1
|
Valsalakumari R, Pandya AD, Prasmickaite L, Kvalvaag A, Myrann AG, Åslund AKO, Kjos MS, Fontecha-Cuenca C, Haroon HB, Ribeiro ARS, Horejs-Hoeck J, Moghimi SM, Mørch Ý, Skotland T, Sandvig K, Mælandsmo GM, Iversen TG. Preclinical Efficacy of Cabazitaxel Loaded Poly(2-alkyl cyanoacrylate) Nanoparticle Variants. Int J Nanomedicine 2024; 19:3009-3029. [PMID: 38562610 PMCID: PMC10982070 DOI: 10.2147/ijn.s450283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Background Biodegradable poly(alkyl cyanoacrylate) (PACA) nanoparticles (NPs) are receiving increasing attention in anti-cancer nanomedicine development not only for targeted cancer chemotherapy, but also for modulation of the tumor microenvironment. We previously reported promising results with cabazitaxel (CBZ) loaded poly(2-ethylbutyl cyanoacrylate) NPs (PEBCA-CBZ NPs) in a patient derived xenograft (PDX) model of triple-negative breast cancer, and this was associated with a decrease in M2 macrophages. The present study aims at comparing two endotoxin-free PACA NP variants (PEBCA and poly(2-ethylhexyl cyanoacrylate); PEHCA), loaded with CBZ and test whether conjugation with folate would improve their effect. Methods Cytotoxicity assays and cellular uptake of NPs by flow cytometry were performed in different breast cancer cells. Biodistribution and efficacy studies were performed in PDX models of breast cancer. Tumor associated immune cells were analyzed by multiparametric flow cytometry. Results In vitro studies showed similar NP-induced cytotoxicity patterns despite difference in early NP internalization. On intravenous injection, the liver cleared the majority of NPs. Efficacy studies in the HBCx39 PDX model demonstrated an enhanced effect of drug-loaded PEBCA variants compared with free drug and PEHCA NPs. Furthermore, the folate conjugated PEBCA variant did not show any enhanced effects compared with the unconjugated counterpart which might be due to unfavorable orientation of folate on the NPs. Finally, analyses of the immune cell populations in tumors revealed that treatment with drug loaded PEBCA variants affected the myeloid cells, especially macrophages, contributing to an inflammatory, immune activated tumor microenvironment. Conclusion We report for the first time, comparative efficacy of PEBCA and PEHCA NP variants in triple negative breast cancer models and show that CBZ-loaded PEBCA NPs exhibit a combined effect on tumor cells and on the tumor associated myeloid compartment, which may boost the anti-tumor response.
Collapse
Affiliation(s)
- Remya Valsalakumari
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, 0379, Norway
- Centre for Cancer Cell Reprogramming, University of Oslo, Oslo, 0379, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, 0379, Norway
| | - Abhilash D Pandya
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, 0379, Norway
| | - Lina Prasmickaite
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, 0379, Norway
| | - Audun Kvalvaag
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, 0379, Norway
- Centre for Cancer Cell Reprogramming, University of Oslo, Oslo, 0379, Norway
| | - Anne Grethe Myrann
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, 0379, Norway
- Centre for Cancer Cell Reprogramming, University of Oslo, Oslo, 0379, Norway
| | - Andreas K O Åslund
- Department of Biotechnology and Nanomedicine, SINTEF AS, Trondheim, 7034, Norway
| | | | - Cristina Fontecha-Cuenca
- School of Pharmacy, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Hajira B Haroon
- School of Pharmacy, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Ana R S Ribeiro
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, 5020, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, 5020, Austria
- Cancer Cluster Salzburg, Salzburg, 5020, Austria
| | - S Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- Faculty of Health and Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Ýrr Mørch
- Department of Biotechnology and Nanomedicine, SINTEF AS, Trondheim, 7034, Norway
| | - Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, 0379, Norway
- Centre for Cancer Cell Reprogramming, University of Oslo, Oslo, 0379, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, 0379, Norway
- Centre for Cancer Cell Reprogramming, University of Oslo, Oslo, 0379, Norway
- Department of Biosciences, University of Oslo, Oslo, 0316, Norway
| | - Gunhild Mari Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, 0379, Norway
- Department of Medical Biology, University of Tromsø, Tromsø, 9019, Norway
| | - Tore Geir Iversen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, 0379, Norway
- Centre for Cancer Cell Reprogramming, University of Oslo, Oslo, 0379, Norway
| |
Collapse
|
2
|
Guidi L, Cascone MG, Rosellini E. Light-responsive polymeric nanoparticles for retinal drug delivery: design cues, challenges and future perspectives. Heliyon 2024; 10:e26616. [PMID: 38434257 PMCID: PMC10906429 DOI: 10.1016/j.heliyon.2024.e26616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
A multitude of sight-threatening retinal diseases, affecting hundreds of millions around the globe, lack effective pharmacological treatments due to ocular barriers and common drug delivery limitations. Polymeric nanoparticles (PNPs) are versatile drug carriers with sustained drug release profiles and tunable physicochemical properties which have been explored for ocular drug delivery to both anterior and posterior ocular tissues. PNPs can incorporate a wide range of drugs and overcome the challenges of conventional retinal drug delivery. Moreover, PNPs can be engineered to respond to specific stimuli such as ultraviolet, visible, or near-infrared light, and allow precise spatiotemporal control of the drug release, enabling tailored treatment regimens and reducing the number of required administrations. The objective of this study is to emphasize the therapeutic potential of light-triggered drug-loaded polymeric nanoparticles to treat retinal diseases through an exploration of ocular pathologies, challenges in drug delivery, current production methodologies and recent applications. Despite challenges, light-responsive PNPs hold the promise of substantially enhancing the treatment landscape for ocular diseases, aiming for an improved quality of life for patients.
Collapse
Affiliation(s)
- Lorenzo Guidi
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Elisabetta Rosellini
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| |
Collapse
|
3
|
Frigerio G, Donadoni E, Siani P, Vertemara J, Motta S, Bonati L, Gioia LD, Valentin CD. Mechanism of RGD-conjugated nanodevice binding to its target protein integrin α Vβ 3 by atomistic molecular dynamics and machine learning. NANOSCALE 2024; 16:4063-4081. [PMID: 38334981 DOI: 10.1039/d3nr05123d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Active targeting strategies have been proposed to enhance the selective uptake of nanoparticles (NPs) by diseased cells, and recent experimental findings have proven the effectiveness of this approach. However, no mechanistic studies have yet revealed the atomistic details of the interactions between ligand-activated NPs and integrins. As a case study, here we investigate, by means of advanced molecular dynamics simulations (MD) and machine learning methods (namely equilibrium MD, binding free energy calculations and training of self-organized maps), the interaction of a cyclic-RGD-conjugated PEGylated TiO2 NP (the nanodevice) with the extracellular segment of integrin αVβ3 (the target), the latter experimentally well-known to be over-expressed in several solid tumors. Firstly, we proved that the cyclic-RGD ligand binding to the integrin pocket is established and kept stable even in the presence of the cumbersome realistic model of the nanodevice. In this respect, the unsupervised machine learning analysis allowed a detailed comparison of the ligand/integrin binding in the presence and in the absence of the nanodevice, which unveiled differences in the chemical features. Then, we discovered that unbound cyclic RGDs conjugated to the NP largely contribute to the interactions between the nanodevice and the integrin. Finally, by increasing the density of cyclic RGDs on the PEGylated TiO2 NP, we observed a proportional enhancement of the nanodevice/target binding. All these findings can be exploited to achieve an improved targeting selectivity and cellular uptake, and thus a more successful clinical outcome.
Collapse
Affiliation(s)
- Giulia Frigerio
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| | - Edoardo Donadoni
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| | - Paulo Siani
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| | - Jacopo Vertemara
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Stefano Motta
- Dipartimento di Scienze dell'Ambiente e del Territorio, Università di Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Laura Bonati
- Dipartimento di Scienze dell'Ambiente e del Territorio, Università di Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Luca De Gioia
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Cristiana Di Valentin
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
- BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, Italy
| |
Collapse
|
4
|
Ou BS, Baillet J, Picece VCT, Gale EC, Powell AE, Saouaf OM, Yan J, Nejatfard A, Lopez Hernandez H, Appel EA. Nanoparticle-Conjugated Toll-Like Receptor 9 Agonists Improve the Potency, Durability, and Breadth of COVID-19 Vaccines. ACS NANO 2024; 18:3214-3233. [PMID: 38215338 PMCID: PMC10832347 DOI: 10.1021/acsnano.3c09700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Development of effective vaccines for infectious diseases has been one of the most successful global health interventions in history. Though, while ideal subunit vaccines strongly rely on antigen and adjuvant(s) selection, the mode and time scale of exposure to the immune system has often been overlooked. Unfortunately, poor control over the delivery of many adjuvants, which play a key role in enhancing the quality and potency of immune responses, can limit their efficacy and cause off-target toxicities. There is a critical need for improved adjuvant delivery technologies to enhance their efficacy and boost vaccine performance. Nanoparticles have been shown to be ideal carriers for improving antigen delivery due to their shape and size, which mimic viral structures but have been generally less explored for adjuvant delivery. Here, we describe the design of self-assembled poly(ethylene glycol)-b-poly(lactic acid) nanoparticles decorated with CpG, a potent TLR9 agonist, to increase adjuvanticity in COVID-19 vaccines. By controlling the surface density of CpG, we show that intermediate valency is a key factor for TLR9 activation of immune cells. When delivered with the SARS-CoV-2 spike protein, CpG nanoparticle (CpG-NP) adjuvant greatly improves the magnitude and duration of antibody responses when compared to soluble CpG, and results in overall greater breadth of immunity against variants of concern. Moreover, encapsulation of CpG-NP into injectable polymeric-nanoparticle (PNP) hydrogels enhances the spatiotemporal control over codelivery of CpG-NP adjuvant and spike protein antigen such that a single immunization of hydrogel-based vaccines generates humoral responses comparable to those of a typical prime-boost regimen of soluble vaccines. These delivery technologies can potentially reduce the costs and burden of clinical vaccination, both of which are key elements in fighting a pandemic.
Collapse
Affiliation(s)
- Ben S. Ou
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Julie Baillet
- Department
of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Vittoria C. T.
M. Picece
- Department
of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Zurich 8093, Switzerland
| | - Emily C. Gale
- Department
of Biochemistry, Stanford University School
of Medicine, Stanford, California 94305, United States
| | - Abigail E. Powell
- Department
of Biochemistry, Stanford University School
of Medicine, Stanford, California 94305, United States
- Stanford
ChEM-H, Stanford University, Stanford, California 94305, United States
| | - Olivia M. Saouaf
- Department
of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Jerry Yan
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Anahita Nejatfard
- Department
of Biochemistry, Stanford University School
of Medicine, Stanford, California 94305, United States
| | - Hector Lopez Hernandez
- Department
of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Eric A. Appel
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
- Stanford
ChEM-H, Stanford University, Stanford, California 94305, United States
- Department
of Pediatrics - Endocrinology, Stanford
University School of Medicine, Stanford, California 94305, United States
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
5
|
Mohammad-Rafiei F, Khojini JY, Ghazvinian F, Alimardan S, Norioun H, Tahershamsi Z, Tajbakhsh A, Gheibihayat SM. Cell membrane biomimetic nanoparticles in drug delivery. Biotechnol Appl Biochem 2023; 70:1843-1859. [PMID: 37387120 DOI: 10.1002/bab.2487] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/05/2023] [Indexed: 07/01/2023]
Abstract
Despite the efficiency of nanoparticle (NP) therapy, in vivo investigations have shown that it does not perform as well as in vitro. In this case, NP confronts many defensive hurdles once they enter the body. The delivery of NP to sick tissue is inhibited by these immune-mediated clearance mechanisms. Hence, using a cell membrane to hide NP for active distribution offers up a new path for focused treatment. These NPs are better able to reach the disease's target location, leading to enhanced therapeutic efficacy. In this emerging class of drug delivery vehicles, the inherent relation between the NPs and the biological components obtained from the human body was utilized, which mimic the properties and activities of native cells. This new technology has shown the viability of using biomimicry to evade immune system-provided biological barriers, with an emphasis on restricting clearance from the body before reaching its intended target. Furthermore, by providing signaling cues and transplanted biological components that favorably change the intrinsic immune response at the disease site, the NPs would be capable interacting with immune cells regarding the biomimetic method. Thus, we aimed to provide a current landscape and future trends of biomimetic NPs in drug delivery.
Collapse
Affiliation(s)
- Fatemeh Mohammad-Rafiei
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Ghazvinian
- Department of Life science and biotechnology, Faculty of Natural Sciences, University of Shahid Beheshti, Tehran, Iran
| | - Sajad Alimardan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Norioun
- Medical Genetics Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zahra Tahershamsi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Munich, Germany
| |
Collapse
|
6
|
Li M, Guo Q, Zhong C, Zhang Z. Multifunctional cell membranes-based nano-carriers for targeted therapies: a review of recent trends and future perspective. Drug Deliv 2023; 30:2288797. [PMID: 38069500 PMCID: PMC10987056 DOI: 10.1080/10717544.2023.2288797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/05/2023] [Indexed: 12/18/2023] Open
Abstract
Nanotechnology has ignited a transformative revolution in disease detection, prevention, management, and treatment. Central to this paradigm shift is the innovative realm of cell membrane-based nanocarriers, a burgeoning class of biomimetic nanoparticles (NPs) that redefine the boundaries of biomedical applications. These remarkable nanocarriers, designed through a top-down approach, harness the intrinsic properties of cell-derived materials as their fundamental building blocks. Through shrouding themselves in natural cell membranes, these nanocarriers extend their circulation longevity and empower themselves to intricately navigate and modulate the multifaceted microenvironments associated with various diseases. This comprehensive review provides a panoramic view of recent breakthroughs in biomimetic nanomaterials, emphasizing their diverse applications in cancer treatment, cardiovascular therapy, viral infections, COVID-19 management, and autoimmune diseases. In this exposition, we deliver a concise yet illuminating overview of the distinctive properties underpinning biomimetic nanomaterials, elucidating their pivotal role in biomedical innovation. We subsequently delve into the exceptional advantages these nanomaterials offer, shedding light on the unique attributes that position them at the forefront of cutting-edge research. Moreover, we briefly explore the intricate synthesis processes employed in creating these biomimetic nanocarriers, shedding light on the methodologies that drive their development.
Collapse
Affiliation(s)
- Mo Li
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun, China
| | - Qiushi Guo
- Pharmacy Department, First Hospital of Jilin University—the Eastern Division, Changchun, China
| | - Chongli Zhong
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun, China
| | - Ziyan Zhang
- Department of Orthopedics, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Parvathaneni V, Shukla SK, Gupta V. Development and Characterization of Folic Acid-Conjugated Amodiaquine-Loaded Nanoparticles-Efficacy in Cancer Treatment. Pharmaceutics 2023; 15:pharmaceutics15031001. [PMID: 36986861 PMCID: PMC10053199 DOI: 10.3390/pharmaceutics15031001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/04/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The objective of this study was to construct amodiaquine-loaded, folic acid-conjugated polymeric nanoparticles (FA-AQ NPs) to treat cancer that could be scaled to commercial production. In this study, folic acid (FA) was conjugated with a PLGA polymer followed by the formulation of drug-loaded NPs. The results of the conjugation efficiency confirmed the conjugation of FA with PLGA. The developed folic acid-conjugated nanoparticles demonstrated uniform particle size distributions and had visible spherical shapes under transmission electron microscopy. The cellular uptake results suggested that FA modification could enhance the cellular internalization of nanoparticulate systems in non-small cell lung cancer, cervical, and breast cancer cell types. Furthermore, cytotoxicity studies showed the superior efficacy of FA-AQ NPs in different cancer cells such as MDAMB-231 and HeLA. FA-AQ NPs had better anti-tumor abilities demonstrated via 3D spheroid cell culture studies. Therefore, FA-AQ NPs could be a promising drug delivery system for cancer therapy.
Collapse
Affiliation(s)
- Vineela Parvathaneni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Snehal K Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| |
Collapse
|
8
|
Ailuno G, Balboni A, Caviglioli G, Lai F, Barbieri F, Dellacasagrande I, Florio T, Baldassari S. Boron Vehiculating Nanosystems for Neutron Capture Therapy in Cancer Treatment. Cells 2022; 11:cells11244029. [PMID: 36552793 PMCID: PMC9776957 DOI: 10.3390/cells11244029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Boron neutron capture therapy is a low-invasive cancer therapy based on the neutron fission process that occurs upon thermal neutron irradiation of 10B-containing compounds; this process causes the release of alpha particles that selectively damage cancer cells. Although several clinical studies involving mercaptoundecahydro-closo-dodecaborate and the boronophenylalanine-fructose complex are currently ongoing, the success of this promising anticancer therapy is hampered by the lack of appropriate drug delivery systems to selectively carry therapeutic concentrations of boron atoms to cancer tissues, allowing prolonged boron retention therein and avoiding the damage of healthy tissues. To achieve these goals, numerous research groups have explored the possibility to formulate nanoparticulate systems for boron delivery. In this review. we report the newest developments on boron vehiculating drug delivery systems based on nanoparticles, distinguished on the basis of the type of carrier used, with a specific focus on the formulation aspects.
Collapse
Affiliation(s)
- Giorgia Ailuno
- Department of Pharmacy, University of Genova, 16147 Genova, Italy
- Correspondence: (G.A.); (T.F.)
| | - Alice Balboni
- Department of Pharmacy, University of Genova, 16147 Genova, Italy
| | | | - Francesco Lai
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, 09124 Cagliari, Italy
| | - Federica Barbieri
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| | | | - Tullio Florio
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Correspondence: (G.A.); (T.F.)
| | - Sara Baldassari
- Department of Pharmacy, University of Genova, 16147 Genova, Italy
| |
Collapse
|
9
|
Alvi M, Yaqoob A, Rehman K, Shoaib SM, Akash MSH. PLGA-based nanoparticles for the treatment of cancer: current strategies and perspectives. AAPS OPEN 2022. [DOI: 10.1186/s41120-022-00060-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AbstractResearch on cancer treatment is always of great importance because of the extensive and difficult treatment options and side effects of chemotherapeutic agents. Due to this, novel techniques for cancer treatment are the need of the day. Nowadays, nanotechnology is of great interest for its applications as diagnostic tools, theragnostic, contrasting agents, and vehicles for delivering drugs. Nanoparticles (NPs) are made up of biocompatible and biodegradable polymers that improve the pharmacokinetic and pharmacodynamic properties of drugs, reduce side effects, improve stability, prolong the release of drug, and reduce the dosing frequency. Poly (lactic-co-glycolic acid) (PLGA) is FDA-approved synthetic polymer which can be used to formulate NPs that can be targeted to a specific site for the safe and effective delivery of drugs. PLGA-based NPs can be used for a variety of cancer therapies including tumor-targeted drug delivery, gene therapy, hyperthermia, and photodynamic therapy. This article discusses the method of preparation, characterization, encapsulation of chemotherapeutic drugs, effect of physicochemical properties of PLGA- based NPs, and how we can exploit these aspects through various methods of preparation for drug loading, biodistribution, target specificity, and their use in cancer treatment. Along with these targeting strategies, gene therapy, cancer immunotherapy, and various applications have also been discussed. This article also aims to discuss the incorporation of diagnostic tools and therapeutic moiety in one versatile formulation of PLGA-NPs and the difficulties faced in translating this promising tool to clinical use.
Collapse
|
10
|
Donadoni E, Siani P, Frigerio G, Di Valentin C. Multi-scale modeling of folic acid-functionalized TiO 2 nanoparticles for active targeting of tumor cells. NANOSCALE 2022; 14:12099-12116. [PMID: 35959762 PMCID: PMC9404434 DOI: 10.1039/d2nr02603a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/08/2022] [Indexed: 05/22/2023]
Abstract
Strategies based on the active targeting of tumor cells are emerging as smart and efficient nanomedical procedures. Folic acid (FA) is a vitamin and a well-established tumor targeting agent because of its strong affinity for the folate receptor (FR), which is an overexpressed protein on the cell membranes of the tumor cells. FA can be successfully anchored to several nanocarriers, including inorganic nanoparticles (NPs) based on transition metal oxides. Among them, TiO2 is extremely interesting because of its excellent photoabsorption and photocatalytic properties, which can be exploited in photodynamic therapy. However, it is not yet clear in which respects direct anchoring of FA to the NP or the use of spacers, based on polyethylene glycol (PEG) chains, are different and whether one approach is better than the other. In this work, we combine Quantum Mechanics (QM) and classical Molecular Dynamics (MD) to design and optimize the FA functionalization on bare and PEGylated TiO2 models and to study the dynamical behavior of the resulting nanoconjugates in a pure water environment and in physiological conditions. We observe that they are chemically stable, even under the effect of increasing temperature (up to 500 K). Using the results from long MD simulations (100 ns) and from free energy calculations, we determine how the density of FA molecules on the TiO2 NP and the presence of PEG spacers impact on the actual exposure of the ligands, especially by affecting the extent of FA-FA intermolecular interactions, which are detrimental for the targeting ability of FA towards the folate receptor. This analysis provides a solid and rational basis for experimentalists to define the optimal FA density and the more appropriate mode of anchoring to the carrier, according to the final purpose of the nanoconjugate.
Collapse
Affiliation(s)
- Edoardo Donadoni
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| | - Paulo Siani
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| | - Giulia Frigerio
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| | - Cristiana Di Valentin
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
- BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, Italy
| |
Collapse
|
11
|
Siani P, Frigerio G, Donadoni E, Di Valentin C. Molecular dynamics simulations of cRGD-conjugated PEGylated TiO 2 nanoparticles for targeted photodynamic therapy. J Colloid Interface Sci 2022; 627:126-141. [PMID: 35842963 DOI: 10.1016/j.jcis.2022.07.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/20/2022]
Abstract
The conjugation of high-affinity cRGD-containing peptides is a promising approach in nanomedicine to efficiently reduce off-targeting effects and enhance the cellular uptake by integrin-overexpressing tumor cells. Herein we utilize atomistic molecular dynamics simulations to evaluate key structural-functional parameters of these targeting ligands for an effective binding activity towards αVβ3 integrins. An increasing number of cRGD ligands is conjugated to PEG chains grafted to highly curved TiO2 nanoparticles to unveil the impact of cRGD density on the ligand's presentation, stability, and conformation in an explicit aqueous environment. We find that a low density leads to an optimal spatial presentation of cRGD ligands out of the "stealth" PEGylated layer around the nanosystem, favoring a straight upward orientation and spaced distribution of the targeting ligands in the bulk-water phase. On the contrary, high densities favor over-clustering of cRGD ligands, driven by a concerted mechanism of enhanced ligand-ligand interactions and reduced water accessibility over the ligand's molecular surface. These findings strongly suggest that the ligand density modulation is a key factor in the design of cRGD-targeting nanodevices to maximize their binding efficiency into over-expressed αVβ3 integrin receptors.
Collapse
Affiliation(s)
- Paulo Siani
- Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Giulia Frigerio
- Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Edoardo Donadoni
- Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Cristiana Di Valentin
- Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, via R. Cozzi 55, 20125 Milano, Italy; BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, Italy.
| |
Collapse
|
12
|
Tang Z, Fan X, Chen Y, Gu P. Ocular Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2003699. [PMID: 35150092 PMCID: PMC9130902 DOI: 10.1002/advs.202003699] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/31/2021] [Indexed: 05/07/2023]
Abstract
Intrinsic shortcomings associated with conventional therapeutic strategies often compromise treatment efficacy in clinical ophthalmology, prompting the rapid development of versatile alternatives for satisfactory diagnostics and therapeutics. Given advances in material science, nanochemistry, and nanobiotechnology, a broad spectrum of functional nanosystems has been explored to satisfy the extensive requirements of ophthalmologic applications. In the present review, the recent progress in nanosystems, both conventional and emerging nanomaterials in ophthalmology from state-of-the-art studies, are comprehensively examined and the role of their fundamental physicochemical properties in bioavailability, tissue penetration, biodistribution, and elimination after interacting with the ophthalmologic microenvironment emphasized. Furthermore, along with the development of surface engineering of nanomaterials, emerging theranostic methodologies are promoted as potential alternatives for multipurpose ocular applications, such as emerging biomimetic ophthalmology (e.g., smart electrochemical eye), thus provoking a holistic review of "ocular nanomedicine." By affording insight into challenges encountered by ocular nanomedicine and further highlighting the direction of future studies, this review provides an incentive for enriching ocular nanomedicine-based fundamental research and future clinical translation.
Collapse
Affiliation(s)
- Zhimin Tang
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Xianqun Fan
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Ping Gu
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| |
Collapse
|
13
|
Moret F, Conte C, Esposito D, Dal Poggetto G, Avitabile C, Ungaro F, Tiso N, Romanelli A, Laurienzo P, Reddi E, Quaglia F. Biodegradable nanoparticles combining cancer cell targeting and anti-angiogenic activity for synergistic chemotherapy in epithelial cancer. Drug Deliv Transl Res 2022; 12:2488-2500. [PMID: 34973132 PMCID: PMC9458690 DOI: 10.1007/s13346-021-01090-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
A biodegradable engineered nanoplatform combining anti-angiogenic activity and targeting of cancer cells to improve the anticancer activity of docetaxel (DTX) is here proposed. Indeed, we have developed biodegradable nanoparticles (NPs) of poly(ethylene glycol)-poly(ε-caprolactone), exposing on the surface both folate motifs (Fol) for recognition in cells overexpressing Folate receptor-α (FRα) and the anti-angiogenic hexapeptide aFLT1. NPs showed a size around 100 nm, the exposure of 60% of Fol moieties on the surface, and the ability to entrap DTX and sustain its release with time. NPs were stable in simulated biological fluids and slightly interacted with Fetal Bovine serum, especially in the formulation decorated with Fol and aFLT1. The presence of Fol on NPs did not impair the anti-angiogenic activity of aFLT1, as assessed by in vitro tube formation assay in HUVEC endothelial cells. In both 2D and 3D KB cell cultures in vitro, the cytotoxicity of DTX loaded in NPs was not significantly affected by Fol/aFLT1 double decoration compared to free DTX. Remarkably, NPs distributed differently in 3D multicellular spheroids of FRα-positive KB cancer cells depending on the type of ligand displayed on the surface. In particular, NPs unmodified on the surface were randomly distributed in the spheroid, whereas the presence of Fol promoted the accumulation in the outer rims of the spheroid. Finally, NPs with Fol and aFLT1 gave a uniform distribution throughout the spheroid structure. When tested in zebrafish embryos xenografted with KB cells, NPs displaying Fol/aFLT1 reduced DTX systemic toxicity and inhibited the growth of the tumor mass and associated vasculature synergistically. Overall, nanotechnology offers excellent ground for combining therapeutic concepts in cancer, paving the way to novel multifunctional nanopharmaceuticals decorated with bioactive elements that can significantly improve therapeutic outcomes.
Collapse
Affiliation(s)
- Francesca Moret
- Department of Biology, University of Padova, Padova, 35121, Italy
| | - Claudia Conte
- Department of Pharmacy, University of Napoli Federico II, Napoli, 80131, Italy
| | - Diletta Esposito
- Department of Pharmacy, University of Napoli Federico II, Napoli, 80131, Italy
| | | | | | - Francesca Ungaro
- Department of Pharmacy, University of Napoli Federico II, Napoli, 80131, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Padova, 35121, Italy
| | - Alessandra Romanelli
- Department of Pharmaceutical Sciences, University of Milan, Milano, 20133, Italy
| | - Paola Laurienzo
- Institute for Polymers, Composites and Biomaterials, CNR, Pozzuoli, 80078, Italy
| | - Elena Reddi
- Department of Biology, University of Padova, Padova, 35121, Italy.
| | - Fabiana Quaglia
- Department of Pharmacy, University of Napoli Federico II, Napoli, 80131, Italy. .,Institute for Polymers, Composites and Biomaterials, CNR, Pozzuoli, 80078, Italy.
| |
Collapse
|
14
|
Subramani B, Chaudhary PM, Kikkeri R. A Cell-Culture Technique to Encode Glyco-Nanoparticles Selectivity. Chem Asian J 2021; 16:3900-3904. [PMID: 34619024 DOI: 10.1002/asia.202101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/06/2021] [Indexed: 11/07/2022]
Abstract
Nanoparticles (NPs) embedded with bioactive ligands such as carbohydrates, peptides, and nucleic acid have emerged as a potential tool to target biological processes. Traditional in vitro assays performed under statistic conditions may result in non-specific outcome sometimes, mainly because of the sedimentation and self-assembly nature of NPs. Inverted cell-culture assay allows for flexible and accurate detection of the receptor-mediated uptake and cytotoxicity of NPs. By combining this technique with glyco-gold nanoparticles, cellular internalization and cytotoxicity were investigated. Regioselective glycosylation patterns and shapes of the NPs could tune the receptors' binding affinity, resulting in precise cellular uptake of gold nanoparticles (AuNPs). Two cell lines HepG2 and HeLa were probed with galactosamine-embedded fluorescent AuNPs, revealing significant differences in cytotoxicity and uptake mechanism in upright and invert in vitro cell-culture assay, high-specificity toward uptake, and allowing for a rapid screening and optimization technique.
Collapse
Affiliation(s)
- Balamurugan Subramani
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Preeti Madhukar Chaudhary
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Raghavendra Kikkeri
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
15
|
Meher N, Seo K, Wang S, Bidkar AP, Fogarty M, Dhrona S, Huang X, Tang R, Blaha C, Evans MJ, Raleigh DR, Jun YW, VanBrocklin HF, Desai TA, Wilson DM, Ozawa T, Flavell RR. Synthesis and Preliminary Biological Assessment of Carborane-Loaded Theranostic Nanoparticles to Target Prostate-Specific Membrane Antigen. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54739-54752. [PMID: 34752058 DOI: 10.1021/acsami.1c16383] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Boron neutron capture therapy (BNCT) is an encouraging therapeutic modality for cancer treatment. Prostate-specific membrane antigen (PSMA) is a cell membrane protein that is abundantly overexpressed in prostate cancer and can be targeted with radioligand therapies to stimulate clinical responses in patients. In principle, a spatially targeted neutron beam together with specifically targeted PSMA ligands could enable prostate cancer-targeted BNCT. Thus, we developed and tested PSMA-targeted poly(lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles (NPs) loaded with carborane and tethered to the radiometal chelator deferoxamine B (DFB) for simultaneous positron emission tomography (PET) imaging and selective delivery of boron to prostate cancer. Monomeric PLGA-b-PEGs were covalently functionalized with either DFB or the PSMA ligand ACUPA. Different nanoparticle formulations were generated by nanoemulsification of the corresponding unmodified and DFB- or ACUPA-modified monomers in varying percent fractions. The nanoparticles were efficiently labeled with 89Zr and were subjected to in vitro and in vivo evaluation. The optimized DFB(25)ACUPA(75) NPs exhibited strong in vitro binding to PSMA in direct binding and competition radioligand binding assays in PSMA(+) PC3-Pip cells. [89Zr]DFB(25) NPs and [89Zr]DFB(25)ACUPA(75) NPs were injected to mice with bilateral PSMA(-) PC3-Flu and PSMA(+) PC3-Pip dual xenografts. The NPs demonstrated twofold superior accumulation in PC3-Pip tumors to that of PC3-Flu tumors with a tumor/blood ratio of 25; however, no substantial effect of the ACUPA ligands was detected. Moreover, fast release of carborane from the NPs was observed, resulting in a low boron delivery to tumors in vivo. In summary, these data demonstrate the synthesis, characterization, and initial biological assessment of PSMA-targeted, carborane-loaded PLGA-b-PEG nanoparticles and establish the foundation for future efforts to enable their best use in vivo.
Collapse
Affiliation(s)
- Niranjan Meher
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94143, United States
| | - Kyounghee Seo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California 94143, United States
| | - Sinan Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94143, United States
| | - Anil P Bidkar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94143, United States
| | - Miko Fogarty
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California 94143, United States
| | - Suchi Dhrona
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94143, United States
| | - Xiao Huang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Ryan Tang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94143, United States
| | - Charles Blaha
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94143, United States
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143-0981, United States
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158-2517, United States
| | - David R Raleigh
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California 94143, United States
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California 94143, United States
| | - Young-Wook Jun
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143-0981, United States
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158-2517, United States
- Department of Otolaryngology, University of California, San Francisco, San Francisco, California 94158, United States
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94143, United States
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143-0981, United States
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94143, United States
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143-0981, United States
| | - Tomoko Ozawa
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California 94143, United States
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94143, United States
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143-0981, United States
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158-2517, United States
| |
Collapse
|
16
|
Zhao L, Zhang X, Wang X, Guan X, Zhang W, Ma J. Recent advances in selective photothermal therapy of tumor. J Nanobiotechnology 2021; 19:335. [PMID: 34689765 PMCID: PMC8543909 DOI: 10.1186/s12951-021-01080-3] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022] Open
Abstract
Photothermal therapy (PTT), which converts light energy to heat energy, has become a new research hotspot in cancer treatment. Although researchers have investigated various ways to improve the efficiency of tumor heat ablation to treat cancer, PTT may cause severe damage to normal tissue due to the systemic distribution of photothermal agents (PTAs) in the body and inaccurate laser exposure during treatment. To further improve the survival rate of cancer patients and reduce possible side effects on other parts of the body, it is still necessary to explore PTAs with high selectivity and precise treatment. In this review, we summarized strategies to improve the treatment selectivity of PTT, such as increasing the accumulation of PTAs at tumor sites and endowing PTAs with a self-regulating photothermal conversion function. The views and challenges of selective PTT were discussed, especially the prospects and challenges of their clinical applications. ![]()
Collapse
Affiliation(s)
- Liping Zhao
- College of Pharmacy, Weifang Medical University, Weifang, 261053, China
| | - Xu Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xiaoxia Wang
- College of Pharmacy, Weifang Medical University, Weifang, 261053, China
| | - Xiuwen Guan
- College of Pharmacy, Weifang Medical University, Weifang, 261053, China.,Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang, 261053, Shandong, China.,Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, 261053, China
| | - Weifeng Zhang
- College of Pharmacy, Weifang Medical University, Weifang, 261053, China. .,Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang, 261053, Shandong, China. .,Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, 261053, China.
| | - Jinlong Ma
- College of Pharmacy, Weifang Medical University, Weifang, 261053, China. .,Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang, 261053, Shandong, China. .,Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
17
|
Bacterial-based cancer therapy: An emerging toolbox for targeted drug/gene delivery. Biomaterials 2021; 277:121124. [PMID: 34534860 DOI: 10.1016/j.biomaterials.2021.121124] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 01/01/2023]
Abstract
Precise targeting and high therapeutic efficiency are the major requisites of personalized cancer treatment. However, some unique features of the tumor microenvironment (TME) such as hypoxia, low pH and elevated interstitial fluid pressure cause cancer cells resistant to most therapies. Bacteria are increasingly being considered for targeted tumor therapy owing to their intrinsic tumor tropism, high motility as well as the ability to rapidly colonize in the favorable TME. Compared to other nano-strategies using peptides, aptamers, and other biomolecules, tumor-targeting bacteria are largely unaffected by the tumor cells and microenvironment. On the contrary, the hypoxic TME is highly conducive to the growth of facultative anaerobes and obligate anaerobes. Live bacteria can be further integrated with anti-cancer drugs and nanomaterials to increase the latter's targeted delivery and accumulation in the tumors. Furthermore, anaerobic and facultatively anaerobic bacteria have also been combined with other anti-cancer therapies to enhance therapeutic effects. In this review, we have summarized the applications and advantages of using bacteria for targeted tumor therapy (Scheme 1) in order to aid in the design of novel intelligent drug delivery systems. The current challenges and future prospects of tumor-targeting bacterial nanocarriers have also been discussed.
Collapse
|
18
|
Huang C, Zhao X, Su M, Yin Z. Construction and evaluation of novel αvβ3 integrin ligand-conjugated ultrasmall star polymer micelles targeted glomerular podocytes through GFB permeation. Biomaterials 2021; 276:121053. [PMID: 34352625 DOI: 10.1016/j.biomaterials.2021.121053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022]
Abstract
As glomerular cells, podocytes are the last line of defense for glomerular filtration barriers (GFB) and play a critical role in chronic kidney disease (CKD). Podocyte-targeted drug delivery is a promising direction in the treatment of CKD. In this study, we constructed four-arm star polymers conjugated with a novel linear RWrNM peptide. And poly ε-caprolactone (PCL) hydrophobic core and brush poly (2-hydroxyethyl methacrylate) (PHEMA) hydrophilic shell were synthesized by ROP and SET LRP polymerization. The PHEMA modified by succinic anhydride was coupled with the novel linear RWrNM peptide, and then the PCL hydrophobic core was loaded with dexamethasone acetate (Dexac) to form micelles with stable dimensions. Our findings showed that the novel micelles had an ultrasmall particle size of 16-30 nm. We, for the first time, showed that the specific affinity of the novel linear RWrNM peptide to primary podocytes (24.9 ± 1.7 times of the free RhB uptake) through the αvβ3 integrin receptor mediation was comparable to that of B16F10 cells (24.4 ± 1.2 times of the free RhB uptake). In vivo studies showed that the novel ultrasmall micelles possessed a significant kidney-targeted effect, excellent podocyte colocalization effect, and GFB permeability at 49%-60 % in normal SD rats. Besides, the novel ultrasmall micelles decreased the plasma elimination half-life of Dexac to 1.62-2.09 h and showed good safety in vitro and in vivo. Both in vitro and in vivo results demonstrated the novel ultrasmall micelles could be used as a promising drug delivery strategy for actively targeted therapy of CKD.
Collapse
Affiliation(s)
- Chengyuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xuan Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Meiling Su
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
19
|
A quantitative view on multivalent nanomedicine targeting. Adv Drug Deliv Rev 2021; 169:1-21. [PMID: 33264593 DOI: 10.1016/j.addr.2020.11.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/11/2020] [Accepted: 11/21/2020] [Indexed: 12/17/2022]
Abstract
Although the concept of selective delivery has been postulated over 100 years ago, no targeted nanomedicine has been clinically approved so far. Nanoparticles modified with targeting ligands to promote the selective delivery of therapeutics towards a specific cell population have been extensively reported. However, the rational design of selective particles is still challenging. One of the main reasons for this is the lack of quantitative theoretical and experimental understanding of the interactions involved in cell targeting. In this review, we discuss new theoretical models and experimental methods that provide a quantitative view of targeting. We show the new advancements in multivalency theory enabling the rational design of super-selective nanoparticles. Furthermore, we present the innovative approaches to obtain key targeting parameters at the single-cell and single molecule level and their role in the design of targeting nanoparticles. We believe that the combination of new theoretical multivalent design and experimental methods to quantify receptors and ligands aids in the rational design and clinical translation of targeted nanomedicines.
Collapse
|
20
|
Fleischmann D, Maslanka Figueroa S, Goepferich A. Steric Shielding of cRGD-Functionalized Nanoparticles from Premature Exposition to Off-Target Endothelial Cells under a Physiological Flow. ACS APPLIED BIO MATERIALS 2020. [DOI: 10.1021/acsabm.0c01193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Daniel Fleischmann
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Sara Maslanka Figueroa
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
21
|
Khedri M, Rezvantalab S, Maleki R, Rezaei N. Effect of ligand conjugation site on the micellization of Bio-Targeted PLGA-Based nanohybrids: A computational biology approach. J Biomol Struct Dyn 2020; 40:4409-4418. [PMID: 33336619 DOI: 10.1080/07391102.2020.1857840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this study, the effect of ligand binding position on the polymeric nanoparticles (NPs) is based on poly(lactic-co-glycolic acid) (PLGA) with two different polymer chain length at the atomistic level was presented. We explored the conjugation of riboflavin (RF) ligand from the end of the ribityl chain (N-10) to the polymer strands as well as from the amine group on the isoalloxazine head (N-3). The energy interactions for all samples revealed that the NPs containing ligands from N-10 positions have higher total attraction energies and lower stability in comparison with their peers conjugated from N-3. As NPs containing RF conjugated from N-3 exhibit the lower energy level with 20% and 10% of RF-containing composition for lower and higher. The introduction of RF from the N-10 position in any composition has increased the energy level of nanocarriers. The results of Gibb's free energy confirm the interatomic interaction energies trend where the lowest Gibbs free energy level for N-3 NPs occurs at 20 and 10% of RF-containing polymer content for PLGA10- and PLGA11- based NPs. Furthermore, with N-10 samples based on both polymers, non-targeted models form the stablest particles in each category. These findings are further confirmed with molecular docking analysis which revealed affinity energy of RF toward polymer chain from N-3 and N-10 are -981.57 kJ/mole and -298.23 kJ/mole, respectively. This in-silico study paves the new way for molecular engineering of the bio-responsive PLGA-PEG-RF micelles and can be used to nanoscale tunning of smart carriers used in cancer treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Khedri
- Computational Biology And Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sima Rezvantalab
- Department of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| | - Reza Maleki
- Computational Biology And Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Magno LM, Hinds DT, Duffy P, Yadav RB, Ward AD, Botchway SW, Colavita PE, Quinn SJ. Porous Carbon Microparticles as Vehicles for the Intracellular Delivery of Molecules. Front Chem 2020; 8:576175. [PMID: 33195066 PMCID: PMC7591791 DOI: 10.3389/fchem.2020.576175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Abstract
In this study the application of porous carbon microparticles for the transport of a sparingly soluble material into cells is demonstrated. Carbon offers an intrinsically sustainable platform material that can meet the multiple and complex requirements imposed by applications in biology and medicine. Porous carbon microparticles are attractive as they are easy to handle and manipulate and combine the chemical versatility and biocompatibility of carbon with a high surface area due to their highly porous structure. The uptake of fluorescently labeled microparticles by cancer (HeLa) and normal human embryonic Kidney (HEK 293) cells was monitored by confocal fluorescence microscopy. In this way the influence of particle size, surface functionalization and the presence of transfection agent on cellular uptake were studied. In the presence of transfection agent both large (690 nm) and small microparticles (250 nm) were readily internalized by both cell lines. However, in absence of the transfection agent the uptake was influenced by particle size and surface PEGylation with the smaller nanoparticle size being delivered. The ability of microparticles to deliver a fluorescein dye model cargo was also demonstrated in normal (HEK 293) cell line. Taken together, these results indicate the potential use of these materials as candidates for biological applications.
Collapse
Affiliation(s)
- Luis M. Magno
- School of Chemistry, University College Dublin, Dublin, Ireland
| | - David T. Hinds
- School of Chemistry, University College Dublin, Dublin, Ireland
| | - Paul Duffy
- School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Rahul. B. Yadav
- Rutherford Appleton Laboratory, Central Laser Facility, Science & Technology Facilities Council, Didcot, United Kingdom
| | - Andrew D. Ward
- Rutherford Appleton Laboratory, Central Laser Facility, Science & Technology Facilities Council, Didcot, United Kingdom
| | - Stan W. Botchway
- Rutherford Appleton Laboratory, Central Laser Facility, Science & Technology Facilities Council, Didcot, United Kingdom
| | | | - Susan J. Quinn
- School of Chemistry, University College Dublin, Dublin, Ireland
| |
Collapse
|
23
|
Caprifico AE, Polycarpou E, Foot PJS, Calabrese G. Biomedical and Pharmacological Uses of Fluorescein Isothiocyanate Chitosan-Based Nanocarriers. Macromol Biosci 2020; 21:e2000312. [PMID: 33016007 DOI: 10.1002/mabi.202000312] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/26/2022]
Abstract
Chitosan-based nanocarriers (ChNCs) are considered suitable drug carriers due to their ability to encapsulate a variety of drugs and cross biological barriers to deliver the cargo to their target site. Fluorescein isothiocyanate-labeled chitosan-based NCs (FITC@ChNCs) are used extensively in biomedical and pharmacological applications. The main advantage of using FITC@ChNCs consists of the ability to track their fate both intra and extracellularly. This journey is strictly dependent on the physico-chemical properties of the carrier and the cell types under investigation. Other applications make use of fluorescent ChNCs in cell labeling for the detection of disorders in vivo and controlling of living cells in situ. This review describes the use of FITC@ChNCs in the various applications with a focus on understanding their usefulness in labeled drug-delivery systems.
Collapse
Affiliation(s)
- Anna E Caprifico
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Elena Polycarpou
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Peter J S Foot
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Gianpiero Calabrese
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
24
|
Smith AAA, Gale EC, Roth GA, Maikawa CL, Correa S, Yu AC, Appel EA. Nanoparticles Presenting Potent TLR7/8 Agonists Enhance Anti-PD-L1 Immunotherapy in Cancer Treatment. Biomacromolecules 2020; 21:3704-3712. [PMID: 32816460 PMCID: PMC7497526 DOI: 10.1021/acs.biomac.0c00812] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cancer immunotherapy can be augmented with toll-like receptor agonist (TLRa) adjuvants, which interact with immune cells to elicit potent immune activation. Despite their potential, use of many TLRa compounds has been limited clinically due to their extreme potency and lack of pharmacokinetic control, causing systemic toxicity from unregulated systemic cytokine release. Herein, we overcome these shortcomings by generating poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) nanoparticles (NPs) presenting potent TLR7/8a moieties on their surface. The NP platform allows precise control of TLR7/8a valency and resulting surface presentation through self-assembly using nanoprecipitation. We hypothesize that the pharmacokinetic profile of the NPs minimizes systemic toxicity, localizing TLR7/8a presentation to the tumor bed and tumor-draining lymph nodes. In conjunction with antiprogrammed death-ligand 1 (anti-PD-L1) checkpoint blockade, peritumoral injection of TLR7/8a NPs slows tumor growth, extends survival, and decreases systemic toxicity in comparison to the free TLR7/8a in a murine colon adenocarcinoma model. These NPs constitute a modular platform for controlling pharmacokinetics of immunostimulatory molecules, resulting in increased potency and decreased toxicity.
Collapse
Affiliation(s)
- Anton A A Smith
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Emily C Gale
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Gillie A Roth
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Caitlin L Maikawa
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Santiago Correa
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Anthony C Yu
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Eric A Appel
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States.,Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
25
|
Moradi Kashkooli F, Soltani M, Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. J Control Release 2020; 327:316-349. [PMID: 32800878 DOI: 10.1016/j.jconrel.2020.08.012] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
Advances in nanomedicine, including early cancer detection, targeted drug delivery, and personalized approaches to cancer treatment are on the rise. For example, targeted drug delivery systems can improve intracellular delivery because of their multifunctionality. Novel endogenous-based and exogenous-based stimulus-responsive drug delivery systems have been proposed to prevent the cancer progression with proper drug delivery. To control effective dose loading and sustained release, targeted permeability and individual variability can now be described in more-complex ways, such as by combining internal and external stimuli. Despite these advances in release control, certain challenges remain and are identified in this research, which emphasizes the control of drug release and applications of nanoparticle-based drug delivery systems. Using a multiscale and multidisciplinary approach, this study investigates and analyzes drug delivery and release strategies in the nanoparticle-based treatment of cancer, both mathematically and clinically.
Collapse
Affiliation(s)
- Farshad Moradi Kashkooli
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada..
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada; Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| |
Collapse
|
26
|
Fleischmann D, Maslanka Figueroa S, Beck S, Abstiens K, Witzgall R, Schweda F, Tauber P, Goepferich A. Adenovirus-Mimetic Nanoparticles: Sequential Ligand-Receptor Interplay as a Universal Tool for Enhanced In Vitro/ In Vivo Cell Identification. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34689-34702. [PMID: 32639709 DOI: 10.1021/acsami.0c10057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Viral infection patterns often rely on precisely coordinated sequences of distinct ligand-receptor interactions, leading in many cases to an outstanding target cell specificity. A successful mimicry of viral targeting strategies to create more site-specific nanoparticles (NPs) would therefore require particle-cell interactions to also be adequately controllable. In the present study, hetero-multivalent block-copolymer NPs present their attached ligands in a sterically controlled manner to create a sequential NP-cell interaction similar to the cell infiltration strategy of human adenovirus type 2. Targeting renal mesangial cells, particles therefore initially bind angiotensin II receptor type 1 (AT1r) on the cell surface via a structurally flexible AT1r antagonist. After a mandatory spatial approach, particle endocytosis is realized via binding of immobile αVβ3 integrins with a previously concealed secondary ligand, thereby creating a stepwise particle-cell interplay of primary NP attachment and subsequent uptake. Manufactured adenovirus-mimetic NPs show great avidity for both target motifs in vitro, leading to a substantial binding as well as subsequent cell uptake into target mesangial cells. Additionally, steric shielding of secondary ligand visibility leads to a highly controllable, sequential ligand-receptor interaction, whereby hetero-functional NPs activate mesangial cell surface integrins only after a successful prior binding to the AT1r. This stepwise cell identification significantly enhances mesangial cell specificity in co-culture assays with different off-target cells. Additionally, described NPs display excellent in vivo robustness by efficiently accumulating in the mesangium upon injection, thereby opening new paths for possible drug delivery applications.
Collapse
Affiliation(s)
- Daniel Fleischmann
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Sara Maslanka Figueroa
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Sebastian Beck
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Kathrin Abstiens
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Ralph Witzgall
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Frank Schweda
- Department of Physiology II, Institute for Physiology, University of Regensburg, 93053 Regensburg, Germany
| | - Philipp Tauber
- Department of Physiology II, Institute for Physiology, University of Regensburg, 93053 Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
27
|
Endothelial Cell Targeting by cRGD-Functionalized Polymeric Nanoparticles under Static and Flow Conditions. NANOMATERIALS 2020; 10:nano10071353. [PMID: 32664364 PMCID: PMC7407316 DOI: 10.3390/nano10071353] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Since αvβ3 integrin is a key component of angiogenesis in health and disease, Arg-Gly-Asp (RGD) peptide-functionalized nanocarriers have been investigated as vehicles for targeted delivery of drugs to the αvβ3 integrin-overexpressing neovasculature of tumors. In this work, PEGylated nanoparticles (NPs) based on poly(lactic-co-glycolic acid) (PLGA) functionalized with cyclic-RGD (cRGD), were evaluated as nanocarriers for the targeting of angiogenic endothelium. For this purpose, NPs (~300 nm) functionalized with cRGD with different surface densities were prepared by maleimide-thiol chemistry and their interactions with human umbilical vein endothelial cells (HUVECs) were evaluated under different conditions using flow cytometry and microscopy. The cell association of cRGD-NPs under static conditions was time-, concentration- and cRGD density-dependent. The interactions between HUVECs and cRGD-NPs dispersed in cell culture medium under flow conditions were also time- and cRGD density-dependent. When washed red blood cells (RBCs) were added to the medium, a 3 to 8-fold increase in NPs association to HUVECs was observed. Moreover, experiments conducted under flow in the presence of RBC at physiologic hematocrit and shear rate, are a step forward in the prediction of in vivo cell–particle association. This approach has the potential to assist development and high-throughput screening of new endothelium-targeted nanocarriers.
Collapse
|
28
|
Nitric Oxide-Releasing S-Nitrosoglutathione-Conjugated Poly(Lactic- Co-Glycolic Acid) Nanoparticles for the Treatment of MRSA-Infected Cutaneous Wounds. Pharmaceutics 2020; 12:pharmaceutics12070618. [PMID: 32630779 PMCID: PMC7407147 DOI: 10.3390/pharmaceutics12070618] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022] Open
Abstract
S-nitrosoglutathione (GSNO) has emerged as a potent agent for the treatment of infected cutaneous wounds. However, fabrication of GSNO-containing nanoparticles has been challenging due to its high hydrophilicity and degradability. The present study aimed to fabricate nanoparticles using newly synthesized GSNO-conjugated poly(lactic-co-glycolic acid) (PLGA) (GSNO-PLGA; GPNPs). Since hydrophilic GSNO was covalently bound to hydrophobic PLGA, loss of GSNO during the nanoparticle fabrication process was minimized, resulting in sufficient loading efficiency (2.32% of GSNO, 0.07 μmol/mg of NO). Real-time NO release analysis revealed biphasic NO release by GPNPs, including initial burst release within 3 min and continuous controlled release for up to 11.27 h, due to the differential degradation rates of the –SNO groups located at the surface and inside of GPNPs. Since GPNPs could deliver NO more efficiently than GSNO in response to increased interaction with bacteria, the former showed enhanced antibacterial effects against methicillin-resistant Staphylococcus aureus (MRSA) at the same equivalent concentrations of NO. Finally, the facilitating effects of GPNPs on infected wound healing were demonstrated in MRSA-challenged full-thickness wound mouse model. Collectively, the results suggested GPNPs as an ideal nanoparticle formulation for the treatment of MRSA-infected cutaneous wounds.
Collapse
|
29
|
Rezvantalab S, Keshavarz Moraveji M, Khedri M, Maleki R. An insight into the role of riboflavin ligand in the self-assembly of poly(lactic-co-glycolic acid)-based nanoparticles - a molecular simulation and experimental approach. SOFT MATTER 2020; 16:5250-5260. [PMID: 32458880 DOI: 10.1039/d0sm00203h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanoparticles (NPs) used for targeted delivery purposes are rapidly gaining importance in diagnostic and therapeutic fields. These agents have been studied extensively so far to reveal their optimal physicochemical properties including the effects of ligands and their density on the surface of NPs. This article was conducted through a computational approach (all-atom molecular dynamics simulations) to predict the stability of NPs based on a poly-lactic-co-glycolic acid (PLGA) hydrophobic core with a poly-ethylene glycol (PEG) hydrophilic shell and varying numbers of riboflavin (RF) molecules as ligands. Depending on the molecular weight of the polymers, the most stable composition of NPs was achieved at 20 wt% and 10 wt% PLGA-PEG-RF for PLGA3kDa-PEG2kDa and PLGA4.5kDa-PEG2kDa polymers, respectively. According to the simulations, riboflavin molecules were located on the surface of the NPs, which would indicate that riboflavin-bound PLGA-PEG NPs could be efficiently utilized for active targeting purposes. To scrutinize the simulation results, NPs with riboflavin ligands were synthesized and put into in vitro experiments. Outstandingly, the empirical outcomes revealed that the hydrodynamic sizes of NPs also met minimum points at 20 and 10 wt% for PLGA3kDa-PEG2kDa and PLGA4.5kDa-PEG2kDa, respectively. Moreover, similar trends in the gyration radius as a function of riboflavin content were observed in the simulation analysis and the experimental results, which would indicate that the method of molecular dynamics (MD) simulation is a reliable mathematical technique and could be applied for predicting the physicochemical properties of NPs.
Collapse
Affiliation(s)
- Sima Rezvantalab
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran, 1591634311, Iran.
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran, 1591634311, Iran.
| | - Mohammad Khedri
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran, 1591634311, Iran.
| | - Reza Maleki
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, 71345, Iran
| |
Collapse
|
30
|
Nano-Ghosts: Biomimetic membranal vesicles, technology and characterization. Methods 2020; 177:126-134. [DOI: 10.1016/j.ymeth.2019.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022] Open
|
31
|
Saravanakumar K, Hu X, Ali DM, Wang MH. Emerging Strategies in Stimuli-Responsive Nanocarriers as the Drug Delivery System for Enhanced Cancer Therapy. Curr Pharm Des 2020; 25:2609-2625. [PMID: 31603055 DOI: 10.2174/1381612825666190709221141] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/01/2019] [Indexed: 12/22/2022]
Abstract
The conventional Drug Delivery System (DDS) has limitations such as leakage of the drug, toxicity to normal cells and loss of drug efficiency, while the stimuli-responsive DDS is non-toxic to cells, avoiding the leakage and degradation of the drug because of its targeted drug delivery to the pathological site. Thus nanomaterial chemistry enables - the development of smart stimuli-responsive DDS over the conventional DDS. Stimuliresponsive DDS ensures spatial or temporal, on-demand drug delivery to the targeted cancer cells. The DDS is engineered by using the organic (synthetic polymers, liposomes, peptides, aptamer, micelles, dendrimers) and inorganic (zinc oxide, gold, magnetic, quantum dots, metal oxides) materials. Principally, these nanocarriers release the drug at the targeted cells in response to external and internal stimuli such as temperature, light, ultrasound and magnetic field, pH value, redox potential (glutathione), and enzyme. The multi-stimuli responsive DDS is more promising than the single stimuli-responsive DDS in cancer therapy, and it extensively increases drug release and accumulation in the targeted cancer cells, resulting in better tumor cell ablation. In this regard, a handful of multi-stimuli responsive DDS is in clinical trials for further approval. A comprehensive review is crucial for addressing the existing knowledge about multi-stimuli responsive DDS, and hence, we summarized the emerging strategies in tailored ligand functionalized stimuli-responsive nanocarriers as the DDS for cancer therapies.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Korea
| | - Xiaowen Hu
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Korea
| | - Davoodbasha M Ali
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai - 600048, Tamil Nadu, India
| | - Myeong-Hyeon Wang
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Korea
| |
Collapse
|
32
|
Yousefi M, Narmani A, Jafari SM. Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Adv Colloid Interface Sci 2020; 278:102125. [PMID: 32109595 DOI: 10.1016/j.cis.2020.102125] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 02/09/2023]
Abstract
The genesis of dendrimers can be considered as a revolution in nano-scaled bioactive delivery systems. These structures possess a unique potential in encapsulating/entrapping bioactive ingredients due to their tree-like nature. Therefore, they could swiftly obtain a valuable statue in nutraceutical, pharmaceutical and medical sciences. Phytochemicals, as a large proportion of bioactives, have been studied and used by scholars in several fields of pharmacology, medical, food, and cosmetic for many years. But, the solubility, stability, and bioavailability issues have always been recognized as limiting factors in their application. Therefore, the main aim of this study is representing the use of dendrimers as novel nanocarriers for phytochemical bioactive compounds to deal with these problems. Hence, after a brief review of phytochemical ingredients, the text is commenced with a detailed explanation of dendrimers, including definitions, types, generations, synthesizing methods, and safety issues; then is continued with demonstration of their applications in encapsulation of phytochemical bioactive compounds and their active/passive delivery by dendrimers. Dendrimers provide a vast and appropriate surface to entrap the targeted phytochemical bioactive ingredients. Several parameters can affect the yield of nanoencapsulation by dendrimers, including their generation, type of end groups, surface charge, core structure, pH, and ambient factors. Another important issue of dendrimers is related to their toxicity. Cationic dendrimers, particularly PAMAM can be toxic to body cells through attaching to the cell membranes and disturbing their functions. However, a number of solutions have been suggested to decrease their toxicity.
Collapse
|
33
|
Dal Poggetto G, Troise SS, Conte C, Marchetti R, Moret F, Iadonisi A, Silipo A, Lanzetta R, Malinconico M, Quaglia F, Laurienzo P. Nanoparticles decorated with folate based on a site-selective αCD-rotaxanated PEG-b-PCL copolymer for targeted cancer therapy. Polym Chem 2020. [DOI: 10.1039/d0py00158a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NPs fabricated from a mixture of PEG-b-PCL and selectively rotaxanated Fol-PEG(αCD)-PCL showed internalisation in KB cells through an active targeting mechanism.
Collapse
Affiliation(s)
| | | | - Claudia Conte
- Drug Delivery Laboratory
- Department of Pharmacy
- University of Napoli Federico II
- 80131 Napoli
- Italy
| | - Roberta Marchetti
- Department of Chemical Sciences
- University of Naples Federico II
- I-80126 Napoli
- Italy
| | | | - Alfonso Iadonisi
- Department of Chemical Sciences
- University of Naples Federico II
- I-80126 Napoli
- Italy
| | - Alba Silipo
- Department of Chemical Sciences
- University of Naples Federico II
- I-80126 Napoli
- Italy
| | - Rosa Lanzetta
- Department of Chemical Sciences
- University of Naples Federico II
- I-80126 Napoli
- Italy
| | - Mario Malinconico
- Institute for Polymers
- Composites and Biomaterials
- CNR
- 80078 Pozzuoli
- Italy
| | - Fabiana Quaglia
- Drug Delivery Laboratory
- Department of Pharmacy
- University of Napoli Federico II
- 80131 Napoli
- Italy
| | - Paola Laurienzo
- Institute for Polymers
- Composites and Biomaterials
- CNR
- 80078 Pozzuoli
- Italy
| |
Collapse
|
34
|
Araste F, Abnous K, Hashemi M, Dehshahri A, Detampel P, Alibolandi M, Ramezani M. Na +/K + ATPase-targeted delivery to metastatic breast cancer models. Eur J Pharm Sci 2019; 143:105207. [PMID: 31870814 DOI: 10.1016/j.ejps.2019.105207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/08/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
In this study, we reported doxorubicin (DOX)-encapsulated nanoparticles (NPs) formulated with biocompatible and biodegradable poly (lactic-co-glycolic acid) (PLGA) and modified with a 13-amino acid peptide (S3) against sodium/potassium (Na+/K+)-ATPase pump alpha subunit to investigate its potential as antitumor agent. The morphological properties and size dispersity of the prepared nanoparticles were evaluated using scanning electron microscope (SEM) and dynamic light scattering (DLS). The encapsulation efficiency and in vitro release during 7 days were evaluated. Comparative in vitro cytotoxicity experiments demonstrated that the S3-conjugated nanoparticles (S3-PLGA-DOX NPs) had higher antiproliferative activity. Flow cytometry analysis confirmed the enhanced cellular uptake of S3-PLGA-DOX NPs in comparison with PLGA-DOX. In vivo study in 4T1 tumor-bearing BALB/C mice revealed that the S3-functionalized DOX-loaded NPs improved antitumor activity and survival rate of 4T1 tumor bearing mice. In this regard, conjugation of S3 peptide to the surface of DOX-loaded PLGA NPs provides site-specific delivery of DOX, inhibits 4T1 tumor growth in vivo and significantly decreases systemic toxicity. The obtained results suggested that the new (Na+/K+)-ATPase pump-targeted PLGA NPs as a target-selective delivery system for DOX has great potential for the treatment of breast cancer.
Collapse
Affiliation(s)
- Fatemeh Araste
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pascal Detampel
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel, Switzerland
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
35
|
Bidram E, Esmaeili Y, Ranji-Burachaloo H, Al-Zaubai N, Zarrabi A, Stewart A, Dunstan DE. A concise review on cancer treatment methods and delivery systems. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101350] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Wang J, Saha S, Schaal JL, Yousefpour P, Li X, Chilkoti A. Heuristics for the Optimal Presentation of Bioactive Peptides on Polypeptide Micelles. NANO LETTERS 2019; 19:7977-7987. [PMID: 31642326 DOI: 10.1021/acs.nanolett.9b03141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bioactive peptides describe a very large group of compounds with diverse functions and wide applications, and their multivalent display by nanoparticles can maximize their activities. However, the lack of a universal nanoparticle platform and design rules for their optimal presentation limits the development and application of peptide ligand-decorated nanoparticles. To address this need, we developed a multivalent nanoparticle platform to study the impact of nanoparticle surface hydrophilicity and charge on peptide targeting and internalization by tumor cells. This system consists of micelles of a recombinant elastin-like polypeptide diblock copolymer (ELPBC) that present genetically encoded peptides at the micelle surface without perturbing the size, shape, stability, or peptide valency of the micelle, regardless of the peptide type. We created the largest extant set of 98 combinations of 15 tumor-homing peptides that are presented on the corona of this ELPBC micelle via 8 different peptide linkers that vary in their length and charge and also created control micelles that present the linker only. Analysis of the structure-function relationship of tumor cell targeting by this set of peptide-decorated nanoparticles enabled us to derive heuristics to optimize the delivery of peptides based on their physicochemical properties and to identify a peptide that is likely to be a widely useful ligand for targeting across nanoparticle types. This study shows that ELPBC micelles are a robust and convenient system for the presentation of diverse peptides and provides useful insights into the appropriate presentation of structurally diverse peptide ligands on nanoparticles based on their physicochemical properties.
Collapse
Affiliation(s)
| | | | | | | | | | - Ashutosh Chilkoti
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
37
|
Jasim KA, Gesquiere AJ. Ultrastable and Biofunctionalizable Conjugated Polymer Nanoparticles with Encapsulated Iron for Ferroptosis Assisted Chemodynamic Therapy. Mol Pharm 2019; 16:4852-4866. [PMID: 31613630 DOI: 10.1021/acs.molpharmaceut.9b00737] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the development of novel tumor-targeted conjugated polymer nanoparticles (CPNPs) carrying iron for chemodynamic therapy (CDT). Tumor cell killing proceeds through ferroptosis, a reactive oxygen species (ROS) mechanism that is not dependent on external activation by, for example, light, as is the case in photodynamic therapy (PDT). The ferroptosis mechanism is also not heavily reliant on oxygen availability and is, therefore, promising for the treatment of hypoxic tumors. In this work, we apply this development to the case study of melanoma, a difficult to treat cancer in advanced stages due to resistance to chemotherapy. The iron-carrying CPNPs reported here are targeted to endothelin-B receptors (EDNRB) through endothelin-3 surface moieties (EDN3-CPNPs). Our results show excellent targeting to tumor cells that overexpress EDNRB, specifically for melanoma and bladder tumor cells. In these cases, efficient cell killing, over 80% at higher doses, was found. Conversely, tumor cells not targeted by the EDN3-CPNPs show little effects of CDT, with tumor cell death under 20% in most cases. The outcomes of our work demonstrate that EDN3-CPNPs enable ferroptosis-assisted CDT and present a new therapeutic avenue for tumor treatment.
Collapse
Affiliation(s)
- Khalaf A Jasim
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States.,NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States.,Department of Chemistry, College of Science, Tikrit University, Tikrit 34001, Iraq
| | - Andre J Gesquiere
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States.,NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States.,Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States.,The College of Optics and Photonics (CREOL), University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
38
|
Sun Y, Ma W, Yang Y, He M, Li A, Bai L, Yu B, Yu Z. Cancer nanotechnology: Enhancing tumor cell response to chemotherapy for hepatocellular carcinoma therapy. Asian J Pharm Sci 2019; 14:581-594. [PMID: 32104485 PMCID: PMC7032247 DOI: 10.1016/j.ajps.2019.04.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 03/06/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers due to its complexities, reoccurrence after surgical resection, metastasis and heterogeneity. In addition to sorafenib and lenvatinib for the treatment of HCC approved by FDA, various strategies including transarterial chemoembolization, radiotherapy, locoregional therapy and chemotherapy have been investigated in clinics. Recently, cancer nanotechnology has got great attention for the treatment of various cancers including HCC. Both passive and active targetings are progressing at a steady rate. Herein, we describe the lessons learned from pathogenesis of HCC and the understanding of targeted and non-targeted nanoparticles used for the delivery of small molecules, monoclonal antibodies, miRNAs and peptides. Exploring current efficacy is to enhance tumor cell response of chemotherapy. It highlights the opportunities and challenges faced by nanotechnologies in contemporary hepatocellular carcinoma therapy, where personalized medicine is increasingly becoming the mainstay. Overall objective of this review is to enhance our understanding in the design and development of nanotechnology for treatment of HCC.
Collapse
Affiliation(s)
- Yongbing Sun
- National Engineering Research Center for solid preparation technology of Chinese Medicines, Jiangxi University of Traditional Chinese Medicines, Nanchang 330006, China
| | - Wen Ma
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuanyuan Yang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mengxue He
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Aimin Li
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Lei Bai
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown 26506, USA
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
39
|
Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. NANO CONVERGENCE 2019; 6:23. [PMID: 31304563 PMCID: PMC6626766 DOI: 10.1186/s40580-019-0193-2] [Citation(s) in RCA: 381] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/17/2019] [Indexed: 05/06/2023]
Abstract
Nanotechnology has the potential to circumvent several drawbacks of conventional therapeutic formulations. In fact, significant strides have been made towards the application of engineered nanomaterials for the treatment of cancer with high specificity, sensitivity and efficacy. Tailor-made nanomaterials functionalized with specific ligands can target cancer cells in a predictable manner and deliver encapsulated payloads effectively. Moreover, nanomaterials can also be designed for increased drug loading, improved half-life in the body, controlled release, and selective distribution by modifying their composition, size, morphology, and surface chemistry. To date, polymeric nanomaterials, metallic nanoparticles, carbon-based materials, liposomes, and dendrimers have been developed as smart drug delivery systems for cancer treatment, demonstrating enhanced pharmacokinetic and pharmacodynamic profiles over conventional formulations due to their nanoscale size and unique physicochemical characteristics. The data present in the literature suggest that nanotechnology will provide next-generation platforms for cancer management and anticancer therapy. Therefore, in this critical review, we summarize a range of nanomaterials which are currently being employed for anticancer therapies and discuss the fundamental role of their physicochemical properties in cancer management. We further elaborate on the topical progress made to date toward nanomaterial engineering for cancer therapy, including current strategies for drug targeting and release for efficient cancer administration. We also discuss issues of nanotoxicity, which is an often-neglected feature of nanotechnology. Finally, we attempt to summarize the current challenges in nanotherapeutics and provide an outlook on the future of this important field.
Collapse
Affiliation(s)
- P N Navya
- Nano-Bio Interfacial Research Laboratory (NBIRL), Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, Karnataka, 572103, India.
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamil Nadu, 638401, India.
| | - Anubhav Kaphle
- Melbourne Integrative Genomics, School of BioSciences/School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - S P Srinivas
- School of Optometry, Indiana University, Bloomington, Indiana, 47405, USA
| | - Suresh Kumar Bhargava
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts (UMass) Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Hemant Kumar Daima
- Nano-Bio Interfacial Research Laboratory (NBIRL), Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, Karnataka, 572103, India.
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, VIC, 3001, Australia.
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, Rajasthan, 303002, India.
| |
Collapse
|
40
|
Abstract
Poor target cell specificity is currently a major shortcoming of nanoparticles (NPs) used for biomedical applications. It causes significant material loss to off-target sites and poor availability at the intended delivery site. To overcome this limitation, we designed particles that identify cells in a virus-like manner. As a blueprint, we chose a mechanism typical of influenza A virus particles in which ectoenzymatic hemagglutinin activation by target cells is a mandatory prerequisite for binding to a secondary target structure that finally confirms cell identity and allows for uptake of the virus. We developed NPs that probe mesangial cells for the presence of angiotensin-converting enzyme on their surface using angiotensin I (Ang-I) as a proligand. This initial interaction enzymatically transforms Ang-I to a secondary ligand angiotensin II (Ang-II) that has the potential to bind in a second stage to Ang-II type-1 receptor (AT1R). The presence of the receptor confirms the target cell identity and triggers NP uptake via endocytosis. Our virus-mimetic NPs showed outstanding target-cell affinity with picomolar avidities and were able to selectively identify these cells in the presence of 90% off-target cells that carried only the AT1R. Our results demonstrate that the design of virus-mimetic cell interactive NPs is a valuable strategy to enhance NP specificity for therapeutic and diagnostic applications. Our set of primary and secondary targets is particularly suited for the identification of mesangial cells that play a pivotal role in diabetic nephropathy, one of the leading causes of renal failure, for which currently no treatment exists.
Collapse
|
41
|
PEGylated polylactide (PLA) and poly (lactic-co-glycolic acid) (PLGA) copolymers for the design of drug delivery systems. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00442-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Microfluidic manufacturing improves polydispersity of multicomponent polymeric nanoparticles. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Abstiens K, Gregoritza M, Goepferich AM. Ligand Density and Linker Length are Critical Factors for Multivalent Nanoparticle-Receptor Interactions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1311-1320. [PMID: 30521749 DOI: 10.1021/acsami.8b18843] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although there are a large number of studies available for the evaluation of the therapeutic efficacy of targeted polymeric nanoparticles, little is known about the critical attributes that can further influence their uptake into target cells. In this study, varying cRGD ligand densities (0-100% surface functionalization) were combined with different poly(ethylene glycol) (PEG) spacer lengths (2/3.5/5 kDa), and the specific receptor binding of targeted core-shell structured poly(lactic- co-glycolic acid)/poly(lactic acid)-PEG nanoparticles was evaluated using αvβ3 integrin-overexpressing U87MG glioblastoma cells. Nanoparticles with 100% surface functionalization and short PEG2k linkers displayed a high propensity to form colloidal clusters, allowing for the cooperative binding to integrin receptors on the cellular membrane. In contrast, the high flexibility of longer PEG chains enhanced the chance of ligand entanglement and shrouding, decreasing the number of ligand-receptor binding events. As a result, the combination of short PEG2k linkers and a high cRGD surface modification synergistically increased the uptake of nanoparticles into target cells. Even though to date, the nanoparticle size and its degree of functionalization are considered to be the major determinants for controlling the uptake efficiency of targeted colloids, these results strongly suggest that the role of the linker length should be carefully taken into consideration for the design of targeted drug delivery formulations to maximize the therapeutic efficacy and minimize adverse side effects.
Collapse
Affiliation(s)
- Kathrin Abstiens
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy , University of Regensburg , 93040 Regensburg , Germany
| | - Manuel Gregoritza
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy , University of Regensburg , 93040 Regensburg , Germany
| | - Achim M Goepferich
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy , University of Regensburg , 93040 Regensburg , Germany
| |
Collapse
|
44
|
Figliola C, Marchal E, Groves BR, Thompson A. A step-wise synthetic approach is necessary to access γ-conjugates of folate: folate-conjugated prodigiosenes. RSC Adv 2019; 9:14078-14092. [PMID: 35519339 PMCID: PMC9064012 DOI: 10.1039/c9ra01435g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/23/2019] [Indexed: 11/21/2022] Open
Abstract
Despite the vast literature that describes reacting folic acid with a pharmacophore, this route is ineffective in providing the correct regioisomer of the resulting conjugate. We herein present a step-wise route to the preparation of nine folate conjugates of the tripyrrolic prodigiosene skeleton. The strict requirement for step-wise construction of the folate core is demonstrated, so as to achieve conjugation at only the desired γ-carboxylic acid and thus maintain the α-carboxylic site for folate receptor (FRα) recognition. Linkages via ethylenediamine, polyethylene glycol and glutathione are demonstrated. Despite the vast literature that describes reacting folic acid with a pharmacophore, this route is ineffective in providing the correct regioisomer of the resulting conjugate.![]()
Collapse
|
45
|
Hu Z, Li X, Yuan M, Wang X, Zhang Y, Wang W, Yuan Z. Study on the effectiveness of ligand reversible shielding strategy in targeted delivery and tumor therapy. Acta Biomater 2019; 83:349-358. [PMID: 30448436 DOI: 10.1016/j.actbio.2018.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/04/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022]
Abstract
We previously proved the superiority of the ligand reversible shielding strategy based on the pH-responsive self-assembly/disassembly of gold nanoparticles through computed tomography imaging in vivo. Herein, the practicality of this strategy in tumor therapy was investigated by a ligand reversible shielding system based on a temperature-responsive polymer. The ligand biotin, cisplatin-loaded chain poly(acrylic acid)-Pt, and the shielding segment thermo-sensitive poly(N-isopropylacrylamide-co-acrylamide) (P(NIPAAm-co-AAm)) were co-modified onto the surface of gold nanostars. In the blood circulation (37 °C), the ligand was shielded by the extension of P(NIPAAm-co-AAm), whose lower critical solution temperature (LCST) is approximately 39 °C. After the nanoparticles accumulate at the tumor site by the enhanced permeability and retention (EPR) effect, the heat generated from gold nanostars upon near-infrared light irradiation would trigger the contraction of P(NIPAAm-co-AAm), thus deshielding the ligand for enhanced tumor cellular uptake. Owing to the reversible extension-contraction transformation change of P(NIPAAm-co-AAm), the reversible shielding effect on the ligand could be accomplished even if the nanoparticles return to the blood circulation. The results indicated that the system could extend blood circulation (1.6-fold at 24 h), reduce immune system clearance (28% lower), and enhance tumor accumulation (37% higher) effectively compared with the irreversible ligand shielding system by analysis of platinum. This strategy showed significantly superior tumor inhibition (11% higher) than the irreversible system. All these results make clear that the ligand reversible shielding strategy is effective and offers important references for the design of nanomaterials for improving tumor accumulation. STATEMENT OF SIGNIFICANCE: Herein, the practicality of the ligand reversible shielding strategy in tumor therapy was investigated. The ligand biotin, cisplatin loaded chain poly(acrylic acid)-Pt and the shielding segment thermo-sensitive poly(N-isopropylacrylamide-co-acrylamide) (P(NIPAAm-co-AAm) which LCST is about 39 °C) were co-modified onto the surface of gold nanostars. This well-designed NPs could shield target ligand in blood circulation (37 °C) and deshield it at tumor site (40-41 °C) reversibly. The results indicated that the system could extend blood circulation (1.6-fold at 24 h), reduce immune system clearance (28% lower) and enhance tumor accumulation (37% higher) effectively compared with the irreversible ligand shielding system by analysis of platinum. Significantly, the strategy showed superior tumor inhibition than the irreversible system (11% higher).
Collapse
|
46
|
Bidram E, Sulistio A, Cho HJ, Amini A, Harris T, Zarrabi A, Qiao G, Stewart A, Dunstan DE. Targeted Graphene Oxide Networks: Cytotoxicity and Synergy with Anticancer Agents. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43523-43532. [PMID: 30495922 DOI: 10.1021/acsami.8b17531] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
An effective strategy to inhibit endocytosis in cancer cells is presented where modified net-type graphene oxide (GO) sheets, bound with multiple cell surface receptors, are introduced and synthesized as novel anticancer agents. The results suggest that the binding connects GO sheets with neighboring lipid rafts, neutralizes endocytosis, and causes metabolic deprivation. As a result, tumor cell survival and proliferation are reduced. Live cell confocal microscopy imaging reveals that GO-PEGFA (folate-PEGylated GO) (PEG, polyethylene glycol) is internalized by tumor cells, while GO-PEGRGD (tripeptide Arg-Gly-Asp PEGylated GO) associates with the external cell membrane (not internalized). In vitro exposure of tumor cells to GO-PEGFA or GO-PEGRGD reduces the cell viability by 35%, compared to 50% reduction using methotrexate (100 μM). The combination of modified GO sheets with methotrexate or doxorubicin shows a greater toxicity (80% reduction in cell viability) than the individual agents. The proposed setup demonstrates a significant synergy in limiting tumor cell growth.
Collapse
Affiliation(s)
- Elham Bidram
- Department of Biotechnology, Faculty of Advanced Sciences & Technologies , University of Isfahan , Isfahan 81746 , Iran
| | - Adrian Sulistio
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , Melbourne , VIC 3052 , Australia
| | | | - Abbas Amini
- Centre for Infrastructure Engineering , Western Sydney University , Penrith , NSW 2751 , Australia
- Department of Mechanical Engineering , Australian College of Kuwait , Mishref 13015 , Kuwait
| | | | - Ali Zarrabi
- Department of Biotechnology, Faculty of Advanced Sciences & Technologies , University of Isfahan , Isfahan 81746 , Iran
| | | | | | | |
Collapse
|
47
|
Malik P, Mukherjee TK. Recent advances in gold and silver nanoparticle based therapies for lung and breast cancers. Int J Pharm 2018; 553:483-509. [DOI: 10.1016/j.ijpharm.2018.10.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/20/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023]
|
48
|
Rezvantalab S, Drude NI, Moraveji MK, Güvener N, Koons EK, Shi Y, Lammers T, Kiessling F. PLGA-Based Nanoparticles in Cancer Treatment. Front Pharmacol 2018; 9:1260. [PMID: 30450050 PMCID: PMC6224484 DOI: 10.3389/fphar.2018.01260] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022] Open
Abstract
Nanomedicines can be used for a variety of cancer therapies including tumor-targeted drug delivery, hyperthermia, and photodynamic therapy. Poly (lactic-co-glycolic acid) (PLGA)-based materials are frequently used in such setups. This review article gives an overview of the properties of previously reported PLGA nanoparticles (NPs), their behavior in biological systems, and their use for cancer therapy. Strategies are emphasized to target PLGA NPs to the tumor site passively and actively. Furthermore, combination therapies are introduced that enhance the accumulation of NPs and, thereby, their therapeutic efficacy. In this context, the huge number of reports on PLGA NPs used as drug delivery systems in cancer treatment highlight the potential of PLGA NPs as drug carriers for cancer therapeutics and encourage further translational research.
Collapse
Affiliation(s)
- Sima Rezvantalab
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.,Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Natascha Ingrid Drude
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.,Department of Nuclear Medicine, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Nihan Güvener
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Emily Kate Koons
- Department of Pharmacology and Toxicology, College of Pharmacy & UA Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Yang Shi
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
49
|
Wang X, Chang Z, Nie X, Li Y, Hu Z, Ma J, Wang W, Song T, Zhou P, Wang H, Yuan Z. A conveniently synthesized Pt (IV) conjugated alginate nanoparticle with ligand self-shielded property for targeting treatment of hepatic carcinoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 15:153-163. [PMID: 30308299 DOI: 10.1016/j.nano.2018.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/06/2018] [Accepted: 09/16/2018] [Indexed: 01/31/2023]
Abstract
The clinical translation remains a major challenge for platinum drug loaded nanoparticle due to the complexity of composition and preparation. Here we employed only three ingredients to prepare Pt (IV) prodrug-loaded ligand-induced self-assembled nanoparticles (GA-ALG@Pt NPs) via facile one-pot route for liver tumor treatment. GA-ALG@Pt NPs were found equipped with intelligently ligand self-shielded property in which the internal GA could be induced to expose by initial cellular recognition, resulting in strengthened cellular uptake (20%-30%) and prolonged blood circulation time (3.43 times). Appreciable tumor targeting ability (2 times) and especially tumor selectivity (2.5 times) were obtained. Glutathione-triggered release of therapeutic agent generated satisfactory antitumor effect. Bio-safety is also a distinguishing feature of GA-ALG@Pt NPs that greatly relief the nephrotoxicity and systematic toxicity of cisplatin. This conveniently synthesized nanoparticle processes superior targeting capacity and biosecurity, supplying an effective approach to translational cancer therapy in the future.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, PR China
| | - Zhi Chang
- Department of Medical Oncology, Tianjin Union Medical Center (Tianjin People's Hospital), Tianjin, PR China
| | - Xin Nie
- Beijing Prosperous Biopharm Co., Ltd., Beijing, PR China
| | - Yingying Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, PR China
| | - ZhenPeng Hu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, PR China
| | - Jinlong Ma
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, PR China
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, PR China
| | - Teng Song
- Department of Medical Oncology, Tianjin Union Medical Center (Tianjin People's Hospital), Tianjin, PR China
| | - Pei Zhou
- Department of Medical Oncology, Tianjin Union Medical Center (Tianjin People's Hospital), Tianjin, PR China
| | - Huaqing Wang
- Department of Medical Oncology, Tianjin Union Medical Center (Tianjin People's Hospital), Tianjin, PR China.
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, PR China.
| |
Collapse
|
50
|
Smith DL, Lemieux EN, Barua S. Correction in Bicinchoninic Acid (BCA) Absorbance Assay to Analyze Protein Concentration. ACTA ACUST UNITED AC 2018. [DOI: 10.1142/s1793984418500058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Conducting the bicinchoninic acid (BCA) assay directly after a coupling reaction using (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide) (EDC) and [Formula: see text]-hydroxysuccinimide (NHS) chemistry produces significant errors. Here we present a correction for the quantification of gelatin in the supernatant (SN) following gelatin conjugation to polymer microparticles using EDC and NHS chemistry. Following the conjugation reaction, SNs from the gelatin-microparticle formation reaction are treated with BCA assay reagents and quantified for the percentage of unbound gelatin in the solution. NHS was found to interfere with the BCA assay reagents and is dependent on incubation time. It is found that the large concentration (500[Formula: see text][Formula: see text]g/mL) of NHS in the conjugation reaction interferes with the sensitivity of gelatin present in SNs. The interference from NHS requires a careful analysis to distinguish the BCA background absorbance from the sample absorbance. Using an NHS control solution can correct NHS interference and thus decrease the expensive iterations in gelatin quantification and enable accurate analysis of gelatin content. The accuracy of gelatin quantification is further improved by reducing the BCA assay incubation time to approximately 20[Formula: see text]min, compared with the recommended 30[Formula: see text]min. This re-assessment of BCA assay is important to avoid misestimating biases in bioconjugation processes.
Collapse
Affiliation(s)
- Daniel L. Smith
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla MO 65409-1230, USA
| | - Elizabeth N. Lemieux
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla MO 65409-1230, USA
| | - Sutapa Barua
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla MO 65409-1230, USA
| |
Collapse
|