1
|
Roy P, Kreofsky NW, Santa Chalarca CF, Reineke TM. Binary Copolymer Blending Enhances pDNA Delivery Performance and Colloidal Shelf Stability of Quinine-Based Polyplexes. Bioconjug Chem 2025; 36:770-781. [PMID: 40067683 DOI: 10.1021/acs.bioconjchem.5c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Successful gene therapies require the efficient delivery of the therapeutic nucleic acids in the target cells, which is a major bottleneck. Our group has demonstrated that quinine-based polymers are effective and promising carriers for delivering nucleic acids, such as plasmid DNA (pDNA). However, the inherent hydrophobicity of quinine-based polymers makes the polymer-pDNA complexes (polyplexes) colloidally unstable leading to aggregation, which is relevant in clinical scenarios as larger particles (diameter >1000 nm) tend to perform poorly when administered systemically in vivo. Herein, we overcome the hydrophobicity-induced aggregation by using two types of quinine-based polymer systems to form polyplexes via a facile blending approach. We balanced desirable properties using quinine-based copolymers (HQ-X) as the pDNA binding component along with a quinine-based diblock copolymer (PHQ), having a polyethylene glycol chain, to provide colloidal stability to the particles. Using 5 polymer pairs, 5 mixing ratios, and 3 mixing sequences, we screened 66 formulations out of which 37 resulted in nonaggregating small polyplexes (diameter <300 nm) with colloidal stability tested up to 7 days at 4 °C. Furthermore, 18 out of these 37 colloidally stable formulations showed transfection performance better than or comparable to the commercial control, jetPEI. Our results clearly indicated that while the three mixing sequences generate polyplexes of similar characteristics, the best balance of transfection efficiency, toxicity, and colloidal stability is achieved at moderate PHQ % in the mixture when colloidal stability does not compromise payload binding. Our results showcase that polymer blending, in a manner similar to lipids, is an effective and parallel approach to achieving desirable polyplex characteristics, such as particle size, colloidal stability, and performance.
Collapse
Affiliation(s)
- Punarbasu Roy
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nicholas W Kreofsky
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Jiazhen N, Meihui S, De-E L, Na L, Youtao X, Qixian C, Yunjian Y, Feihe M, Mahmoud E, Hui G. Remodeling the Inflammatory and Immunosuppressive Tumor Microenvironment for Enhancing Antiangiogenic Gene Therapy of Colorectal Cancer. Adv Healthc Mater 2024:e2402887. [PMID: 39703083 DOI: 10.1002/adhm.202402887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/29/2024] [Indexed: 12/21/2024]
Abstract
Fusobacterium nucleatum (Fn), as an intestinal pathogenic bacterium, is closely related to the occurrence, progression, and limited therapeutic efficacy of colorectal cancer (CRC). The presence of Fn within CRC communities induces an inflammatory and immunosuppressive microenvironment while promoting new vessel formation. Therefore, developing novel methods to efficiently eliminate Fn and enhance the therapeutic outcomes against Fn-associated CRC is of great significance. Herein, a nanosystem named AFGTs-PEG, which integrates antimicrobial agent lauric acid (LA), an antiangiogenic gene (sFlt-1), a targeted polymer (OEI-LA/PBA, OLP), and DSPE-mPEG, to boost the gene therapy of Fn-infected CRC, is developed. The sFlt-1 gene is delivered to CRC cells through lysosome escape, remarkably inhibiting new vessel formation at the CRC site and ultimately leading to CRC cell death. In principle, LA is used to eliminate Fn and its biofilms, and remodel the inflammatory and immunosuppressive microenvironment by restraining the generation of inflammatory factors and preventing polarization of M1 into M2 macrophages, thereby mitigating the adverse effects of Fn on antiangiogenic gene therapy. This study holds great promise for the treatment of bacteria-colonized tumors.
Collapse
Affiliation(s)
- Niu Jiazhen
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Su Meihui
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Liu De-E
- School of Materials Science and Engineering, Tianjin ChengJian University, Tianjin, 300384, P. R. China
| | - Li Na
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Xin Youtao
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Chen Qixian
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, P. R. China
| | - Yu Yunjian
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Ma Feihe
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Elsabahy Mahmoud
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Gao Hui
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
3
|
Li N, Yu Y, Chen Q, Niu J, Gao C, Qu X, Zhang J, Gao H. A gene delivery system with autophagy blockade for enhanced anti-angiogenic therapy against Fusobacterium nucleatum-associated colorectal cancer. Acta Biomater 2024; 183:278-291. [PMID: 38838905 DOI: 10.1016/j.actbio.2024.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Anti-angiogenesis has emerged a promising strategy against colorectal cancer (CRC). However, the efficacy of anti-angiogenic therapy is greatly compromised by the up-regulated autophagy levels resulting from the evolutionary resistance mechanism and the presence of Fusobacterium nucleatum (F. nucleatum) in CRC. Herein, we report a cationic polymer capable of blocking autophagic flux to deliver plasmid DNA (pDNA) encoding soluble FMS-like tyrosine kinase-1 (sFlt-1) for enhanced anti-angiogenic therapy against F. nucleatum-associated CRC. The autophagy-inhibiting cationic polymer, referred to as PNHCQ, is synthesized by conjugating hydroxychloroquine (HCQ) into 3,3'-diaminodipropylamine-pendant poly(β-benzyl-L-aspartate) (PAsp(Nors)), which can be assembled and electrostatically interacted with sFlt-1 plasmid to form PNHCQ/sFlt-1 polyplexes. Hydrophobic HCQ modification not only boosts transfection efficiency but confers autophagy inhibition activity to the polymer. Hyaluronic acid (HA) coating is further introduced to afford PNHCQ/sFlt-1@HA for improved tumor targeting without compromising on transfection. Consequently, PNHCQ/sFlt-1@HA demonstrates significant anti-tumor efficacy in F. nucleatum-colocalized HT29 mouse xenograft model by simultaneously exerting anti-angiogenic effects through sFlt-1 expression and down-regulating autophagy levels exacerbated by F. nucleatum challenge. The combination of anti-angiogenic gene delivery and overall autophagy blockade effectively sensitizes CRC tumors to anti-angiogenesis, providing an innovative approach for enhanced anti-angiogenic therapy against F. nucleatum-resident CRC. STATEMENT OF SIGNIFICANCE: Up-regulated autophagy level within tumors is considered responsible for the impaired efficacy of clinic antiangiogenic therapy against CRC colonized with pathogenic F. nucleatum. To tackle this problem, an autophagy-inhibiting cationic polymer is developed to enable efficient intracellular delivery of plasmid DNA encoding soluble FMS-like tyrosine kinase-1 (sFlt-1) and enhance anti-angiogenic therapy against F. nucleatum-associated CRC. HA coating that can be degraded by tumor-enriching hyaluronidase is further introduced for improved tumor targeting without compromising transfection efficiency. The well-orchestrated polyplexes achieve considerable tumor accumulation, efficient in vivo transfection, and effectively reinforce the sensitivity of CRC to the sFlt-1-derived anti-angiogenic effects by significantly blocking overall autophagy flux exacerbated by F. nucleatum challenge, thus harvesting robust antitumor outcomes against F. nucleatum-resident CRC.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering Tiangong University, Tianjin 300387, China
| | - Yunjian Yu
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering Tiangong University, Tianjin 300387, China
| | - Qixian Chen
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Jiazhen Niu
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering Tiangong University, Tianjin 300387, China
| | - Chan Gao
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering Tiangong University, Tianjin 300387, China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jimin Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hui Gao
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering Tiangong University, Tianjin 300387, China.
| |
Collapse
|
4
|
Hao T, Zhang B, Li W, Yang X, Wu S, Yuan Y, Cui H, Chen Q, Li Z. Nordihydroguaiaretic Acid-Cross-Linked Phenylboronic Acid-Functionalized Polyplex Micelles for Anti-angiogenic Gene Therapy of Orthotopic and Metastatic Tumors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34620-34631. [PMID: 38934519 DOI: 10.1021/acsami.4c05311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Polyplexes are required to be equipped with multiple functionalities to accomplish adequate structure stability and gene transfection efficacy for gene therapy. Herein, a 4-carboxy-3-fluorophenylboronic acid (FPBA)-functionalized block copolymer of PEG-b-PAsp(DET/FBA) and PAsp(DET/FBA) (abbreviated as PB and HB) was synthesized and applied for engineering functional polyplex micelles (PMs) through ionic complexation with pDNA followed by strategic cross-linking with nordihydroguaiaretic acid (NDGA) in respect to the potential linkage of polyphenol and FPBA moieties. In relation to polyplex micelles void of cross-linking, the engineered multifunctional polyplex micelles (PBHBN-PMs) were determined to possess improved structural tolerability against the exchange reaction with charged species. Besides, the FPBA/NDGA cross-linking appeared to be selectively cleaved in the acidic endosomal compartments but not the neutral milieu. Furthermore, the PBHB-PMs with the optimal FPBA/NDGA cross-linking degree were identified to possess appreciable cellular uptake and endosomal escape activities, eliciting a significantly high level of gene expression relative to P-PMs and PB-PMs. Eventually, in vivo antitumor therapy by our proposed multifunctional PMs appeared to be capable of facilitating expression of the antiangiogenic genomic payloads (sFlt-1 pDNA) via systemic administration. The enriched antiangiogenic sFlt-1 in the tumors could silence the activities of angiogenic cytokines for the inhibited neo-vasculature and the suppressed growth of orthotopic 4T1 tumors. Of note, the persistent expression of the antiangiogenic sFlt-1 is also presumed to migrate into the blood circulation, thereby accounting for an overall antiangiogenic environment in preventing the potential pulmonary metastasis. Hence, our elaborated multifaceted PMs inspired fascinating potential as an intriguing gene delivery system for the treatment of clinical solid tumors and metastasis.
Collapse
Affiliation(s)
- Tangna Hao
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Bingning Zhang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Wenjing Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xianxian Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Sha Wu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yujie Yuan
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Hongxia Cui
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Qixian Chen
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Zhen Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
5
|
Yokoo H, Dirisala A, Uchida S, Oba M. Oligosarcosine Conjugation of Arginine-Rich Peptides Improves the Intracellular Delivery of Peptide/pDNA Complexes. ACS Biomater Sci Eng 2024; 10:890-896. [PMID: 38159284 DOI: 10.1021/acsbiomaterials.3c01542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Cell-penetrating peptides (CPPs), for example, arginine (Arg) rich peptides, are used for the intracellular delivery of nucleic acids. In this study, oligosarcosine-conjugated Arg-rich peptides were designed as plasmid DNA (pDNA) carriers, and the physicochemical parameters and transfection efficiency of the peptide/pDNA complexes were evaluated. Oligosarcosine with different lengths were conjugated to a base sequence composed of arginine and α-aminoisobutyric acid (Aib) [(Aib-Arg-Arg)3]. Oligosarcosine conjugation inhibited the aggregation of the complexes after mixing with pDNA, shielded the positive charge of the complexes, and provided efficient pDNA transfection in cultured cells. The efficiency of the pDNA transfection was improved by varying the length of the oligosarcosine moiety (10-15 units were optimal). The cellular uptake efficiency and intracellular distribution of pDNA were the same regardless of oligosarcosine conjugation. These results implied that intracellular processes, including the decondensation of pDNA, contributed to the efficiency of the protein expression from pDNA. This study demonstrated the advantages of oligosarcosine conjugation to Arg-rich CPPs and provided valuable insight into the future design of CPPs.
Collapse
Affiliation(s)
- Hidetomo Yokoo
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Anjaneyulu Dirisala
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Satoshi Uchida
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Makoto Oba
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| |
Collapse
|
6
|
Uchida S, Lau CYJ, Oba M, Miyata K. Polyplex designs for improving the stability and safety of RNA therapeutics. Adv Drug Deliv Rev 2023; 199:114972. [PMID: 37364611 DOI: 10.1016/j.addr.2023.114972] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Nanoparticle-based delivery systems have contributed to the recent clinical success of RNA therapeutics, including siRNA and mRNA. RNA delivery using polymers has several distinct properties, such as enabling RNA delivery into extra-hepatic organs, modulation of immune responses to RNA, and regulation of intracellular RNA release. However, delivery systems should overcome safety and stability issues to achieve widespread therapeutic applications. Safety concerns include direct damage to cellular components, innate and adaptive immune responses, complement activation, and interaction with surrounding molecules and cells in the blood circulation. The stability of the delivery systems should balance extracellular RNA protection and controlled intracellular RNA release, which requires optimization for each RNA species. Further, polymer designs for improving safety and stability often conflict with each other. This review covers advances in polymer-based approaches to address these issues over several years, focusing on biological understanding and design concepts for delivery systems rather than material chemistry.
Collapse
Affiliation(s)
- Satoshi Uchida
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan; Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan; Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.
| | - Chun Yin Jerry Lau
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makoto Oba
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
7
|
Zhang J, Zhang T, Gao J. Biocompatible Iron Oxide Nanoparticles for Targeted Cancer Gene Therapy: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193323. [PMID: 36234452 PMCID: PMC9565336 DOI: 10.3390/nano12193323] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 05/14/2023]
Abstract
In recent years, gene therapy has made remarkable achievements in tumor treatment. In a successfully cancer gene therapy, a smart gene delivery system is necessary for both protecting the therapeutic genes in circulation and enabling high gene expression in tumor sites. Magnetic iron oxide nanoparticles (IONPs) have demonstrated their bright promise for highly efficient gene delivery target to tumor tissues, partly due to their good biocompatibility, magnetic responsiveness, and extensive functional surface modification. In this review, the latest progress in targeting cancer gene therapy is introduced, and the unique properties of IONPs contributing to the efficient delivery of therapeutic genes are summarized with detailed examples. Furthermore, the diagnosis potentials and synergistic tumor treatment capacity of IONPs are highlighted. In addition, aiming at potential risks during the gene delivery process, several strategies to improve the efficiency or reduce the potential risks of using IONPs for cancer gene therapy are introduced and addressed. The strategies and applications summarized in this review provide a general understanding for the potential applications of IONPs in cancer gene therapy.
Collapse
Affiliation(s)
- Jinsong Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: (T.Z.); (J.G.)
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Correspondence: (T.Z.); (J.G.)
| |
Collapse
|
8
|
Wang Y, Zheng X, Liu J, Chen L, Chen Q, Zhao Y. Virus-like siRNA construct dynamically responsive to sequential microenvironments for potent RNA interference. J Colloid Interface Sci 2022; 622:938-949. [PMID: 35561612 DOI: 10.1016/j.jcis.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/22/2022] [Accepted: 05/01/2022] [Indexed: 11/18/2022]
Abstract
Cytoplasmic transportation of therapeutic nucleic acids is deemed as an onerous task with aim of precise knockdown towards the targeted genes. Pertaining to the programed functionalities of natural virus in circumventing the biological barriers, we tailored multifaceted chemistries into manufacture of synthetic siRNA delivery vehicles in resembling the functionalities of viral vectors to dynamically tackle with a sequential of biological obstacles encountered in the journey of systemic anti-tumor RNAi therapy. Once harnessing ligands with RGD motif for specific internalization into subcellular endosomal compartments of the tumor cells, the architecture of the proposed delivery vehicles was subjected to facile transformation responsive to pH stimuli in acidic endosomal compartments. The external biocompatible PEGylation palisade was consequently detached, unveiling the cytomembrane-lytic cationic components to commit disruptive potencies to the anionic endosomal membranes for translocation of siRNA conjugates into cytosol. Eventually, liberation of active siRNA could be accomplished due to its responsiveness to the strikingly high level of glutathione in cytosol, thereby contributing to potent RNAi. Hence, our elaborated virus-mimicking platform has demonstrated significant anti-tumor efficacy through systemic administration of anti-angiogenic RNAi payloads, which inspired prosperous potentials in a variety of therapeutic applications.
Collapse
Affiliation(s)
- Yue Wang
- Department of Gastric Cancer, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning 110042, China; School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Xiujue Zheng
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jun Liu
- School of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084, China; Ningbo Hygeia Medical Technology Co., Ltd., No. 6 Jinyuan Road, High-Tech Zone, Ningbo 315201, China
| | - Li Chen
- School of Mechanical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Qixian Chen
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China.
| | - Yan Zhao
- Department of Gastric Cancer, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning 110042, China.
| |
Collapse
|
9
|
Kim HJ, Seo SK, Park HY. Physical and chemical advances of synthetic delivery vehicles to enhance mRNA vaccine efficacy. J Control Release 2022; 345:405-416. [PMID: 35314261 DOI: 10.1016/j.jconrel.2022.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
Abstract
The successful translation of mRNA vaccines slows down the spread of viral infectious diseases, which may be accomplished by developing novel chemically modified nucleotides (or nucleosides) and highly efficient, safe mRNA delivery vehicles. Delivery vehicles protect vulnerable antigen mRNA and increase the uptake of mRNA into antigen-presenting cells in the peripheral tissue or lymph nodes. This review introduces essential characteristics of mRNA vaccines (e.g., particle sizes, colloidal stability, surface charges/endosomal escape ability, and ligand conjugation) that may be used to generate high immune responses against foreign antigens. The significance and mechanism of each characteristic are described based on the results obtained from in vitro and in vivo studies. We also discuss the development of next generation delivery vehicles for future mRNA vaccines.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| | - Su Kyoung Seo
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Ha Yeon Park
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
10
|
He J, Mou Z, Tian Y, Zhang Y, Guan T, Chen Q, Chen L. Polymeric RNAi Constructs Tailored with Appreciable Transcellular Trafficking Functions for Potential Suppression of Parathyroid Hormone Production. Bioconjug Chem 2021; 32:909-915. [PMID: 33890782 DOI: 10.1021/acs.bioconjchem.1c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polymeric small interfering RNA (siRNA) conjugate was elaborated to sequentially circumvent the predefined biological barriers encountered in the journey of transcellular delivery of siRNA into cytosol. Herein, classic ring-opening polymerization was employed for synthesis of well-defined poly(amino acid) derivatives possessing an array of carboxyl groups in an attempt to resemble the structural characteristics of hyaluronan. Furthermore, the hyaluronan-like synthetic was conjugated with a multiple of siRNA through a glutathione (GSH)-responsive disulfide linkage. The siRNA conjugate appeared to utilize the hyaluronan-specific receptors of CD44 for cell internalization, indicating similar functionalities to our hyaluronan-mimicking synthetic. Furthermore, the carboxyl groups of hyaluronan-like synthetics were designed to be selectively detached in subcellular acidic endosomes/lysosomes and transform into the cytomembrane-disruptive flanking ethylenediamine moieties, which appeared to be crucial in facilitating translocation of siRNA payloads from entrapment and degradation in lysosomes toward the cytosol. Eventually, active siRNA could be smoothly released from the synthetic due to the GSH cleavage disulfide linkage (disulfide), consequently accounting for potent RNA knockdown activities (>90%) toward cancerous cells. In addition, appreciable knockdown of parathyroid hormone was also achieved from our proposed siRNA conjugates in parathyroid cells. Hence, the elaborated siRNA conjugate showed tremendous potential in treatment of hyperparathyroidism, and could be developed further for systemic RNA interference (RNAi) therapeutics. Moreover, this study could also be the first example of a synthetic mimic to hyaluronan acquiring its functionalities, which could have important implications for further development of biomimic materials in pursuit of biomedical applications.
Collapse
Affiliation(s)
- Jinxuan He
- Department of Nephrology, Zhongshan Hospital Affiliated to Xiamen University, No. 201-209 Hubinnan Road, Siming District, Xiamen 361000, China
| | - Zhixiang Mou
- Department of Nephrology, Zhongshan Hospital Affiliated to Xiamen University, No. 201-209 Hubinnan Road, Siming District, Xiamen 361000, China
| | - Yuchen Tian
- Department of Nephrology, Zhongshan Hospital Affiliated to Xiamen University, No. 201-209 Hubinnan Road, Siming District, Xiamen 361000, China
| | - Yiyan Zhang
- Department of Nephrology, Zhongshan Hospital Affiliated to Xiamen University, No. 201-209 Hubinnan Road, Siming District, Xiamen 361000, China
| | - Tianjun Guan
- Department of Nephrology, Zhongshan Hospital Affiliated to Xiamen University, No. 201-209 Hubinnan Road, Siming District, Xiamen 361000, China
| | - Qixian Chen
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Lan Chen
- Department of Nephrology, Zhongshan Hospital Affiliated to Xiamen University, No. 201-209 Hubinnan Road, Siming District, Xiamen 361000, China
| |
Collapse
|
11
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
Liu Y, Yin L. α-Amino acid N-carboxyanhydride (NCA)-derived synthetic polypeptides for nucleic acids delivery. Adv Drug Deliv Rev 2021; 171:139-163. [PMID: 33333206 DOI: 10.1016/j.addr.2020.12.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
In recent years, gene therapy has come into the spotlight for the prevention and treatment of a wide range of diseases. Polypeptides have been widely used in mediating nucleic acid delivery, due to their versatilities in chemical structures, desired biodegradability, and low cytotoxicity. Chemistry plays an essential role in the development of innovative polypeptides to address the challenges of producing efficient and safe gene vectors. In this Review, we mainly focused on the latest chemical advances in the design and preparation of polypeptide-based nucleic acid delivery vehicles. We first discussed the synthetic approach of polypeptides via ring-opening polymerization (ROP) of N-carboxyanhydrides (NCAs), and introduced the various types of polypeptide-based gene delivery systems. The extracellular and intracellular barriers against nucleic acid delivery were then outlined, followed by detailed review on the recent advances in polypeptide-based delivery systems that can overcome these barriers to enable in vitro and in vivo gene transfection. Finally, we concluded this review with perspectives in this field.
Collapse
Affiliation(s)
- Yong Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| |
Collapse
|
13
|
Mori A, Kobayashi Y, Nirasawa K, Negishi Y, Asayama S. Structure-Activity Relationship of Mono-Ion Complexes for Plasmid DNA Delivery by Muscular Injection. Pharmaceutics 2021; 13:pharmaceutics13010078. [PMID: 33430003 PMCID: PMC7828051 DOI: 10.3390/pharmaceutics13010078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
The structure-activity relationship of mono-ion complexes (MICs) for plasmid DNA (pDNA) delivery by muscular injection is demonstrated. MICs were formed between pDNA and monocationic poly(ethylene glycol) (PEG) macromolecules. As monocationic PEGs, the ω-amide-pentylimidazolium (APe-Im) end-modified PEGs with a stable amide (Am) and hydrolytic ester (Es) bond, that is, APe-Im-Am-PEG and APe-Im-Es-PEG, respectively, are synthesized. The difference between the APe-Im-Am-PEG and APe-Im-Es-PEG was only a spacer structure between a terminal cation and a PEG chain. The resulting pDNA MICs with APe-Im-Am-PEG at a charge ratio (+/-) of 32 or 64 were more stable than those with APe-Im-Es-PEG in the presence of serum proteins. The highest gene expression by muscular injection was achieved using the APe-Im-Am-PEG/pDNA MIC at a charge ratio (+/-) of 32 with a smaller particle diameter of approximately 50 nm, as compared to that charge ratio of 64. Consequently, the pDNA MIC with the monocationic PEG with a stable amide spacer, as compared to a hydrolytic ester spacer, is considered to be suitable for the highest gene expression by muscular injection.
Collapse
Affiliation(s)
- Amika Mori
- Department of Applied Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (A.M.); (Y.K.)
| | - Yuki Kobayashi
- Department of Applied Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (A.M.); (Y.K.)
| | - Kei Nirasawa
- Department of Drug Delivery and Molecular Biopharmaceutics, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (K.N.); (Y.N.)
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (K.N.); (Y.N.)
| | - Shoichiro Asayama
- Department of Applied Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (A.M.); (Y.K.)
- Correspondence: ; Tel.: +81-42-677-1111 (ext. 4976)
| |
Collapse
|
14
|
Wang Y, Zheng X, Liu J, Chen Q, Zhao Y. Tumor-Targeted Anti-VEGF RNAi Capable of Sequentially Responding to Intracellular Microenvironments for Potent Systemic Tumor Suppression. ACS APPLIED BIO MATERIALS 2020; 3:9145-9155. [PMID: 35019592 DOI: 10.1021/acsabm.0c01427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yue Wang
- Department of Gastric Cancer, Liaoning Cancer Hospital & Institute (Cancer Hospital of China Medical University), No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning 110042, China
| | - Xiujue Zheng
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jun Liu
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Ningbo Hygeia Medical Technology Co., Ltd., No. 6 Jinyuan Road, High-Tech Zone, Ningbo 315201, China
| | - Qixian Chen
- Ningbo Hygeia Medical Technology Co., Ltd., No. 6 Jinyuan Road, High-Tech Zone, Ningbo 315201, China
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Yan Zhao
- Department of Gastric Cancer, Liaoning Cancer Hospital & Institute (Cancer Hospital of China Medical University), No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning 110042, China
| |
Collapse
|
15
|
Zhao T, Fu Y, Jang MS, Sun XS, Wu T, Lee JH, Li Y, Lee DS, Yang HY. A pH-activated charge convertible quantum dot as a novel nanocarrier for targeted protein delivery and real-time cancer cell imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111449. [PMID: 33255037 DOI: 10.1016/j.msec.2020.111449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/06/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
The rapid developments of nanocarriers based on quantum dots (QDs) have been confirmed to show substantial promise for drug delivery and bioimaging. However, optimal QDs-based nanocarriers still need to have their controlled behavior in vitro and in vivo and decrease heavy metal-associated cytotoxicity. Herein, a pH-activated charge convertible QD-based nanocarrier was fabricated by capping multifunctional polypeptide ligands (mPEG-block-poly(ethylenediamine-dihydrolipoic acid-2,3-dimethylmaleic anhydride)-L-glutamate, PEG-P(ED-DLA-DMA)LG) onto the surface of core/multishell CdSe@ZnS/ZnS QD by means of a ligand exchange strategy, followed by uploading of cytochrome C (CC) (CC-loaded QD-PEG-P(ED-DLA-DMA)LG) via electrostatic interactions, in which QDs that were water-soluble and protein-loading were perfectly integrated. That is, the CC-loaded QD-PEG-P(ED-DLA-DMA)LG inherited excellent fluorescence properties from CdSe@ZnS/ZnS QD for real-time imaging, as well as tumor-microenvironment sensitivities from PEG-P(ED-DLA-DMA)LG for enhanced cellular uptake and CC release. Experimental results verified that the QD-PEG-P(ED-DLA-DMA)LG showed enhanced internalization, rapid endo/lysosomal escape, and supplied legible real-time imaging for lung carcinoma cells. Furthermore, pH-triggered charge-convertible ability enabled the QD-PEG-P(ED-DLA-DMA)LG-CC to effectively kill cancer cells better than did the control groups. Hence, constructing smart nanocomposites by facile ligand-exchange strategy is beneficial to QD-based nanocarrier for tumor-targeting cancer therapy.
Collapse
Affiliation(s)
- Ting Zhao
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, People's Republic of China; College of Chemistry, Jilin University, Changchun City 130012, People's Republic of China
| | - Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, People's Republic of China
| | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Xin Shun Sun
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, People's Republic of China
| | - Tepeng Wu
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Yi Li
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, People's Republic of China.
| |
Collapse
|
16
|
Wang J, Wang H, Cui H, Sun P, Yang X, Chen Q. Circumvent PEGylation dilemma by implementing matrix metalloproteinase-responsive chemistry for promoted tumor gene therapy. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Zhang H, Liu J, Chen Q, Mi P. Ligand-installed anti-VEGF genomic nanocarriers for effective gene therapy of primary and metastatic tumors. J Control Release 2020; 320:314-327. [PMID: 31954731 DOI: 10.1016/j.jconrel.2020.01.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/31/2019] [Accepted: 01/15/2020] [Indexed: 02/08/2023]
Abstract
The systemic dosage regimen exhibited low therapeutic efficacy and incurred severe adverse effect, thus, the development of tumor-targeted therapeutics is crucial important for tumor precision therapy. Herein, the active targeted modulation of tumor microenvironments was schemed by developing hyaluronic acid-installed genomic nanocarriers (HA-NPs) for effectively ablation of both primary and metastatic tumors through anti-vascular endothelial growth factor (anti-VEGF) approach. The anti-VEGF genomic payloads were strategically packaged into the well-defined synthetic nanocarriers by layer-by-layer preparation strategy, exhibiting high colloidal stability and much lower cell viability than the cationic gene carriers. Besides, the HA-NPs could specifically and efficiently internalize with cancer cells for efficient intracellular gene delivery, leading to high gene transfection efficacy. Moreover, it further demonstrated efficient extravasation, high accumulation and deep penetration in tumors, which markedly facilitated tumor-targeted expression of anti-VEGF genomic payloads for inhabitation of neo-vasculature, consecutively contributing to potent ablation of solid tumors. In addition, the ligand-installed nanocarriers facilitated systemic treatment of melanoma lung metastasis by the expressed anti-VEGF proteins, which were extensively spread along blood circulation and metastatic niches to diminish the formation of neovasculature for tumorigenesis. Therefore, the proposed anti-VEGF genomic nanocarriers could shed intriguing implication in effectively treatment of primary tumors and metastasis.
Collapse
Affiliation(s)
- Huaping Zhang
- Department of Radiology, Center for Medical Imaging, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Liu
- Department of Radiology, Center for Medical Imaging, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qixian Chen
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Peng Mi
- Department of Radiology, Center for Medical Imaging, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
18
|
Asayama S. Molecular Design of Polymer-based Carriers for Plasmid DNA Delivery In Vitro and In Vivo. CHEM LETT 2020. [DOI: 10.1246/cl.190696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shoichiro Asayama
- Department of Applied Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
19
|
Ulkoski D, Bak A, Wilson JT, Krishnamurthy VR. Recent advances in polymeric materials for the delivery of RNA therapeutics. Expert Opin Drug Deliv 2019; 16:1149-1167. [PMID: 31498013 DOI: 10.1080/17425247.2019.1663822] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: The delivery of nucleic acid therapeutics through non-viral carriers face multiple biological barriers that reduce their therapeutic efficiency. Despite great progress, there remains a significant technological gap that continues to limit clinical translation of these nanocarriers. A number of polymeric materials are being exploited to efficiently deliver nucleic acids and achieve therapeutic effects. Areas covered: We discuss the recent advances in the polymeric materials for the delivery of nucleic acid therapeutics. We examine the use of common polymer architectures and highlight the challenges that exist for their development from bench side to clinic. We also provide an overview of the most notable improvements made to circumvent such challenges, including structural modification and stimuli-responsive approaches, for safe and effective nucleic acid delivery. Expert opinion: It has become apparent that a universal carrier that follows 'one-size' fits all model cannot be expected for delivery of all nucleic acid therapeutics. Carriers need to be designed to exhibit sensitivity and specificity toward individual targets diseases/indications, and relevant subcellular compartments, each of which possess their own unique challenges. The ability to devise synthetic methods that control the molecular architecture enables the future development that allow for the construction of 'intelligent' designs.
Collapse
Affiliation(s)
- David Ulkoski
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca , Boston , USA
| | - Annette Bak
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca , Gothenburg , Sweden
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville , TN , USA
| | | |
Collapse
|
20
|
Wang W, Wu S, Wang J, Li Z, Cui H, Lin S, Zhu J, Chen Q. Superoxide dismutase transcellular shuttle constructed from dendritic MOF and charge reversible protein derivatives. Chem Sci 2019; 10:4476-4485. [PMID: 31057775 PMCID: PMC6482591 DOI: 10.1039/c8sc04160a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/07/2019] [Indexed: 11/21/2022] Open
Abstract
The development of molecular biology has led to the identification of protein-based therapeutics as an intriguing approach for the treatment of a wide range of diseases. To manufacture transcellular protein delivery shuttles, we attempted charge reversal chemistry on native proteins [e.g., superoxide dismutase (SOD): an enzyme capable of scavenging detrimental reactive oxygen species] by the selective conversion of the positively charged amino residues of native SOD to conjugated negatively charged citraconic moieties, eliciting overall negatively charged polyelectrolytes for the subsequent electrostatic self-assembly with cationic metal-organic framework (MOF) derivatives into protein delivery systems. Please note that the charge conversion was reversible, restoring the original amino groups in intracellular acidic endosome compartments (pH 5), which afforded facile charge reversible functions to reclaim the active SOD in the cell interior. In particular, the strategic manufacture of dendritic MOF supramolecular architectures as transcellular shuttles for the aforementioned charge-reversible SOD derivatives is noteworthy. The MOF was surface-functionalized with several polycationic segments, thus contributing to the hyper-charged architecture for the easy accommodation of the negatively charged SOD derivatives. Consequently, the SOD derivatives managed to internalize into cells by hitchhiking via endocytosis of the positively charged MOF. Once they resided in the acidic endosomes, the charge reversal of the SOD derivatives could occur smoothly and result in reduced interactions between the charged-reversed SOD and MOF, leading to the release of active SOD. Simultaneously, the dendritic MOF due to protein release presented a highly positive-charged architecture to provoke endosome membrane disruption, consequently spurring the translocation of SOD to the cytosol for the execution of its enzymatic activities. Herein, the intracellular ROS level of the activated macrophages was validated to be markedly suppressed by our proposed transcellular SOD shuttles, thereby indicating their wide availability to diverse functional proteins for biomedical applications.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , No. 2 Linggong Road , Dalian 116024 , China .
- School of Life Science and Biotechnology , Dalian University of Technology , No. 2 Linggong Road , Dalian 116024 , China
| | - Sudong Wu
- Academy for Advanced Interdisciplinary Studies , Southern University of Science and Technology , Shenzhen 518055 , China
- Department of Materials Science and Engineering , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , No. 2 Linggong Road , Dalian 116024 , China .
- School of Life Science and Biotechnology , Dalian University of Technology , No. 2 Linggong Road , Dalian 116024 , China
| | - Zhen Li
- College of Pharmacy , Dalian Medical University , No. 9 West Section Lvshun South Road , Dalian 116044 , China
| | - Hongyan Cui
- School of Life Science and Biotechnology , Dalian University of Technology , No. 2 Linggong Road , Dalian 116024 , China
| | - Shuseng Lin
- School of Life Science and Biotechnology , Dalian University of Technology , No. 2 Linggong Road , Dalian 116024 , China
| | - Jingyi Zhu
- School of Life Science and Biotechnology , Dalian University of Technology , No. 2 Linggong Road , Dalian 116024 , China
| | - Qixian Chen
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , No. 2 Linggong Road , Dalian 116024 , China .
- School of Life Science and Biotechnology , Dalian University of Technology , No. 2 Linggong Road , Dalian 116024 , China
| |
Collapse
|
21
|
|
22
|
Cabral H, Miyata K, Osada K, Kataoka K. Block Copolymer Micelles in Nanomedicine Applications. Chem Rev 2018; 118:6844-6892. [PMID: 29957926 DOI: 10.1021/acs.chemrev.8b00199] [Citation(s) in RCA: 840] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polymeric micelles are demonstrating high potential as nanomedicines capable of controlling the distribution and function of loaded bioactive agents in the body, effectively overcoming biological barriers, and various formulations are engaged in intensive preclinical and clinical testing. This Review focuses on polymeric micelles assembled through multimolecular interactions between block copolymers and the loaded drugs, proteins, or nucleic acids as translationable nanomedicines. The aspects involved in the design of successful micellar carriers are described in detail on the basis of the type of polymer/payload interaction, as well as the interplay of micelles with the biological interface, emphasizing on the chemistry and engineering of the block copolymers. By shaping these features, polymeric micelles have been propitious for delivering a wide range of therapeutics through effective sensing of targets in the body and adjustment of their properties in response to particular stimuli, modulating the activity of the loaded drugs at the targeted sites, even at the subcellular level. Finally, the future perspectives and imminent challenges for polymeric micelles as nanomedicines are discussed, anticipating to spur further innovations.
Collapse
Affiliation(s)
| | | | | | - Kazunori Kataoka
- Innovation Center of NanoMedicine , Kawasaki Institute of Industrial Promotion , 3-25-14, Tonomachi , Kawasaki-ku , Kawasaki 210-0821 , Japan.,Policy Alternatives Research Institute , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| |
Collapse
|
23
|
Birke A, Ling J, Barz M. Polysarcosine-containing copolymers: Synthesis, characterization, self-assembly, and applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.01.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
|
25
|
Yang X, Chen Q, Yang J, Wu S, Liu J, Li Z, Liu D, Chen X, Qiu Y. Tumor-Targeted Accumulation of Ligand-Installed Polymeric Micelles Influenced by Surface PEGylation Crowdedness. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44045-44052. [PMID: 29192755 DOI: 10.1021/acsami.7b16764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
With respect to the intriguing biocompatibility and the stealthy functions of poly(ethylene glycol) (PEG), PEGylated nanoparticulates have been intensively engineered for utilities as drug delivery vehicles. To advocate the targeted drug transportation, targeting ligands were strategically installed onto the surface of PEGylated nanoparticulates. The previous in vitro investigations revealed that the ligand-specified cell endocytosis of nanoparticulates was pronounced for the nanoparticulates with adequately high PEG crowdedness. The present study aims to explore insight into the impact of PEGylation degree on in vivo tumor-targeted accumulation activities of cRGD-installed nanoparticulates. The subsequent investigations verified the importance of the PEGylation crowdedness in pursuit of prolonged retention in the blood circulation post intravenous administration. Unprecedentedly, the PEGylation crowdedness was also identified as a crucial important parameter to pursue the tumor-targeted accumulation. A plausible reason is the elevated PEGylation crowdedness eliciting the restricted involvement in nonspecific protein adsorption of nanoparticulates in the biological milieu and consequently pronouncing the ligand-receptor-mediated binding for the nanoparticulates. Noteworthy was the distinctive performance of the class of the proposed systems once utilized for transportation of the mRNA payload to the tumors. The protein expression in the targeted tumors appeared to follow a clear PEGylation crowdedness dependence manner, where merely 2-fold PEGylation crowdedness led to remarkably 10-fold augmentation in protein expression in tumors. Hence, the results provided important information and implications for design of active-targeting PEGylated nanomaterials to fulfill the targeting strategies in systemic applications.
Collapse
Affiliation(s)
- Xi Yang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , No. 1630 Dongfang Road, Shanghai 200127, China
| | - Qixian Chen
- School of Life Science and Biotechnology, Dalian University of Technology , No. 2 Linggong Road, Dalian 116024, China
| | - Jinjun Yang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology , Xiqing District, Tianjin 300384, China
| | - Sudong Wu
- Ningbo Institute of Materials Technology and Engineering, China Academy of Sciences , Ningbo 315201, China
| | - Jun Liu
- Ningbo Hygeia Medical Technology Co., Ltd., No. 6 Jingyuan Road, High-Tech Zone, Ningbo 315040, China
| | - Zhen Li
- Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Deqiang Liu
- The No. 2 People's Hospital of Tongxiang, No. 18 Qingyangdong Road, Congfu Town, Tongxiang 314511, China
| | - Xiyi Chen
- Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Yongming Qiu
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , No. 1630 Dongfang Road, Shanghai 200127, China
| |
Collapse
|
26
|
Song Z, Han Z, Lv S, Chen C, Chen L, Yin L, Cheng J. Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application. Chem Soc Rev 2017; 46:6570-6599. [PMID: 28944387 DOI: 10.1039/c7cs00460e] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Synthetic polypeptides from the ring-opening polymerization of N-carboxyanhydrides (NCAs) are one of the most important biomaterials. The unique features of these synthetic polypeptides, including their chemical diversity of side chains and their ability to form secondary structures, enable their broad applications in the field of gene delivery, drug delivery, bio-imaging, tissue engineering, and antimicrobials. In this review article, we summarize the recent advances in the design of polypeptide-based supramolecular structures, including complexes with nucleic acids, micelles, vesicles, hybrid nanoparticles, and hydrogels. We also highlight the progress in the chemical design of functional polypeptides, which plays a crucial role to manipulate their assembly behaviours and optimize their biomedical performances. Finally, we conclude the review by discussing the future opportunities in this field, including further studies on the secondary structures and cost-effective synthesis of polypeptide materials.
Collapse
Affiliation(s)
- Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Jiang Z, Chen Q, Yang X, Chen X, Li Z, Liu DE, Li W, Lei Y, Gao H. Polyplex Micelle with pH-Responsive PEG Detachment and Functional Tetraphenylene Incorporation to Promote Systemic Gene Expression. Bioconjug Chem 2017; 28:2849-2858. [DOI: 10.1021/acs.bioconjchem.7b00557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zhu Jiang
- School
of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic
Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Qixian Chen
- School
of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, P. R. China
| | - Xi Yang
- Department
of Neurosurgery, South Campus, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | | | | | - De-E Liu
- School
of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic
Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Wei Li
- School
of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic
Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Yingjie Lei
- School
of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic
Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Hui Gao
- School
of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic
Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
28
|
Feng G, Zhang Z, Dang M, Zhang X, Doleyres Y, Song Y, Chen D, Ma PX. Injectable nanofibrous spongy microspheres for NR4A1 plasmid DNA transfection to reverse fibrotic degeneration and support disc regeneration. Biomaterials 2017; 131:86-97. [PMID: 28376367 PMCID: PMC5448136 DOI: 10.1016/j.biomaterials.2017.03.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 02/06/2023]
Abstract
Safe and efficient gene therapy is highly desired for controlling pathogenic fibrosis of nucleus pulposus (NP) tissue, which would result in intervertebral disc (IVD) degeneration and disability if left untreated. In this work, a hyperbranched polymer (HP) with high plasmid DNA (pDNA) binding affinity and negligible cytotoxicity is synthesized, which can self-assemble into nano-sized polyplexes with a "double shell" structure that can transfect pDNA into NP cells with very high efficiency. These polyplexes are then encapsulated in biodegradable nanospheres (NS) to enable two-stage delivery: 1) temporally-controlled release of pDNA-carrying polyplexes and 2) highly efficient delivery of pDNA into cells by the released polyplexes. These biodegradable NS are co-injected with nanofibrous spongy microspheres (NF-SMS) to localize the cellular transfection of the pDNA encoding orphan nuclear receptor 4A1 (NR4A1), which was recently reported as a therapeutic agent to delay pathogenic fibrosis. It is shown that HP can transfect human NP cells efficiently in vitro with low cytotoxicity. The two-stage delivery system is able to present the polyplexes over a sustained time period (more than 30 days) in the tail of a rat. The NR4A1 pDNA carried by the HP polyplexes is found to therapeutically reduce the pathogenic fibrosis of NP tissue in a rat-tail degeneration model. In conclusion, the combination of the two-stage NR4A1 pDNA delivery NS and NF-SMS is able to repress fibrosis and to support IVD regeneration.
Collapse
Affiliation(s)
- Ganjun Feng
- Department of Biologic and Materials Science, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhanpeng Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ming Dang
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiaojin Zhang
- Department of Biologic and Materials Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yasmine Doleyres
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yueming Song
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Di Chen
- Department of Biochemistry, Rush University, Chicago, IL, 60612, USA
| | - Peter X Ma
- Department of Biologic and Materials Science, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
29
|
Skoulas D, Christakopoulos P, Stavroulaki D, Santorinaios K, Athanasiou V, Iatrou H. Micelles Formed by Polypeptide Containing Polymers Synthesized Via N-Carboxy Anhydrides and Their Application for Cancer Treatment. Polymers (Basel) 2017; 9:208. [PMID: 30970886 PMCID: PMC6432035 DOI: 10.3390/polym9060208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022] Open
Abstract
The development of multifunctional polymeric materials for biological applications is mainly guided by the goal of achieving the encapsulation of pharmaceutical compounds through a self-assembly process to form nanoconstructs that control the biodistribution of the active compounds, and therefore minimize systemic side effects. Micelles are formed from amphiphilic polymers in a selective solvent. In biological applications, micelles are formed in water, and their cores are loaded with hydrophobic pharmaceutics, where they are solubilized and are usually delivered through the blood compartment. Even though a large number of polymeric materials that form nanocarrier delivery systems has been investigated, a surprisingly small subset of these technologies has demonstrated potentially curative preclinical results, and fewer have progressed towards commercialization. One of the most promising classes of polymeric materials for drug delivery applications is polypeptides, which combine the properties of the conventional polymers with the 3D structure of natural proteins, i.e., α-helices and β-sheets. In this article, the synthetic pathways followed to develop well-defined polymeric micelles based on polypeptides prepared through ring-opening polymerization (ROP) of N-carboxy anhydrides are reviewed. Among these works, we focus on studies performed on micellar delivery systems to treat cancer. The review is limited to systems presented from 2000⁻2017.
Collapse
Affiliation(s)
- Dimitrios Skoulas
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece.
| | | | - Dimitra Stavroulaki
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece.
| | | | - Varvara Athanasiou
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece.
| | - Hermis Iatrou
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece.
| |
Collapse
|
30
|
Takeda KM, Osada K, Tockary TA, Dirisala A, Chen Q, Kataoka K. Poly(ethylene glycol) Crowding as Critical Factor To Determine pDNA Packaging Scheme into Polyplex Micelles for Enhanced Gene Expression. Biomacromolecules 2016; 18:36-43. [DOI: 10.1021/acs.biomac.6b01247] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Kensuke Osada
- Japan
Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Innovation
Center of NanoMedicine, Institute of Industrial Promotion - KAWASAKI, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Theofilus A. Tockary
- Innovation
Center of NanoMedicine, Institute of Industrial Promotion - KAWASAKI, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Anjaneyulu Dirisala
- Innovation
Center of NanoMedicine, Institute of Industrial Promotion - KAWASAKI, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | | | - Kazunori Kataoka
- Innovation
Center of NanoMedicine, Institute of Industrial Promotion - KAWASAKI, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| |
Collapse
|
31
|
Chen Q, Osada K, Ge Z, Uchida S, Tockary TA, Dirisala A, Matsui A, Toh K, Takeda KM, Liu X, Nomoto T, Ishii T, Oba M, Matsumoto Y, Kataoka K. Polyplex micelle installing intracellular self-processing functionalities without free catiomers for safe and efficient systemic gene therapy through tumor vasculature targeting. Biomaterials 2016; 113:253-265. [PMID: 27835820 DOI: 10.1016/j.biomaterials.2016.10.042] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/15/2022]
Abstract
Both efficiency and safety profiles are crucial for promotion of gene delivery systems towards practical applications. A promising template system was previously developed based on block catiomer of poly(ethylene glycol) (PEG)-b-poly{N'-[N-(2-aminoethyl)-2-aminoehtyl]aspartamide}-cholesteryl [PEG-PAsp(DET)-cholesteryl] with strategies of ligand conjugation at the α-terminus for specific affinity to the targeted cells and cholesteryl conjugation at the ω-terminus for structural stabilization to obtain systemic retention. Aiming for advocating this formulation towards practical applications, in the current study, the binding profile of this polymer to plasmid DNA (pDNA) was carefully studied to address an issue of toxicity origin. Quantification of free polymer composition confirmed that the toxicity mainly results from unbound polymer and polyplex micelle itself has negligible toxicity. This evaluation allowed for identifying an optimal condition to prepare safe polyplex micelles for systemic application that possess maximal polymer-binding but exclude free polymers. The identified polyplex micelles then faced a drawback of limited transfection efficiency due to the absence of free polymer, which is an acknowledged tendency found in various synthetic gene carriers. Thus, series of functional components was strategically compiled to improve the transfection efficiency such as attachment of cyclic (Arg-Gly-Asp) (cRGD) peptide as a ligand onto the polyplex micelles to facilitate cellular uptake, use of endosome membrane disruptive catiomer of PAsp(DET) for facilitating endosome escape along with use of the conjugated cholesteryl group to amplify the effect of PAsp(DET) on membrane disruption, so as to obtain efficient transfection. The mechanistic investigation respecting the appreciated pH dependent protonation behavior of PAsp(DET) permitted to depict an intriguing scenario how the block catiomers manage to escape from the endosome entrapment in response to the pH gradient. Subsequent systemic application to the pancreatic tumor demonstrated a capability of vascular targeting mediated by the cRGD ligand, which was directly confirmed based on in situ confocal laser scanning microscopy observation. Encouraging this result, the vascular targeting to transfect a secretable anti-angiogenic gene was attempted to treat the intractable pancreatic tumor with anticipation that the strategy could circumvent the intrinsic physiological barriers derived from hypovascular and fibrotic characters. The obtained therapeutic efficiency demonstrates promising utilities of the proposed formulation as a safe systemic gene delivery carrier in practical use.
Collapse
Affiliation(s)
- Qixian Chen
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kensuke Osada
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Japan Science and Technology Agency, PRESTO, Japan.
| | - Zhishen Ge
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Satoshi Uchida
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Theofilus A Tockary
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Innovation Center of NanoMedicine (iCONM), Institute of Industrial Promotion - KAWASAKI, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Anjaneyulu Dirisala
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Innovation Center of NanoMedicine (iCONM), Institute of Industrial Promotion - KAWASAKI, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Akitsugu Matsui
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuko Toh
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Innovation Center of NanoMedicine (iCONM), Institute of Industrial Promotion - KAWASAKI, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Kaori M Takeda
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Xueying Liu
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Innovation Center of NanoMedicine (iCONM), Institute of Industrial Promotion - KAWASAKI, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Takahiro Nomoto
- Polymer Chemistry Division, Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Tekihiko Ishii
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makoto Oba
- Department of Molecular Medicinal Sciences, Division of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yu Matsumoto
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazunori Kataoka
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Innovation Center of NanoMedicine (iCONM), Institute of Industrial Promotion - KAWASAKI, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan.
| |
Collapse
|
32
|
Zhang Q, Voorhaar L, Filippov SK, Yeşil BF, Hoogenboom R. Tuning of Polymeric Nanoparticles by Coassembly of Thermoresponsive Polymers and a Double Hydrophilic Thermoresponsive Block Copolymer. J Phys Chem B 2016; 120:4635-43. [DOI: 10.1021/acs.jpcb.6b03414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Qilu Zhang
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Lenny Voorhaar
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Sergey K. Filippov
- Institute
of Macromolecular Chemistry, Academy of Sciences of the Czech Republic CZ-162 06 Prague, Czech Republic
| | - Berin Fatma Yeşil
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
33
|
Tockary TA, Osada K, Motoda Y, Hiki S, Chen Q, Takeda KM, Dirisala A, Osawa S, Kataoka K. Rod-to-Globule Transition of pDNA/PEG-Poly(l-Lysine) Polyplex Micelles Induced by a Collapsed Balance Between DNA Rigidity and PEG Crowdedness. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1193-1200. [PMID: 26426541 DOI: 10.1002/smll.201501815] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/07/2015] [Indexed: 06/05/2023]
Abstract
The role of poly(ethylene-glycol) (PEG) in rod-shaped polyplex micelle structures, having a characteristic core of folded plasmid DNA (pDNA) and a shell of tethered PEG chains, is investigated using PEG-detachable polyplex micelles. Rod shapes undergo change to compacted globule shapes by removal of PEG from polyplex micelles prepared from block copolymer with acid-labile linkage between PEG and poly(l-lysine) (PLys) through exposure to acidic milieu. This structural change supports the previous investigation on the rod shapes that PEG shell prevents the DNA structure from being globule shaped as the most favored structure in minimizing surface area. Noteworthy, despite the PEG is continuously depleted, the structural change does not occur in gradual shortening manner but the rod shapes keep their length unchanged and abruptly transform into globule shapes. Analysis of PEG density reveals the transition occurred when tethered PEG of rod shapes has decreased to a critical crowdedness, i.e., discontacted with neighboring PEG, which eventually illuminates another contribution, rigidity of DNA packaged as bundle in the rod shapes, in addition to the steric repulsion of PEG, in sustaining rod shapes. This investigation affirms significant role of PEG and also DNA rigidity as bundle in the formation of rod-shaped structures enduring the quest of compaction of charge-neutralized DNA in the polyplex micelles.
Collapse
Affiliation(s)
- Theofilus A Tockary
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyoku, Tokyo, 113-8656, Japan
| | - Kensuke Osada
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyoku, Tokyo, 113-8656, Japan
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yusuke Motoda
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyoku, Tokyo, 113-8656, Japan
| | - Shigehiro Hiki
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyoku, Tokyo, 113-8656, Japan
| | - Qixian Chen
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyoku, Tokyo, 113-8656, Japan
| | - Kaori M Takeda
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyoku, Tokyo, 113-8656, Japan
| | - Anjaneyulu Dirisala
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyoku, Tokyo, 113-8656, Japan
| | - Shigehito Osawa
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyoku, Tokyo, 113-8656, Japan
| | - Kazunori Kataoka
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyoku, Tokyo, 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyoku, Tokyo, 113-8656, Japan
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyoku, Tokyo, 113-8656, Japan
| |
Collapse
|
34
|
Kim A, Miura Y, Ishii T, Mutaf OF, Nishiyama N, Cabral H, Kataoka K. Intracellular Delivery of Charge-Converted Monoclonal Antibodies by Combinatorial Design of Block/Homo Polyion Complex Micelles. Biomacromolecules 2016; 17:446-53. [PMID: 26691492 DOI: 10.1021/acs.biomac.5b01335] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Direct intracellular delivery of antibodies has gained much attention, although only a few agents have been developed, and none of them has reached clinical stages. The main obstacles here are the insufficient characteristics of delivery systems including stability and appropriate ability for intracellular antibody release. We tailored the structure of polyion complex (PIC) micelles by loading transiently charge-converted antibody derivatives for achieving enhanced stability, delivery to cytosol, and precise antigen recognition inside cells. Citraconic anhydride was used for the charge conversion of the antibody; the optimized degree of modification was identified to balance the stability of PIC micelles in the extracellular compartment and prompt pH-triggered disintegration after their translocation into the acidic endosomal compartment of target cells. The use of a mixture of homo- and block-catiomers in an appropriate ratio to construct PIC micelles substantially enhanced the endosomal escaping efficacy of the loaded antibody, leading to improved recognition of intracellular antigens.
Collapse
Affiliation(s)
| | | | | | | | - Nobuhiro Nishiyama
- Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology , R1-11, 4529 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | | | | |
Collapse
|
35
|
Messenger RNA-based therapeutics for the treatment of apoptosis-associated diseases. Sci Rep 2015; 5:15810. [PMID: 26507781 PMCID: PMC4623474 DOI: 10.1038/srep15810] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/01/2015] [Indexed: 01/25/2023] Open
Abstract
Gene therapy is a promising approach for treating diseases that are closely associated with excessive apoptosis, because the gene can effectively and sustainably introduce anti-apoptotic factors into cells. However, DNA delivery poses the risk of random genomic integration, leading to overexpression of the delivered gene and cancer development. Messenger RNA (mRNA) can evade integration events in target cells. We examined the use of mRNA-based therapeutics for introducing anti-apoptotic factors by using a mouse model of fulminant hepatitis. For introducing mRNA into the liver, a synthesised polymer-based carrier of polyplex nanomicelles was used for hydrodynamic intravenous injection. Using GFP as a reporter, we demonstrate that mRNA delivery induced efficient protein expression in almost 100% of liver cells, while plasmid DNA (pDNA) delivery provided a smaller percentage of GFP-positive cells. Analyses using Cy5-labelled mRNA and pDNA revealed that efficient expression by mRNA was attributed to a simple intracellular mechanism, without the need for nuclear entry. Consistent with this observation, Bcl-2 mRNA was more effective on reducing apoptosis in the liver of mice with fulminant hepatitis than Bcl-2 pDNA. Therefore, mRNA-based therapeutics combined with an effective delivery system such as polyplex nanomicelles is a promising treatment for intractable diseases associated with excessive apoptosis.
Collapse
|
36
|
Li Y, Osada K, Chen Q, Tockary TA, Dirisala A, Takeda KM, Uchida S, Nagata K, Itaka K, Kataoka K. Toroidal Packaging of pDNA into Block Ionomer Micelles Exerting Promoted in Vivo Gene Expression. Biomacromolecules 2015. [DOI: 10.1021/acs.biomac.5b00491] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yanmin Li
- Department
of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Kensuke Osada
- Department
of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi,
Saitama 332-0012, Japan
| | - Qixian Chen
- Department
of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Theofilus A. Tockary
- Department
of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Anjaneyulu Dirisala
- Department
of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Kaori M. Takeda
- Department
of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Satoshi Uchida
- Division
of Clinical Biotechnology, Center for Disease Biology and Integrative
Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Kazuya Nagata
- Division
of Clinical Biotechnology, Center for Disease Biology and Integrative
Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Keiji Itaka
- Division
of Clinical Biotechnology, Center for Disease Biology and Integrative
Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Kazunori Kataoka
- Department
of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- Department
of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- Division
of Clinical Biotechnology, Center for Disease Biology and Integrative
Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
37
|
Takemoto H, Miyata K, Nishiyama N, Kataoka K. Bioresponsive polymer-based nucleic acid carriers. ADVANCES IN GENETICS 2015; 88:289-323. [PMID: 25409610 DOI: 10.1016/b978-0-12-800148-6.00010-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nucleic acid carriers need to possess multifunctionality for overcoming biological barriers, such as the stable encapsulation of nucleic acids in extracellular milieu, internalization by target cells, controlled intracellular distribution, and release of nucleic acids at the target site of action. To fulfill these stepwise functionalities, "bioresponsive" polymers that can alter their structure responding to site-specific biological signals are highly useful. Notably, pH, redox potential, and enzymatic activities vary along with microenvironments in the body, and thus, the responsiveness to these signals enables to construct nucleic acid carriers with programmed functionalities. This chapter describes the design of bioresponsive polymers that respond to various biological microenvironments for smart nucleic acids delivery.
Collapse
Affiliation(s)
- Hiroyasu Takemoto
- Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, Japan
| | - Kanjiro Miyata
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan
| | - Nobuhiro Nishiyama
- Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, Japan
| | - Kazunori Kataoka
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan; Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Japan
| |
Collapse
|
38
|
Feasibility of a subcutaneously administered block/homo-mixed polyplex micelle as a carrier for DNA vaccination in a mouse tumor model. J Control Release 2015; 206:220-31. [DOI: 10.1016/j.jconrel.2015.03.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/05/2015] [Accepted: 03/24/2015] [Indexed: 12/22/2022]
|
39
|
Gene transfection to spheroid culture system on micropatterned culture plate by polyplex nanomicelle: a novel platform of genetically-modified cell transplantation. Drug Deliv Transl Res 2015; 2:398-405. [PMID: 25787177 DOI: 10.1007/s13346-012-0091-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three-dimensional (3D) cellular spheroids have attracted much attention as a transplantation procedure because the increased cell-to-cell interaction in spheroids enhances cell survival and its functions after the transplantation into the body. Furthermore, the potency of spheroidal cells may be further improved by introducing transgenes to augment cellular functions as well as enhance the paracrine effects by secreting key proteins involved in the essential cellular signaling cascades. In this study, we organized a new platform for genetically-modified cell transplantation by combining a microfabricated culture system for 3D spheroid formation with a newly developed non-viral transfection system, polyplex nanomicelle. After transfection of Gaussia luciferase using the nanomicelle, the prolonged luciferase expression was obtained for more than a month with continuous albumin secretion from the hepatocyte spheroids to the level comparable with control spheroids receiving no transfection. In contrast, by the transfection using FuGENE HD, a commercially available lipid-based reagent, the luciferase expression was obtained, yet the albumin secretion was significantly decreased with disintegration of the spheroid architecture. To assess the feasibility of the hepatocyte spheroids for in vivo transplantation, the spheroids were recovered by the use of micropatterned culture plate functionalized with thermosensitive polymer and dispersed into Matrigel(TM) Matrix. The luciferase expression as well as albumin secretion was maintained for more than a month from the spheroids in the Matrix. Thus, the combination of spheroid cell culture on micropatterned plates with gene introduction using polyplex nanomicelle is a promising platform for genetically-modified cell transplantation to achieve sustained transgene expression with maintaining innate cell functions.
Collapse
|
40
|
Feng G, Chen H, Li J, Huang Q, Gupte MJ, Liu H, Song Y, Ge Z. Gene therapy for nucleus pulposus regeneration by heme oxygenase-1 plasmid DNA carried by mixed polyplex micelles with thermo-responsive heterogeneous coronas. Biomaterials 2015; 52:1-13. [PMID: 25818409 DOI: 10.1016/j.biomaterials.2015.02.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/28/2015] [Accepted: 02/01/2015] [Indexed: 02/05/2023]
Abstract
Safe and high-efficiency gene therapy for nucleus pulposus (NP) regeneration was urgently desired to treat disc degeneration-associated diseases. In this work, an efficient nonviral cationic block copolymer gene delivery system was used to deliver therapeutic plasmid DNA (pDNA), which was prepared via complexation between the mixed cationic block copolymers, poly(ethylene glycol)-block-poly{N-[N-(2-aminoethyl)-2-aminoehtyl]aspartamide} [PEG-b-PAsp(DET)] and poly(N-isopropylacrylamide)-block-PAsp(DET) [PNIPAM-b-PAsp(DET)], and pDNA at 25 °C. The mixed polyplex micelles (MPMs) containing heterogeneous coronas with hydrophobic and hydrophilic microdomains coexisting could be obtained upon heating from 25 to 37 °C, which showed high tolerability against nuclease and strong resistance towards protein adsorption. The gene transfection efficiency of MPMs in NP cells was significantly higher than that of regular polyplex micelles prepared from sole block copolymer of PEG-b-PAsp(DET) (SPMs) in in vitro and in vivo evaluation due to the synergistic effect of improved colloidal stability and low cytotoxicity. High expression of heme oxygenase-1 (HO-1) in NP cells transfected by MPMs loading HO-1 pDNA significantly decreased the expression activity of matrix metalloproteinases 3 (MMP-3) and cyclo-oxygenase-2 (COX-2) induced by interleukin-1β (IL-1β), and simultaneously increased the NP phenotype-associated genes such as aggrecan, type II collagen, and SOX-9. Moreover, the therapeutic effects of MPMs loading pDNA were tested to treat disc degeneration induced by stab injury. The results demonstrated that administration of HO-1 pDNA carried by MPMs in rat tail discs apparently reduced inflammatory responses induced by need stab and increased glycosaminoglycan (GAG) content, finally achieving better therapeutic efficacy as compared with SPMs. Consequently, MPMs loading HO-1 pDNA were demonstrated to be potential as a safe and high-efficiency nonviral gene delivery system for retarding or regenerating the degenerative discs.
Collapse
Affiliation(s)
- Ganjun Feng
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongying Chen
- Technology Center for Public Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junjie Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Huang
- Technology Center for Public Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Melanie J Gupte
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hao Liu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yueming Song
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
41
|
Hayakawa K, Uchida S, Ogata T, Tanaka S, Kataoka K, Itaka K. Intrathecal injection of a therapeutic gene-containing polyplex to treat spinal cord injury. J Control Release 2014; 197:1-9. [PMID: 25449800 DOI: 10.1016/j.jconrel.2014.10.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/20/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022]
Abstract
Spinal cord injury (SCI) is a serious clinical problem that suddenly deprives patients of neurologic function and drastically diminishes their quality of life. Gene introduction has the potential to be effective for various pathological states of SCI because various proteins can be produced just by modifying nucleic acid sequences. In addition, the sustainable protein expression allows to maintain its concentration at an effective level at the target site in the spinal cord. Here we propose an approach using a polyplex system composed of plasmid DNA (pDNA) and a cationic polymer, poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} [PAsp(DET)], that has high capacity to promote endosome escape and the long-term safety by self-catalytically degrading within a few days. We applied brain-derived neurotrophic factor (BDNF)-expressing pDNA for SCI treatment by intrathecal injection of PAsp(DET)/pDNA polyplex. A single administration of polyplex for experimental SCI provided sufficient therapeutic effects including prevention of neural cell death and enhancement of motor function recovery. This lasted for a few weeks after SCI, demonstrating the capability of this system to express BDNF in a safe and responsible manner for treatment of various pathological states in SCI.
Collapse
Affiliation(s)
- Kentaro Hayakawa
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for the Persons with Disabilities, Saitama, Japan; Sensory and Motor System Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Uchida
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toru Ogata
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for the Persons with Disabilities, Saitama, Japan
| | - Sakae Tanaka
- Sensory and Motor System Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazunori Kataoka
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Keiji Itaka
- Sensory and Motor System Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
42
|
Furugaki K, Cui L, Kunisawa Y, Osada K, Shinkai K, Tanaka M, Kataoka K, Nakano K. Intraperitoneal administration of a tumor-associated antigen SART3, CD40L, and GM-CSF gene-loaded polyplex micelle elicits a vaccine effect in mouse tumor models. PLoS One 2014; 9:e101854. [PMID: 25013909 PMCID: PMC4094388 DOI: 10.1371/journal.pone.0101854] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 06/11/2014] [Indexed: 01/01/2023] Open
Abstract
Polyplex micelles have demonstrated biocompatibility and achieve efficient gene transfection in vivo. Here, we investigated a polyplex micelle encapsulating genes encoding the tumor-associated antigen squamous cell carcinoma antigen recognized by T cells-3 (SART3), adjuvant CD40L, and granulocyte macrophage colony-stimulating factor (GM-CSF) as a DNA vaccine platform in mouse tumor models with different types of major histocompatibility antigen complex (MHC). Intraperitoneally administrated polyplex micelles were predominantly found in the lymph nodes, spleen, and liver. Compared with mock controls, the triple gene vaccine significantly prolonged the survival of mice harboring peritoneal dissemination of CT26 colorectal cancer cells, of which long-term surviving mice showed complete rejection when re-challenged with CT26 tumors. Moreover, the DNA vaccine inhibited the growth and metastasis of subcutaneous CT26 and Lewis lung tumors in BALB/c and C57BL/6 mice, respectively, which represent different MHC haplotypes. The DNA vaccine highly stimulated both cytotoxic T lymphocyte and natural killer cell activities, and increased the infiltration of CD11c+ DCs and CD4+/CD8a+ T cells into tumors. Depletion of CD4+ or CD8a+ T cells by neutralizing antibodies deteriorated the anti-tumor efficacy of the DNA vaccine. In conclusion, a SART3/CD40L+GM-CSF gene-loaded polyplex micelle can be applied as a novel vaccine platform to elicit tumor rejection immunity regardless of the recipient MHC haplotype.
Collapse
Affiliation(s)
- Kouichi Furugaki
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Lin Cui
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Yumi Kunisawa
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Kensuke Osada
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kentaro Shinkai
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masao Tanaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazunori Kataoka
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Nakano
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
43
|
Heller P, Birke A, Huesmann D, Weber B, Fischer K, Reske-Kunz A, Bros M, Barz M. Introducing PeptoPlexes: Polylysine-block-Polysarcosine Based Polyplexes for Transfection of HEK 293T Cells. Macromol Biosci 2014; 14:1380-95. [DOI: 10.1002/mabi.201400167] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/14/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Philipp Heller
- Institute of Organic Chemistry; Johannes Gutenberg-University Mainz; Duesbergweg 10-14 D-55128 Mainz Germany
| | - Alexander Birke
- Institute of Organic Chemistry; Johannes Gutenberg-University Mainz; Duesbergweg 10-14 D-55128 Mainz Germany
| | - David Huesmann
- Institute of Organic Chemistry; Johannes Gutenberg-University Mainz; Duesbergweg 10-14 D-55128 Mainz Germany
| | - Benjamin Weber
- Institute of Organic Chemistry; Johannes Gutenberg-University Mainz; Duesbergweg 10-14 D-55128 Mainz Germany
| | - Karl Fischer
- Institute for Physical Chemistry, Johannes Gutenberg-Universität; Duesbergweg 10-14 D-55128 Mainz Germany
| | - Angelika Reske-Kunz
- Department of Dermatology; University Hospital, Johannes Gutenberg-University Mainz; Obere Zahlbacher Straße 63 55131 Mainz Germany
| | - Matthias Bros
- Department of Dermatology; University Hospital, Johannes Gutenberg-University Mainz; Obere Zahlbacher Straße 63 55131 Mainz Germany
| | - Matthias Barz
- Institute of Organic Chemistry; Johannes Gutenberg-University Mainz; Duesbergweg 10-14 D-55128 Mainz Germany
| |
Collapse
|
44
|
Three-layered polyplex micelle as a multifunctional nanocarrier platform for light-induced systemic gene transfer. Nat Commun 2014; 5:3545. [DOI: 10.1038/ncomms4545] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 03/03/2014] [Indexed: 12/21/2022] Open
|
45
|
Targeted gene delivery by polyplex micelles with crowded PEG palisade and cRGD moiety for systemic treatment of pancreatic tumors. Biomaterials 2014; 35:3416-26. [DOI: 10.1016/j.biomaterials.2013.12.086] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/22/2013] [Indexed: 01/21/2023]
|
46
|
He Q, Huang J, Liang H, Lu J. Light-responsive fluorescent cross-linked polymeric micelles based on a salicylidene Schiff base pendant-functionalized block copolymer. Polym Chem 2014. [DOI: 10.1039/c4py00053f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Kim YK, Singh B, Jiang HL, Park TE, Jiang T, Park IK, Cho MH, Kang SK, Choi YJ, Cho CS. N-acetylglucosamine-conjugated block copolymer consisting of poly(ethylene oxide) and cationic polyaspartamide as a gene carrier for targeting vimentin-expressing cells. Eur J Pharm Sci 2014; 51:165-72. [DOI: 10.1016/j.ejps.2013.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 08/28/2013] [Accepted: 09/16/2013] [Indexed: 10/26/2022]
|
48
|
Uchida S, Itaka K, Nomoto T, Endo T, Matsumoto Y, Ishii T, Kataoka K. An injectable spheroid system with genetic modification for cell transplantation therapy. Biomaterials 2013; 35:2499-506. [PMID: 24388386 DOI: 10.1016/j.biomaterials.2013.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/08/2013] [Indexed: 01/06/2023]
Abstract
The new methodology to increase a therapeutic potential of cell transplantation was developed here by the use of three-dimensional spheroids of transplanting cells subsequent to the genetic modification with non-viral DNA vectors, polyplex nanomicelles. Particularly, spheroids in regulated size of 100-μm of primary hepatocytes transfected with luciferase gene were formed on the micropatterned culture plates coated with thermosensitive polymer, and were recovered in the form of injectable liquid suspension simply by cooling the plates. After subcutaneously transplanting these hepatocyte spheroids, efficient transgene expression was observed in host tissue for more than a month, whereas transplantation of a single-cell suspension from a monolayer culture resulted in an only transient expression. The spheroid system contributed to the preservation of innate functions of transplanted hepatocytes in the host tissue, such as albumin expression, thereby possessing high potential for expressing transgene. Intravital observation of transplanted cells showed that those from spheroid cultures had a tendency to localize in the vicinity of blood vessels, making a favorable microenvironment for preserving cell functionality. Furthermore, spheroids transfected with erythropoietin-expressing DNA showed a significantly higher hematopoietic effect than that of cell suspensions from monolayer cultures, demonstrating high potential of this genetically-modified spheroid transplantation system for therapeutic applications.
Collapse
Affiliation(s)
- Satoshi Uchida
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiji Itaka
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Takahiro Nomoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Taisuke Endo
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yu Matsumoto
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takehiko Ishii
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kazunori Kataoka
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
49
|
Li Y, Liu T, Zhang G, Ge Z, Liu S. Tumor-Targeted Redox-Responsive Nonviral Gene Delivery Nanocarriers Based on Neutral-Cationic Brush Block Copolymers. Macromol Rapid Commun 2013; 35:466-73. [DOI: 10.1002/marc.201300719] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/23/2013] [Indexed: 01/03/2023]
Affiliation(s)
- Yang Li
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Tao Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Guoying Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| |
Collapse
|
50
|
Tockary TA, Osada K, Chen Q, Machitani K, Dirisala A, Uchida S, Nomoto T, Toh K, Matsumoto Y, Itaka K, Nitta K, Nagayama K, Kataoka K. Tethered PEG Crowdedness Determining Shape and Blood Circulation Profile of Polyplex Micelle Gene Carriers. Macromolecules 2013. [DOI: 10.1021/ma401093z] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Kensuke Osada
- Japan Science and Technology
Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | | | | | | | | | | | | | | | | - Koji Nitta
- Okazaki Institute for Integrative
Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaijicho, Okazaki, Aichi 444-8787, Japan
| | - Kuniaki Nagayama
- Okazaki Institute for Integrative
Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaijicho, Okazaki, Aichi 444-8787, Japan
| | | |
Collapse
|