1
|
Zhou Q, Liu Q, Wang Y, Chen J, Schmid O, Rehberg M, Yang L. Bridging Smart Nanosystems with Clinically Relevant Models and Advanced Imaging for Precision Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308659. [PMID: 38282076 PMCID: PMC11005737 DOI: 10.1002/advs.202308659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 01/30/2024]
Abstract
Intracellular delivery of nano-drug-carriers (NDC) to specific cells, diseased regions, or solid tumors has entered the era of precision medicine that requires systematic knowledge of nano-biological interactions from multidisciplinary perspectives. To this end, this review first provides an overview of membrane-disruption methods such as electroporation, sonoporation, photoporation, microfluidic delivery, and microinjection with the merits of high-throughput and enhanced efficiency for in vitro NDC delivery. The impact of NDC characteristics including particle size, shape, charge, hydrophobicity, and elasticity on cellular uptake are elaborated and several types of NDC systems aiming for hierarchical targeting and delivery in vivo are reviewed. Emerging in vitro or ex vivo human/animal-derived pathophysiological models are further explored and highly recommended for use in NDC studies since they might mimic in vivo delivery features and fill the translational gaps from animals to humans. The exploration of modern microscopy techniques for precise nanoparticle (NP) tracking at the cellular, organ, and organismal levels informs the tailored development of NDCs for in vivo application and clinical translation. Overall, the review integrates the latest insights into smart nanosystem engineering, physiological models, imaging-based validation tools, all directed towards enhancing the precise and efficient intracellular delivery of NDCs.
Collapse
Affiliation(s)
- Qiaoxia Zhou
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Forensic PathologyWest China School of Preclinical and Forensic MedicineSichuan UniversityNo. 17 Third Renmin Road NorthChengdu610041China
- Burning Rock BiotechBuilding 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou510300China
| | - Qiongliang Liu
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Thoracic SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Yan Wang
- Qingdao Central HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Central Medical Group)Qingdao266042China
| | - Jie Chen
- Department of Respiratory MedicineNational Key Clinical SpecialtyBranch of National Clinical Research Center for Respiratory DiseaseXiangya HospitalCentral South UniversityChangshaHunan410008China
- Center of Respiratory MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Clinical Research Center for Respiratory Diseases in Hunan ProvinceChangshaHunan410008China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory DiseaseChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008P. R. China
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Lin Yang
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| |
Collapse
|
2
|
Baker A, Khan MS, Iqbal MZ, Khan MS. Tumor-targeted Drug Delivery by Nanocomposites. Curr Drug Metab 2021; 21:599-613. [PMID: 32433002 DOI: 10.2174/1389200221666200520092333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/30/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tumor-targeted delivery by nanoparticles is a great achievement towards the use of highly effective drug at very low doses. The conventional development of tumor-targeted delivery by nanoparticles is based on enhanced permeability and retention (EPR) effect and endocytosis based on receptor-mediated are very demanding due to the biological and natural complications of tumors as well as the restrictions on the design of the accurate nanoparticle delivery systems. METHODS Different tumor environment stimuli are responsible for triggered multistage drug delivery systems (MSDDS) for tumor therapy and imaging. Physicochemical properties, such as size, hydrophobicity and potential transform by MSDDS because of the physiological blood circulation different, intracellular tumor environment. This system accomplishes tumor penetration, cellular uptake improved, discharge of drugs on accurate time, and endosomal discharge. RESULTS Maximum drug delivery by MSDDS mechanism to target therapeutic cells and also tumor tissues and sub cellular organism. Poorly soluble compounds and bioavailability issues have been faced by pharmaceutical industries, which are resolved by nanoparticle formulation. CONCLUSION In our review, we illustrate different types of triggered moods and stimuli of the tumor environment, which help in smart multistage drug delivery systems by nanoparticles, basically a multi-stimuli sensitive delivery system, and elaborate their function, effects, and diagnosis.
Collapse
Affiliation(s)
- Abu Baker
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Mohd Salman Khan
- Clinical Biochemistry & Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Muhammad Zafar Iqbal
- Department of Studies and Research in Zoology, Government First Grade College, Karwar, 581301, India
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| |
Collapse
|
3
|
Piehler S, Dähring H, Grandke J, Göring J, Couleaud P, Aires A, Cortajarena AL, Courty J, Latorre A, Somoza Á, Teichgräber U, Hilger I. Iron Oxide Nanoparticles as Carriers for DOX and Magnetic Hyperthermia after Intratumoral Application into Breast Cancer in Mice: Impact and Future Perspectives. NANOMATERIALS 2020; 10:nano10061016. [PMID: 32466552 PMCID: PMC7352767 DOI: 10.3390/nano10061016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022]
Abstract
There is still a need for improving the treatment of breast cancer with doxorubicin (DOX). In this paper, we functionalized magnetic nanoparticles (MNPs) with DOX and studied the DOX-induced antitumor effects in breast cancer cells (BT474) in the presence of magnetic hyperthermia (43 °C, 1 h). We show that i) intratumoral application of DOX-functionalized MNPs (at least at a concentration of 9.6 nmol DOX/100 mm3 tumor volume) combined with magnetic hyperthermia favors tumor regression in vivo, and there is evidence for an increased effect compared to magnetic hyperthermia alone or to the intratumoral application of free DOX and ii) the presence of the pseudopeptide NucAnt (N6L) on the MNP surface might well be beneficial in its function as carrier for MNP internalization into breast cancer cells in vitro, which could further augment the possibility of the induction of intracellular heating spots and cell death in the future.
Collapse
Affiliation(s)
- Susann Piehler
- Institute for Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, D-07747 Jena, Germany; (S.P.); (H.D.); (J.G.); (J.G.); (U.T.)
| | - Heidi Dähring
- Institute for Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, D-07747 Jena, Germany; (S.P.); (H.D.); (J.G.); (J.G.); (U.T.)
| | - Julia Grandke
- Institute for Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, D-07747 Jena, Germany; (S.P.); (H.D.); (J.G.); (J.G.); (U.T.)
| | - Julia Göring
- Institute for Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, D-07747 Jena, Germany; (S.P.); (H.D.); (J.G.); (J.G.); (U.T.)
| | - Pierre Couleaud
- IMDEA Nanociencia & Nanobiotechnology Associated Unit (CNB-CSIC-IMDEA), 28049 Madrid, Spain; (P.C.); (A.A.); (A.L.C.); (A.L.); (Á.S.)
| | - Antonio Aires
- IMDEA Nanociencia & Nanobiotechnology Associated Unit (CNB-CSIC-IMDEA), 28049 Madrid, Spain; (P.C.); (A.A.); (A.L.C.); (A.L.); (Á.S.)
| | - Aitziber L. Cortajarena
- IMDEA Nanociencia & Nanobiotechnology Associated Unit (CNB-CSIC-IMDEA), 28049 Madrid, Spain; (P.C.); (A.A.); (A.L.C.); (A.L.); (Á.S.)
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Parque Tecnológico de San Sebastián, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - José Courty
- Laboratoire Croissance, Réparation et Régénération Tissulaire (CRRET), Université Paris EST Créteil, 94010 Créteil, France;
| | - Alfonso Latorre
- IMDEA Nanociencia & Nanobiotechnology Associated Unit (CNB-CSIC-IMDEA), 28049 Madrid, Spain; (P.C.); (A.A.); (A.L.C.); (A.L.); (Á.S.)
| | - Álvaro Somoza
- IMDEA Nanociencia & Nanobiotechnology Associated Unit (CNB-CSIC-IMDEA), 28049 Madrid, Spain; (P.C.); (A.A.); (A.L.C.); (A.L.); (Á.S.)
| | - Ulf Teichgräber
- Institute for Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, D-07747 Jena, Germany; (S.P.); (H.D.); (J.G.); (J.G.); (U.T.)
| | - Ingrid Hilger
- Institute for Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, D-07747 Jena, Germany; (S.P.); (H.D.); (J.G.); (J.G.); (U.T.)
- Correspondence: ; Tel.: +49-3641-9325921
| |
Collapse
|
4
|
Liu Z, Shi J, Zhu B, Xu Q. Development of a multifunctional gold nanoplatform for combined chemo-photothermal therapy against oral cancer. Nanomedicine (Lond) 2020; 15:661-676. [DOI: 10.2217/nnm-2019-0415] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To design and fabricate a multifunctional drug-delivery nanoplatform for oral cancer therapy. Materials & methods: Polyethylene glycol-stabilized, PDPN antibody (PDPN Ab)- and doxorubicin (DOX)-conjugated gold nanoparticles (AuNPs) were prepared and evaluated for their cytotoxicity and antitumor efficacy in both chemotherapy and photothermal therapy. Results: The obtained (PDPN Ab)-AuNP-DOX system presents low toxicity, a high drug loading capacity and cellular uptake efficiency. Both in vitro and in vivo experiments demonstrate that (PDPN Ab)-AuNP-DOX has enhanced antitumor efficacy. Treatment with (PDPN Ab)-AuNP-DOX combined with laser irradiation exhibits superior antitumor effects. Conclusion: This (PDPN Ab)-AuNP-DOX system may be used as a versatile drug-delivery nanoplatform for targeted and combined chemo-photothermal therapy against oral cancer.
Collapse
Affiliation(s)
- Zengying Liu
- Department of Oral & Maxillofacial-Head Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Jianbo Shi
- Department of Oral & Maxillofacial-Head Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Bangshang Zhu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Qin Xu
- Department of Oral & Maxillofacial-Head Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| |
Collapse
|
5
|
Stras S, Howe A, Prasad A, Salerno D, Bhatavdekar O, Sofou S. Growth of Metastatic Triple-Negative Breast Cancer Is Inhibited by Deep Tumor-Penetrating and Slow Tumor-Clearing Chemotherapy: The Case of Tumor-Adhering Liposomes with Interstitial Drug Release. Mol Pharm 2019; 17:118-131. [PMID: 31825626 DOI: 10.1021/acs.molpharmaceut.9b00812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The poor prognosis of triple-negative breast cancer (TNBC) is attributed largely to the lack of tumor-selective therapeutic modalities that effectively deliver lethal doses at the sites of metastatic disease. Tumor-selective drug delivery strategies that aim to improve uniformity in intratumoral drug microdistributions and to prolong exposure of these cancer cells to delivered therapeutics may improve therapeutic efficacy against established TNBC metastases. In this study, we present lipid carriers for selective (due to their nanometer size) tumor delivery, which are loaded with cisplatin and designed to exhibit the following properties when in the tumor interstitium: (1) interstitial drug release (for deeper tumor penetration of cisplatin) and/or (2) intratumoral/interstitial adhesion of the carriers to tumors' extracellular matrix (ECM)-not accompanied by cell internalization-for delayed tumor clearance of carriers prolonging cancer cell exposure to the cisplatin being released. We show that on large multicellular spheroids, used as surrogates of avascular solid tumor regions, greater growth inhibition was strongly correlated with spatially more uniform drug concentrations (due to interstitial drug release) and with longer exposure to the released drug (i.e., higher time-integrated drug concentrations enabled by slow clearing of adhesive nanoparticles). Lipid nanoparticles with both the release and adhesion properties were the most effective, followed by nanoparticles with only the releasing property and then by nanoparticles with only the adhering property. In vivo, cisplatin-loaded nanoparticles with releasing and/or adhering properties significantly inhibited the growth of spontaneous TNBC metastases compared to conventional liposomal cisplatin, and the efficacy of different property combinations followed the same trends as in spheroids. This study demonstrates the therapeutic potential of a general strategy to bypass treatment limitations of established TNBC metastases due to the lack of cell-targeting markers: aiming to optimize the temporal intratumoral drug microdistributions for more uniform and prolonged drug exposure.
Collapse
Affiliation(s)
- Sally Stras
- Department of Chemical and Biochemical Engineering , Rutgers University , 599 Taylor Road , Piscataway , New Jersey 08854 , United States
| | - Alaina Howe
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Aprameya Prasad
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Dominick Salerno
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Omkar Bhatavdekar
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Stavroula Sofou
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| |
Collapse
|
6
|
Lu M, Chen F, Cao C, Garvey CJ, Fletcher NL, Houston ZH, Lu H, Lord MS, Thurecht KJ, Stenzel MH. Importance of Polymer Length in Fructose-Based Polymeric Micelles for an Enhanced Biological Activity. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02381] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Mingxia Lu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Fan Chen
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Cheng Cao
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Australia Nuclear
Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Christopher J. Garvey
- Australia Nuclear
Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Nicholas L. Fletcher
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Zachary H. Houston
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Hongxu Lu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Megan S. Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kristofer J. Thurecht
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Lu H, Stenzel MH. Multicellular Tumor Spheroids (MCTS) as a 3D In Vitro Evaluation Tool of Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1702858. [PMID: 29450963 DOI: 10.1002/smll.201702858] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/13/2017] [Indexed: 05/23/2023]
Abstract
Multicellular tumor spheroid models (MCTS) are often coined as 3D in vitro models that can mimic the microenvironment of tissues. MCTS have gained increasing interest in the nano-biotechnology field as they can provide easily accessible information on the performance of nanoparticles without using animal models. Considering that many countries have put restrictions on animals testing, which will only tighten in the future as seen by the recent developments in the Netherlands, 3D models will become an even more valuable tool. Here, an overview on MCTS is provided, focusing on their use in cancer research as most nanoparticles are tested in MCTS for treatment of primary tumors. Thereafter, various types of nanoparticles-from self-assembled block copolymers to inorganic nanoparticles, are discussed. A range of physicochemical parameters including the size, shape, surface chemistry, ligands attachment, stability, and stiffness are found to influence nanoparticles in MCTS. Some of these studies are complemented by animal studies confirming that lessons from MCTS can in part predict the behaviour in vivo. In summary, MCTS are suitable models to gain additional information on nanoparticles. While not being able to replace in vivo studies, they can bridge the gap between traditional 2D in vitro studies and in vivo models.
Collapse
Affiliation(s)
- Hongxu Lu
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales, 2052, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
8
|
Lu H, Noorani L, Jiang Y, Du AW, Stenzel MH. Penetration and drug delivery of albumin nanoparticles into pancreatic multicellular tumor spheroids. J Mater Chem B 2017; 5:9591-9599. [PMID: 32264572 DOI: 10.1039/c7tb02902k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Albumin-based nanoparticles have been exploited as a useful carrier for the efficient delivery of anti-cancer drugs. In this study, albendazole was encapsulated into bovine serum albumin (BSA)-polycaprolactone (PCL) conjugates and the formed nanoparticles with a size about 100 nm were used to treat pancreatic carcinoma cells. In addition, two more types of albendazole-loaded BSA nanoparticles, 10 nm and 200 nm ones, were prepared using a desolvation method. The albendazole-loaded BSA nanoparticles were evaluated with both 2D cultured AsPC-1 cells and 3D multicellular tumor spheroids (MCTS). Their anti-tumor effects were also compared. BSA-PCL nanoparticles and 200 nm BSA nanoparticles showed noticeable cytotoxicity to 2D cultured AsPC-1 cells when compared to the free drug. The penetration of BSA-PCL nanoparticles and 200 nm BSA nanoparticles, especially the BSA-PCL nanoparticles, enabled effective delivery of albendazole into pancreatic MCTS. BSA-PCL nanoparticles also showed a better inhibition effect on the growth of pancreatic MCTS than the 200 nm counterpart. Although 10 nm BSA nanoparticles inhibited the growth of MCTS, the inhibitory effect was even less than that of free albendazole. In addition, it is also found that SPARC protein facilitates the penetration and drug delivery of albumin nanoparticle since treatment using anti-SPARC antibody decreased the efficacy of drug loaded BSA nanoparticles.
Collapse
Affiliation(s)
- Hongxu Lu
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia.
| | | | | | | | | |
Collapse
|
9
|
Locke T, Sofou S. Clustered versus Uniform Display of GALA-Peptides on Carrier Nanoparticles: Enhancing the Permeation of Noncharged Fluid Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13625-13633. [PMID: 29096061 DOI: 10.1021/acs.langmuir.7b03706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
GALA-peptide is a random coil in neutral pH; in acidic pH, it becomes an amphipathic α-helix that aggregates in solution, possibly via its hydrophobic facet that runs along the helix's long axis. In the presence of fluid lipid membranes, the GALA-helix exhibits membrane-active properties that originate from the same hydrophobic facet; these properties make GALA a candidate for inclusion in drug delivery systems requiring permeation of the endosomal membrane to enable drug escape into the cytoplasm. Previous work has shown that the uniform functionalization of carrier nanoparticles with GALA-peptides improved their membrane activity and enhanced the endosomal escape of delivered therapeutics. The present study aims to evaluate the potential role of altering membrane activity via cluster-displayed GALA-peptides (for higher local valency) on the surface of carrier nanoparticles. The presentation of GALA-peptides on carrier nanoparticles was also designed to be pH-dependent. The peptide display on the surface of the carrier nanoparticles was uniform in neutral pH; in the acidic endosomal pH, the surface of nanocarriers formed domains (patches) with high local densities of GALA-peptides. The interactions between GALA-functionalized carrier nanoparticles and target lipid vesicles, utilized as endosome membrane surrogates that were used to primarily capture the fluid nature of these membranes, were studied as a function of pH. At endosomal pH values, ranging from 5.5 to 5.0, the greatest permeability of target membranes was induced by nanocarriers with clustered rather than uniformly displayed GALA. This enhancing effect had an optimum; at even more acidic pH values, too close an approximation of GALA-peptides residing within the same patches resulted in preferential intrapatch peptide interactions rather than interactions with the apposing target lipid membranes. This behavior could have the same physicochemical origin as the aforementioned GALA-peptide aggregation, observed in solution with decreasing pH at increasing peptide concentrations. The findings of this study support the potential of utilizing the clustered display of GALA-peptides on carrier nanoparticles to increase the permeation of fluid membranes used herein to capture this critical physical property of endosomal membranes and therefore to ultimately improve the endosomal escape of delivered therapeutics, enhancing therapeutic efficacy.
Collapse
Affiliation(s)
- Trevan Locke
- Department of Chemical and Biochemical Engineering, ‡Department of Biomedical Engineering, and §The Rutgers Center for Lipid Research, Rutgers University , 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Stavroula Sofou
- Department of Chemical and Biochemical Engineering, ‡Department of Biomedical Engineering, and §The Rutgers Center for Lipid Research, Rutgers University , 599 Taylor Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
10
|
Jurj A, Braicu C, Pop LA, Tomuleasa C, Gherman CD, Berindan-Neagoe I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des Devel Ther 2017; 11:2871-2890. [PMID: 29033548 PMCID: PMC5628667 DOI: 10.2147/dddt.s142337] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the last few years, nanostructures have gained considerable interest for the safe delivery of therapeutic agents. Several therapeutic approaches have been reported, such as molecular diagnosis, disease detection, nanoscale immunotherapy and anticancer drug delivery that could be integrated into clinical use. The current paper aims to highlight the background that supports the use of nanoparticles conjugated with different types of therapeutic agents, applicable in targeted therapy and cancer research, with a special emphasis on hematological malignancies. A particular key point is the functional characterization of nonviral delivery systems, such as gold nanoparticles, liposomes and dendrimers. The paper also presents relevant published data related to microRNA and RNA interference delivery using nanoparticles in cancer therapy.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| | - Laura-Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
- Department of Hematology, The Oncology Institute “Prof Dr Ion Chiricuta”, Cluj-Napoca, Romania
| | - Claudia Diana Gherman
- Practical Abilities, Department of Medical Education, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
- Department of Medical Education, University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof Dr Ion Chiricuta”, Cluj-Napoca, Romania
- MedFuture Research Center for Advanced Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| |
Collapse
|
11
|
Lee Y, Thompson DH. Stimuli-responsive liposomes for drug delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:10.1002/wnan.1450. [PMID: 28198148 PMCID: PMC5557698 DOI: 10.1002/wnan.1450] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 12/25/2022]
Abstract
The ultimate goal of drug delivery is to increase the bioavailability and reduce the toxic side effects of the active pharmaceutical ingredient (API) by releasing them at a specific site of action. In the case of antitumor therapy, association of the therapeutic agent with a carrier system can minimize damage to healthy, nontarget tissues, while limit systemic release and promoting long circulation to enhance uptake at the cancerous site due to the enhanced permeation and retention effect (EPR). Stimuli-responsive systems have become a promising way to deliver and release payloads in a site-selective manner. Potential carrier systems have been derived from a wide variety of materials, including inorganic nanoparticles, lipids, and polymers that have been imbued with stimuli-sensitive properties to accomplish triggered release based on an environmental cue. The unique features in the tumor microenvironment can serve as an endogenous stimulus (pH, redox potential, or unique enzymatic activity) or the locus of an applied external stimulus (heat or light) to trigger the controlled release of API. In liposomal carrier systems triggered release is generally based on the principle of membrane destabilization from local defects within bilayer membranes to effect release of liposome-entrapped drugs. This review focuses on the literature appearing between November 2008-February 2016 that reports new developments in stimuli-sensitive liposomal drug delivery strategies using pH change, enzyme transformation, redox reactions, and photochemical mechanisms of activation. WIREs Nanomed Nanobiotechnol 2017, 9:e1450. doi: 10.1002/wnan.1450 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Y Lee
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - D H Thompson
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
12
|
Alpha-particle radiotherapy: For large solid tumors diffusion trumps targeting. Biomaterials 2017; 130:67-75. [DOI: 10.1016/j.biomaterials.2017.03.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 12/29/2022]
|
13
|
Ringhieri P, Mannucci S, Conti G, Nicolato E, Fracasso G, Marzola P, Morelli G, Accardo A. Liposomes derivatized with multimeric copies of KCCYSL peptide as targeting agents for HER-2-overexpressing tumor cells. Int J Nanomedicine 2017; 12:501-514. [PMID: 28144135 PMCID: PMC5245980 DOI: 10.2147/ijn.s113607] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mixed liposomes, obtained by coaggregation of 1,2-dioleoyl-sn-glycero-3-phosphocholine and of the synthetic monomer containing a gadolinium complex ([C18]2DTPA[Gd]) have been prepared. Liposomes externally decorated with KCCYSL (P6.1 peptide) sequence in its monomeric, dimeric, and tetrameric forms are studied as target-selective delivery systems toward cancer cells overexpressing human epidermal growth factor receptor-2 (HER-2) receptors. Derivatization of liposomal surface with targeting peptides is achieved using the postmodification method: the alkyne-peptide derivative Pra-KCCYSL reacts, through click chemistry procedures, with a synthetic surfactant modified with 1, 2, or 4 azido moieties previously inserted in liposome formulation. Preliminary in vitro data on MDA-MB-231 and BT-474 cells indicated that liposomes functionalized with P6.1 peptide in its tetrameric form had better binding to and uptake into BT-474 cells compared to liposomes decorated with monomeric or dimeric versions of the P6.1 peptide. BT-474 cells treated with liposomes functionalized with the tetrameric form of P6.1 showed high degree of liposome uptake, which was comparable with the uptake of anti-HER-2 antibodies such as Herceptin. Moreover, magnetic MRI experiments have demonstrated the potential of liposomes to act as MRI contrast agents.
Collapse
Affiliation(s)
- Paola Ringhieri
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Napoli
| | | | - Giamaica Conti
- Department of Neurological Biomedical and Movement Sciences
| | - Elena Nicolato
- Department of Neurological Biomedical and Movement Sciences
| | | | | | - Giancarlo Morelli
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Napoli
| | - Antonella Accardo
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Napoli
| |
Collapse
|
14
|
Chen B, Dai W, He B, Zhang H, Wang X, Wang Y, Zhang Q. Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment. Theranostics 2017; 7:538-558. [PMID: 28255348 PMCID: PMC5327631 DOI: 10.7150/thno.16684] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
The development of traditional tumor-targeted drug delivery systems based on EPR effect and receptor-mediated endocytosis is very challenging probably because of the biological complexity of tumors as well as the limitations in the design of the functional nano-sized delivery systems. Recently, multistage drug delivery systems (Ms-DDS) triggered by various specific tumor microenvironment stimuli have emerged for tumor therapy and imaging. In response to the differences in the physiological blood circulation, tumor microenvironment, and intracellular environment, Ms-DDS can change their physicochemical properties (such as size, hydrophobicity, or zeta potential) to achieve deeper tumor penetration, enhanced cellular uptake, timely drug release, as well as effective endosomal escape. Based on these mechanisms, Ms-DDS could deliver maximum quantity of drugs to the therapeutic targets including tumor tissues, cells, and subcellular organelles and eventually exhibit the highest therapeutic efficacy. In this review, we expatiate on various responsive modes triggered by the tumor microenvironment stimuli, introduce recent advances in multistage nanoparticle systems, especially the multi-stimuli responsive delivery systems, and discuss their functions, effects, and prospects.
Collapse
Affiliation(s)
- Binlong Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yiguang Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| |
Collapse
|
15
|
Luo W, Wen G, Yang L, Tang J, Wang J, Wang J, Zhang S, Zhang L, Ma F, Xiao L, Wang Y, Li Y. Dual-targeted and pH-sensitive Doxorubicin Prodrug-Microbubble Complex with Ultrasound for Tumor Treatment. Am J Cancer Res 2017; 7:452-465. [PMID: 28255342 PMCID: PMC5327360 DOI: 10.7150/thno.16677] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/25/2016] [Indexed: 01/24/2023] Open
Abstract
In this study, we investigated the potential of a dual-targeted pH-sensitive doxorubicin prodrug-microbubble complex (DPMC) in ultrasound (US)-assisted antitumor therapy. The doxorubicin prodrug (DP) consists of a succinylated-heparin carrier conjugated with doxorubicin (DOX) via hydrazone linkage and decorated with dual targeting ligands, folate and cRGD peptide. Combination of microbubble (MB) and DP, generated via avidin-biotin binding, promoted intracellular accumulation and improved therapeutic efficiency assisted by US cavitation and sonoporation. Aggregates of prepared DP were observed with an inhomogeneous size distribution (average diameters: 149.6±29.8 nm and 1036.2±38.8 nm, PDI: 1.0) while DPMC exhibited a uniform distribution (average diameter: 5.804±2.1 μm), facilitating its usage for drug delivery. Notably, upon US exposure, DPMC was disrupted and aggregated DP dispersed into homogeneous small-sized nanoparticles (average diameter: 128.6±42.3 nm, PDI: 0.21). DPMC could target to angiogenic endothelial cells in tumor region via αvβ3-mediated recognition and subsequently facilitate its specific binding to tumor cells mediated via recognition of folate receptor (FR) after US exposure. In vitro experiments showed higher tumor specificity and killing ability of DPMC with US than free DOX and DP for breast cancer MCF-7 cells. Furthermore, significant accumulation and specificity for tumor tissues of DPMC with US were detected using in vivo fluorescence and ultrasound molecular imaging, indicating its potential to integrate tumor imaging and therapy. In particular, through inducing apoptosis, inhibiting cell proliferation and antagonizing angiogenesis, DPMC with US produced higher tumor inhibition rates than DOX or DPMC without US in MCF-7 xenograft tumor-bearing mice while inducing no obvious body weight loss. Our strategy provides an effective platform for the delivery of large-sized or aggregated particles to tumor sites, thereby extending their therapeutic applications in vivo.
Collapse
|
16
|
Stras S, Holleran T, Howe A, Sofou S. Interstitial Release of Cisplatin from Triggerable Liposomes Enhances Efficacy against Triple Negative Breast Cancer Solid Tumor Analogues. Mol Pharm 2016; 13:3224-33. [PMID: 27482716 DOI: 10.1021/acs.molpharmaceut.6b00439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Liposomal cisplatin, a promising triple negative breast cancer treatment modality, has been shown to decrease toxicities associated with cisplatin's free agent form. However, the heterogeneous intratumoral distributions of the liposomes themselves, combined with limited release of cisplatin from them contribute to limited penetration of cisplatin within tumors reducing efficacy. This study uses pH-responsive liposomes designed to release cisplatin within the acidic tumor interstitium (7.0 > pH ≥ 6.0) with a dual aim (1) to improve the penetration of the free drug within tumors on the assumption of greater diffusivities based on the free drug's much smaller size than its carrier's size and (2) to increase the availability of the free agent near cancer cells deep into the tumor. On cell monolayers treated with pH-releasing liposomal cisplatin, acidification of the extracellular solution resulted in decreased LD50 values, which were significantly lower than the LD50 values for non-pH-releasing liposomal cisplatin. In multicellular spheroids with acidic interstitia, pH-releasing liposomal cisplatin significantly decreased spheroid volumes relative to non-pH-releasing liposomal cisplatin. Improved efficacy was correlated with increased spheroid penetration of a fluorescent cisplatin surrogate. These findings demonstrate that interstitial release of cisplatin by pH-responsive liposomes may improve the intratumoral distributions of the free drug enhancing efficacy.
Collapse
Affiliation(s)
- Sally Stras
- Chemical and Biochemical Engineering, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Timothy Holleran
- Biomedical Engineering, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Alaina Howe
- Chemical and Biochemical Engineering, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Stavroula Sofou
- Chemical and Biochemical Engineering, Rutgers University , Piscataway, New Jersey 08854, United States.,Biomedical Engineering, Rutgers University , Piscataway, New Jersey 08854, United States.,The Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, & Health, Rutgers University , Piscataway, New Jersey 08854, United States
| |
Collapse
|
17
|
Borghese C, Agostini F, Durante C, Colombatti A, Mazzucato M, Aldinucci D. Clinical-grade quality platelet-rich plasma releasate (PRP-R/SRGF) from CaCl2 -activated platelet concentrates promoted expansion of mesenchymal stromal cells. Vox Sang 2016; 111:197-205. [PMID: 27077937 DOI: 10.1111/vox.12405] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 02/29/2016] [Accepted: 03/11/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVES The aim of our study was to test a platelet-rich plasma releasate (PRP-R/SRGF) from CaCl2 -activated platelets as a source of growth factors for the expansion of mesenchymal stromal cells (MSCs). PRP-R/SRGF, obtained with a low-cost procedure, is characterized by a reduced variability of growth factor release. MATERIALS AND METHODS PRP-R/SRGF is a clinical-grade quality solution obtained from CaCl2 -activated platelets. Its activity was evaluated by measuring the proliferation, the phenotype, the differentiation potential and the immunosuppressive properties of MSCs derived from bone marrow (BM) and adipose tissue (AT). RESULTS PRP-R/SRGF was more active than FBS to expand BM- and AT-derived MSCs. PRP-R/SRGF treatment did not affect the expression of typical MSCs surface markers, neither MSCs differentiation potential nor their capability to inhibit activated T-cell proliferation. CONCLUSIONS The clinical-grade PRP-R/SRGF may be used in the clinical setting for the expansion of MSCs.
Collapse
Affiliation(s)
- C Borghese
- Experimental Oncology 2, C.R.O. National Cancer Institute-IRCCS Aviano, Aviano, Italy
| | - F Agostini
- Unit of Stem Cells Collection and Processing Unit, CRO Aviano, National Cancer Institute-IRCCS Aviano, Aviano, Italy
| | - C Durante
- Unit of Stem Cells Collection and Processing Unit, CRO Aviano, National Cancer Institute-IRCCS Aviano, Aviano, Italy
| | - A Colombatti
- Experimental Oncology 2, C.R.O. National Cancer Institute-IRCCS Aviano, Aviano, Italy
| | - M Mazzucato
- Unit of Stem Cells Collection and Processing Unit, CRO Aviano, National Cancer Institute-IRCCS Aviano, Aviano, Italy
| | - D Aldinucci
- Experimental Oncology 2, C.R.O. National Cancer Institute-IRCCS Aviano, Aviano, Italy
| |
Collapse
|
18
|
The Electrorotation as a Tool to Monitor the Dielectric Properties of Spheroid During the Permeabilization. J Membr Biol 2016; 249:593-600. [DOI: 10.1007/s00232-016-9880-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/15/2016] [Indexed: 11/26/2022]
|
19
|
Luo JW, Zhang T, Zhang Q, Cao X, Zeng X, Fu Y, Zhang ZR, Gong T. A novel injectable phospholipid gel co-loaded with doxorubicin and bromotetrandrine for resistant breast cancer treatment by intratumoral injection. Colloids Surf B Biointerfaces 2015; 140:538-547. [PMID: 26628333 DOI: 10.1016/j.colsurfb.2015.11.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/13/2015] [Accepted: 11/12/2015] [Indexed: 11/28/2022]
Abstract
Systemically administered anticancer treatments were greatly limited by extensive side effects mainly due to nonspecific distributions in vivo, and multidrug resistance in various tumors. A phospholipids-based in situ-forming gel platform has been developed for the concurrent delivery of doxorubicin (DOX) and bromotetrandrin (W198). Phospholipid gel containing DOX and W198 remained in a solution (sol) state before injection and underwent rapid gelation after injection in vivo. The release of DOX and W198 from phospholipid gel (PG) was sustained in vitro for over 20 days (d). DOX and W198 from PG achieved prolonged release for over two weeks in rats via subcutaneous injection. Compared with repeated injections of free drug, eliminated cardiac toxicity and less bone marrow inhibition were observed for DOX and W198-loaded PG (DOX/W198-PG) in normal rats via subcutaneous injection. Also, a single intratumoral injection of DOX/W198-PG in the resistant MCF-7/Adr xenograft-bearing mice showed much better antitumor efficacy compared to other treatment groups. In sum, DOX/W198-PG was well demonstrated to achieve sustained drug release both in vitro and in vivo with eliminated toxicity and improved antitumor efficacy by reversing the multidrug resistance in breast cancers.
Collapse
Affiliation(s)
- Jing-Wen Luo
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Ting Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Quan Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xi Cao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zeng
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Yao Fu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Zhi-Rong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
20
|
Olekson MAP, Faulknor R, Bandekar A, Sempkowski M, Hsia HC, Berthiaume F. SDF-1 liposomes promote sustained cell proliferation in mouse diabetic wounds. Wound Repair Regen 2015; 23:711-23. [PMID: 26110250 DOI: 10.1111/wrr.12334] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 06/22/2015] [Indexed: 01/12/2023]
Abstract
Chronic skin wounds are a common complication of diabetes. When standard wound care fails to heal such wounds, a promising approach consists of using decellularized matrices and other porous scaffold materials to promote the restoration of skin. Proper revascularization is critical for the efficacy of such materials in regenerative medicine. Stromal cell-derived factor-1 (SDF-1) is a chemokine known to play a key role for angiogenesis in ischemic tissues. Herein we developed nanosized SDF-1 liposomes, which were then incorporated into decellularized dermis scaffolds used for skin wound healing applications. SDF-1 peptide associated with liposomes with an efficiency of 80%, and liposomes were easily dispersed throughout the acellular dermis. Acellular dermis spiked with SDF-1 liposomes exhibited more persistent cell proliferation in the dermis, especially in CD31(+) areas, compared to acellular dermis spiked with free SDF-1, which resulted in increased improved wound closure at day 21, and increased granulation tissue thickness at day 28. SDF-1 liposomes may increase the performance of a variety of decellularized matrices used in tissue engineering.
Collapse
Affiliation(s)
| | - Renea Faulknor
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Amey Bandekar
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Michelle Sempkowski
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Henry C Hsia
- Department of Surgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - François Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
21
|
Sandoval S, Mendez N, Alfaro JG, Yang J, Aschemeyer S, Liberman A, Trogler WC, Kummel AC. Quantification of endocytosis using a folate functionalized silica hollow nanoshell platform. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:88003. [PMID: 26315280 PMCID: PMC5996829 DOI: 10.1117/1.jbo.20.8.088003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/27/2015] [Indexed: 06/04/2023]
Abstract
A quantification method to measure endocytosis was designed to assess cellular uptake and specificity of a targeting nanoparticle platform. A simple N -hydroxysuccinimide ester conjugation technique to functionalize 100-nm hollow silica nanoshell particles with fluorescent reporter fluorescein isothiocyanate and folate or polyethylene glycol (PEG) was developed. Functionalized nanoshells were characterized using scanning electron microscopy and transmission electron microscopy and the maximum amount of folate functionalized on nanoshell surfaces was quantified with UV-Vis spectroscopy. The extent of endocytosis by HeLa cervical cancer cells and human foreskin fibroblast (HFF-1) cells was investigated in vitro using fluorescence and confocal microscopy. A simple fluorescence ratio analysis was developed to quantify endocytosis versus surface adhesion. Nanoshells functionalized with folate showed enhanced endocytosis by cancer cells when compared to PEG functionalized nanoshells. Fluorescence ratio analyses showed that 95% of folate functionalized silica nanoshells which adhered to cancer cells were endocytosed, while only 27% of PEG functionalized nanoshells adhered to the cell surface and underwent endocytosis when functionalized with 200 and 900 μg , respectively. Additionally, the endocytosis of folate functionalized nanoshells proved to be cancer cell selective while sparing normal cells. The developed fluorescence ratio analysis is a simple and rapid verification/validation method to quantify cellular uptake between datasets by using an internal control for normalization.
Collapse
Affiliation(s)
- Sergio Sandoval
- University of California, San Diego, Moores Cancer Center, Department of Bioengineering, CalIT Nanomedicine Laboratory, La Jolla, California 92093, United States
| | - Natalie Mendez
- University of California, San Diego, Department of Nanoengineering, Chemical Engineering, and Material Science, La Jolla, California 92093, United States
| | - Jesus G. Alfaro
- University of California, San Diego, Department of Nanoengineering, Chemical Engineering, and Material Science, La Jolla, California 92093, United States
| | - Jian Yang
- University of California, San Diego, Department of Nanoengineering, Chemical Engineering, and Material Science, La Jolla, California 92093, United States
| | - Sharraya Aschemeyer
- University of California, San Diego, Department of Chemistry and Biochemistry, La Jolla, California 92093, United States
| | - Alex Liberman
- University of California, San Diego, Department of Nanoengineering, Chemical Engineering, and Material Science, La Jolla, California 92093, United States
| | - William C. Trogler
- University of California, San Diego, Department of Chemistry and Biochemistry, La Jolla, California 92093, United States
| | - Andrew C. Kummel
- University of California, San Diego, Department of Chemistry and Biochemistry, La Jolla, California 92093, United States
| |
Collapse
|
22
|
Cabeza L, Ortiz R, Arias JL, Prados J, Ruiz Martínez MA, Entrena JM, Luque R, Melguizo C. Enhanced antitumor activity of doxorubicin in breast cancer through the use of poly(butylcyanoacrylate) nanoparticles. Int J Nanomedicine 2015; 10:1291-306. [PMID: 25709449 PMCID: PMC4335619 DOI: 10.2147/ijn.s74378] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The use of doxorubicin (DOX), one of the most effective antitumor molecules in the treatment of metastatic breast cancer, is limited by its low tumor selectivity and its severe side effects. Colloidal carriers based on biodegradable poly(butylcyanoacrylate) nanoparticles (PBCA NPs) may enhance DOX antitumor activity against breast cancer cells, thus allowing a reduction of the effective dose required for antitumor activity and consequently the level of associated toxicity. DOX loading onto PBCA NPs was investigated in this work via both drug entrapment and surface adsorption. Cytotoxicity assays with DOX-loaded NPs were performed in vitro using breast tumor cell lines (MCF-7 human and E0771 mouse cancer cells), and in vivo evaluating antitumor activity in immunocompetent C57BL/6 mice. The entrapment method yielded greater drug loading values and a controlled drug release profile. Neither in vitro nor in vivo cytotoxicity was observed for blank NPs. The 50% inhibitory concentration (IC50) of DOX-loaded PBCA NPs was significantly lower for MCF-7 and E0771 cancer cells (4 and 15 times, respectively) compared with free DOX. Furthermore, DOX-loaded PBCA NPs produced a tumor growth inhibition that was 40% greater than that observed with free DOX, thus reducing DOX toxicity during treatment. These results suggest that DOX-loaded PBCA NPs have great potential for improving the efficacy of DOX therapy against advanced breast cancers.
Collapse
Affiliation(s)
- Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada, Spain
| | - Raúl Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada, Spain
- Department of Health Science, University of Jaén, Jaén, Spain
| | - José L Arias
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada, Spain
- Biosanitary Institute of Granada (ibs GRANADA), SAS-Universidad de Granada, Granada, Spain
| | | | - José M Entrena
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain
- Animal Behavior Research Unit, Scientific Instrumentation Center, University of Granada, Armilla, Granada, Spain
| | - Raquel Luque
- Service of Medical Oncology, Virgen de las Nieves Hospital, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Granada, Spain
- Biosanitary Institute of Granada (ibs GRANADA), SAS-Universidad de Granada, Granada, Spain
| |
Collapse
|
23
|
Lu H, Utama RH, Kitiyotsawat U, Babiuch K, Jiang Y, Stenzel MH. Enhanced transcellular penetration and drug delivery by crosslinked polymeric micelles into pancreatic multicellular tumor spheroids. Biomater Sci 2015. [DOI: 10.1039/c4bm00323c] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The penetration of HPMA-based micelles into multicellular tumor spheroids depends on transcellular transport from peripheral to inner cells. Stabilisation by crosslinking facilitated the penetration.
Collapse
Affiliation(s)
- Hongxu Lu
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Robert H. Utama
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia
| | | | - Krzysztof Babiuch
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Yanyan Jiang
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| |
Collapse
|
24
|
Ruan S, Yuan M, Zhang L, Hu G, Chen J, Cun X, Zhang Q, Yang Y, He Q, Gao H. Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials 2014; 37:425-35. [PMID: 25453970 DOI: 10.1016/j.biomaterials.2014.10.007] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/02/2014] [Indexed: 02/05/2023]
Abstract
Glioma is still hard to be treated due to their complex microenvironment. In this study, a gold nanoparticle-based delivery system was developed. The system, An-PEG-DOX-AuNPs, was loaded with doxorubicin (DOX) through hydrazone, an acid-responsive linker, and was functionalized with angiopep-2, a specific ligand of low density lipoprotein receptor-related protein-1 (LRP1), which could mediate the system to penetrate blood brain barrier and target to glioma cells. The particle size of An-PEG-DOX-AuNPs was 39.9 nm with a zeta potential of -19.3 mV, while the DOX loading capacity was 9.7%. In vitro, the release of DOX from DOX-AuNPs was pH-dependent. At lower pH values, especially 5.0 and 6.0, release of DOX was much quicker than that at pH 6.8 and 7.4. After coating with PEG, the acid-responsive release of DOX from PEG-DOX-AuNPs was almost the same as that from DOX-AuNPs. Cellular uptake study showed obviously higher intensity of intracellular An-PEG-DOX-AuNPs compared with PEG-DOX-AuNPs. In vivo, An-PEG-DOX-AuNPs could distribute into glioma at a higher intensity than that of PEG-DOX-AuNPs and free DOX. Correspondingly, glioma-bearing mice treated with An-PEG-DOX-AuNPs displayed the longest median survival time, which was 2.89-fold longer than that of saline. In conclusion, An-PEG-DOX-AuNPs could specifically deliver and release DOX in glioma and significantly expand the median survival time of glioma-bearing mice.
Collapse
Affiliation(s)
- Shaobo Ruan
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Mingqing Yuan
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Li Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Guanlian Hu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Jiantao Chen
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Xingli Cun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Qianyu Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Yuting Yang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Qin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China.
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China.
| |
Collapse
|
25
|
Monoclonal antibody-targeted, temperature-sensitive liposomes: in vivo tumor chemotherapeutics in combination with mild hyperthermia. J Control Release 2014; 196:332-43. [PMID: 25456832 DOI: 10.1016/j.jconrel.2014.10.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 11/23/2022]
Abstract
The development of actively targeted, responsive delivery vectors holds great promise for cancer therapy. Here, we investigated whether enhanced therapeutic activity of temperature sensitive liposomes (TSL) could be obtained by mild hyperthermia-triggered release of the chemotherapeutic drug doxorubicin (DOX) after hCTMO1 monoclonal antibody (anti-MUC-1) binding and uptake into cancer cells. We showed that traditional TSL (TTSL) liposome systems maintained their physicochemical and thermal properties after conjugation to hCTMO1 full IgG. Receptor-mediated cellular uptake and cytotoxic efficacy of antibody-targeted TTSL (TTSL-Ab) were investigated using 2D and 3D cell culture models. Significant enhancement in cellular uptake and cytotoxic activity after 1h of heating at 42 °C was observed for TTSL-Ab compared to non-targeted liposomes in MUC-1 over-expressing breast cancer cells (MDA-MB-435). Tissue distribution and in vivo therapeutic activity were studied using different heating protocols to explore the effect of mild hyperthermia on the tumor accumulation of targeted TTSL and their therapeutic effect. Application of local, mild hyperthermia (42°C) significantly increased the tumor accumulation of targeted TSL compared to non-targeted liposomes, associated with a moderate improvement in therapeutic activity and survival.
Collapse
|
26
|
Casagrande N, Celegato M, Borghese C, Mongiat M, Colombatti A, Aldinucci D. Preclinical activity of the liposomal cisplatin lipoplatin in ovarian cancer. Clin Cancer Res 2014; 20:5496-506. [PMID: 25231401 DOI: 10.1158/1078-0432.ccr-14-0713] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Cisplatin and its platinum derivatives are first-line chemotherapeutic agents in the treatment of ovarian cancer; however, treatment is associated with tumor resistance and significant toxicity. Here we investigated the antitumoral activity of lipoplatin, one of the most promising liposomal platinum drug formulations under clinical investigation. EXPERIMENTAL DESIGN In vitro effects of lipoplatin were tested on a panel of ovarian cancer cell lines, sensitive and resistant to cisplatin, using both two-dimensional (2D) and 3D cell models. We evaluated in vivo the lipoplatin anticancer activity using tumor xenografts. RESULTS Lipoplatin exhibited a potent antitumoral activity in all ovarian cancer cell lines tested, induced apoptosis, and activated caspase-9, -8, and -3, downregulating Bcl-2 and upregulating Bax. Lipoplatin inhibited thioredoxin reductase enzymatic activity and increased reactive oxygen species accumulation and reduced EGF receptor (EGFR) expression and inhibited cell invasion. Lipoplatin demonstrated a synergistic effect when used in combination with doxorubicin, widely used in relapsed ovarian cancer treatment, and with the albumin-bound paclitaxel, Abraxane. Lipoplatin decreased both ALDH and CD133 expression, markers of ovarian cancer stem cells. Multicellular aggregates/spheroids are present in ascites of patients and most contribute to the spreading to secondary sites. Lipoplatin decreased spheroids growth, vitality, and cell migration out of preformed spheroids. Finally, lipoplatin inhibited more than 90% tumor xenograft growth with minimal systemic toxicity, and after the treatment suspension, no tumor progression was observed. CONCLUSION These preclinical data suggest that lipoplatin has potential for clinical assessment in aggressive cisplatin-resistant patients with ovarian cancer.
Collapse
Affiliation(s)
- Naike Casagrande
- Experimental Oncology 2, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Marta Celegato
- Experimental Oncology 2, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Cinzia Borghese
- Experimental Oncology 2, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Maurizio Mongiat
- Experimental Oncology 2, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Alfonso Colombatti
- Experimental Oncology 2, CRO Aviano National Cancer Institute, Aviano, Italy. Department of Medical and Biological Science Technology and MATI (Microgravity Ageing Training Immobility) Excellence Center, University of Udine, Udine, Italy
| | - Donatella Aldinucci
- Experimental Oncology 2, CRO Aviano National Cancer Institute, Aviano, Italy.
| |
Collapse
|
27
|
Mikhail AS, Eetezadi S, Ekdawi SN, Stewart J, Allen C. Image-based analysis of the size- and time-dependent penetration of polymeric micelles in multicellular tumor spheroids and tumor xenografts. Int J Pharm 2014; 464:168-77. [DOI: 10.1016/j.ijpharm.2014.01.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/25/2013] [Accepted: 01/06/2014] [Indexed: 01/02/2023]
|
28
|
|
29
|
A novel tissue engineered three-dimensional in vitro colorectal cancer model. Acta Biomater 2013; 9:7917-26. [PMID: 23624217 PMCID: PMC3711238 DOI: 10.1016/j.actbio.2013.04.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 12/17/2022]
Abstract
The interactions of cancer cells within a solid mass with the surrounding reactive stroma are critical for growth and progression. The surrounding vasculature is recruited into the periphery of the growing tumour to supply cancer cells with nutrients and O2. This study focuses on developing a novel three-dimensional (3-D) in vitro biomimetic colorectal cancer model using colorectal cancer cells and connective tissue cells. The 3-D model comprises a dense artificial cancer mass, created by partial plastic compression of collagen type I containing HT29 colorectal cancer cells, nested in a non-dense collagen type I gel populated by fibroblasts and/or endothelial cells. HT29 cells within the dense mass proliferate slower than when cultured in a two-dimensional system. These cells form tumour spheroids which invade the surrounding matrix, away from the hypoxic conditions in the core of the construct, measured using real time O2 probes. This model is also characterized by the release of vascular endothelial growth factor (VEGF) by HT29 cells, mainly at the invading edge of the artificial cancer mass. This characterization is fundamental in establishing a reproducible, complex model that could be used to advance our understanding of cancer pathology and will facilitate therapeutic drug testing.
Collapse
|
30
|
Improving intracellular doxorubicin delivery through nanoliposomes equipped with selective tumor cell membrane permeabilizing short-chain sphingolipids. Pharm Res 2013; 30:1883-95. [PMID: 23666266 DOI: 10.1007/s11095-013-1031-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 03/12/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE To improve nanoliposomal-doxorubicin (DoxNL) delivery in tumor cells using liposome membrane-incorporated short-chain sphingolipids (SCS) with selective membrane-permeabilizing properties. DoxNL bilayers contained synthetic short-chain derivatives of known membrane microdomain-forming sphingolipids; C₈-glucosylceramide (C₈-GluCer), C₈-galactosylceramide (C₈-GalCer) or C₈-lactosylceramide (C₈-LacCer). METHODS DoxNL enriched with C₈-GluCer or C₈-GalCer were developed, optimized and characterized with regard to size, stability and drug retention. In vitro cytotoxic activity was studied in a panel of human tumor cell lines and normal cells. Intracellular Dox delivery was measured by flow cytometry and visualized by fluorescence microscopy. For a further understanding of the involved drug delivery mechanism confocal microscopy studies addressed the cellular fate of the nanoliposomes, the SCS and Dox in living cells. RESULTS C₈-LacCer-DoxNL aggregated upon Dox loading. In tumor cell lines SCS-DoxNL with C₈-GluCer or C₈-GalCer demonstrated strongly increased Dox delivery and cytotoxicity compared to standard DoxNL. Surprisingly, this effect was much less pronounced in normal cells. Nanoliposomes were not internalized, SCS however transfered from the nanoliposomal bilayer to the cell membrane and preceded cellular uptake and subsequent nuclear localization of Dox. CONCLUSION C₈-GluCer or C₈-GalCer incorporated in DoxNL selectively improved intracellular drug delivery upon transfer to tumor cell membranes by local enhancement of cell membrane permeability.
Collapse
|
31
|
Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. JOURNAL OF DRUG DELIVERY 2013; 2013:705265. [PMID: 23533772 PMCID: PMC3606784 DOI: 10.1155/2013/705265] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 02/06/2013] [Indexed: 12/30/2022]
Abstract
Liposomes are delivery systems that have been used to formulate a vast variety of therapeutic and imaging agents for the past several decades. They have significant advantages over their free forms in terms of pharmacokinetics, sensitivity for cancer diagnosis and therapeutic efficacy. The multifactorial nature of cancer and the complex physiology of the tumor microenvironment require the development of multifunctional nanocarriers. Multifunctional liposomal nanocarriers should combine long blood circulation to improve pharmacokinetics of the loaded agent and selective distribution to the tumor lesion relative to healthy tissues, remote-controlled or tumor stimuli-sensitive extravasation from blood at the tumor's vicinity, internalization motifs to move from tumor bounds and/or tumor intercellular space to the cytoplasm of cancer cells for effective tumor cell killing. This review will focus on current strategies used for cancer detection and therapy using liposomes with special attention to combination therapies.
Collapse
|
32
|
Bandekar A, Zhu C, Gomez A, Menzenski MZ, Sempkowski M, Sofou S. Masking and Triggered Unmasking of Targeting Ligands on Liposomal Chemotherapy Selectively Suppress Tumor Growth in Vivo. Mol Pharm 2012; 10:152-60. [DOI: 10.1021/mp3002717] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Amey Bandekar
- Department
of Biomedical Engineering
and Department of Chemical and Biochemical Engineering, Rutgers, The
State University of New Jersey, Piscataway, New Jersey 08854, United
States
| | - Charles Zhu
- Department
of Biomedical Engineering
and Department of Chemical and Biochemical Engineering, Rutgers, The
State University of New Jersey, Piscataway, New Jersey 08854, United
States
| | - Ana Gomez
- Department
of Biomedical Engineering
and Department of Chemical and Biochemical Engineering, Rutgers, The
State University of New Jersey, Piscataway, New Jersey 08854, United
States
| | | | - Michelle Sempkowski
- Department of Biomedical Engineering,
The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Stavroula Sofou
- Department
of Biomedical Engineering
and Department of Chemical and Biochemical Engineering, Rutgers, The
State University of New Jersey, Piscataway, New Jersey 08854, United
States
| |
Collapse
|