1
|
Jabri A, Taftafa B, Mhannayeh A, Alsharif M, Abbad T, Ahmed S, Alshehri EA, Elsalti A, Khan J, Mir TA, Yaqinuddin A. Cardiac Tissue Engineering for Translational Cardiology: From In Vitro Models to Regenerative Therapies. Bioengineering (Basel) 2025; 12:518. [PMID: 40428138 PMCID: PMC12109445 DOI: 10.3390/bioengineering12050518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Cardiovascular diseases (CVD) are the primary cause of death and disability around the world. Over the past decades, several conventional model systems based on two-dimensional (3D) monolayer cultures or experimental animals have been adopted to dissect and understand heart diseases in order to develop treatment modalities. However, traditional models exhibit several limitations in recapitulating human-specific key physiological and pathological characteristics, which highlights the necessity of developing physiologically relevant models. In recent years, tissue engineering approaches have been extensively employed to generate revolutionary three-dimensional (3D) cardiac models. In particular, the combined use of various bioengineering strategies and cellular reprogramming approaches has facilitated the development of various models. This review presents an overview of different approaches (bioprinting, scaffolding, and electrospinning) for creating bioengineered cardiac tissue models. Next, a broad survey of recent research related to the modeling of various cardiac diseases is presented. Finally, current challenges and future directions are proposed to foster further developments in the field of cardiac tissue engineering.
Collapse
Affiliation(s)
- Abdullah Jabri
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.J.); (B.T.); (A.M.); (M.A.); (T.A.); (J.K.)
| | - Bader Taftafa
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.J.); (B.T.); (A.M.); (M.A.); (T.A.); (J.K.)
| | - Abdulaziz Mhannayeh
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.J.); (B.T.); (A.M.); (M.A.); (T.A.); (J.K.)
| | - Mohamed Alsharif
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.J.); (B.T.); (A.M.); (M.A.); (T.A.); (J.K.)
| | - Tasnim Abbad
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.J.); (B.T.); (A.M.); (M.A.); (T.A.); (J.K.)
| | - Sana Ahmed
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (S.A.); (E.A.A.)
| | - Eman A. Alshehri
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (S.A.); (E.A.A.)
| | - Abdulrahman Elsalti
- International School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey;
| | - Jibran Khan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.J.); (B.T.); (A.M.); (M.A.); (T.A.); (J.K.)
| | - Tanveer Ahmad Mir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.J.); (B.T.); (A.M.); (M.A.); (T.A.); (J.K.)
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (S.A.); (E.A.A.)
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.J.); (B.T.); (A.M.); (M.A.); (T.A.); (J.K.)
| |
Collapse
|
2
|
Shih JH, Chern E. Decellularized Porcine Aorta as a Scaffold for Human Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells in Tissue Engineering. Stem Cell Rev Rep 2025:10.1007/s12015-025-10875-y. [PMID: 40227487 DOI: 10.1007/s12015-025-10875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Tissue engineering has been an integral part of regenerative medicine. Functional biomimetic structures were assembled by combining appropriate scaffolds with specific cells. The decellularization of animal tissue preserved the natural biochemical components and structural properties of the extracellular matrix (ECM) of specific organs, thereby providing a suitable niche for tissue-specific cell differentiation and growth. In this study, the extracellular matrix (ECM) of the porcine aorta was obtained through trypsin-based decellularization. The resulting porcine aortic ECM retained a favorable collagen composition, exhibited no cytotoxicity, and demonstrated chemophilic properties for mesenchymal stem cells. Human adipose-derived mesenchymal stem cells (hADSCs) and human induced pluripotent stem cell-derived mesenchymal stem cells (hiMSCs) were transplanted onto the decellularized porcine aortic ECM, where successful differentiation into a mature cartilage layer was observed. These findings suggested that the porcine aortic ECM could serve as a potential scaffold with tubular and linear structures for tissue engineering applications. Functional human iMSCs (induced-mesenchymal stem cells) were generated from human iPSCs (induced-pluripotent stem cells) and analyzed for differences compared to primary MSCs via RNA-seq. The hiMSCs were applied to decellularized porcine aortic ECM (extracellular matrix), demonstrating chondrogenic differentiation and confirming the usability of xenogeneic ECM.
Collapse
Affiliation(s)
- Jheng-Hong Shih
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
3
|
Yang X, Zhao Y, Liu W, Gao Z, Wang C, Wang C, Li S, Zhang X. Single-cell transcriptomics reveals neural stem cell trans-differentiation and cell subpopulations in whole heart decellularized extracellular matrix. BIOPHYSICS REPORTS 2024; 10:241-253. [PMID: 39281200 PMCID: PMC11399890 DOI: 10.52601/bpr.2024.240011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/16/2024] [Indexed: 09/18/2024] Open
Abstract
The whole heart decellularized extracellular matrix (ECM) has become a promising scaffold material for cardiac tissue engineering. Our previous research has shown that the whole heart acellular matrix possesses the memory function regulating neural stem cells (NSCs) trans-differentiating to cardiac lineage cells. However, the cell subpopulations and phenotypes in the trans-differentiation of NSCs have not been clearly identified. Here, we performed single-cell RNA sequencing and identified 2,765 cells in the recellularized heart with NSCs revealing the cellular diversity of cardiac and neural lineage, confirming NSCs were capable of trans-differentiating into the cardiac lineage while maintaining the original ability to differentiate into the neural lineage. Notably, the trans-differentiated heart-like cells have dual signatures of neuroectoderm and cardiac mesoderm. This study unveils an in-depth mechanism underlying the trans-differentiation of NSCs and provides a new opportunity and theoretical basis for cardiac regeneration.
Collapse
Affiliation(s)
- Xiaoning Yang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yuwei Zhao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Wei Liu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Zhongbao Gao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Chunlan Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Siwei Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiao Zhang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
4
|
de Paula AP, de Lima JD, Bastos TSB, Czaikovski AP, dos Santos Luz RB, Yuasa BS, Smanioto CCS, Robert AW, Braga TT. Decellularized Extracellular Matrix: The Role of This Complex Biomaterial in Regeneration. ACS OMEGA 2023; 8:22256-22267. [PMID: 37396215 PMCID: PMC10308580 DOI: 10.1021/acsomega.2c06216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/12/2023] [Indexed: 07/04/2023]
Abstract
Organ transplantation is understood as a technique where an organ from a donor patient is transferred to a recipient patient. This practice gained strength in the 20th century and ensured advances in areas of knowledge such as immunology and tissue engineering. The main problems that comprise the practice of transplants involve the demand for viable organs and immunological aspects related to organ rejection. In this review, we address advances in tissue engineering for reversing the current challenges of transplants, focusing on the possible use of decellularized tissues in tissue engineering. We address the interaction of acellular tissues with immune cells, especially macrophages and stem cells, due to their potential use in regenerative medicine. Our goal is to exhibit data that demonstrate the use of decellularized tissues as alternative biomaterials that can be applied clinically as partial or complete organ substitutes.
Collapse
Affiliation(s)
| | - Jordana Dinorá de Lima
- Department
of Pathology, Federal University of Parana, Curitiba, Parana 80060-000, Brazil
| | | | | | | | - Bruna Sadae Yuasa
- Department
of Pathology, Federal University of Parana, Curitiba, Parana 80060-000, Brazil
| | | | - Anny Waloski Robert
- Stem
Cells Basic Biology Laboratory, Carlos Chagas
Institute − FIOCRUZ/PR, Curitiba, Parana 81350-010, Brazil
| | - Tárcio Teodoro Braga
- Department
of Pathology, Federal University of Parana, Curitiba, Parana 80060-000, Brazil
- Graduate
Program in Biosciences and Biotechnology, Institute Carlos Chagas, Fiocruz, Parana 81310-020, Brazil
| |
Collapse
|
5
|
Goh SK, Bertera S, Richardson T, Banerjee I. Repopulation of decellularized organ scaffolds with human pluripotent stem cell-derived pancreatic progenitor cells. Biomed Mater 2023; 18. [PMID: 36720168 DOI: 10.1088/1748-605x/acb7bf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
Diabetes is an emerging global epidemic that affects more that 285 million people worldwide. Engineering of endocrine pancreas tissue holds great promise for the future of diabetes therapy. Here we demonstrate the feasibility of re-engineering decellularized organ scaffolds using regenerative cell source. We differentiated human pluripotent stem cells (hPSC) toward pancreatic progenitor (PP) lineage and repopulated decellularized organ scaffolds with these hPSC-PP cells. We observed that hPSCs cultured and differentiated as aggregates are more suitable for organ repopulation than isolated single cell suspension. However, recellularization with hPSC-PP aggregates require a more extensive vascular support, which was found to be superior in decellularized liver over the decellularized pancreas scaffolds. Upon continued culture for nine days with chemical induction in the bioreactor, the seeded hPSC-PP aggregates demonstrated extensive and uniform cellular repopulation and viability throughout the thickness of the liver scaffolds. Furthermore, the decellularized liver scaffolds was supportive of the endocrine cell fate of the engrafted cells. Our novel strategy to engineer endocrine pancreas construct is expected to find potential applications in preclinical testing, drug discovery and diabetes therapy.
Collapse
Affiliation(s)
- Saik-Kia Goh
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Suzanne Bertera
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States of America
| | - Thomas Richardson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ipsita Banerjee
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
6
|
Whole-Heart Tissue Engineering and Cardiac Patches: Challenges and Promises. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010106. [PMID: 36671678 PMCID: PMC9855348 DOI: 10.3390/bioengineering10010106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Despite all the advances in preventing, diagnosing, and treating cardiovascular disorders, they still account for a significant part of mortality and morbidity worldwide. The advent of tissue engineering and regenerative medicine has provided novel therapeutic approaches for the treatment of various diseases. Tissue engineering relies on three pillars: scaffolds, stem cells, and growth factors. Gene and cell therapy methods have been introduced as primary approaches to cardiac tissue engineering. Although the application of gene and cell therapy has resulted in improved regeneration of damaged cardiac tissue, further studies are needed to resolve their limitations, enhance their effectiveness, and translate them into the clinical setting. Scaffolds from synthetic, natural, or decellularized sources have provided desirable characteristics for the repair of cardiac tissue. Decellularized scaffolds are widely studied in heart regeneration, either as cell-free constructs or cell-seeded platforms. The application of human- or animal-derived decellularized heart patches has promoted the regeneration of heart tissue through in vivo and in vitro studies. Due to the complexity of cardiac tissue engineering, there is still a long way to go before cardiac patches or decellularized whole-heart scaffolds can be routinely used in clinical practice. This paper aims to review the decellularized whole-heart scaffolds and cardiac patches utilized in the regeneration of damaged cardiac tissue. Moreover, various decellularization methods related to these scaffolds will be discussed.
Collapse
|
7
|
Krishnan A, Wang H, MacArthur JW. Applications of Tissue Decellularization Techniques in Ventricular Myocardial Biofabrication. Front Bioeng Biotechnol 2022; 10:802283. [PMID: 35265593 PMCID: PMC8899393 DOI: 10.3389/fbioe.2022.802283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemic heart disease is the leading cause of death around the world, and though the advent of coronary revascularization has revolutionized its treatment, many patients who sustain ischemic injury to the heart will go on to develop heart failure. Biofabrication of ventricular myocardium for replacement of irreversibly damaged ischemic myocardium is sought after as a potential therapy for ischemic heart failure, though challenges in reliably producing this biomaterial have limited its clinical application. One method that shows promise for generation of functional myocardium is the use of tissue decellularization to serve as a scaffold for biofabrication. This review outlines the methods, materials, challenges, and prospects of tissue decellularization techniques for ventricular myocardium biofabrication. Decellularization aims to preserve the architecture and composition of the extracellular matrix of the tissue it is applied to, allowing for the subsequent implantation of stem cells of the desired cell type. Decellularization can be achieved with multiple reagents, most of which have detergent properties. A variety of cell types can be implanted in the resulting scaffold, including cardiac progenitor cells, and embryonic or induced pluripotent stem cells to generate a range of tissue, from patches to beating myocardium. The future of this biofabrication method will likely emphasize patient specific tissue engineering to generate complex 3-dimensional constructs that can replace dysfunctional cardiac structures.
Collapse
Affiliation(s)
- Aravind Krishnan
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - John Ward MacArthur
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
8
|
Yadav S, Majumder A. Biomimicked hierarchical 2D and 3D structures from natural templates: applications in cell biology. Biomed Mater 2021; 16. [PMID: 34438385 DOI: 10.1088/1748-605x/ac21a7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 08/26/2021] [Indexed: 11/11/2022]
Abstract
Intricate structures of natural surfaces and materials have amazed people over the ages. The unique properties of various surfaces also created interest and curiosity in researchers. In the recent past, with the advent of superior microscopy techniques, we have started to understand how these complex structures provide superior properties. With that knowledge, scientists have developed various biomimicked and bio-inspired surfaces for different non-biological applications. In the last two decades, we have also started to learn how structures of the tissue microenvironment influence cell function and behaviour, both in physiological and pathological conditions. Hence, it became essential to decipher the role and importance of structural hierarchy in the cellular context. With advances in microfabricated techniques, such complex structures were made by superimposing features of different dimensions. However, the fabricated topographies are far from matching the complexities presentin vivo. Hence, the need of biomimicking the natural surfaces for cellular applications was felt. In this review, we discuss a few examples of hierarchical surfaces found in plants, insects, and vertebrates. Such structures have been widely biomimicked for various applications but rarely studied for cell-substrate interaction and cellular response. Here, we discuss the research work wherein 2D hierarchical substrates were prepared using biomimicking to understand cellular functions such as adhesion, orientation, differentiation, and formation of spheroids. Further, we also present the status of ongoing research in mimicking 3D tissue architecture using de-cellularized plant-based and tissue/organ-based scaffolds. We will also discuss 3D printing for fabricating 2D and 3D hierarchical structures. The review will end by highlighting the various advantages and research challenges in this approach. The biomimickedin-vivolike substrate can be used to better understand cellular physiology, and for tissue engineering.
Collapse
Affiliation(s)
- Shital Yadav
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
9
|
Wang C, Yang X, Zhang X, Liu B, Liu W, Shen Y, Gao Z, Yin Q, Wang C, Zhou J. TMT-based quantitative proteome profiles reveal the memory function of a whole heart decellularized matrix for neural stem cell trans-differentiation into the cardiac lineage. Biomater Sci 2021; 9:3692-3704. [PMID: 34008595 DOI: 10.1039/d0bm01287d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Whole organ or tissue decellularized matrices are a promising scaffold for tissue engineering because they maintain the specific memory of the original organ or tissue. A whole organ or tissue decellularized matrix contains extracellular matrix (ECM) components, and exhibits ultrastructural and mechanical properties, which could significantly regulate the fate of stem cells. To better understand the memory function of whole organ decellularized matrices, we constructed a heart decellularized matrix and seeded cross-embryonic layer stem cells - neural stem cells (NSCs) to repopulate the matrix, engineering cardiac tissue, in which a large number of NSCs differentiated into the neural lineage, but besides that, NSCs showed an obvious tendency of trans-differentiating into cardiac lineage cells. The results demonstrated that the whole heart decellularized microenvironment possesses memory function. To reveal the underlying mechanism, TMT-based quantitative proteomics analysis was used to identify the differently expressed proteins in the whole heart decellularized matrix compared with a brain decellularized matrix. 937 of the proteins changed over 1.5 fold, with 573 of the proteins downregulated and 374 of the proteins upregulated, among which integrin ligands in the ECM serve as key signals in regulating NSC fate. The findings here provide a novel insight into the memory function of tissue-specific microenvironments and pave the way for the therapeutic application of personalized tissues.
Collapse
Affiliation(s)
- Changyong Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China.
| | - Xiaoning Yang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China.
| | - Xiao Zhang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China.
| | - Baijun Liu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China.
| | - Wei Liu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China.
| | - Yuan Shen
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China.
| | - Zhongbao Gao
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China.
| | - Qi Yin
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China.
| | - Chunlan Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China.
| | - Jin Zhou
- Beijing Institute of Basic Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China.
| |
Collapse
|
10
|
Speer AL, Ren X, McNeill EP, Aziz JM, Muir SM, Marino DI, Dadhich P, Sawant K, Ciccocioppo R, Asthana A, Bitar KN, Orlando G. Bioengineering of the digestive tract: approaching the clinic. Cytotherapy 2021; 23:381-389. [PMID: 33840629 DOI: 10.1016/j.jcyt.2021.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
The field of regenerative medicine is developing technologies that, in the near future, will offer alternative approaches to either cure diseases affecting the gastrointestinal tract or slow their progression by leveraging the intrinsic ability of our tissues and organs to repair after damage. This article will succinctly illustrate the three technologies that are closer to clinical translation-namely, human intestinal organoids, sphincter bioengineering and decellularization, whereby the cellular compartment of a given segment of the digestive tract is removed to obtain a scaffold consisting of the extracellular matrix. The latter will be used as a template for the regeneration of a functional organ, whereby the newly generated cellular compartment will be obtained from the patient's own cells. Although clinical application of this technology is approaching, product development challenges are being tackled to warrant safety and efficacy.
Collapse
Affiliation(s)
- Allison L Speer
- McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Eoin P McNeill
- McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Justine M Aziz
- Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sean M Muir
- Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Domenica I Marino
- College of Arts and Sciences, Ohio State University, Columbus, Ohio, USA
| | | | - Ketki Sawant
- Cellf Bio LLC, Winston-Salem, North Carolina, USA
| | - Rachele Ciccocioppo
- Department of Medicine, Gastroenterology Unit, Giambattista Rossi University Hospital, University Hospital Integrated Trust of Verona, University of Verona, Verona, Italy
| | - Amish Asthana
- Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Khalil N Bitar
- Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Cellf Bio LLC, Winston-Salem, North Carolina, USA
| | - Giuseppe Orlando
- Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
11
|
Mahfouzi SH, Safiabadi Tali SH, Amoabediny G. 3D bioprinting for lung and tracheal tissue engineering: Criteria, advances, challenges, and future directions. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.bprint.2020.e00124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Liao J, Xu B, Zhang R, Fan Y, Xie H, Li X. Applications of decellularized materials in tissue engineering: advantages, drawbacks and current improvements, and future perspectives. J Mater Chem B 2020; 8:10023-10049. [PMID: 33053004 DOI: 10.1039/d0tb01534b] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Decellularized materials (DMs) are attracting more and more attention because of their native structures, comparatively high bioactivity, low immunogenicity and good biodegradability, which are difficult to be imitated by synthetic materials. Recently, DMs have been demonstrated to possess great potential to overcome the disadvantages of autografts and have become a kind of promising material for tissue engineering. In this systematic review, we aimed to not only provide a quick access for understanding DMs, but also bring new ideas to utilize them more appropriately in tissue engineering. Firstly, the preparation of DMs was introduced. Then, the updated applications of DMs derived from different tissues and organs in tissue engineering were comprehensively summarized. In particular, their advantages, drawbacks and current improvements were emphasized. Moreover, we analyzed and proposed future perspectives.
Collapse
Affiliation(s)
- Jie Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | | | | | | | | | | |
Collapse
|
13
|
Goh SK, Halfter W, Richardson T, Bertera S, Vaidya V, Candiello J, Bradford M, Banerjee I. Organ-specific ECM arrays for investigating Cell-ECM interactions during stem cell differentiation. Biofabrication 2020; 13. [PMID: 33045682 DOI: 10.1088/1758-5090/abc05f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022]
Abstract
Pluripotent stem cells are promising source of cells for tissue engineering, regenerative medicine and drug discovery applications. The process of stem cell differentiation is regulated by multi-parametric cues from the surrounding microenvironment, one of the critical one being cell interaction with extracellular matrix (ECM). The ECM is a complex tissue-specific structure which are important physiological regulators of stem cell function and fate. Recapitulating this native ECM microenvironment niche is best facilitated by decellularized tissue/ organ derived ECM, which can faithfully reproduce the physiological environment with high fidelity to in vivo condition and promote tissue-specific cellular development and maturation. Recognizing the need for organ specific ECM in a 3D culture environment in driving phenotypic differentiation and maturation of hPSCs, we fabricated an ECM array platform using native-mimicry ECM from decellularized organs (namely pancreas, liver and heart), which allows cell-ECM interactions in both 2D and 3D configuration. The ECM array was integrated with rapid quantitative imaging for a systematic investigation of matrix protein profiles and sensitive measurement of cell-ECM interaction during hPSC differentiation. We tested our platform by elucidating the role of the three different organ-specific ECM in supporting induced pancreatic differentiation of hPSCs. While the focus of this report is on pancreatic differentiation, the developed platform is versatile to be applied to characterize any lineage specific differentiation.
Collapse
Affiliation(s)
- Saik Kia Goh
- University of Pittsburgh, Pittsburgh, 15261, UNITED STATES
| | - Willi Halfter
- University of Pittsburgh, Pittsburgh, Pennsylvania, UNITED STATES
| | - Thomas Richardson
- Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, UNITED STATES
| | - Suzanne Bertera
- Allegheny Health Network, Pittsburgh, Pennsylvania, UNITED STATES
| | - Vimal Vaidya
- University of Pittsburgh, Pittsburgh, Pennsylvania, UNITED STATES
| | - Joe Candiello
- University of Pittsburgh, Pittsburgh, Pennsylvania, UNITED STATES
| | - Mahalia Bradford
- Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, UNITED STATES
| | - Ipsita Banerjee
- Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, UNITED STATES
| |
Collapse
|
14
|
Sart S, Jeske R, Chen X, Ma T, Li Y. Engineering Stem Cell-Derived Extracellular Matrices: Decellularization, Characterization, and Biological Function. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:402-422. [DOI: 10.1089/ten.teb.2019.0349] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sébastien Sart
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
- Laboratory of Physical Microfluidics and Bioengineering, Department of Genome and Genetics, Institut Pasteur, Paris, France
| | - Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
15
|
Li H, Zhou J, Zhu M, Ying S, Li L, Chen D, Li J, Song J. Low-intensity pulsed ultrasound promotes the formation of periodontal ligament stem cell sheets and ectopic periodontal tissue regeneration. J Biomed Mater Res A 2020; 109:1101-1112. [PMID: 32964617 DOI: 10.1002/jbm.a.37102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022]
Abstract
Human periodontal ligament stem cells (hPDLSCs) sheets play an important role in periodontal tissue engineering. Low-intensity pulsed ultrasound (LIPUS) has been reported as an effective stimulus to regulate cell biological behavior. The present study aims to explore the potential of LIPUS to promote the formation and function of hPDLSC sheets (hPDLSCSs). Hematoxylin-eosin (H&E) staining, western blot, real-time PCR, alkaline phosphatase (ALP), and alizarin red staining were used to evaluate the formation and osteogenic effect of LIPUS on hPDLSCSs in vitro. Hydroxyapatite with or without hPDLSCSs was transplanted in the subcutaneous pockets on the back of nude mice and histological analysis was performed. H&E staining showed increased synthesis of extracellular matrix (ECM) and real-time PCR detected a significant increase in ECM-related genes after LIPUS treatment. In addition, LIPUS could promote the expression of osteogenic differentiation-related genes and proteins. ALP and alizarin red staining also found LIPUS enhanced the osteogenesis of hPDLSCSs. After transplantation in vivo, more dense collagen fibers similar to periodontal ligament were regenerated. Collectively, these results indicate that LIPUS not only promotes the formation and osteogenic differentiation of hPDLSCSs but also is a potential treatment strategy for periodontal tissue engineering.
Collapse
Affiliation(s)
- Han Li
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Mengyuan Zhu
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Siqi Ying
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Lingjie Li
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Duanjing Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
16
|
Ge F, Lu Y, Li Q, Zhang X. Decellularized Extracellular Matrices for Tissue Engineering and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1250:15-31. [DOI: 10.1007/978-981-15-3262-7_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Reconstitution of the Ventricular Endocardium Within Acellular Hearts. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-019-00099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Tang SW, Yuen W, Kaur I, Pang SW, Voelcker NH, Lam YW. Capturing instructive cues of tissue microenvironment by silica bioreplication. Acta Biomater 2020; 102:114-126. [PMID: 31756551 DOI: 10.1016/j.actbio.2019.11.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/03/2023]
Abstract
Cells in tissues are enveloped by an instructive niche made of the extracellular matrix. These instructive niches contain three general types of information: topographical, biochemical and mechanical. While the combined effects of these three factors are widely studied, the functions of each individual one has not been systematically characterised, because it is impossible to alter a single factor in a tissue microenvironment without simultaneously affecting the other two. Silica BioReplication (SBR) is a process that converts biological samples into silica, faithfully preserving the original topography at the nano-scale. We explored the use of this technique to generate inorganic replicas of intact mammalian tissues, including tendon, cartilage, skeletal muscle and spinal cord. Scanning electron and atomic force microscopy showed that the resulting replicas accurately preserved the three-dimensional ultrastructure of each tissue, while all biochemical components were eradicated by calcination. Such properties allowed the uncoupling the topographical information of a tissue microenvironment from its biochemical and mechanical components. Here, we showed that human mesenchymal stem cells (MSC) cultured on the replicas of different tissues displayed vastly different morphology and focal adhesions, suggesting that the topography of the tissue microenvironment captured by SBR could profoundly affect MSC biology. MSC cultured on tendon replica elongated and expressed tenocytes marker, while MSC on the spinal cord replica developed into spheroids that resembled neurospheres, in morphology and in the expression of neurosphere markers, and could be further differentiated into neuron-like cells. This study reveals the significance of topographical cues in a cell niche, as tissue-specific topography was sufficient in initiating and directing differentiation of MSC, despite the absence of any biochemical signals. SBR is a convenient and versatile method for capturing this topographical information, facilitating the functional characterisation of cell niches. STATEMENT OF SIGNIFICANCE: Various studies have shown that three major factors, topographical, biochemical and mechanical, in a tissue microenvironment (TME) are essential for cellular homeostasis and functions. Current experimental models are too simplistic to represent the complexity of the TME, hindering the detailed understanding of its functions. In particular, the importance each factor in a tissue microenvironment have not been individually characterised, because it is challenging to alter one of these factors without simultaneously affecting the other two. Silica bioreplication (SBR) is a process that converts biological samples into silica replicas with high structural fidelity. SBR is a convenient and versatile method for capturing this topographical information on to a biologically inert material, allowing the functional characterisation of the architecture of a TME.
Collapse
Affiliation(s)
- Sze Wing Tang
- Department of Chemistry, City University of Hong Kong, Hong Kong
| | - Wai Yuen
- HealthBaby Biotech (Hong Kong) Co., Ltd, Hong Kong
| | - Ishdeep Kaur
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication, Australia; Monash Institute of Pharmaceutical Sciences, Monash University, Australia
| | - Stella W Pang
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong
| | - Nicolas H Voelcker
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication, Australia; Monash Institute of Pharmaceutical Sciences, Monash University, Australia
| | - Yun Wah Lam
- Department of Chemistry, City University of Hong Kong, Hong Kong.
| |
Collapse
|
19
|
Barreto S, Hamel L, Schiatti T, Yang Y, George V. Cardiac Progenitor Cells from Stem Cells: Learning from Genetics and Biomaterials. Cells 2019; 8:E1536. [PMID: 31795206 PMCID: PMC6952950 DOI: 10.3390/cells8121536] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiac Progenitor Cells (CPCs) show great potential as a cell resource for restoring cardiac function in patients affected by heart disease or heart failure. CPCs are proliferative and committed to cardiac fate, capable of generating cells of all the cardiac lineages. These cells offer a significant shift in paradigm over the use of human induced pluripotent stem cell (iPSC)-derived cardiomyocytes owing to the latter's inability to recapitulate mature features of a native myocardium, limiting their translational applications. The iPSCs and direct reprogramming of somatic cells have been attempted to produce CPCs and, in this process, a variety of chemical and/or genetic factors have been evaluated for their ability to generate, expand, and maintain CPCs in vitro. However, the precise stoichiometry and spatiotemporal activity of these factors and the genetic interplay during embryonic CPC development remain challenging to reproduce in culture, in terms of efficiency, numbers, and translational potential. Recent advances in biomaterials to mimic the native cardiac microenvironment have shown promise to influence CPC regenerative functions, while being capable of integrating with host tissue. This review highlights recent developments and limitations in the generation and use of CPCs from stem cells, and the trends that influence the direction of research to promote better application of CPCs.
Collapse
Affiliation(s)
- Sara Barreto
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | | | - Teresa Schiatti
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | - Ying Yang
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | - Vinoj George
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| |
Collapse
|
20
|
Combining ECM Hydrogels of Cardiac Bioactivity with Stem Cells of High Cardiomyogenic Potential for Myocardial Repair. Stem Cells Int 2019; 2019:6708435. [PMID: 31772589 PMCID: PMC6854924 DOI: 10.1155/2019/6708435] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/21/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering exploring the combination of scaffolds and seeding cells was proposed as a promising strategy for myocardial repair. However, the therapeutic outcomes varied greatly due to different selection of scaffolds and seeding cells. Herein, the potential of combining bioactive extracellular matrix (ECM) hydrogels and high cardiomyogenic seeding cells was explored for myocardial repair in vitro and in vivo. Temperature-sensitive ECM hydrogels were prepared from decellularized rat hearts, and cardiomyogenic seeding cells were isolated from brown adipose (brown adipose-derived stem cells (BADSCs)). The in vitro studies demonstrated that ECM hydrogel significantly supported the proliferation and cardiomyogenic differentiation of BADSCs. Importantly, the function and maturation of BADSC-derived cardiomyocytes were also promoted as evidenced by Ca2+ transient's measurement and protein marker expression. After myocardial transplantation, the combination of BADSCs and ECM hydrogels significantly preserved cardiac function and chamber geometry compared with BADSCs or ECM hydrogels alone. Meanwhile, the ECM hydrogel also enhanced BADSC engraftment and myocardial regeneration in vivo. These results indicated that heart-derived ECM hydrogels exerted significant influence on the fate of cardiomyogenic cells toward benefiting myocardial repair, which may explain the enhanced stem cell therapy by the scaffold. Collectively, it indicated that the combination of ECM hydrogel and the cardiomyogenic cells may represent a promising strategy for cardiac tissue engineering.
Collapse
|
21
|
Leitolis A, Robert AW, Pereira IT, Correa A, Stimamiglio MA. Cardiomyogenesis Modeling Using Pluripotent Stem Cells: The Role of Microenvironmental Signaling. Front Cell Dev Biol 2019; 7:164. [PMID: 31448277 PMCID: PMC6695570 DOI: 10.3389/fcell.2019.00164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Pluripotent stem cells (PSC) can be used as a model to study cardiomyogenic differentiation. In vitro modeling can reproduce cardiac development through modulation of some key signaling pathways. Therefore, many studies make use of this strategy to better understand cardiomyogenesis complexity and to determine possible ways to modulate cell fate. However, challenges remain regarding efficiency of differentiation protocols, cardiomyocyte (CM) maturation and therapeutic applications. Considering that the extracellular milieu is crucial for cellular behavior control, cardiac niche studies, such as those identifying secreted molecules from adult or neonatal tissues, allow the identification of extracellular factors that may contribute to CM differentiation and maturation. This review will focus on cardiomyogenesis modeling using PSC and the elements involved in cardiac microenvironmental signaling (the secretome - extracellular vesicles, extracellular matrix and soluble factors) that may contribute to CM specification and maturation.
Collapse
Affiliation(s)
- Amanda Leitolis
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Anny W Robert
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Isabela T Pereira
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Alejandro Correa
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Marco A Stimamiglio
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| |
Collapse
|
22
|
Tomov ML, Gil CJ, Cetnar A, Theus AS, Lima BJ, Nish JE, Bauser-Heaton HD, Serpooshan V. Engineering Functional Cardiac Tissues for Regenerative Medicine Applications. Curr Cardiol Rep 2019; 21:105. [PMID: 31367922 PMCID: PMC7153535 DOI: 10.1007/s11886-019-1178-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Tissue engineering has expanded into a highly versatile manufacturing landscape that holds great promise for advancing cardiovascular regenerative medicine. In this review, we provide a summary of the current state-of-the-art bioengineering technologies used to create functional cardiac tissues for a variety of applications in vitro and in vivo. RECENT FINDINGS Studies over the past few years have made a strong case that tissue engineering is one of the major driving forces behind the accelerating fields of patient-specific regenerative medicine, precision medicine, compound screening, and disease modeling. To date, a variety of approaches have been used to bioengineer functional cardiac constructs, including biomaterial-based, cell-based, and hybrid (using cells and biomaterials) approaches. While some major progress has been made using cellular approaches, with multiple ongoing clinical trials, cell-free cardiac tissue engineering approaches have also accomplished multiple breakthroughs, although drawbacks remain. This review summarizes the most promising methods that have been employed to generate cardiovascular tissue constructs for basic science or clinical applications. Further, we outline the strengths and challenges that are inherent to this field as a whole and for each highlighted technology.
Collapse
Affiliation(s)
- Martin L Tomov
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Carmen J Gil
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Alexander Cetnar
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Andrea S Theus
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Bryanna J Lima
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Joy E Nish
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Holly D Bauser-Heaton
- Division of Pediatric Cardiology, Children's Healthcare of Atlanta Sibley Heart Center, Atlanta, GA, 30322, USA
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30309, USA.
- Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
| |
Collapse
|
23
|
Blazeski A, Lowenthal J, Zhu R, Ewoldt J, Boheler KR, Tung L. Functional Properties of Engineered Heart Slices Incorporating Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cell Reports 2019; 12:982-995. [PMID: 31056480 PMCID: PMC6524004 DOI: 10.1016/j.stemcr.2019.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/18/2022] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold great promise for cardiac studies, but their structural and functional immaturity precludes their use as faithful models of adult myocardium. Here we describe engineered heart slices (EHS), preparations of decellularized porcine myocardium repopulated with hiPSC-CMs that exhibit structural and functional improvements over standard culture. EHS exhibited multicellular, aligned bundles of elongated CMs with organized sarcomeres, positive inotropic responses to isoproterenol, anisotropic conduction of action potentials, and electrophysiological functionality for more than 200 days. We developed a new drug assay, GRIDS, that serves as a "fingerprint" of cardiac drug sensitivity for a range of pacing rates and drug concentrations. GRIDS maps characterized differences in drug sensitivity between EHS and monolayers more clearly than changes in action potential durations or conduction velocities. EHS represent a tissue-like model for long-term culture, structural, and functional improvement, and higher fidelity drug response of hiPSC-CMs.
Collapse
Affiliation(s)
- Adriana Blazeski
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Justin Lowenthal
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Renjun Zhu
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jourdan Ewoldt
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kenneth R Boheler
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA; Stem Cell and Regenerative Medicine Consortium, LKS Faculty of Medicine, Hong Kong University, Hong Kong, SAR; Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leslie Tung
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
24
|
Bejleri D, Davis ME. Decellularized Extracellular Matrix Materials for Cardiac Repair and Regeneration. Adv Healthc Mater 2019; 8:e1801217. [PMID: 30714354 PMCID: PMC7654553 DOI: 10.1002/adhm.201801217] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/20/2018] [Indexed: 12/20/2022]
Abstract
Decellularized extracellular matrix (dECM) is a promising biomaterial for repairing cardiovascular tissue, as dECM most effectively captures the complex array of proteins, glycosaminoglycans, proteoglycans, and many other matrix components that are found in native tissue, providing ideal cues for regeneration and repair of damaged myocardium. dECM can be used in a variety of forms, such as solid scaffolds that maintain native matrix structure, or as soluble materials that can form injectable hydrogels for tissue repair. dECM has found recent success in many regeneration and repair therapies, such as for musculoskeletal, neural, and liver tissues. This review focuses on dECM in the context of cardiovascular applications, with variations in tissue and species sourcing, and specifically discusses advances in solid and soluble dECM development, in vitro studies, in vivo implementation, and clinical translation.
Collapse
Affiliation(s)
- Donald Bejleri
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA
| | - Michael E Davis
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA
| |
Collapse
|
25
|
Chameettachal S, Sasikumar S, Sethi S, Sriya Y, Pati F. Tissue/organ-derived bioink formulation for 3D bioprinting. ACTA ACUST UNITED AC 2019. [DOI: 10.2217/3dp-2018-0024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tissue/organ-derived bioink formulations open up new avenues in 3D bioprinting research with the potential to create functional tissue or organs. Printing of tissue construct largely depends on material properties, as it needs to be fabricated in an aqueous environment while encapsulating living cells. The decellularized extracellular matrix bioinks proved to be a potential option for functional tissue development in vivo and as an alternative to chemically cross-linked bioinks. However, certain limitations such as printability and limited mechanical strength need to be addressed for enhancing their widespread applications. By drawing knowledge from the existing literature, emphasis has been given in this review to the development of decellularized extracellular matrix bioinks and their applications in printing functional tissue constructs.
Collapse
Affiliation(s)
- Shibu Chameettachal
- BioFab Lab, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy-502285, Telangana, India
| | - Shyama Sasikumar
- BioFab Lab, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy-502285, Telangana, India
| | - Soumya Sethi
- BioFab Lab, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy-502285, Telangana, India
| | - Yeleswarapu Sriya
- BioFab Lab, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy-502285, Telangana, India
| | - Falguni Pati
- BioFab Lab, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy-502285, Telangana, India
| |
Collapse
|
26
|
Pan J, Li H, Fang Y, Shen YB, Zhou XY, Zhu F, Zhu LX, Du YH, Yu XF, Wang Y, Zhou XH, Wang YY, Wu YJ. Regeneration of a Bioengineered Thyroid Using Decellularized Thyroid Matrix. Thyroid 2019; 29:142-152. [PMID: 30375266 DOI: 10.1089/thy.2018.0068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Hypothyroidism is a common hormone deficiency condition. Regenerative medicine approaches, such as a bioengineered thyroid, have been proposed as potential therapeutic alternatives for patients with hypothyroidism. This study demonstrates a novel approach to generate thyroid grafts using decellularized rat thyroid matrix. METHODS Isolated rat thyroid glands were perfused with 1% sodium dodecyl sulfate to generate a decellularized thyroid scaffold. The rat thyroid scaffold was then recellularized with rat thyroid cell line to reconstruct the thyroid by perfusion seeding technique. As a pilot study, the decellularized rat thyroid scaffold was perfused with human-derived thyrocytes and parathyroid cells. RESULTS The decellularization process retained the intricate three-dimensional microarchitecture with a perfusable vascular network and native extracellular matrix components, allowing efficient reseeding of the thyroid matrix with the FRTL-5 rat thyroid cell line generating three-dimensional follicular structures in vitro. In addition, the recellularized thyroid showed successful cellular engraftment and thyroid-specific function, including synthesis of thyroglobulin and thyroid peroxidase. Moreover, the decellularized rat thyroid scaffold could further be recellularized with human-derived thyroid cells and parathyroid cells to reconstruct a humanized bioartificial endocrine organ, which maintained expression of critical genes such as thyroglobulin, thyroid peroxidase, and parathyroid hormone. CONCLUSION These findings demonstrate the utility of a decellularized thyroid extracellular matrix scaffold system for the development of functional, bioengineered thyroid tissue, which could potentially be used to treat hypothyroidism.
Collapse
Affiliation(s)
- Jun Pan
- 1 Thyroid Disease Diagnosis and Treatment Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Hui Li
- 2 Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Division of Hepatobiliary and Pancreatic Surgery; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Yun Fang
- 1 Thyroid Disease Diagnosis and Treatment Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Yi-Bin Shen
- 1 Thyroid Disease Diagnosis and Treatment Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xue-Yu Zhou
- 1 Thyroid Disease Diagnosis and Treatment Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Feng Zhu
- 1 Thyroid Disease Diagnosis and Treatment Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Li-Xian Zhu
- 1 Thyroid Disease Diagnosis and Treatment Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Ye-Hui Du
- 1 Thyroid Disease Diagnosis and Treatment Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xiong-Fei Yu
- 3 Cancer Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Yan Wang
- 2 Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Division of Hepatobiliary and Pancreatic Surgery; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xin-Hui Zhou
- 4 Department of Gynecology; and School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Ying-Ying Wang
- 5 Kidney Disease Center; The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Yi-Jun Wu
- 1 Thyroid Disease Diagnosis and Treatment Center; School of Medicine, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
27
|
Decellularization Concept in Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:71-85. [DOI: 10.1007/5584_2019_338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Nguyen DT, Althage M, Magnone MC, Heydarkhan-Hagvall S. Translational strategy: humanized mini-organs. Drug Discov Today 2018; 23:1812-1817. [DOI: 10.1016/j.drudis.2018.05.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/07/2018] [Accepted: 05/29/2018] [Indexed: 12/14/2022]
|
29
|
Guruswamy Damodaran R, Vermette P. Tissue and organ decellularization in regenerative medicine. Biotechnol Prog 2018; 34:1494-1505. [PMID: 30294883 DOI: 10.1002/btpr.2699] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/30/2018] [Indexed: 12/22/2022]
Abstract
The advancement and improvement in decellularization methods can be attributed to the increasing demand for tissues and organs for transplantation. Decellularized tissues and organs, which are free of cells and genetic materials while retaining the complex ultrastructure of the extracellular matrix (ECM), can serve as scaffolds to subsequently embed cells for transplantation. They have the potential to mimic the native physiology of the targeted anatomic site. ECM from different tissues and organs harvested from various sources have been applied. Many techniques are currently involved in the decellularization process, which come along with their own advantages and disadvantages. This review focuses on recent developments in decellularization methods, the importance and nature of detergents used for decellularization, as well as on the role of the ECM either as merely a physical support or as a scaffold in retaining and providing cues for cell survival, differentiation and homeostasis. In addition, application, status, and perspectives on commercialization of bioproducts derived from decellularized tissues and organs are addressed. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1494-1505, 2018.
Collapse
Affiliation(s)
- Rajesh Guruswamy Damodaran
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada.,Pharmacology Institute of Sherbrooke, Faculté de médecine et des sciences de la santé, 3001 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.,Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, Québec, J1H 4C4, Canada
| | - Patrick Vermette
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada.,Pharmacology Institute of Sherbrooke, Faculté de médecine et des sciences de la santé, 3001 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.,Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, Québec, J1H 4C4, Canada
| |
Collapse
|
30
|
Taylor DA, Sampaio LC, Ferdous Z, Gobin AS, Taite LJ. Decellularized matrices in regenerative medicine. Acta Biomater 2018; 74:74-89. [PMID: 29702289 DOI: 10.1016/j.actbio.2018.04.044] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 01/04/2023]
Abstract
Of all biologic matrices, decellularized extracellular matrix (dECM) has emerged as a promising tool used either alone or when combined with other biologics in the fields of tissue engineering or regenerative medicine - both preclinically and clinically. dECM provides a native cellular environment that combines its unique composition and architecture. It can be widely obtained from native organs of different species after being decellularized and is entitled to provide necessary cues to cells homing. In this review, the superiority of the macro- and micro-architecture of dECM is described as are methods by which these unique characteristics are being harnessed to aid in the repair and regeneration of organs and tissues. Finally, an overview of the state of research regarding the clinical use of different matrices and the common challenges faced in using dECM are provided, with possible solutions to help translate naturally derived dECM matrices into more robust clinical use. STATEMENT OF SIGNIFICANCE Ideal scaffolds mimic nature and provide an environment recognized by cells as proper. Biologically derived matrices can provide biological cues, such as sites for cell adhesion, in addition to the mechanical support provided by synthetic matrices. Decellularized extracellular matrix is the closest scaffold to nature, combining unique micro- and macro-architectural characteristics with an equally unique complex composition. The decellularization process preserves structural integrity, ensuring an intact vasculature. As this multifunctional structure can also induce cell differentiation and maturation, it could become the gold standard for scaffolds.
Collapse
|
31
|
Huang S, Yang Y, Yang Q, Zhao Q, Ye X. Engineered circulatory scaffolds for building cardiac tissue. J Thorac Dis 2018; 10:S2312-S2328. [PMID: 30123572 DOI: 10.21037/jtd.2017.12.92] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heart failure (HF) is the terminal state of cardiovascular disease (CVD), leading numerous patients to death every year. Cardiac tissue engineering is a multidisciplinary field of creating functional cardiac patches in vitro to promote cardiac function after transplantation onto damaged zone, giving the hope for patients with end-stage HF. However, the limited thickness of cardiac patches results in the graft failure of survival and function due to insufficient blood supply. To date, prevascularized cardiac tissue, with the use of circulatory scaffolds, holds the promise to be inosculated and perfused with host vasculature to eventually promote cardiac pumping function. Circulatory scaffolds play its role to provide oxygen and nutrients and take metabolic wastes away, and achieve anastomosis with host vasculature in vivo. Of worth note, heart-on-a-chip based on circulatory scaffolds now has been considered as a valuable unit to broaden the research for building cardiac tissue. In this review, we will present recent different strategies to engineer circulatory scaffolds for building cardiac tissue with microvasculature, followed by its current state and future direction.
Collapse
Affiliation(s)
- Shixing Huang
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yang Yang
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Qi Yang
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Qiang Zhao
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Xiaofeng Ye
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
32
|
Yao Y, Lin W, Zhang Y. Fabrication of Tongue Extracellular Matrix and Reconstitution of Tongue Squamous Cell Carcinoma In Vitro. J Vis Exp 2018. [PMID: 29985345 DOI: 10.3791/57235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In order to construct an effective and realistic model for tongue squamous cell carcinoma (TSCC) in vitro, the methods were created to produce decellularized tongue extracellular matrix (TEM) which provides functional scaffolds for TSCC construction. TEM provides an in vitro niche for cell growth, differentiation, and cell migration. The microstructures of native extracellular matrix (ECM) and biochemical compositions retained in the decellularized matrix provide tissue-specific niches for anchoring cells. The fabrication of TEM can be realized by deoxyribonuclease (DNase) digestion accompanied with a serious of organic or inorganic pretreatment. This protocol is easy to operate and ensures high efficiency for the decellularization. The TEM showed favorable cytocompatibility for TSCC cells under static or stirred culture conditions, which enables the construction of the TSCC model. A self-made bioreactor was also used for the persistent stirred condition for cell culture. Reconstructed TSCC using TEM showed the characteristics and properties resembling clinical TSCC histopathology, suggesting the potential in TSCC research.
Collapse
Affiliation(s)
- Yupeng Yao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University
| | - Weifan Lin
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University
| | - Yan Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University;
| |
Collapse
|
33
|
Perfusion-decellularization of human ear grafts enables ECM-based scaffolds for auricular vascularized composite tissue engineering. Acta Biomater 2018; 73:339-354. [PMID: 29654989 DOI: 10.1016/j.actbio.2018.04.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/27/2018] [Accepted: 04/04/2018] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Human ear reconstruction is recognized as the emblematic enterprise in tissue engineering. Up to now, it has failed to reach human applications requiring appropriate tissue complexity along with an accessible vascular tree. We hereby propose a new method to process human auricles in order to provide a poorly immunogenic, complex and vascularized ear graft scaffold. METHODS 12 human ears with their vascular pedicles were procured. Perfusion-decellularization was applied using a SDS/polar solvent protocol. Cell and antigen removal was examined by histology and DNA was quantified. Preservation of the extracellular matrix (ECM) was assessed by conventional and 3D-histology, proteins and cytokines quantifications. Biocompatibility was assessed by implantation in rats for up to 60 days. Adipose-derived stem cells seeding was conducted on scaffold samples and with human aortic endothelial cells whole graft seeding in a perfusion-bioreactor. RESULTS Histology confirmed cell and antigen clearance. DNA reduction was 97.3%. ECM structure and composition were preserved. Implanted scaffolds were tolerated in vivo, with acceptable inflammation, remodeling, and anti-donor antibody formation. Seeding experiments demonstrated cell engraftment and viability. CONCLUSIONS Vascularized and complex auricular scaffolds can be obtained from human source to provide a platform for further functional auricular tissue engineered constructs, hence providing an ideal road to the vascularized composite tissue engineering approach. STATEMENT OF SIGNIFICANCE The ear is emblematic in the biofabrication of tissues and organs. Current regenerative medicine strategies, with matrix from donor tissues or 3D-printed, didn't reach any application for reconstruction, because critically missing a vascular tree for perfusion and transplantation. We previously described the production of vascularized and cell-compatible scaffolds, from porcine ear grafts. In this study, we ---- applied findings directly to human auricles harvested from postmortem donors, providing a perfusable matrix that retains the ear's original complexity and hosts new viable cells after seeding. This approach unlocks the ability to achieve an auricular tissue engineering approach, associated with possible clinical translation.
Collapse
|
34
|
Narayanan K, Khan M, Gopalan B, Antony J, Das T, Yang YY, Wan ACA. Sensitization of Cancer Cells via Non-Viral Delivery of Apoptosis Inducing Proteins Using a Cationic Bolaamphiphile. Biotechnol J 2018; 14:e1800020. [PMID: 29802765 DOI: 10.1002/biot.201800020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/18/2018] [Indexed: 01/10/2023]
Abstract
Cationic bolaamphiphile polymers had been previously studied as efficient delivery system for the delivery of proteins with relatively low toxicity. Here, the authors investigate the use of a protein delivery system based on a cationic bolaamphiphile to sensitize cancer cells toward apoptosis-inducing drugs as a novel approach for cancer therapy. The authors demonstrates the efficacy of the system by two strategies. The first strategy involves delivery of a survivin antibody to inhibit survivin activity. Sensitization of MCF-7 cells to doxorubicin is observed by survivin inhibition by antibodies. The IC50 of doxorubicin is reduced ≈2.5-fold after delivery of survivin antibodies to breast cancer cells and induction of apoptosis is shown by Western blotting with apoptosis specific antibodies. In a second approach, functional wild type p53 is delivered into p53-null liver cancer (Hep3B) cells, sensitizing the cells toward the p53 pathway drug, Nutlin. Nutlin reduced the viability of Hep3B cells by ≈42% at 15 μM concentration, demonstrating the effectiveness of p53 delivery. The expression of p21, a downstream target of p53 further confirmed the functional status of the delivered protein. In conclusion. The successful delivery of apoptosis inducing proteins and sensitization of cancer cells via cationic bolaamphiphile polymer represents a promising system for cancer therapeutics.
Collapse
Affiliation(s)
| | - Majad Khan
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 34463, Kingdom of Saudi Arabia
| | - Began Gopalan
- Institute of Bioengineering and Nanotechnology, The NanosSingapore, 138669, Singapore
| | - Jane Antony
- Institute of Bioengineering and Nanotechnology, The NanosSingapore, 138669, Singapore
| | - Tultul Das
- Institute of Bioengineering and Nanotechnology, The NanosSingapore, 138669, Singapore
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, The NanosSingapore, 138669, Singapore
| | - Andrew C A Wan
- Institute of Bioengineering and Nanotechnology, The NanosSingapore, 138669, Singapore
| |
Collapse
|
35
|
Humanizing Miniature Hearts through 4-Flow Cannulation Perfusion Decellularization and Recellularization. Sci Rep 2018; 8:7458. [PMID: 29748585 PMCID: PMC5945628 DOI: 10.1038/s41598-018-25883-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/11/2018] [Indexed: 12/24/2022] Open
Abstract
Despite improvements in pre-clinical drug testing models, predictability of clinical outcomes continues to be inadequate and costly due to poor evidence of drug metabolism. Humanized miniature organs integrating decellularized rodent organs with tissue specific cells are translational models that can provide further physiological understanding and evidence. Here, we evaluated 4-Flow cannulated rat hearts as the fundamental humanized organ model for cardiovascular drug validation. Results show clearance of cellular components in all chambers in 4-Flow hearts with efficient perfusion into both coronary arteries and cardiac veins. Furthermore, material characterization depicts preserved organization and content of important matrix proteins such as collagens, laminin, and elastin. With access to the complete vascular network, different human cell types were delivered to show spatial distribution and integration into the matrix under perfusion for up to three weeks. The feature of 4-Flow cannulation is the preservation of whole heart conformity enabling ventricular pacing via the pulmonary vein as demonstrated by noninvasive monitoring with fluid pressure and ultrasound imaging. Consequently, 4-Flow hearts surmounting organ mimicry challenges with intact complexity in vasculature and mechanical compliance of the whole organ providing an ideal platform for improving pre-clinical drug validation in addition to understanding cardiovascular diseases.
Collapse
|
36
|
Rosmark O, Åhrman E, Müller C, Elowsson Rendin L, Eriksson L, Malmström A, Hallgren O, Larsson-Callerfelt AK, Westergren-Thorsson G, Malmström J. Quantifying extracellular matrix turnover in human lung scaffold cultures. Sci Rep 2018; 8:5409. [PMID: 29615673 PMCID: PMC5882971 DOI: 10.1038/s41598-018-23702-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/19/2018] [Indexed: 12/19/2022] Open
Abstract
Remodelling of the extracellular matrix is accomplished by altering the balance between matrix macromolecule production and degradation. However, it is not well understood how cells balance production of new matrix molecules and degradation of existing ones during tissue remodelling and regeneration. In this study, we used decellularized lung scaffolds repopulated with allogenic lung fibroblasts cultured with stable isotope labelled amino acids to quantify the balance between matrix production and degradation at a proteome-wide scale. Specific temporal dynamics of different matrisome proteins were found to correspond to the proliferative activity of the repopulating cells and the degree of extracellular deposition. The remodeling of the scaffold was characterized by an initial phase with cell proliferation and high production of cell adhesion proteins such as emilin-1 and fibronectin. Extended culture time resulted in increased levels of core matrisome proteins. In a comparison with monolayer cultures on plastic, culture in lung scaffolds lead to a pronounced accumulation of proteoglycans, such as versican and decorin, resulting in regeneration of an extracellular matrix with greater resemblance to native lung tissue compared to standard monolayer cultures. Collectively, the study presents a promising technique for increasing the understanding of cell- extracellular matrix interactions under healthy and diseased conditions.
Collapse
Affiliation(s)
- Oskar Rosmark
- Lung Biology, Department Experimental Medical Science, Lund University, Lund, Sweden.
| | - Emma Åhrman
- Lung Biology, Department Experimental Medical Science, Lund University, Lund, Sweden.,Division of Infection Medicine, Department Clinical Sciences, Lund University, Lund, Sweden
| | - Catharina Müller
- Lung Biology, Department Experimental Medical Science, Lund University, Lund, Sweden
| | - Linda Elowsson Rendin
- Lung Biology, Department Experimental Medical Science, Lund University, Lund, Sweden
| | - Leif Eriksson
- Lung Biology, Department Experimental Medical Science, Lund University, Lund, Sweden
| | - Anders Malmström
- Lung Biology, Department Experimental Medical Science, Lund University, Lund, Sweden
| | - Oskar Hallgren
- Lung Biology, Department Experimental Medical Science, Lund University, Lund, Sweden.,Department Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | | | | | - Johan Malmström
- Division of Infection Medicine, Department Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
37
|
Das S, Jang J. 3D bioprinting and decellularized ECM-based biomaterials for in vitro CV tissue engineering. ACTA ACUST UNITED AC 2018. [DOI: 10.2217/3dp-2018-0002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Advanced extrusion-based 3D printing strategies allow the rapid fabrication of complex anatomically relevant architectures. Moreover, they have the potential to fabricate 3D-bioprinted cardiac constructs by depositing cardiac cells with appropriate biomaterials. Heart-derived decellularized extracellular matrices containing a complex mixture of various extracellular molecules provide a comprehensive microenvironmental niche similar to native cardiac tissue. Nonetheless, a major concern persists pertaining to insufficient vascularization and mimicking of the complex 3D architectural features, which can be tackled using 3D printing approaches. In this review, we discuss the advantage and application of decellularized extracellular matrix-based hydrogels for the 3D printing of engineered cardiac tissues. We also briefly talk about the integration of electroactive materials within cardiac patches to improve the myocardium's electrophysiological properties.
Collapse
Affiliation(s)
- Sanskrita Das
- Department of Creative IT Engineering, Pohang University of Science & Technology, Pohang, 37673, Republic of Korea
| | - Jinah Jang
- Department of Creative IT Engineering, Pohang University of Science & Technology, Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (IBIO), Pohang University of Science & Technology, Pohang, 37673, Republic of Korea
| |
Collapse
|
38
|
Abstract
Bioscaffolds serve as structures for cells in building complex tissues and full organs including heart. Decellularizing cardiac tissue results in cell-free extracellular matrix (ECM) that can be used as a cardiac tissue bioscaffold. The field of whole-heart tissue engineering has been revolutionized since the 2008 publication of the first perfusion-decellularized whole heart, and since then, studies have shown how decellularized cardiac tissue retains its native architecture and biochemistry following recellularization. Chemical, enzymatic, and physical decellularization methods preserve the ECM to varying degrees with the widely accepted standard of less than 50 ng/mg of double-stranded DNA present in decellularized ECM. Following decellularization, replacement of cells occurs via recellularization: seeding cells into the decellularized ECM structure either via perfusion of cells into the vascular conduits, injection into parenchyma, or a combination of perfusion and injection. Endothelial cells are often perfused through existing vessel conduits to provide an endothelial lining of the vasculature, with cardiomyocytes and other parenchymal cells injected into the myocardium of decellularized ECM bioscaffolds. Uniform cell density and cell retention throughout the bioscaffold still needs to be addressed in larger animal models of the whole heart. Generating the necessary cell numbers and types remains a challenge. Still, recellularized cardiac tissue bioscaffolds offer therapeutic solutions to heart failure, heart valve replacement, and acute myocardial infarction. New technologies allow for decellularized ECM to be bioprinted into cardiac bioscaffolds or formed into a cardiac hydrogel patch. This chapter reviews the advances made in decellularization and recellularization of cardiac ECM bioscaffolds with a discussion of the potential clinical applications of ECM bioscaffolds.
Collapse
|
39
|
The Rapidly Evolving Concept of Whole Heart Engineering. Stem Cells Int 2017; 2017:8920940. [PMID: 29250121 PMCID: PMC5700515 DOI: 10.1155/2017/8920940] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/12/2017] [Indexed: 01/10/2023] Open
Abstract
Whole heart engineering represents an incredible journey with as final destination the challenging aim to solve end-stage cardiac failure with a biocompatible and living organ equivalent. Its evolution started in 2008 with rodent organs and is nowadays moving closer to clinical application thanks to scaling-up strategies to human hearts. This review will offer a comprehensive examination on the important stages to be reached for the bioengineering of the whole heart, by describing the approaches of organ decellularization, repopulation, and maturation so far applied and the novel technologies of potential interest. In addition, it will carefully address important demands that still need to be satisfied in order to move to a real clinical translation of the whole bioengineering heart concept.
Collapse
|
40
|
Hepatocytic differentiation of iPS cells on decellularized liver tissue. J Artif Organs 2017; 20:318-325. [PMID: 28776092 DOI: 10.1007/s10047-017-0977-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/24/2017] [Indexed: 01/12/2023]
Abstract
Decellularized tissues (DETs) have been attracting great attention as scaffolds for tissue-engineering approaches. Recently, some studies have reported that decellularized liver tissues (DLT) can provide an excellent environment for the hepatocytic differentiation of hepatic stem/progenitor cells that were already committed to the hepatocyte lineage. However, the effects of DLT on the hepatocytic differentiation of induced pluripotent stem cells (iPSs) have not yet been established. Here we studied the hepatocytic differentiation of iPSs on DLT and decellularized heart tissues (DHT) in order to determine the tissue-specific effects of DETs on iPSs differentiation. Our results showed that DLTs led to higher gene expression levels of forkhead box A2 (a marker of endoderm) and CCAAT/enhancer binding protein-α (master transcription factor to hepatocyte differentiation), alpha-fetoprotein (a marker of fetal hepatocyte,), and albumin (a marker of fetal and mature hepatocyte) of iPSs than on DHTs. Furthermore, gene expression levels of tyrosine aminotransferase (a marker of mature hepatocyte) were higher on DLT than that on DHT, and immunocytochemical analysis and ELISA assay showed that albumin secretion level of iPSs on DLT was higher than that on DHT. Our study demonstrated that the use of DLTs led to mature hepatocytic differentiation levels of iPSs compared to DHTs, which provides a better niche for iPSs cell engineering and enables the preparation of useful mature cells for regenerative therapy.
Collapse
|
41
|
Decellularized tongue tissue as an in vitro model for studying tongue cancer and tongue regeneration. Acta Biomater 2017; 58:122-135. [PMID: 28600128 DOI: 10.1016/j.actbio.2017.05.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/25/2017] [Accepted: 05/25/2017] [Indexed: 12/15/2022]
Abstract
The decellularization of tissues or organs provides an efficient strategy for preparing functional scaffolds for tissue engineering. The microstructures of native extracellular matrices and biochemical compositions retained in the decellularized matrices provide tissue-specific microenvironments for anchoring cells. Here, we report the tongue extracellular matrix (TEM), which showed favorable cytocompatibility for normal tongue-derived cells and tongue squamous cell carcinoma (TSCC) cells under static or stirring culture conditions. Our results show that TEM retained tongue-specific integrated microstructures and abundant matrix components, which offer mechanical support and spatial signals for regulating cell behavior and function. Reconstructed TSCC by TEM presented characteristics resembling clinical TSCC histopathology, suggesting the possibility for TSCC research. In addition, TEM might be capable of guiding tongue-derived cells to the niche, benefiting cell survival, proliferation and differentiation. STATEMENT OF SIGNIFICANCE In this study, we prepared decellularized tongue extracellular matrix (TEM) and evaluated the possibility for tongue squamous cell carcinoma (TSCC) research and tongue regeneration. TEM has six irreplaceable advantages: (1) tongue-specific intricate structures of TEM, which offer mechanical support for the cells; (2) abundant matrix components and spatial signals benefiting for cell attachment, survival, differentiation, and long-term viability of the highly functional phenotypes of tongue cells or TSCC cells; (3) reconstructed TSCC by TEM exhibited tumor heterogeneity, extremely resembling clinical TSCC histopathology; (4) ideal model to evaluate TSCC movement mode; (5) guiding tongue-derived cells to the site-appropriate niche; and (6) the possibility for static or stirred cell culture. These properties might be considered in TSCC research or tongue regeneration.
Collapse
|
42
|
Stoltz JF, Zhang L, Ye JS, De Isla N. Organ reconstruction: Dream or reality for the future. Biomed Mater Eng 2017; 28:S121-S127. [PMID: 28372287 DOI: 10.3233/bme-171633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The relevance of research on reconstructed organs is justified by the lack of organs available for transplant and the growing needs for the ageing population. The development of a reconstructed organ involves two parallel complementary steps: de-cellularization of the organ with the need to maintain the structural integrity of the extracellular matrix and vascular network and re-cellularization of the scaffold with stem cells or resident cells.Whole organ engineering for liver, heart, lung or kidneys, is particularly difficult because of the structural complexity of organs and heterogeneity of cells. Rodent, porcine and rhesus monkey organs have been de-cellularized to obtain a scaffold with preserved extracellular matrix and vascular network. As concern the cells for re-cellularization, embryonic, foetal, adult, progenitor stem cells and also iPS have been proposed.Heart construction could be an alternative option for the treatment of cardiac insufficiency. It is based on the use of an extra-cellular matrix coming from an animal's heart and seeded with cells likely to reconstruct a normal cardiac function. Though de-cellularization techniques now seem controlled, the issues posed by the selection of cells capable of generating the various components of cardiac tissue are not settled yet. In addition, the recolonisation of the matrix does not only depend on the phenotype of cells that are used, but it is also impacted by the nature of biochemical signals emitted.Recent researches have shown that it is possible to use decellularized whole liver treated by detergents as scaffold, which keeps the entire network of blood vessels and the integrated extracellular matrix (ECM). Beside of decellularized whole organ scaffold seeding cells selected to repopulate a decellularized liver scaffold are critical for the function of the bioengineered liver. At present, potential cell sources are hepatocyte, and mesenchymal stem cells.Pulmonary regeneration using engineering approaches is complex. In fact, several types of local progenitor cells that contribute to cell repair have been described at different levels of the respiratory tract. Moving towards the alveoles, one finds bronchioalveolar stem cells as well as epithelial cells and pneumocytes. A promising option to increase the donor organ pool is to use allogeneic or xenogeneic decellularized lungs as a scaffold to engineer functional lung tissue ex vivo.The kidney is certainly one of the most difficult organs to reconstruct due to its complex nature and the heterogeneous nature of the cells. There is relatively little research on auto-construction, and experiments have been performed on rats, pigs and monkeys.Nevertheless, before these therapeutic approaches can be applied in clinical practice, many researches are necessary to understand and in particular the behaviour of cells on the decellularized organs as well as the mechanisms of their interaction with the microenvironment. Current knowledges allow optimism for the future but definitive answers can only be given after long term animal studies and controlled clinical studies.
Collapse
Affiliation(s)
- J-F Stoltz
- CNRS, UMR 7365, Biopole, Faculté de Médecine, 54500 Vandoeuvre-Lès-Nancy, France.,CNRS, GDRI 0851, France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, 54511 Vandoeuvre-Lès-Nancy, France.,CHRU de Nancy, Unité de Thérapie Cellulaire et Tissulaire (UTCT) (FR CNRS-INSERM-UL-CHU 3209), 54511 Vandoeuvre-Lès-Nancy, France
| | - L Zhang
- CNRS, GDRI 0851, France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, 54511 Vandoeuvre-Lès-Nancy, France.,Centre de Recherche, Calmette Hospital, Kunming, P.R. China
| | - J S Ye
- CNRS, GDRI 0851, France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, 54511 Vandoeuvre-Lès-Nancy, France.,Centre de Recherche, Calmette Hospital, Kunming, P.R. China
| | - N De Isla
- CNRS, UMR 7365, Biopole, Faculté de Médecine, 54500 Vandoeuvre-Lès-Nancy, France.,CNRS, GDRI 0851, France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, 54511 Vandoeuvre-Lès-Nancy, France
| |
Collapse
|
43
|
Destefani AC, Sirtoli GM, Nogueira BV. Advances in the Knowledge about Kidney Decellularization and Repopulation. Front Bioeng Biotechnol 2017; 5:34. [PMID: 28620603 PMCID: PMC5451511 DOI: 10.3389/fbioe.2017.00034] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/03/2017] [Indexed: 12/15/2022] Open
Abstract
End-stage renal disease (ESRD) is characterized by the progressive deterioration of renal function that may compromise different tissues and organs. The major treatment indicated for patients with ESRD is kidney transplantation. However, the shortage of available organs, as well as the high rate of organ rejection, supports the need for new therapies. Thus, the implementation of tissue bioengineering to organ regeneration has emerged as an alternative to traditional organ transplantation. Decellularization of organs with chemical, physical, and/or biological agents generates natural scaffolds, which can serve as basis for tissue reconstruction. The recellularization of these scaffolds with different cell sources, such as stem cells or adult differentiated cells, can provide an organ with functionality and no immune response after in vivo transplantation on the host. Several studies have focused on improving these techniques, but until now, there is no optimal decellularization method for the kidney available yet. Herein, an overview of the current literature for kidney decellularization and whole-organ recellularization is presented, addressing the pros and cons of the actual techniques already developed, the methods adopted to evaluate the efficacy of the procedures, and the challenges to be overcome in order to achieve an optimal protocol.
Collapse
Affiliation(s)
- Afrânio Côgo Destefani
- Tissue Engineering Core—LUCCAR, Morphology, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Postgraduate Program in Biotechnology/RENORBIO, Vitória, Brazil
| | - Gabriela Modenesi Sirtoli
- Tissue Engineering Core—LUCCAR, Morphology, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória, Brazil
| | - Breno Valentim Nogueira
- Tissue Engineering Core—LUCCAR, Morphology, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Postgraduate Program in Biotechnology/RENORBIO, Vitória, Brazil
| |
Collapse
|
44
|
Stoltz JF, Bensoussan D, De Isla N, Zhang L, Han Z, Magdalou J, Huselstein C, Ye J, Leballe B, Decot V, Reppel L. Stem cells and vascular regenerative medicine: A mini review. Clin Hemorheol Microcirc 2017; 64:613-633. [DOI: 10.3233/ch-168036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- J.-F. Stoltz
- CNRS, UMR 7365, Biopole, Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CHRU de Nancy, Unité de Thérapie Cellulaire et Tissulaire (UTCT) (FR CNRS-INSERM-UHP-CHU), Vandoeuvre-Lès-Nancy, France
| | - D. Bensoussan
- CNRS, UMR 7365, Biopole, Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CHRU de Nancy, Unité de Thérapie Cellulaire et Tissulaire (UTCT) (FR CNRS-INSERM-UHP-CHU), Vandoeuvre-Lès-Nancy, France
| | - N. De Isla
- CNRS, UMR 7365, Biopole, Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
| | - L. Zhang
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- Centre de Recherche, Calmette Hospital, Kunming, China
| | - Z. Han
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- Centre de Recvherche sur les cellules souches, Beijing et Tianjin, China
| | - J. Magdalou
- CNRS, UMR 7365, Biopole, Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
| | - C. Huselstein
- CNRS, UMR 7365, Biopole, Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
| | - J.S. Ye
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- Centre de Recherche, Calmette Hospital, Kunming, China
| | | | - V. Decot
- CNRS, UMR 7365, Biopole, Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CHRU de Nancy, Unité de Thérapie Cellulaire et Tissulaire (UTCT) (FR CNRS-INSERM-UHP-CHU), Vandoeuvre-Lès-Nancy, France
| | - L. Reppel
- CNRS, UMR 7365, Biopole, Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CNRS – GDRI France-Chine « Stem cells and Regenerative medicine », Faculté de Médecine, Vandoeuvre-Lès-Nancy, France
- CHRU de Nancy, Unité de Thérapie Cellulaire et Tissulaire (UTCT) (FR CNRS-INSERM-UHP-CHU), Vandoeuvre-Lès-Nancy, France
| |
Collapse
|
45
|
Li Y, Wu Q, Wang Y, Li L, Chen F, Shi Y, Bao J, Bu H. Construction of bioengineered hepatic tissue derived from human umbilical cord mesenchymal stem cells via aggregation culture in porcine decellularized liver scaffolds. Xenotransplantation 2017; 24. [PMID: 28127796 DOI: 10.1111/xen.12285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND An individualized, tissue-engineered liver suitable for transplanting into a patient with liver disease would be of great benefit to the patient and the healthcare system. The tissue-engineered liver would possess the functions of the original healthy organ. Two fields of study, (i) using decellularized tissue as cell scaffolding, and (ii) stem cell differentiation into functional cells, are coming together to make this concept feasible. The decellularized liver scaffolds (DLS) can interact with cells to promote cell differentiation and signal transduction and three-dimensional (3D) stem cell aggregations can maintain the phenotypes and improve functions of stem cells after differentiation by undergoing cell-cell contact. Although the effects of DLS and stem cell aggregation culture have been intensively studied, few observations about the interaction between the two have been achieved. METHODS We established a method that combines the use of decellularized liver scaffolds and aggregation culture of MSCs (3D-DLS) and explored the effects of the two on hepatic differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) in bioengineered hepatic tissue. RESULTS A higher percentage of albumin-producing cells, higher levels of liver-specific transcripts, higher urea cycle-related transcripts, and lower levels of stem cell-specific transcripts were observed in the 3D-DLS group when compared to that of hUC-MSCs in monolayer culture (2D), aggregation culture (3D), monolayer on DLS culture (2D-DLS). The gene arrays also indicated that 3D-DLS induced the differentiation from the hUC-MSC phenotype to the PHH phenotype. Liver-specific proteins albumin, CK-18, and glycogen storage were highly positive in the 3D-DLS group. Albumin secretion and ammonia conversion to urea were more effective with a higher cell survival rate in the 3D-DLS group for 14 days. CONCLUSION This DLS and aggregation combination culture system provides a novel method to improve hepatic differentiation, maintain phenotype of hepatocyte-like cells and sustain survival for 14 days in vitro. This is a promising strategy to use to construct bioengineered hepatic tissue.
Collapse
Affiliation(s)
- Yi Li
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Qiong Wu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yujia Wang
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Li Li
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Chen
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yujun Shi
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ji Bao
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Bu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
46
|
Irvine SA, Venkatraman SS. Bioprinting and Differentiation of Stem Cells. Molecules 2016; 21:E1188. [PMID: 27617991 PMCID: PMC6273261 DOI: 10.3390/molecules21091188] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/26/2016] [Accepted: 08/26/2016] [Indexed: 01/10/2023] Open
Abstract
The 3D bioprinting of stem cells directly into scaffolds offers great potential for the development of regenerative therapies; in particular for the fabrication of organ and tissue substitutes. For this to be achieved; the lineage fate of bioprinted stem cell must be controllable. Bioprinting can be neutral; allowing culture conditions to trigger differentiation or alternatively; the technique can be designed to be stimulatory. Such factors as the particular bioprinting technique; bioink polymers; polymer cross-linking mechanism; bioink additives; and mechanical properties are considered. In addition; it is discussed that the stimulation of stem cell differentiation by bioprinting may lead to the remodeling and modification of the scaffold over time matching the concept of 4D bioprinting. The ability to tune bioprinting properties as an approach to fabricate stem cell bearing scaffolds and to also harness the benefits of the cells multipotency is of considerable relevance to the field of biomaterials and bioengineering.
Collapse
Affiliation(s)
- Scott A Irvine
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Subbu S Venkatraman
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
47
|
Jung JP, Bhuiyan DB, Ogle BM. Solid organ fabrication: comparison of decellularization to 3D bioprinting. Biomater Res 2016; 20:27. [PMID: 27583168 PMCID: PMC5006370 DOI: 10.1186/s40824-016-0074-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/02/2016] [Indexed: 12/31/2022] Open
Abstract
Solid organ fabrication is an ultimate goal of Regenerative Medicine. Since the introduction of Tissue Engineering in 1993, functional biomaterials, stem cells, tunable microenvironments, and high-resolution imaging technologies have significantly advanced efforts to regenerate in vitro culture or tissue platforms. Relatively simple flat or tubular organs are already in (pre)clinical trials and a few commercial products are in market. The road to more complex, high demand, solid organs including heart, kidney and lung will require substantive technical advancement. Here, we consider two emerging technologies for solid organ fabrication. One is decellularization of cadaveric organs followed by repopulation with terminally differentiated or progenitor cells. The other is 3D bioprinting to deposit cell-laden bio-inks to attain complex tissue architecture. We reviewed the development and evolution of the two technologies and evaluated relative strengths needed to produce solid organs, with special emphasis on the heart and other tissues of the cardiovascular system.
Collapse
Affiliation(s)
- Jangwook P. Jung
- Department of Biomedical Engineering, University of Minnesota – Twin Cities, 312 Church St. SE, Minneapolis, MN 55455 USA
- Stem Cell Institute, University of Minnesota – Twin Cities, 312 Church St. SE, Minneapolis, MN 55455 USA
| | - Didarul B. Bhuiyan
- Department of Biomedical Engineering, University of Minnesota – Twin Cities, 312 Church St. SE, Minneapolis, MN 55455 USA
| | - Brenda M. Ogle
- Department of Biomedical Engineering, University of Minnesota – Twin Cities, 312 Church St. SE, Minneapolis, MN 55455 USA
- Stem Cell Institute, University of Minnesota – Twin Cities, 312 Church St. SE, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota – Twin Cities, 312 Church St. SE, Minneapolis, MN 55455 USA
- Lillehei Heart Institute, University of Minnesota – Twin Cities, 312 Church St. SE, Minneapolis, MN 55455 USA
- Institute for Engineering in Medicine, University of Minnesota – Twin Cities, 312 Church St. SE, Minneapolis, MN 55455 USA
| |
Collapse
|
48
|
Agmon G, Christman KL. Controlling stem cell behavior with decellularized extracellular matrix scaffolds. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2016; 20:193-201. [PMID: 27524932 PMCID: PMC4979580 DOI: 10.1016/j.cossms.2016.02.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Decellularized tissues have become a common regenerative medicine platform with multiple materials being researched in academic laboratories, tested in animal studies, and used clinically. Ideally, when a tissue is decellularized the native cell niche is maintained with many of the structural and biochemical cues that naturally interact with the cells of that particular tissue. This makes decellularized tissue materials an excellent platform for providing cells with the signals needed to initiate and maintain differentiation into tissue-specific lineages. The extracellular matrix (ECM) that remains after the decellularization process contains the components of a tissue specific microenvironment that is not possible to create synthetically. The ECM of each tissue has a different composition and structure and therefore has unique properties and potential for affecting cell behavior. This review describes the common methods for preparing decellularized tissue materials and the effects that decellularized materials from different tissues have on cell phenotype.
Collapse
|
49
|
Du C, Narayanan K, Leong MF, Ibrahim MS, Chua YP, Khoo VMH, Wan ACA. Functional Kidney Bioengineering with Pluripotent Stem-Cell-Derived Renal Progenitor Cells and Decellularized Kidney Scaffolds. Adv Healthc Mater 2016; 5:2080-91. [PMID: 27294565 DOI: 10.1002/adhm.201600120] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/20/2016] [Indexed: 11/11/2022]
Abstract
Recent advances in developmental biology and stem cell technology have led to the engineering of functional organs in a dish. However, the limited size of these organoids and absence of a large circulatory system poses limits to its clinical translation. To overcome these issues, decellularized whole kidney scaffolds with native microstructure and extracellular matrix (ECM) are employed for kidney bioengineering, using human-induced pluripotent-stem-cell-derived renal progenitor cells and endothelial cells. To demonstrate ECM-guided cellular assembly, the present work is focused on generating the functional unit of the kidney, the glomerulus. In the repopulated organ, the presence of endothelial cells broadly upregulates the expression level of genes related to renal development. When the cellularized native scaffolds are implanted in SCID mice, glomeruli assembly can be achieved by co-culture of the renal progenitors and endothelial cells. These individual glomerular units are shown to be functional in the context of the whole organ using a simulated bio-reactor set-up with urea and creatinine excretion and albumin reabsorption. Our results indicate that the repopulation of decellularized native kidney using clinically relevant, expandable patient-specific renal progenitors and endothelial cells may be a viable approach for the generation of a functional whole kidney.
Collapse
Affiliation(s)
- Chan Du
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| | - Karthikeyan Narayanan
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| | - Meng Fatt Leong
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| | | | - Ying Ping Chua
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| | - Vanessa Mei Hui Khoo
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| | - Andrew C. A. Wan
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way Singapore 138669 Singapore
| |
Collapse
|
50
|
Bao J, Wu Q, Wang Y, Li Y, Li L, Chen F, Wu X, Xie M, Bu H. Enhanced hepatic differentiation of rat bone marrow-derived mesenchymal stem cells in spheroidal aggregate culture on a decellularized liver scaffold. Int J Mol Med 2016; 38:457-65. [PMID: 27314916 PMCID: PMC4935452 DOI: 10.3892/ijmm.2016.2638] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/01/2016] [Indexed: 02/05/2023] Open
Abstract
In the present study, we aimed to determine whether the combination of aggregate culture and decellularized liver scaffolds (DLSs) promoted the hepatic differentiation of murine bone marrow-derived mesenchymal stem cells (BM-MSCs) into high yields of mature hepatocytes in vitro. Four culturing methods for differentiation [single cell (2D), spheroids (3D), 2D + DLS and 3D + DLS] were studied. To determine the differentiation stages of the MSCs, RT-qPCR of the hepatocyte genes, immunostaining of hepatocyte markers, and functional analyses were all performed. Compared with the other groups, hepatocyte-like cells which differentiated from BM-MSC spheroids on extracellular matrix (ECM) exhibited more intensive staining of stored glycogen, an elevated level of urea biosynthesis and albumin secretion as well as the higher expression of hepatocyte-specific genes. Our results indicated that DLSs combined with spheroidal aggregate culture may be used as an effective method to facilitate the hepatic maturation of BM-MSCs and may have future applications in stem cell-based liver regenerative medicine.
Collapse
Affiliation(s)
- Ji Bao
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiong Wu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yujia Wang
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yi Li
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Li Li
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fei Chen
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiujuan Wu
- Department of General Surgery, Yibin City First People's Hospital, Yibin, Sichuan 644000, P.R. China
| | - Mingjun Xie
- Department of General Surgery, Yibin City First People's Hospital, Yibin, Sichuan 644000, P.R. China
| | - Hong Bu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|