced 3D printing techniques. Bioceramics, known for their exceptional biocompatibility and osteoconductivity, have emerged as a promising material in this field. This article aims to evaluate the regenerative capabilities of a composite scaffold composed of 3D-printed gelatin combined with hydroxyapatite/tricalcium phosphate bioceramics (G/HA/TCP), incorporating human dental pulp-derived stem cells (hDPSCs). Using 3D powder printing, we created cross-shaped biphasic calcium phosphate scaffolds with a gelatin layer. The bone-regenerating potential of these scaffolds, along with hDPSCs, was assessed through in vitro analyses and in vivo studies with 60 rats and critical-sized calvarial defects. The assessment included analyzing cellular proliferation, differentiation, and alkaline phosphatase activity (ALP), and concluded with a detailed histological evaluation of bone regeneration. Our study revealed a highly favorable scenario, displaying not only desirable cellular attachment and proliferation on the scaffolds but also a notable enhancement in the ALP activity of hDPSCs, underscoring their pivotal role in bone regeneration. However, the histological examination of calvarial defects at the 12-wk mark yielded a rather modest level of bone regeneration across all experimental groups. The test and cell group exhibited significant bone formation compared to all other groups except the control and cell group. This underscores the complexity of the regenerative process and paves the way for further in-depth investigations aimed at improving the potential of the composite scaffolds.
Collapse
Affiliation(s)
- Hannaneh Safiaghdam
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Baniameri
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Aminianfar
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Saeed Farzad Mohajeri
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Lobat Tayebi
- School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK, 74106, USA
- Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Daskalakis E, Huang B, Hassan MH, Omar AM, Vyas C, Acar AA, Fallah A, Cooper G, Weightman A, Blunn G, Koç B, Bartolo P. In Vitro Evaluation of Pore Size Graded Bone Scaffolds with Different Material Composition. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:e718-e730. [PMID: 38689909 PMCID: PMC11057695 DOI: 10.1089/3dp.2022.0138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The demand for biomimetic and biocompatible scaffolds in equivalence of structure and material composition for the regeneration of bone tissue is relevantly high. This article is investigating a novel three-dimensional (3D) printed porous structure called bone bricks with a gradient pore size mimicking the structure of the bone tissue. Poly-ɛ-caprolactone (PCL) combined with ceramics such as hydroxyapatite (HA), β-tricalcium phosphate (TCP), and bioglass 45S5 were successfully mixed using a melt blending method and fabricated with the use of screw-assisted extrusion-based additive manufacturing system. Bone bricks containing the same material concentration (20 wt%) were biologically characterized through proliferation and differentiation tests. Scanning electron microscopy (SEM) was used to investigate the morphology of cells on the surface of bone bricks, whereas energy dispersive X-ray (EDX) spectroscopy was used to investigate the element composition on the surface of the bone bricks. Confocal imaging was used to investigate the number of differentiated cells on the surface of bone bricks. Proliferation results showed that bone bricks containing PCL/HA content are presenting higher proliferation properties, whereas differentiation results showed that bone bricks containing PCL/Bioglass 45S5 are presenting higher differentiation properties. Confocal imaging results showed that bone bricks containing PCL/Bioglass 45S5 are presenting a higher number of differentiated cells on their surface compared with the other material contents.
Collapse
Affiliation(s)
- Evangelos Daskalakis
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
| | - Boyang Huang
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Mohamed H. Hassan
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
| | - Abdalla M. Omar
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
| | - Cian Vyas
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Anil A. Acar
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul, Turkey
- SUNUM Nanotechnology Research Center, Sabanci University, Istanbul, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul, Turkey
- SUNUM Nanotechnology Research Center, Sabanci University, Istanbul, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Glen Cooper
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
| | - Andrew Weightman
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Bahattin Koç
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul, Turkey
- SUNUM Nanotechnology Research Center, Sabanci University, Istanbul, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, United Kingdom
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
9
|
Kühl J, Gorb S, Kern M, Klüter T, Kühl S, Seekamp A, Fuchs S. Extrusion-based 3D printing of osteoinductive scaffolds with a spongiosa-inspired structure. Front Bioeng Biotechnol 2023; 11:1268049. [PMID: 37790253 PMCID: PMC10544914 DOI: 10.3389/fbioe.2023.1268049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Critical-sized bone defects resulting from trauma, inflammation, and tumor resections are individual in their size and shape. Implants for the treatment of such defects have to consider biomechanical and biomedical factors, as well as the individual conditions within the implantation site. In this context, 3D printing technologies offer new possibilities to design and produce patient-specific implants reflecting the outer shape and internal structure of the replaced bone tissue. The selection or modification of materials used in 3D printing enables the adaption of the implant, by enhancing the osteoinductive or biomechanical properties. In this study, scaffolds with bone spongiosa-inspired structure for extrusion-based 3D printing were generated. The computer aided design process resulted in an up scaled and simplified version of the bone spongiosa. To enhance the osteoinductive properties of the 3D printed construct, polycaprolactone (PCL) was combined with 20% (wt) calcium phosphate nano powder (CaP). The implants were designed in form of a ring structure and revealed an irregular and interconnected porous structure with a calculated porosity of 35.2% and a compression strength within the range of the natural cancellous bone. The implants were assessed in terms of biocompatibility and osteoinductivity using the osteosarcoma cell line MG63 and patient-derived mesenchymal stem cells in selected experiments. Cell growth and differentiation over 14 days were monitored using confocal laser scanning microscopy, scanning electron microscopy, deoxyribonucleic acid (DNA) quantification, gene expression analysis, and quantitative assessment of calcification. MG63 cells and human mesenchymal stem cells (hMSC) adhered to the printed implants and revealed a typical elongated morphology as indicated by microscopy. Using DNA quantification, no differences for PCL or PCL-CaP in the initial adhesion of MG63 cells were observed, while the PCL-based scaffolds favored cell proliferation in the early phases of culture up to 7 days. In contrast, on PCL-CaP, cell proliferation for MG63 cells was not evident, while data from PCR and the levels of calcification, or alkaline phosphatase activity, indicated osteogenic differentiation within the PCL-CaP constructs over time. For hMSC, the highest levels in the total calcium content were observed for the PCL-CaP constructs, thus underlining the osteoinductive properties.
Collapse
Affiliation(s)
- Julie Kühl
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center, Kiel, Germany
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Kiel University, Kiel, Germany
| | - Matthias Kern
- Department of Prosthodontics, Propaedeutics and Dental Material, University Medical Center, Kiel, Germany
| | - Tim Klüter
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center, Kiel, Germany
| | - Sebastian Kühl
- Department of Electrical and Information Engineering, Kiel University, Kiel, Germany
| | - Andreas Seekamp
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center, Kiel, Germany
| | - Sabine Fuchs
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center, Kiel, Germany
| |
Collapse
|
10
|
Ye K, Zhang X, Shangguan L, Liu X, Nie X, Qiao Y. Manganese-Implanted Titanium Modulates the Crosstalk between Bone Marrow Mesenchymal Stem Cells and Macrophages to Improve Osteogenesis. J Funct Biomater 2023; 14:456. [PMID: 37754870 PMCID: PMC10531852 DOI: 10.3390/jfb14090456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Manganese (Mn) is an essential micronutrient in various physiological processes, but its functions in bone metabolism remain undefined. This is partly due to the interplay between immune and bone cells because Mn plays a central role in the immune system. In this study, we utilized the plasma immersion ion implantation and deposition (PIII&D) technique to introduce Mn onto the titanium surface. The results demonstrated that Mn-implanted surfaces stimulated the shift of macrophages toward the M1 phenotype and had minimal effects on the osteogenic differentiation of mouse bone marrow mesenchymal stem cells (mBMSCs) under mono-culture conditions. However, they promoted the M2 polarization of macrophages and improved the osteogenic activities of mBMSCs under co-culture conditions, indicating the importance of the crosstalk between mBMSCs and macrophages mediated by Mn in osteogenic activities. This study provides a positive incentive for the application of Mn in the field of osteoimmunology.
Collapse
Affiliation(s)
- Kuicai Ye
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (K.Y.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianming Zhang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (K.Y.)
| | - Li Shangguan
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (K.Y.)
- School of Materials Science, Shanghai University, Shanghai 200444, China
| | - Xingdan Liu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (K.Y.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoshuang Nie
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (K.Y.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqin Qiao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (K.Y.)
| |
Collapse
|
11
|
Sparks DS, Wiper J, Lloyd T, Wille ML, Sehu M, Savi FM, Ward N, Hutmacher DW, Wagels M. Protocol for the BONE-RECON trial: a single-arm feasibility trial for critical sized lower limb BONE defect RECONstruction using the mPCL-TCP scaffold system with autologous vascularised corticoperiosteal tissue transfer. BMJ Open 2023; 13:e056440. [PMID: 37137563 PMCID: PMC10163528 DOI: 10.1136/bmjopen-2021-056440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
INTRODUCTION Reconstruction of critical bone defects is challenging. In a substantial subgroup of patients, conventional reconstructive techniques are insufficient. Biodegradable scaffolds have emerged as a novel tissue engineering strategy for critical-sized bone defect reconstruction. A corticoperiosteal flap integrates the hosts' ability to regenerate bone and permits the creation of a vascular axis for scaffold neo-vascularisation (regenerative matching axial vascularisation-RMAV). This phase IIa study evaluates the application of the RMAV approach alongside a custom medical-grade polycaprolactone-tricalcium phosphate (mPCL-TCP) scaffold (Osteopore) to regenerate bone sufficient to heal critical size defects in lower limb defects. METHODS AND ANALYSIS This open-label, single-arm feasibility trial will be jointly coordinated by the Complex Lower Limb Clinic (CLLC) at the Princess Alexandra Hospital in Woolloongabba (Queensland, Australia), the Australian Centre for Complex Integrated Surgical Solutions (Queensland, Australia) and the Faculty of Engineering, Queensland University of Technology in Kelvin Grove (Queensland, Australia). Aiming for limb salvage, the study population (n=10) includes any patient referred to the CLLC with a critical-sized bone defect not amenable to conventional reconstructive approaches, after discussion by the interdisciplinary team. All patients will receive treatment using the RMAV approach using a custom mPCL-TCP implant. The primary study endpoint will be safety and tolerability of the reconstruction. Secondary end points include time to bone union and weight-bearing status on the treated limb. Results of this trial will help shape the role of scaffold-guided bone regenerative approaches in complex lower limb reconstruction where current options remain limited. ETHICS AND DISSEMINATION Approval was obtained from the Human Research Ethics Committee at the participating centre. Results will be submitted for publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER ACTRN12620001007921.
Collapse
Affiliation(s)
- David S Sparks
- Queensland University of Technology, Faculty of Engineering, Brisbane, Queensland, Australia
- The University of Queensland PA Southside Clinical School, Woolloongabba, Queensland, Australia
| | - Jay Wiper
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Thomas Lloyd
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
- Department of Radiology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Marie-Luise Wille
- Queensland University of Technology, Faculty of Engineering, Brisbane, Queensland, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Mechanical, Medical, and Process Engineering | Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Marjoree Sehu
- Department of Infectious Diseases, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Flavia M Savi
- Queensland University of Technology, Faculty of Engineering, Brisbane, Queensland, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Mechanical, Medical, and Process Engineering | Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nicola Ward
- Department of Orthopaedics, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Dietmar W Hutmacher
- ARC Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Mechanical, Medical, and Process Engineering | Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
- Faculty of Health, School of Biomedical Siences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michael Wagels
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
- Australian Centre for Complex Integrated Surgical Solutions (ACCISS), Translational Research Institute Australia Ghrelin Research Group, South Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Lv X, Wang S, Xu Z, Liu X, Liu G, Cao F, Ma Y. Structural Mechanical Properties of 3D Printing Biomimetic Bone Replacement Materials. Biomimetics (Basel) 2023; 8:biomimetics8020166. [PMID: 37092418 PMCID: PMC10123638 DOI: 10.3390/biomimetics8020166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
One of the primary challenges in developing bone substitutes is to create scaffolds with mechanical properties that closely mimic those of regenerated tissue. Scaffolds that mimic the structure of natural cancellous bone are believed to have better environmental adaptability. In this study, we used the porosity and thickness of pig cancellous bone as biomimetic design parameters, and porosity and structural shape as differential indicators, to design a biomimetic bone beam scaffold. The mechanical properties of the designed bone beam model were tested using the finite element method (FEM). PCL/β-TCP porous scaffolds were prepared using the FDM method, and their mechanical properties were tested. The FEM simulation results were compared and validated, and the effects of porosity and pore shape on the mechanical properties were analyzed. The results of this study indicate that the PCL/β-TCP scaffold, prepared using FDM 3D printing technology for cancellous bone tissue engineering, has excellent integrity and stability. Predicting the structural stability using FEM is effective. The triangle pore structure has the most stability in both simulations and tests, followed by the rectangle and honeycomb shapes, and the diamond structure has the worst stability. Therefore, adjusting the porosity and pore shape can change the mechanical properties of the composite scaffold to meet the mechanical requirements of customized tissue engineering.
Collapse
Affiliation(s)
- Xueman Lv
- The College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130031, China
| | - Shuo Wang
- The College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Zihe Xu
- The College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Xuanting Liu
- The College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Guoqin Liu
- The College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Feipeng Cao
- The College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Yunhai Ma
- The College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
| |
Collapse
|
13
|
Zhang Q, Zhou J, Zhi P, Liu L, Liu C, Fang A, Zhang Q. 3D printing method for bone tissue engineering scaffold. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023; 17:None. [PMID: 36909661 PMCID: PMC9995276 DOI: 10.1016/j.medntd.2022.100205] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
3D printing technology is an emerging technology. It constructs solid bodies by stacking materials layer by layer, and can quickly and accurately prepare bone tissue engineering scaffolds with specific shapes and structures to meet the needs of different patients. The field of life sciences has received a great deal of attention. However, different 3D printing technologies and materials have their advantages and disadvantages, and there are limitations in clinical application. In this paper, the technology, materials and clinical applications of 3D printed bone tissue engineering scaffolds are reviewed, and the future development trends and challenges in this field are prospected.
Collapse
Affiliation(s)
- Qiliang Zhang
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Jian Zhou
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Peixuan Zhi
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- The First Affiliated Hospital and Its National Resident Standardized Training Base, Dalian Medical University, Dalian, 116000, China
| | - Leixin Liu
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- The First Affiliated Hospital and Its National Resident Standardized Training Base, Dalian Medical University, Dalian, 116000, China
| | - Chaozong Liu
- Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, London, United Kingdom
| | - Ao Fang
- Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, London, United Kingdom
- Department of Rehabilitation Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China
- Corresponding author. Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, London, United Kingdom.
| | - Qidong Zhang
- Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, London, United Kingdom
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Corresponding author. Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, London, United Kingdom.
| |
Collapse
|
14
|
Meneghetti DH, Bagne L, de Andrade Pinto SA, de Carvalho Zavaglia CA, Amaral MEC, Esquisatto MAM, Dos Santos GMT, de Andrade TAM, Santamaria M, Caetano GF, de Aro AA, Mendonça FAS. Electrical stimulation therapy and rotary jet-spinning scaffold to treat bone defects. Anat Rec (Hoboken) 2023; 306:79-91. [PMID: 35535414 DOI: 10.1002/ar.24994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 01/29/2023]
Abstract
The combination of electrical stimulation (ES) and bone tissue engineering (BTE) has been successful in treatments of bone regeneration. This study evaluated the effects of ES combined with PCL + β-TCP 5% scaffolds obtained by rotary jet spinning (RJS) in the regeneration of bone defects in the calvaria of Wistar rats. We used 120 animals with induced bone defects divided into 4 groups (n = 30): (C) without treatment; (S) with PCL+ β-TCP 5% scaffold; (ES) treated with ES (10 μA/5 min); (ES + S) with PCL + β-TCP 5% scaffold. The ES occurred twice a week during the entire experimental period. Cell viability (in vitro: Days 3 and 7) and histomorphometric, histochemical, and immunohistochemical (in vivo; Days 30, 60, and 90) analysis were performed. In vitro, ES + S increased cell viability after Day 7 of incubation. In vivo, it was observed modulation of inflammatory cells in ES therapy, which also promoted blood vessels proliferation, and increase of collagen. Moreover, ES therapy played a role in osteogenesis by decreasing ligand kappa B nuclear factor-TNFSF11 (RANKL), increasing alkaline phosphatase (ALP), and decreasing the tartarate-resistant acid phosphatase. The combination of ES with RJS scaffolds may be a promising strategy for bone defects regeneration, since the therapy controlled inflammation, favored blood vessels proliferation, and osteogenesis, which are important processes in bone remodeling.
Collapse
Affiliation(s)
- Damaris Helena Meneghetti
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, Araras, Brazil
| | - Leonardo Bagne
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, Araras, Brazil
| | | | | | | | | | | | | | - Milton Santamaria
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, Araras, Brazil.,Faculty of Mechanical Engineering, University of Campinas, Campinas, Brazil.,Graduate Program in Orthodontics, University Center of Hermínio Ometto Foundation, Araras, Brazil
| | - Guilherme Ferreira Caetano
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, Araras, Brazil
| | - Andrea Aparecida de Aro
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, Araras, Brazil
| | | |
Collapse
|
15
|
Chen Y, Lock J, Liu HH. Nanocomposites for cartilage regeneration. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
16
|
Bowles-Welch AC, Jimenez AC, Stevens HY, Frey Rubio DA, Kippner LE, Yeago C, Roy K. Mesenchymal stromal cells for bone trauma, defects, and disease: Considerations for manufacturing, clinical translation, and effective treatments. Bone Rep 2023. [DOI: 10.1016/j.bonr.2023.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
17
|
Charbe NB, Tambuwala M, Palakurthi SS, Warokar A, Hromić‐Jahjefendić A, Bakshi H, Zacconi F, Mishra V, Khadse S, Aljabali AA, El‐Tanani M, Serrano‐Aroca Ã, Palakurthi S. Biomedical applications of three-dimensional bioprinted craniofacial tissue engineering. Bioeng Transl Med 2023; 8:e10333. [PMID: 36684092 PMCID: PMC9842068 DOI: 10.1002/btm2.10333] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
Anatomical complications of the craniofacial regions often present considerable challenges to the surgical repair or replacement of the damaged tissues. Surgical repair has its own set of limitations, including scarcity of the donor tissues, immune rejection, use of immune suppressors followed by the surgery, and restriction in restoring the natural aesthetic appeal. Rapid advancement in the field of biomaterials, cell biology, and engineering has helped scientists to create cellularized skeletal muscle-like structures. However, the existing method still has limitations in building large, highly vascular tissue with clinical application. With the advance in the three-dimensional (3D) bioprinting technique, scientists and clinicians now can produce the functional implants of skeletal muscles and bones that are more patient-specific with the perfect match to the architecture of their craniofacial defects. Craniofacial tissue regeneration using 3D bioprinting can manage and eliminate the restrictions of the surgical transplant from the donor site. The concept of creating the new functional tissue, exactly mimicking the anatomical and physiological function of the damaged tissue, looks highly attractive. This is crucial to reduce the donor site morbidity and retain the esthetics. 3D bioprinting can integrate all three essential components of tissue engineering, that is, rehabilitation, reconstruction, and regeneration of the lost craniofacial tissues. Such integration essentially helps to develop the patient-specific treatment plans and damage site-driven creation of the functional implants for the craniofacial defects. This article is the bird's eye view on the latest development and application of 3D bioprinting in the regeneration of the skeletal muscle tissues and their application in restoring the functional abilities of the damaged craniofacial tissue. We also discussed current challenges in craniofacial bone vascularization and gave our view on the future direction, including establishing the interactions between tissue-engineered skeletal muscle and the peripheral nervous system.
Collapse
Affiliation(s)
- Nitin Bharat Charbe
- Irma Lerma Rangel College of PharmacyTexas A&M Health Science CenterKingsvilleTexasUSA
| | - Murtaza Tambuwala
- School of Pharmacy and Pharmaceutical ScienceUlster UniversityColeraineUK
| | | | - Amol Warokar
- Department of PharmacyDadasaheb Balpande College of PharmacyNagpurIndia
| | - Altijana Hromić‐Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural SciencesInternational University of SarajevoSarajevoBosnia and Herzegovina
| | - Hamid Bakshi
- School of Pharmacy and Pharmaceutical ScienceUlster UniversityColeraineUK
| | - Flavia Zacconi
- Departamento de Quimica Orgánica, Facultad de Química y de FarmaciaPontificia Universidad Católica de ChileSantiagoChile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
| | - Vijay Mishra
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraIndia
| | - Saurabh Khadse
- Department of Pharmaceutical ChemistryR.C. Patel Institute of Pharmaceutical Education and ResearchDhuleIndia
| | - Alaa A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical SciencesYarmouk UniversityIrbidJordan
| | - Mohamed El‐Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of PharmacyAl‐Ahliyya Amman UniversityAmmanJordan
| | - Ãngel Serrano‐Aroca
- Biomaterials and Bioengineering Lab Translational Research Centre San Alberto MagnoCatholic University of Valencia San Vicente MártirValenciaSpain
| | - Srinath Palakurthi
- Irma Lerma Rangel College of PharmacyTexas A&M Health Science CenterKingsvilleTexasUSA
| |
Collapse
|
18
|
ÖZGENÇ Ö, ÖZEN A. Osteogenic Differentiation of Canine Adipose Derived Mesenchymal Stem Cells on B-TCP and B-TCP/Collagen Biomaterials. ANKARA ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2022. [DOI: 10.33988/auvfd.1130705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mesenchymal stem cells are adult stem cells that have the ability to differentiate into osteogenic, chondrogenic, adipogenic and myogenic lineages. In the field of orthopedics and traumatology, mesenchymal stem cells in combination with biomaterials are used especially for the treatment of bone fractures and diseases in both humans and animals. The purpose of this study is to promote growth, proliferation and osteogenic differentiation of mesenchymal stem cells that were isolated from the adipose tissue of canines on B-TCP (Beta-tricalcium phosphate) and B-TCP/Collagen biomaterials. MTT analysis was performed to test the cell adhesion and proliferation on B-TCP and B-TCP/Collagen biomaterials that were used to mimic the extracellular matrix of three-dimensional bone tissue. Scanning electron microscope analysis was performed to show general surface characters of B-TCP and B-TCP /Collagen biomaterials. The osteoinductive capacities of the B-TCP and B-TCP/Collagen biomaterials were determined by alkaline phosphatase and Von Kossa stainings, and RT-PCR analysis. The ALP activity of the B-TCP/Col containing material was significantly higher than the B-TCP on the first days. In terms of gene expression, there were no significant differences except 14th-day SPARC gene expression. The results of Von Kossa staining indicate that B-TCP/Col has above the desired level degradation capacity. As a result of this research, although it is advantageous in terms of alkaline phosphatase activity and osteogenic gene expression compared to B-TCP material, it is thought that B-TCP/Collagen biomaterial should be developed for use in bone tissue engineering due to its high degradation property.
Collapse
|
19
|
Gonzalez Matheus I, Hutmacher DW, Olson S, Redmond M, Sutherland A, Wagels M. A Medical-Grade Polycaprolactone and Tricalcium Phosphate Scaffold System With Corticoperiosteal Tissue Transfer for the Reconstruction of Acquired Calvarial Defects in Adults: Protocol for a Single-Arm Feasibility Trial. JMIR Res Protoc 2022; 11:e36111. [PMID: 36227628 PMCID: PMC9614622 DOI: 10.2196/36111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
Background Large skull defects present a reconstructive challenge. Conventional cranioplasty options include autologous bone grafts, vascularized bone, metals, synthetic ceramics, and polymers. Autologous options are affected by resorption and residual contour deformities. Synthetic materials may be customized via digital planning and 3D printing, but they all carry a risk of implant exposure, failure, and infection, which increases when the defect is large. These complications can be a threat to life. Without reconstruction, patients with cranial defects may experience headaches and stigmatization. The protection of the brain necessitates lifelong helmet use, which is also stigmatizing. Objective Our clinical trial will formally study a hybridized technique's capacity to reconstruct large calvarial defects. Methods A hybridized technique that draws on the benefits of autologous and synthetic materials has been developed by the research team. This involves wrapping a biodegradable, ultrastructured, 3D-printed scaffold made of medical-grade polycaprolactone and tricalcium phosphate in a vascularized, autotransplanted periosteum to exploit the capacity of vascularized periostea to regenerate bone. In vitro, the scaffold system supports cell attachment, migration, and proliferation with slow but sustained degradation to permit host tissue regeneration and the replacement of the scaffold. The in vivo compatibility of this scaffold system is robust—the base material has been used clinically as a resorbable suture material for decades. The importance of scaffold vascularization, which is inextricably linked to bone regeneration, is underappreciated. A variety of methods have been described to address this, including scaffold prelamination and axial vascularization via arteriovenous loops and autotransplanted flaps. However, none of these directly promote bone regeneration. Results We expect to have results before the end of 2023. As of December 2020, we have enrolled 3 participants for the study. Conclusions The regenerative matching axial vascularization technique may be an alternative method of reconstruction for large calvarial defects. It involves performing a vascularized free tissue transfer and using a bioresorbable, 3D-printed scaffold to promote and support bone regeneration (termed the regenerative matching axial vascularization technique). This technique may be used to reconstruct skull bone defects that were previously thought to be unreconstructable, reduce the risk of implant-related complications, and achieve consistent outcomes in cranioplasty. This must now be tested in prospective clinical trials. Trial Registration Australian New Zealand Clinical Trials Registry ACTRN12620001171909; https://tinyurl.com/4rakccb3 International Registered Report Identifier (IRRID) DERR1-10.2196/36111
Collapse
Affiliation(s)
- Isabel Gonzalez Matheus
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Queenland, Australia.,Herston Biofabrication Institute, Herston, Australia.,The Australian Centre for Complex Integrated Surgical Solutions, Translational Research Institute, Woolloongabba, Australia.,School of Medicine, University of Queensland, Brisbane, Australia
| | - Dietmar W Hutmacher
- Regenerative Medicine Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Sarah Olson
- Department of Neurosurgery, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Michael Redmond
- Herston Biofabrication Institute, Herston, Australia.,Department of Neurosurgery, Royal Brisbane & Women's Hospital, Herston, Australia
| | - Allison Sutherland
- The Australian Centre for Complex Integrated Surgical Solutions, Translational Research Institute, Woolloongabba, Australia
| | - Michael Wagels
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Queenland, Australia.,Herston Biofabrication Institute, Herston, Australia.,The Australian Centre for Complex Integrated Surgical Solutions, Translational Research Institute, Woolloongabba, Australia.,School of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
20
|
Su N, Villicana C, Yang F. Immunomodulatory strategies for bone regeneration: A review from the perspective of disease types. Biomaterials 2022; 286:121604. [PMID: 35667249 PMCID: PMC9881498 DOI: 10.1016/j.biomaterials.2022.121604] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/08/2023]
Abstract
Tissue engineering strategies for treating bone loss to date have largely focused on targeting stem cells or vascularization. Immune cells, including macrophages and T cells, can also indirectly enhance bone healing via cytokine secretion to interact with other bone niche cells. Bone niche cues and local immune environment vary depending on anatomical location, size of defects and disease types. As such, it is critical to evaluate the role of the immune system in the context of specific bone niche and different disease types. This review focuses on immunomodulation research for bone applications using biomaterials and cell-based strategies, with a unique perspective from different disease types. We first reviewed applications for prolonging orthopaedic implant lifetime and enhancing fracture healing, two clinical challenges where immunomodulatory strategies were initially developed for orthopedic applications. We then reviewed recent research progress in harnessing immunomodulatory strategies for regenerating critical-sized, long bone or cranial bone defects, and treating osteolytic bone diseases. Remaining gaps in knowledge, future directions and opportunities were also discussed.
Collapse
Affiliation(s)
- Ni Su
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Cassandra Villicana
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fan Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA.,: Corresponding Author Fan Yang, Ph D, Department of Orthopaedic Surgery and Bioengineering, Stanford University School of Medicine, 240 Pasteur Dr, Palo Alto, CA 94304, Biomedical Innovation Building, 1st floor, Room 1200, , Phone: (650) 646-8558
| |
Collapse
|
21
|
Cámara-Torres M, Sinha R, Sanchez A, Habibovic P, Patelli A, Mota C, Moroni L. Effect of high content nanohydroxyapatite composite scaffolds prepared via melt extrusion additive manufacturing on the osteogenic differentiation of human mesenchymal stromal cells. BIOMATERIALS ADVANCES 2022; 137:212833. [PMID: 35929265 DOI: 10.1016/j.bioadv.2022.212833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The field of bone tissue engineering seeks to mimic the bone extracellular matrix composition, balancing the organic and inorganic components. In this regard, additive manufacturing (AM) of high content calcium phosphate (CaP)-polymer composites holds great promise towards the design of bioactive scaffolds. Yet, the biological performance of such scaffolds is still poorly characterized. In this study, melt extrusion AM (ME-AM) was used to fabricate poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT)-nanohydroxyapatite (nHA) scaffolds with up to 45 wt% nHA, which presented significantly enhanced compressive mechanical properties, to evaluate their in vitro osteogenic potential as a function of nHA content. While osteogenic gene upregulation and matrix mineralization were observed on all scaffold types when cultured in osteogenic media, human mesenchymal stromal cells did not present an explicitly clear osteogenic phenotype, within the evaluated timeframe, in basic media cultures (i.e. without osteogenic factors). Yet, due to the adsorption of calcium and inorganic phosphate ions from cell culture media and simulated body fluid, the formation of a CaP layer was observed on PEOT/PBT-nHA 45 wt% scaffolds, which is hypothesized to account for their bone forming ability in the long term in vitro, and osteoconductivity in vivo.
Collapse
Affiliation(s)
- Maria Cámara-Torres
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Ravi Sinha
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Alberto Sanchez
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain
| | - Pamela Habibovic
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Instructive Biomaterial Engineering Department, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Alessandro Patelli
- Department of Physics and Astronomy, Padova University, Via Marzolo, 8, 35131 Padova, Italy
| | - Carlos Mota
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Lorenzo Moroni
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands.
| |
Collapse
|
22
|
Abazari MF, Torabinejad S, Zare Karizi S, Enderami SE, Samadian H, Hajati-Birgani N, Norouzi S, Nejati F, Al bahash A, Mansouri V. Promoted osteogenic differentiation of human induced pluripotent stem cells using composited polycaprolactone/polyvinyl alcohol/carbopol nanofibrous scaffold. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Grivet-Brancot A, Boffito M, Ciardelli G. Use of Polyesters in Fused Deposition Modeling for Biomedical Applications. Macromol Biosci 2022; 22:e2200039. [PMID: 35488769 DOI: 10.1002/mabi.202200039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Indexed: 11/09/2022]
Abstract
In recent years, 3D printing techniques experienced a growing interest in several sectors, including the biomedical one. Their main advantage resides in the possibility to obtain complex and personalized structures in a cost-effective way impossible to achieve with traditional production methods. This is especially true for Fused Deposition Modeling (FDM), one of the most diffused 3D printing methods. The easy customization of the final products' geometry, composition and physico-chemical properties is particularly interesting for the increasingly personalized approach adopted in modern medicine. Thermoplastic polymers are the preferred choice for FDM applications, and a wide selection of biocompatible and biodegradable materials is available to this aim. Moreover, these polymers can also be easily modified before and after printing to better suit the body environment and the mechanical properties of biological tissues. This review focuses on the use of thermoplastic aliphatic polyesters for FDM applications in the biomedical field. In detail, the use of poly(ε-caprolactone), poly(lactic acid), poly(lactic-co-glycolic acid), poly(hydroxyalkanoate)s, thermo-plastic poly(ester urethane)s and their blends has been thoroughly surveyed, with particular attention to their main features, applicability and workability. The state-of-the-art is presented and current challenges in integrating the additive manufacturing technology in the medical practice are discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Arianna Grivet-Brancot
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy.,Department of Surgical Sciences, Università di Torino, Corso Dogliotti 14, Torino, 10126, Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy
| |
Collapse
|
24
|
Czerwińska-Główka D, Krukiewicz K. Guidelines for a Morphometric Analysis of Prokaryotic and Eukaryotic Cells by Scanning Electron Microscopy. Cells 2021; 10:3304. [PMID: 34943812 PMCID: PMC8699492 DOI: 10.3390/cells10123304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/11/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
The invention of a scanning electron microscopy (SEM) pushed the imaging methods and allowed for the observation of cell details with a high resolution. Currently, SEM appears as an extremely useful tool to analyse the morphology of biological samples. The aim of this paper is to provide a set of guidelines for using SEM to analyse morphology of prokaryotic and eukaryotic cells, taking as model cases Escherichia coli bacteria and B-35 rat neuroblastoma cells. Herein, we discuss the necessity of a careful sample preparation and provide an optimised protocol that allows to observe the details of cell ultrastructure (≥ 50 nm) with a minimum processing effort. Highlighting the versatility of morphometric descriptors, we present the most informative parameters and couple them with molecular processes. In this way, we indicate the wide range of information that can be collected through SEM imaging of biological materials that makes SEM a convenient screening method to detect cell pathology.
Collapse
Affiliation(s)
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
25
|
Yoshida M, Turner PR, McAdam CJ, Ali MA, Cabral JD. A comparison between β-tricalcium phosphate verse chitosan poly-caprolactone-based 3D melt extruded composite scaffolds. Biopolymers 2021; 113:e23482. [PMID: 34812488 DOI: 10.1002/bip.23482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/18/2021] [Accepted: 11/10/2021] [Indexed: 11/07/2022]
Abstract
Melt extrusion 3D printing has become an attractive additive manufacturing technology to construct degradable scaffolds as tissue precursors in order to create clinically relevant medical devices. Towards this end, a commonly used synthetic polyester, poly-caprolactone (PCL), was used to make scaffolds composed of different biomaterial compositions to increase bioactivity using 3D melt pneumatic extrusion technology. Varying ratios of the natural biopolymer, chitosan, or the bioceramic, β-tricalcium phosphate (TCP) were blended with PCL to fabricate support scaffolds with three-dimensional (3D) architecture for human bone-marrow derived mesenchymal stem cell (hBMSC) growth for potential bone regeneration application. In this study, basic printing requirements as well as biomaterial dynamic mechanical (DMA), elemental, and thermogravimetric (TGA) analysis results demonstrate material homogeneity as well as thermal stability. Scaffold morphology and microarchitecture were assessed using scanning electron microscopy (SEM) alongside in vitro scaffold degradation and biological characterisation. Human BMSC proliferation was assessed using fluorescence imaging, and quantitated via the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) colorimetric assay. These in vitro cell viability studies revealed that the highest chitosan concentration blend of 20% favoured the most hBMSC growth, exhibited the most swelling, and showed minimal degradation after 28 days. The 20% TCP blend had the second highest hBMSC growth, exhibited moderate swelling, and the fastest degradation rate. Overall, this study demonstrates the first direct comparison of a natural biopolymer-based, that is, chitosan, 3D melt extruded PCL composite with that of a bioceramic-based, that is, β-TCP, PCL composite and their effects on hBMSC 3D proliferation. 3D melt extruded PCL-based composite scaffolds methodology offers a straightforward way to print scaffolds with good shape fidelity, interconnected porosities and enhanced bioactivity; and demonstrates their potential use for regenerative, bone repair applications.
Collapse
Affiliation(s)
- Minami Yoshida
- Centre of Bioengineering & Nanomedicine, School of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand
| | - Paul R Turner
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | | | - Mohammed Azam Ali
- Centre of Bioengineering & Nanomedicine, School of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand
| | - Jaydee D Cabral
- Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
26
|
Parisi C, Qin K, Fernandes FM. Colonization versus encapsulation in cell-laden materials design: porosity and process biocompatibility determine cellularization pathways. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200344. [PMID: 34334019 DOI: 10.1098/rsta.2020.0344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2021] [Indexed: 06/13/2023]
Abstract
Seeding materials with living cells has been-and still is-one of the most promising approaches to reproduce the complexity and the functionality of living matter. The strategies to associate living cells with materials are limited to cell encapsulation and colonization, however, the requirements for these two approaches have been seldom discussed systematically. Here we propose a simple two-dimensional map based on materials' pore size and the cytocompatibility of their fabrication process to draw, for the first time, a guide to building cellularized materials. We believe this approach may serve as a straightforward guideline to design new, more relevant materials, able to seize the complexity and the function of biological materials. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
Collapse
Affiliation(s)
- Cleo Parisi
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| | - Kankan Qin
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
27
|
Pacheco IKC, Reis FDS, Carvalho CESD, De Matos JME, Argôlo Neto NM, Baeta SDAF, Silva KRD, Dantas HV, Sousa FBD, Fialho ACV. Development of castor polyurethane scaffold ( Ricinus communisL.) and its effect with stem cells for bone repair in an osteoporosis model. Biomed Mater 2021; 16. [PMID: 34416741 DOI: 10.1088/1748-605x/ac1f9e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/20/2021] [Indexed: 01/25/2023]
Abstract
The development of 'smart' scaffolds has achieved notoriety among current prospects for bone repair, especially for chronic osteopathy, such as osteoporosis. Millions of individuals in the world suffer from poor bone healing due to osteoporosis. The objective of this work was to produce and characterize castor polyurethane (PU) scaffolds (Ricinus communisL.)andevaluate itsin vitrobiocompatibility with stem cells and osteoinductive effectin vivoon bone failures in a leporid model of osteoporosis. The material was characterized using Fourier-transform infrared spectroscopy, thermogravimetric analysis, SEM, and porosity analysis. Then, the biocompatibility was assessed by adhesion using SEM and cytotoxicity in a 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium assay. The osteoinductive effectin vivowas determined in bone defects in rabbit tibias (Oryctolagus cuniculus) submitted to castor PU scaffold, castor PU scaffold associated with stem cells, and negative control, after four and eight weeks, evaluated by computed microtomography and histopathology. The scaffolds were porous, with an average pore size of 209.5 ± 98.2 µm, absence of cytotoxicity, and positive cell adhesivenessin vitro.All the animals presented osteoporosis, characterized by multifocal osteoblastic inactivity and areas of mild fibrosis. There were no statistical differences between these treatments in the fourth week of treatment. In the eighth week, the treatment with castor PU scaffold alone induced more significant bone formation when compared to the other groups, followed by treatment with an association between castor PU scaffold and stem cells. The castor PU scaffold was harmless to cell culture, favoring cell adhesiveness and proliferation, in addition to inducing bone neoformation in osteoporotic rabbits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Karla Rovaris Da Silva
- Department of Pathology and Dental Clinic, Federal University of Piauí, Teresina, Brasil
| | - Hugo Victor Dantas
- Graduate Program in Dentistry, Federal University of Parnaíba, João Pessoa, Brasil
| | | | | |
Collapse
|
28
|
Han X, Sun M, Chen B, Saiding Q, Zhang J, Song H, Deng L, Wang P, Gong W, Cui W. Lotus seedpod-inspired internal vascularized 3D printed scaffold for bone tissue repair. Bioact Mater 2021; 6:1639-1652. [PMID: 33313444 PMCID: PMC7701916 DOI: 10.1016/j.bioactmat.2020.11.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022] Open
Abstract
In the field of bone defect repair, 3D printed scaffolds have the characteristics of personalized customization and accurate internal structure. However, how to construct a well-structured vascular network quickly and effectively inside the scaffold is essential for bone repair after transplantation. Herein, inspired by the unique biological structure of "lotus seedpod", hydrogel microspheres encapsulating deferoxamine (DFO) liposomes were prepared through microfluidic technology as "lotus seeds", and skillfully combined with a three-dimensional (3D) printed bioceramic scaffold with biomimetic "lotus" biological structure which can internally grow blood vessels. In this composite scaffold system, DFO was effectively released by 36% in the first 6 h, which was conducive to promote the growth of blood vessels inside the scaffold quickly. In the following 7 days, the release rate of DFO reached 69%, which was fundamental in the formation of blood vessels inside the scaffold as well as osteogenic differentiation of bone mesenchymal stem cells (BMSCs). It was confirmed that the composite scaffold could significantly promote the human umbilical vein endothelial cells (HUVECs) to form the vascular morphology within 6 h in vitro. In vivo, the composite scaffold increased the expression of vascularization and osteogenic related proteins Hif1-α, CD31, OPN, and OCN in the rat femoral defect model, significantly cutting down the time of bone repair. To sum up, this "lotus seedpod" inspired porous bioceramic 3D printed scaffold with internal vascularization functionality has broad application prospects in the future.
Collapse
Affiliation(s)
- Xiaoyu Han
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, Shandong, 250013, PR China
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Mingjie Sun
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, Shandong, 250013, PR China
| | - Bo Chen
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Qimanguli Saiding
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Junyue Zhang
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, Shandong, 250013, PR China
| | - Hongliang Song
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, Shandong, 250013, PR China
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Peng Wang
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, Shandong, 250013, PR China
| | - Weiming Gong
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, Shandong, 250013, PR China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| |
Collapse
|
29
|
Bagne L, Oliveira MA, Pereira AT, Caetano GF, Oliveira CA, Aro AA, Chiarotto GB, Santos GMT, Mendonça FAS, Santamaria-Jr M. Electrical therapies act on the Ca 2+ /CaM signaling pathway to enhance bone regeneration with bioactive glass [S53P4] and allogeneic grafts. J Biomed Mater Res B Appl Biomater 2021; 109:2104-2116. [PMID: 34008329 DOI: 10.1002/jbm.b.34858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/12/2021] [Accepted: 04/24/2021] [Indexed: 12/26/2022]
Abstract
This study aimed to investigate the application of low-intensity electrostimulation (ES) and electromagnetic stimulation (EM) associated with bioactive glass (BG) or allogeneic grafts (BB) in bone regeneration. A cell viability test on osteoblasts (UMR-106) was performed in the presence of BB and BG grafts associated with ES (10 μA/5 min) and EM (500 Hz/2 min). Critical defects (25 mm2 ) in calvaria were generated in male Wistar rats, and bone regeneration was evaluated on the 30th, 60th, and 120th days after surgery. Cell proliferation increased with the application of ES in both grafts and after EM with BG. Bone remodeling was more effective using the allogeneic graft in both therapies, with increased angiogenesis, osteoblast proliferation, and OPN expression in the BB + EM group. A higher number of osteoblasts and osteoclasts, and an increase in bone sialoprotein, Runx-2, and Opn gene expression were found in the BB + ES group. The BG graft associated with EM therapy had an increased proliferation of osteoblasts and increased expression of Runx-2 and Opn. Groups that had BG and ES therapy had increased numbers of osteoblasts, osteoclasts, and increased OPN expression. The expression of voltage-gated calcium channels increased in groups with ES, while calmodulin expression increased in therapies without grafting. ES and EM therapies favored the repair of bone defects upon grafting by improving angiogenesis, osteogenic gene expression, and tissue reorganization. Despite activating different pathways, both therapies increased the intracellular concentrations of calmodulin, leading to cell proliferation and bone regeneration.
Collapse
Affiliation(s)
- Leonardo Bagne
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, Araras, Brazil
| | - Maraiara A Oliveira
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, Araras, Brazil
| | - Amanda T Pereira
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, Araras, Brazil
| | - Guilherme F Caetano
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, Araras, Brazil
| | - Camila A Oliveira
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, Araras, Brazil
| | - Andréa A Aro
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, Araras, Brazil
| | - Gabriela B Chiarotto
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, Araras, Brazil
| | - Glaucia M T Santos
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, Araras, Brazil
| | - Fernanda A S Mendonça
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, Araras, Brazil
| | - Milton Santamaria-Jr
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, Araras, Brazil
| |
Collapse
|
30
|
Forciniti S, Dalla Pozza E, Greco MR, Amaral Carvalho TM, Rolando B, Ambrosini G, Carmona-Carmona CA, Pacchiana R, Di Molfetta D, Donadelli M, Arpicco S, Palmieri M, Reshkin SJ, Dando I, Cardone RA. Extracellular Matrix Composition Modulates the Responsiveness of Differentiated and Stem Pancreatic Cancer Cells to Lipophilic Derivate of Gemcitabine. Int J Mol Sci 2020; 22:ijms22010029. [PMID: 33375106 PMCID: PMC7792955 DOI: 10.3390/ijms22010029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease. Gemcitabine (GEM) is used as the gold standard drug in PDAC treatment. However, due to its poor efficacy, it remains urgent to identify novel strategies to overcome resistance issues. In this context, an intense stroma reaction and the presence of cancer stem cells (CSCs) have been shown to influence PDAC aggressiveness, metastatic potential, and chemoresistance. METHODS We used three-dimensional (3D) organotypic cultures grown on an extracellular matrix composed of Matrigel or collagen I to test the effect of the new potential therapeutic prodrug 4-(N)-stearoyl-GEM, called C18GEM. We analyzed C18GEM cytotoxic activity, intracellular uptake, apoptosis, necrosis, and autophagy induction in both Panc1 cell line (P) and their derived CSCs. RESULTS PDAC CSCs show higher sensitivity to C18GEM treatment when cultured in both two-dimensional (2D) and 3D conditions, especially on collagen I, in comparison to GEM. The intracellular uptake mechanisms of C18GEM are mainly due to membrane nucleoside transporters' expression and fatty acid translocase CD36 in Panc1 P cells and to clathrin-mediated endocytosis and CD36 in Panc1 CSCs. Furthermore, C18GEM induces an increase in cell death compared to GEM in both cell lines grown on 2D and 3D cultures. Finally, C18GEM stimulated protective autophagy in Panc1 P and CSCs cultured on 3D conditions. CONCLUSION We propose C18GEM together with autophagy inhibitors as a valid alternative therapeutic approach in PDAC treatment.
Collapse
Affiliation(s)
- Stefania Forciniti
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134 Verona, Italy; (S.F.); (E.D.P.); (G.A.); (C.A.C.-C.); (R.P.); (M.D.); (M.P.)
- Humanitas Clinical and Research Center, IRCCS, Department of Gastroenterology-Laboratory of Molecular Gastroenterology, 20089 Rozzano, Milan, Italy
| | - Elisa Dalla Pozza
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134 Verona, Italy; (S.F.); (E.D.P.); (G.A.); (C.A.C.-C.); (R.P.); (M.D.); (M.P.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (M.R.G.); (T.M.A.C.); (D.D.M.); (S.J.R.); (R.A.C.)
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Tiago Miguel Amaral Carvalho
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (M.R.G.); (T.M.A.C.); (D.D.M.); (S.J.R.); (R.A.C.)
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Torino, 10124 Torino, Italy; (B.R.); (S.A.)
| | - Giulia Ambrosini
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134 Verona, Italy; (S.F.); (E.D.P.); (G.A.); (C.A.C.-C.); (R.P.); (M.D.); (M.P.)
| | - Cristian Andres Carmona-Carmona
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134 Verona, Italy; (S.F.); (E.D.P.); (G.A.); (C.A.C.-C.); (R.P.); (M.D.); (M.P.)
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134 Verona, Italy; (S.F.); (E.D.P.); (G.A.); (C.A.C.-C.); (R.P.); (M.D.); (M.P.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (M.R.G.); (T.M.A.C.); (D.D.M.); (S.J.R.); (R.A.C.)
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134 Verona, Italy; (S.F.); (E.D.P.); (G.A.); (C.A.C.-C.); (R.P.); (M.D.); (M.P.)
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Torino, 10124 Torino, Italy; (B.R.); (S.A.)
| | - Marta Palmieri
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134 Verona, Italy; (S.F.); (E.D.P.); (G.A.); (C.A.C.-C.); (R.P.); (M.D.); (M.P.)
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (M.R.G.); (T.M.A.C.); (D.D.M.); (S.J.R.); (R.A.C.)
| | - Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134 Verona, Italy; (S.F.); (E.D.P.); (G.A.); (C.A.C.-C.); (R.P.); (M.D.); (M.P.)
- Correspondence:
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (M.R.G.); (T.M.A.C.); (D.D.M.); (S.J.R.); (R.A.C.)
| |
Collapse
|
31
|
Puppi D, Chiellini F. Biodegradable Polymers for Biomedical Additive Manufacturing. APPLIED MATERIALS TODAY 2020; 20:100700. [DOI: 10.1016/j.apmt.2020.100700] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
32
|
Tee BC, Sun Z. Xenogeneic mesenchymal stem cell transplantation for mandibular defect regeneration. Xenotransplantation 2020; 27:e12625. [PMID: 32629548 DOI: 10.1111/xen.12625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/18/2020] [Accepted: 06/06/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND It is commonly accepted that xenogeneic stem cell transplantation for tissue engineering is faced with host immune rejection. Using a rat critical-size mandibular defect model, this study examined whether the immune rejection can be evaded by diminishing T-cell immunity. METHODS To examine donor cell survival and host immune reaction, pig bone marrow-derived mesenchymal stem cells (BM-MSCs) were labeled with CM-DiI, loaded onto gelatin sponge (5 × 106 cells/scaffold), and transplanted into 5-mm mandibular defects of immunocompetent and T cell-deficient athymic rats. To examine the effects of xenogeneic BM-MSCs on bone regeneration, athymic rats undergone the same surgeries were terminated at post-operative weeks 1, 3, and 6. Control rats underwent the same jaw surgery without BM-MSC transplantation. RESULTS The density of CM-DiI-labeled BM-MSCs decreased with time in both strains of rats. Although it was substantially higher in athymic rats than in immunocompetent rats at post-operative day 1, by day 3-7 the density became comparable between the two strains of rats. Apoptosis reflected by cleaved Caspase-3 staining was low in both strains. Stronger infiltration of neutrophils, macrophages, B cells and CD8+ T cells was found in MSC-treated animals. In athymic rats, infiltration of neutrophils and macrophages was strong, but it occurred later than that in immunocompetent rats. While bone volume fraction significantly increased with time (P < .001), no difference was found between MSC-treated and control groups. CONCLUSIONS Even in hosts with deficient T-cell immunity, xenogeneic BM-MSC transplantation into mandibular critical-sized defects still faces challenges from host innate immunity, which compromises their regenerative efficacy.
Collapse
Affiliation(s)
- Boon Ching Tee
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Zongyang Sun
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
33
|
Specialized Multimaterial Print Heads for 3D Hydrogel Printing: Tissue-Engineering Applications. IEEE NANOTECHNOLOGY MAGAZINE 2020. [DOI: 10.1109/mnano.2020.2966065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Cao Y, Yang S, Zhao D, Li Y, Cheong SS, Han D, Li Q. Three-dimensional printed multiphasic scaffolds with stratified cell-laden gelatin methacrylate hydrogels for biomimetic tendon-to-bone interface engineering. J Orthop Translat 2020; 23:89-100. [PMID: 32514393 PMCID: PMC7267011 DOI: 10.1016/j.jot.2020.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
Background The anatomical properties of the enthesis of the rotator cuff are hardly regained during the process of healing. The tendon-to-bone interface is normally replaced by fibrovascular tissue instead of interposition fibrocartilage, which impairs biomechanics in the shoulder and causes dysfunction. Tissue engineering offers a promising strategy to regenerate a biomimetic interface. Here, we report heterogeneous tendon-to-bone interface engineering based on a 3D-printed multiphasic scaffold. Methods A multiphasic poly(ε-caprolactone) (PCL)–PCL/tricalcium phosphate (TCP)–PCL/TCP porous scaffold was manufactured using 3D printing technology. The three phases of the scaffold were designed to mimic the graded tissue regions in the tendon-to-bone interface—tendon, fibrocartilage, and bone. Fibroblasts, bone marrow–derived mesenchymal stem cells, and osteoblasts were separately encapsulated in gelatin methacrylate (GelMA) and loaded seriatim on the relevant phases of the scaffold, by which a cells/GelMA-multiphasic scaffold (C/G-MS) construct, replicating the native interface, was fabricated. Cell proliferation, viability, and chondrogenic differentiation were evaluated in vitro. The C/G-MS constructs were further examined to determine the potential of regenerating a continuous interface with gradual transition of teno-, fibrocartilage- and osteo-like tissues in vivo. Results In vitro tests confirmed the good cytocompatibility of the constructs. After seven days in culture, cellular microfilament staining indicated that not only could cells well proliferate in GelMA hydrogels but also efficiently attach to and grow on scaffold fibres. Moreover, by immunolocalizing collagen type II, chondrogenesis was identified in the intermediate phase of the C/G-MS construct that had been treated with transforming growth factor β3 for 21 days. After subcutaneous implantation in mice, the C/G-MS construct exhibited a heterogeneous and graded structure up to eight weeks, with distinguished matrix distribution observed at one week. Overall, gene expression of tenogenic, chondrogenic, and osteogenic markers showed increasing patterns for eight weeks. Among them, expression of collagen type X gene was found drastically increasing during eight weeks, indicating progressive formation of calcifying cartilage within the constructs. Conclusion Our findings demonstrate that the stratified manner of fabrication based on the 3D-printed multiphasic scaffold is an effective strategy for tendon-to-bone interface engineering in terms of efficient cell seeding, chondrogenic potential, and distinct matrix deposition in varying phases. The translational potential of this article We fabricated a biomimetic tendon-to-bone interface by using a 3D-printed multiphasic scaffold and adopting a stratified cell-seeding manner with GelMA. The biomimetic interface might have applications in tendon-to-bone repair in the rotator cuff. It can not only be an alternative to a biological fixation device but also offer an ex vivo living graft to replace the damaged enthesis.
Collapse
Affiliation(s)
- Yi Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danyang Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sou San Cheong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Han
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Corresponding author. Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 17/F, No. 1 Building, 639 Zhi Zao Ju Road, Shanghai, 200011, PR China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Corresponding author. Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 19/F, No. 1 Building, 639 Zhi Zao Ju Road, Shanghai, 200011, PR China.
| |
Collapse
|
35
|
Fan D, Staufer U, Accardo A. Engineered 3D Polymer and Hydrogel Microenvironments for Cell Culture Applications. Bioengineering (Basel) 2019; 6:E113. [PMID: 31847117 PMCID: PMC6955903 DOI: 10.3390/bioengineering6040113] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/13/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022] Open
Abstract
The realization of biomimetic microenvironments for cell biology applications such as organ-on-chip, in vitro drug screening, and tissue engineering is one of the most fascinating research areas in the field of bioengineering. The continuous evolution of additive manufacturing techniques provides the tools to engineer these architectures at different scales. Moreover, it is now possible to tailor their biomechanical and topological properties while taking inspiration from the characteristics of the extracellular matrix, the three-dimensional scaffold in which cells proliferate, migrate, and differentiate. In such context, there is therefore a continuous quest for synthetic and nature-derived composite materials that must hold biocompatible, biodegradable, bioactive features and also be compatible with the envisioned fabrication strategy. The structure of the current review is intended to provide to both micro-engineers and cell biologists a comparative overview of the characteristics, advantages, and drawbacks of the major 3D printing techniques, the most promising biomaterials candidates, and the trade-offs that must be considered in order to replicate the properties of natural microenvironments.
Collapse
Affiliation(s)
| | | | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands; (D.F.); (U.S.)
| |
Collapse
|
36
|
Kanjevac T, Gustafson C, Ivanovska A, Ravanetti F, Cacchioli A, Bosnakovski D. Inflammatory Cytokines and Biodegradable Scaffolds in Dental Mesenchymal Stem Cells Priming. Curr Stem Cell Res Ther 2019; 14:320-326. [PMID: 30608044 DOI: 10.2174/1574888x14666190103170109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/15/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells with wide-ranging clinical applications due to their ability to regenerate tissue from mesenchymal origin and their capability of suppressing immune responses, thus reducing the likelihood of graft versus host disease after transplantation. MSCs can be isolated from a variety of sources including bone marrow, adipose tissue, umbilical cord blood, and immature teeth. Dental stem cells (DSCs) possess progenitor and immunomodulatory abilities as the other MSC types and because they can be easily isolated, are considered as attractive therapeutic agents in regenerative dentistry. Recently, it has been shown that DSCs seeded onto newly developed synthetic biomaterial scaffolds have retained their potential for proliferation and at the same time have enhanced capabilities for differentiation and immunosuppression. The scaffolds are becoming more efficient at MSC priming as researchers learn how short peptide sequences alter the adhesive and proliferative capabilities of the scaffolds by stimulating or inhibiting classical osteogenic pathways. New findings on how to modulate the inflammatory microenvironment, which can prime DSCs for differentiation, combined with the use of next generation scaffolds may significantly improve their therapeutic potential. In this review, we summarize current findings regarding DSCs as a potential regenerative therapy, including stem cell priming with inflammatory cytokines, types of scaffolds currently being explored and the modulation of scaffolds to regulate immune response and promote growth.
Collapse
Affiliation(s)
- Tatjana Kanjevac
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Collin Gustafson
- Lillehei Heart Institute, Department of Pediatrics, University of Minnesota, Minneapolis, United States
| | - Ana Ivanovska
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | | | | - Darko Bosnakovski
- Lillehei Heart Institute, Department of Pediatrics, University of Minnesota, Minneapolis, United States.,Faculty of Medical Sciences, University Goce Delcev, Stip, R. Macedonia
| |
Collapse
|
37
|
Weiss-Bilka HE, Meagher MJ, Gargac JA, Niebur GL, Roeder RK, Wagner DR. Mineral deposition and vascular invasion of hydroxyapatite reinforced collagen scaffolds seeded with human adipose-derived stem cells. Biomater Res 2019; 23:15. [PMID: 31641529 PMCID: PMC6796373 DOI: 10.1186/s40824-019-0167-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
Background Collagen-based scaffolds reinforced with hydroxyapatite (HA) are an attractive choice for bone tissue engineering because their composition mimics that of bone. We previously reported the development of compression-molded collagen-HA scaffolds that exhibited high porosity, interconnected pores, and mechanical properties that were well-suited for surgical handling and fixation. The objective of this study was to investigate these novel collagen-HA scaffolds in combination with human adipose-derived stem cells (hASCs) as a template for bone formation in a subcutaneous athymic mouse model. Methods Collagen-HA scaffolds and collagen-only scaffolds were fabricated as previously described, and a clinically approved bone void filler was used as a control for the material. Constructs were seeded with hASCs and were pre-treated with either control or osteogenic media. A cell-free group was also included. Scaffolds were implanted subcutaneously in the backs of athymic nude mice for 8 weeks. Mineral deposition was quantified via micro-computed tomography. Histological and immunofluorescence images of the explants were used to analyze their vascular invasion, remodeling and cellularity. Results Cell-free collagen-HA scaffolds and those that were pre-seeded with osteogenically differentiated hASCs supported mineral deposition and vascular invasion at comparable rates, while cell-seeded constructs treated with the control medium showed lower mineralization after implantation. HA-reinforcement allowed collagen constructs to maintain their shape, provided improved cell-tissue-scaffold integration, and resulted in a more organized tissue when pre-treated in an osteogenic medium. Scaffold type and pre-treatment also determined osteoclast activity and therefore potential remodeling of the constructs. Conclusions The results of this study cumulatively indicate that treatment medium and scaffold composition direct mineralization and angiogenic tissue formation in an ectopic model. The data suggest that it may be necessary to match the scaffold with a particular cell type and cell-specific pre-treatment to achieve optimal bone formation.
Collapse
Affiliation(s)
- Holly E Weiss-Bilka
- 1Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Matthew J Meagher
- 1Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Joshua A Gargac
- 2School of Engineering, University of Mount Union, Alliance, OH 44601 USA
| | - Glen L Niebur
- 1Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556 USA.,3Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Ryan K Roeder
- 1Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556 USA.,3Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Diane R Wagner
- 4Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, 723 W. Michigan Ave SL260, Indianapolis, IN 46202 USA
| |
Collapse
|
38
|
|
39
|
Geven MA, Grijpma DW. Additive manufacturing of composite structures for the restoration of bone tissue. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/2399-7532/ab201f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Hassan MN, Yassin MA, Suliman S, Lie SA, Gjengedal H, Mustafa K. The bone regeneration capacity of 3D-printed templates in calvarial defect models: A systematic review and meta-analysis. Acta Biomater 2019; 91:1-23. [PMID: 30980937 DOI: 10.1016/j.actbio.2019.04.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/23/2022]
Abstract
3D-printed templates are being used for bone tissue regeneration (BTR) as temporary guides. In the current review, we analyze the factors considered in producing potentially bioresorbable/degradable 3D-printed templates and their influence on BTR in calvarial bone defect (CBD) animal models. In addition, a meta-analysis was done to compare the achieved BTR for each type of template material (polymer, ceramic or composites). Database collection was completed by January 2018, and the inclusion criteria were all titles and keywords combining 3D printing and BTR in CBD models. Clinical trials and poorly-documented in vivo studies were excluded from this study. A total of 45 relevant studies were finally included and reviewed, and an additional check list was followed before inclusion in the meta-analysis, where material type, porosity %, and the regenerated bone area were collected and analyzed statistically. Overall, the capacity of the printed templates to support BTR was found to depend in large part on the amount of available space (porosity %) provided by the printed templates. Printed ceramic and composite templates showed the best BTR capacity, and the optimum printed template structure was found to have total porosity >50% with a pore diameter between 300 and 400 µm. Additional features and engineered macro-channels within the printed templates increased BTR capacity at long time points (12 weeks). Although the size of bone defects in rabbits was larger than in rats, BTR was greater in rabbits (almost double) at all time points and for all materials used. STATEMENT OF SIGNIFICANCE: In the present study, we reviewed the factors considered in producing degradable 3D-printed templates and their influence on bone tissue regeneration (BTR) in calvarial bone defects through the last 15 years. A meta-analysis was applied on the collected data to quantify and analyze BTR related to each type of template material. The concluded data states the importance of 3D-printed templates for BTR and indicates the ideal design required for an effective clinical translation. The evidence-based guidelines for the best BTR capacity endorse the use of printed composite and ceramic templates with total porosity >50%, pore diameter between 300 and 400 µm, and added engineered macro-channels within the printed templates.
Collapse
|
41
|
Dissecting the Pharmacodynamics and Pharmacokinetics of MSCs to Overcome Limitations in Their Clinical Translation. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 14:1-15. [PMID: 31236426 PMCID: PMC6581775 DOI: 10.1016/j.omtm.2019.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, mesenchymal stromal stem cells (MSCs) have been proposed as therapeutic agents because of their promising preclinical features and good safety profile. However, their introduction into clinical practice has been associated with a suboptimal therapeutic profile. In this review, we address the biodistribution of MSCs in preclinical studies with a focus on the current understanding of the pharmacodynamics (PD) and pharmacokinetics (PK) of MSCs as key aspects to overcome unsatisfactory clinical benefits of MSC application. Beginning with evidence of MSC biodistribution and highlighting PK and PD factors, a new PK-PD model is also proposed. According to this theory, MSCs and their released factors are key players in PK, and the efficacy biomarkers are considered relevant for PD in more predictive preclinical investigations. Accounting for the PK-PD relationship in MSC translational research and proposing new models combined with better biodistribution studies could allow realization of the promise of more robust MSC clinical translation.
Collapse
|
42
|
Li Y, Liao C, Tjong SC. Synthetic Biodegradable Aliphatic Polyester Nanocomposites Reinforced with Nanohydroxyapatite and/or Graphene Oxide for Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E590. [PMID: 30974820 PMCID: PMC6523566 DOI: 10.3390/nano9040590] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/22/2019] [Accepted: 04/03/2019] [Indexed: 12/27/2022]
Abstract
This paper provides review updates on the current development of bionanocomposites with polymeric matrices consisting of synthetic biodegradable aliphatic polyesters reinforced with nanohydroxyaptite (nHA) and/or graphene oxide (GO) nanofillers for bone tissue engineering applications. Biodegradable aliphatic polyesters include poly(lactic acid) (PLA), polycaprolactone (PCL) and copolymers of PLA-PGA (PLGA). Those bionanocomposites have been explored for making 3D porous scaffolds for the repair of bone defects since nHA and GO enhance their bioactivity and biocompatibility by promoting biomineralization, bone cell adhesion, proliferation and differentiation, thus facilitating new bone tissue formation upon implantation. The incorporation of nHA or GO into aliphatic polyester scaffolds also improves their mechanical strength greatly, especially hybrid GO/nHA nanofilllers. Those mechanically strong nanocomposite scaffolds can support and promote cell attachment for tissue growth. Porous scaffolds fabricated from conventional porogen leaching, and thermally induced phase separation have many drawbacks inducing the use of organic solvents, poor control of pore shape and pore interconnectivity, while electrospinning mats exhibit small pores that limit cell infiltration and tissue ingrowth. Recent advancement of 3D additive manufacturing allows the production of aliphatic polyester nanocomposite scaffolds with precisely controlled pore geometries and large pores for the cell attachment, growth, and differentiation in vitro, and the new bone formation in vivo.
Collapse
Affiliation(s)
- Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
43
|
3D printed polymer–mineral composite biomaterials for bone tissue engineering: Fabrication and characterization. J Biomed Mater Res B Appl Biomater 2019; 107:2579-2595. [DOI: 10.1002/jbm.b.34348] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/23/2018] [Accepted: 02/10/2019] [Indexed: 01/01/2023]
|
44
|
Engineered bone for probing organotypic growth and therapy response of prostate cancer tumoroids in vitro. Biomaterials 2019; 197:296-304. [PMID: 30682644 DOI: 10.1016/j.biomaterials.2019.01.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/24/2018] [Accepted: 01/20/2019] [Indexed: 01/23/2023]
Abstract
Mechanistic analysis of metastatic prostate cancer (PCa) biology and therapy response critically depends upon clinically relevant three-dimensional (3D) bone-like, organotypic culture. We here combine an engineered bone-mimetic environment (BME) with longitudinal microscopy to test the growth and therapy response of 3D PCa tumoroids. Besides promoting both tumor-cell autonomous and microenvironment-dependent growth in PCa cell lines and patient-derived xenograft cells, the BME enables in vivo-like tumor cell response to therapy, and reveals bone stroma dependent resistance to chemotherapy and BME-targeted localization and induction of cytoxicity by Radium-223. The BME platform will allow the propagation, compound screening and mechanistic dissection of patient-derived bone tumor isolates and applications toward personalized medicine.
Collapse
|
45
|
Maruyama M, Nabeshima A, Pan CC, Behn AW, Thio T, Lin T, Pajarinen J, Kawai T, Takagi M, Goodman SB, Yang YP. The effects of a functionally-graded scaffold and bone marrow-derived mononuclear cells on steroid-induced femoral head osteonecrosis. Biomaterials 2018; 187:39-46. [PMID: 30292940 PMCID: PMC6193256 DOI: 10.1016/j.biomaterials.2018.09.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/30/2022]
Abstract
Osteonecrosis of the femoral head (ONFH) is a debilitating disease that may progress to femoral head collapse and subsequently, degenerative arthritis. Although injection of bone marrow-derived mononuclear cells (BMMCs) is often performed with core decompression (CD) in the early stage of ONFH, these treatments are not always effective in prevention of disease progression and femoral head collapse. We previously described a novel 3D printed, customized functionally-graded scaffold (FGS) that improved bone growth in the femoral head after CD in a normal healthy rabbit, by providing structural and mechanical guidance. The present study demonstrates similar results of the FGS in a rabbit steroid-induced osteonecrosis model. Furthermore, the injection of BMMCs into the CD decreased the osteonecrotic area in the femoral head. Thus, the combination of FGS and BMMC provides a new therapy modality that may improve the outcome of CD for early stage of ONFH by providing both enhanced biological and biomechanical cues to promote bone regeneration in the osteonecrotic area.
Collapse
Affiliation(s)
- Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Akira Nabeshima
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Chi-Chun Pan
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA; Mechanical Engineering, Stanford University School of Medicine, Stanford, CA, USA
| | - Anthony W Behn
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Timothy Thio
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Tzuhua Lin
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jukka Pajarinen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Toshiyuki Kawai
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Michiaki Takagi
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA; Bioengineering, Stanford University School of Medicine, Stanford, CA, USA.
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA; Material Science and Engineering, Stanford University School of Medicine, Stanford, CA, USA; Bioengineering, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
46
|
Smith RAA, Murali S, Rai B, Lu X, Lim ZXH, Lee JJL, Nurcombe V, Cool SM. Minimum structural requirements for BMP-2-binding of heparin oligosaccharides. Biomaterials 2018; 184:41-55. [PMID: 30205243 DOI: 10.1016/j.biomaterials.2018.08.056] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/27/2022]
Abstract
Bone morphogenetic proteins (BMPs) are essential during tissue repair and remodeling after injury. Glycosaminoglycan (GAG) sugars are known to enhance BMP activity in vitro and in vivo; here the interactions of BMP-2 with various glycosaminoglycan classes were compared and shown to be selective for heparin over other comparable saccharides. The minimal chain lengths and specific sulfate moieties required for heparin-derived oligosaccharide binding to BMP-2, and the ability of such oligosaccharides to promote BMP-2-induced osteogenic differentiation in vitro were then determined. BMP-2 could bind to heparin hexasaccharides (dp6) and octasaccharides (dp8), but decasaccharides (dp10) were the minimum chain length required for both efficient binding of BMP-2 and consequent heparin-dependent cell responses. N-sulfation is the most important, and 6-O-sulfation moderately important for BMP-2 binding and activity, whereas 2-O-sulfation was much less critical. Bone formation assays in vivo further confirmed that dp10, N-sulfated heparin oligosaccharides were the minimal requirement for effective enhancement of BMP-2-induced bone formation. Such information is necessary for the rational design of the next generations of heparan-based devices for bone tissue repair.
Collapse
Affiliation(s)
- Raymond A A Smith
- Glycotherapeutics Group, Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Sadasivam Murali
- Glycotherapeutics Group, Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Bina Rai
- Glycotherapeutics Group, Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Xiaohua Lu
- Glycotherapeutics Group, Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Zophia Xue Hui Lim
- Glycotherapeutics Group, Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Jaslyn J L Lee
- Glycotherapeutics Group, Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Victor Nurcombe
- Glycotherapeutics Group, Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University-Imperial College London, Singapore
| | - Simon M Cool
- Glycotherapeutics Group, Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore; Dept. of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119074, Singapore.
| |
Collapse
|
47
|
Thuaksuban N, Pannak R, Boonyaphiphat P, Monmaturapoj N. In vivo biocompatibility and degradation of novel Polycaprolactone-Biphasic Calcium phosphate scaffolds used as a bone substitute. Biomed Mater Eng 2018; 29:253-267. [PMID: 29457598 DOI: 10.3233/bme-171727] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Biocompatibility and degradation of poly ε-caprolactone (PCL)-Biphasic Calcium Phosphate (BCP) scaffolds fabricated by the "Melt Stretching and Compression Molding (MSCM)" technique were evaluated in rat models. OBJECTIVES Degradation behaviors and histological biocompatibility of the PCL-20% BCP MSCM scaffolds and compare with those of PCL-20% β-tricalcium phosphate (TCP) scaffolds commercially fabricated by Fused Deposition Modeling (FDM) were evaluated. METHODS The study groups included Group A: PCL-20% BCP MSCM scaffolds and Group B: PCL-20% TCP FDM scaffolds, which were implanted subcutaneously in twelve male Wistar rats. On day 14, 30, 60 and 90, dimensional changes of the scaffolds and their surrounding histological features were assessed using Micro-Computed Tomography (μ-CT) and histological analysis. Changes of their molecular weight were assessed using Gel Permeation Chromatography (GPC). RESULTS Formation of collagen and new blood vessels throughout the scaffolds of both groups increased with time with low degrees of inflammation. The μ-CT and GPC analysis demonstrated that the scaffolds of both groups degraded with time, but, their molecular weight slightly changed over the observation periods. All results of both groups were not significantly different. CONCLUSIONS The PCL-20% BCP MSCM scaffolds were biocompatible and biodegradable in vivo. Their properties were comparable to those of the commercial PCL-20% TCP scaffolds.
Collapse
Affiliation(s)
- Nuttawut Thuaksuban
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai, Songkhla 90112, Thailand
| | - Rungrot Pannak
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai, Songkhla 90112, Thailand
| | - Pleumjit Boonyaphiphat
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hatyai, Songkhla 90112, Thailand
| | - Naruporn Monmaturapoj
- National Metal and Materials Technology Center, Thailand Science Park, Pathumthani 12120, Thailand
| |
Collapse
|
48
|
Nguyen MK, Jeon O, Dang PN, Huynh CT, Varghai D, Riazi H, McMillan A, Herberg S, Alsberg E. RNA interfering molecule delivery from in situ forming biodegradable hydrogels for enhancement of bone formation in rat calvarial bone defects. Acta Biomater 2018; 75:105-114. [PMID: 29885529 PMCID: PMC6119505 DOI: 10.1016/j.actbio.2018.06.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 11/22/2022]
Abstract
RNA interference (RNAi) may be an effective and valuable tool for promoting the growth of functional tissue, as short interfering RNA (siRNA) and microRNA (miRNA) can block the expression of genes that have negative effects on tissue regeneration. Our group has recently reported that the localized and sustained presentation of siRNA against noggin (siNoggin) and miRNA-20a from in situ forming poly(ethylene glycol) (PEG) hydrogels enhanced osteogenic differentiation of encapsulated human bone marrow-derived mesenchymal stem cells (hMSCs). Here, the capacity of the hydrogel system to accelerate bone formation in a rat calvarial bone defect model is presented. After 12 weeks post-implantation, the hydrogels containing encapsulated hMSCs and miRNA-20a resulted in more bone formation in the defects than the hydrogels containing hMSCs without siRNA or with negative control siRNA. This localized and sustained RNA interfering molecule delivery system may provide an excellent platform for healing bony defects and other tissues. STATEMENT OF SIGNIFICANCE Delivery of RNAi molecules may be a valuable strategy to guide cell behavior for tissue engineering applications, but to date there have been no reports of a biomaterial system capable of both encapsulation of cells and controlled delivery of incorporated RNA. Here, we present PEG hydrogels that form in situ via Michael type reaction, and that permit encapsulation of hMSCs and the concomitant controlled delivery of siNoggin and/or miRNA-20a. These RNAs were chosen to suppress noggin, a BMP-2 antagonist, and/or PPAR-γ, a negative regulator of BMP-2-mediated osteogenesis, and therefore promote osteogenic differentiation of hMSCs and subsequent bone repair in critical-sized rat calvarial defects. Simultaneous delivery of hMSCs and miRNA-20a enhanced repair of these defects compared to hydrogels containing hMSCs without siRNA or with negative control siRNA. This in situ forming PEG hydrogel system offers an exciting platform for healing critical-sized bone defects by localized, controlled delivery of RNAi molecules to encapsulated hMSCs and surrounding cells.
Collapse
Affiliation(s)
- Minh K Nguyen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Oju Jeon
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Phuong N Dang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Cong T Huynh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Davood Varghai
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Hooman Riazi
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Alexandra McMillan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Samuel Herberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
49
|
Bhakta G, Ekaputra AK, Rai B, Abbah SA, Tan TC, Le BQ, Chatterjea A, Hu T, Lin T, Arafat MT, van Wijnen AJ, Goh J, Nurcombe V, Bhakoo K, Birch W, Xu L, Gibson I, Wong HK, Cool SM. Fabrication of polycaprolactone-silanated β-tricalcium phosphate-heparan sulfate scaffolds for spinal fusion applications. Spine J 2018; 18:818-830. [PMID: 29269312 DOI: 10.1016/j.spinee.2017.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/08/2017] [Accepted: 12/11/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Interbody spinal fusion relies on the use of external fixation and the placement of a fusion cage filled with graft materials (scaffolds) without regard for their mechanical performance. Stability at the fusion site is instead reliant on fixation hardware combined with a selected cage. Ideally, scaffolds placed into the cage should both support the formation of new bone and contribute to the mechanical stability at the fusion site. PURPOSE We recently developed a scaffold consisting of silane-modified PCL-TCP (PCL-siTCP) with mechanical properties that can withstand the higher loads generated in the spine. To ensure the scaffold more closely mimicked the bone matrix, we incorporated collagen (Col) and a heparan sulfate glycosaminoglycan sugar (HS3) with increased affinity for heparin-binding proteins such as bone morphogenetic protein-2 (BMP-2). The osteostimulatory characteristic of this novel device delivering exogenous BMP2 was assessed in vitro and in vivo as a prelude to future spinal fusion studies with this device. STUDY DESIGN/SETTING A combination of cell-free assays (BMP2 release), progenitor cell-based assays (BMP2 bioactivity, cell proliferation and differentiation), and rodent ectopic bone formation assays was used to assess the osteostimulatory characteristics of the PCL-siTCP-based scaffolds. MATERIALS AND METHODS Freshly prepared rat mesenchymal stem cells were used to determine reparative cell proliferation and differentiation on the PCL-siTCP-based scaffolds over a 28-day period in vitro. The bioactivity of BMP2 released from the scaffolds was assessed on progenitor cells over a 28-day period using ALP activity assays and release kinetics as determined by enzyme-linked immunosorbent assay. For ectopic bone formation, intramuscular placement of scaffolds into Sprague Dawley rats (female, 4 weeks old, 120-150 g) was achieved in five animals, each receiving four treatments randomized for location along the limb. The four groups tested were (1) PCL-siTCP/Col (5-mm diameter×1-mm thickness), PCL-siTCP/Col/BMP2 (5 µg), (3) PCL-siTCP/Col/HS3 (25 µg), and (4) PCL-siTCP/Col/HS3/BMP2 (25 and 5 µg, respectively). Bone formation was evaluated at 8 weeks post implantation by microcomputed tomography (µCT) and histology. RESULTS Progenitor cell-based assays (proliferation, mRNA transcripts, and ALP activity) confirmed that BMP2 released from PCL-siTCP/Col/HS3 scaffolds increased ALP expression and mRNA levels of the osteogenic biomarkers Runx2, Col1a2, ALP, and bone gla protein-osteocalcin compared with devices without HS3. When the PCL-siTCP/Col/HS3/BMP2 scaffolds were implanted into rat hamstring muscle, increased bone formation (as determined by two-dimensional and three-dimensional µCTs and histologic analyses) was observed compared with scaffolds lacking BMP2. More consistent increases in the amount of ectopic bone were observed for the PCL-siTCP/Col/HS3/BMP2 implants compared with PCL-siTCP/Col/BMP2. Also, increased mineralizing tissue within the pores of the scaffold was seen with modified-tetrachrome histology, a result confirmed by µCT, and a modest but detectable increase in both the number and the thickness of ectopic bone structures were observed with the PCL-siTCP/Col/HS3/BMP2 implants. CONCLUSIONS The combination of PCL-siTCP/Col/HS3/BMP2 thus represents a promising avenue for further development as a bone graft alternative for spinal fusion surgery.
Collapse
Affiliation(s)
- Gajadhar Bhakta
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Andrew K Ekaputra
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Bina Rai
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Sunny A Abbah
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Rd, Singapore 119288, Singapore
| | - Tuan Chun Tan
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Bach Quang Le
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Anindita Chatterjea
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Tao Hu
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Rd, Singapore 119288, Singapore
| | - Tingxuan Lin
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - M Tarik Arafat
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1 Block EA, 07-08, Singapore 117576, Singapore
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - James Goh
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, E4 #04-08, Singapore 117583, Singapore
| | - Victor Nurcombe
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Kishore Bhakoo
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Rd, Singapore 119288, Singapore; Singapore Bioimaging Consortium, 11 Biopolis Way, #01-02 Helios, Singapore 138667, Singapore
| | - William Birch
- Institute of Materials Research & Engineering, #08-03, 2 Fusionopolis Way, Innovis, 138634, Singapore
| | - Li Xu
- Institute of Materials Research & Engineering, #08-03, 2 Fusionopolis Way, Innovis, 138634, Singapore
| | - Ian Gibson
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1 Block EA, 07-08, Singapore 117576, Singapore
| | - Hee-Kit Wong
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Rd, Singapore 119288, Singapore
| | - Simon M Cool
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore; Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Rd, Singapore 119288, Singapore.
| |
Collapse
|
50
|
Nuntanaranont T, Promboot T, Sutapreyasri S. Effect of expanded bone marrow-derived osteoprogenitor cells seeded into polycaprolactone/tricalcium phosphate scaffolds in new bone regeneration of rabbit mandibular defects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:24. [PMID: 29427037 DOI: 10.1007/s10856-018-6030-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/12/2018] [Indexed: 06/08/2023]
Abstract
The purpose of this study was to assess and evaluate new bone formation in rabbit marginal mandibular defects using expanded bone marrow-derived osteoprogenitor cells seeded in three-dimensional scaffolds of polycaprolactone/tricalcium phosphate (PCL/TCP). Bone marrow was harvested from the rabbit ilium and rabbit bone marrow-derived osteoprogenitor cells were isolated and expanded in standard culture medium and osteogenic medium supplement. The cells were then seeded into the PCL/TCP scaffolds and the cell/scaffold constructions were implanted into prepared defects in rabbit mandibles. PCL/TCP scaffold alone and autogenous bone graft from the mandible were also implanted into the other prepared defects. The specimens were evaluated at 4 and 8 weeks after the implantation using clinical, radiographic, and histological techniques. The results of the experimental group demonstrated more newly formed bone on the surface and in the pores of the PCL/TCP scaffolds. In addition, the osteoblasts, osteocytes, and new bone trabeculae were identified throughout the defects that were implanted with the cell/scaffold constructions. The PCL/TCP alone group was filled mostly with fibrous cells particularly in the middle region with less bone formation. These results would suggest that the derived osteotoprogenitor cells have the potential to form bone tissue when seeded onto PCL/TCP scaffolds.
Collapse
Affiliation(s)
- Thongchai Nuntanaranont
- Department of Oral and Maxillofacial surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
| | - Tapanee Promboot
- Surin Hospital, Lakmuans Road, Nai Mueang, Mueang Surin, Surin, 32000, Thailand
| | - Srisurang Sutapreyasri
- Department of Oral and Maxillofacial surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| |
Collapse
|