1
|
Cao Y, Wang H, Cao S, Liu Z, Zhang Y. Preparation and Characterization of Nanofiber Coatings on Bone Implants for Localized Antimicrobial Activity Based on Sustained Ion Release and Shape-Preserving Design. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2584. [PMID: 38893848 PMCID: PMC11173675 DOI: 10.3390/ma17112584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Titanium (Ti), as a hard tissue implant, is facing a big challenge for rapid and stable osseointegration owing to its intrinsic bio-inertness. Meanwile, surface-related infection is also a serious threat. In this study, large-scale quasi-vertically aligned sodium titanate nanowire (SNW) arrayed coatings incorporated with bioactive Cu2+ ions were fabricated through a compound process involving acid etching, hydrothermal treatment (HT), and ion exchange (IE). A novel coating based on sustained ion release and a shape-preserving design is successfully obtained. Cu2+ substituted Na+ in sodium titanate lattice to generate Cu-doped SNW (CNW), which maintains the micro-structure and phase components of the original SNW, and can be efficiently released from the structure by immersing them in physiological saline (PS) solutions, ensuring superior long-term structural stability. The synergistic effects of the acid etching, bidirectional cogrowth, and solution-strengthening mechanisms endow the coating with higher bonding strengths. In vitro antibacterial tests demonstrated that the CNW coatings exhibited effective good antibacterial properties against both Gram-positive and Gram-negative bacteria based on the continuous slow release of copper ions. This is an exciting attempt to achieve topographic, hydrophilic, and antibacterial activation of metal implants, demonstrating a paradigm for the activation of coatings without dissolution and providing new insights into insoluble ceramic-coated implants with high bonding strengths.
Collapse
Affiliation(s)
- Yubao Cao
- School of Machinery and Automation, Weifang University, Weifang 261061, China
| | - Hong Wang
- School of Machinery and Automation, Weifang University, Weifang 261061, China
| | - Shuyun Cao
- School of Machinery and Automation, Weifang University, Weifang 261061, China
| | - Zaihao Liu
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanni Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
2
|
Neubauer VJ, Hüter F, Wittmann J, Trossmann VT, Kleinschrodt C, Alber-Laukant B, Rieg F, Scheibel T. Flow Simulation and Gradient Printing of Fluorapatite- and Cell-Loaded Recombinant Spider Silk Hydrogels. Biomolecules 2022; 12:biom12101413. [PMID: 36291622 PMCID: PMC9599405 DOI: 10.3390/biom12101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Hierarchical structures are abundant in almost all tissues of the human body. Therefore, it is highly important for tissue engineering approaches to mimic such structures if a gain of function of the new tissue is intended. Here, the hierarchical structures of the so-called enthesis, a gradient tissue located between tendon and bone, were in focus. Bridging the mechanical properties from soft to hard secures a perfect force transmission from the muscle to the skeleton upon locomotion. This study aimed at a novel method of bioprinting to generate gradient biomaterial constructs with a focus on the evaluation of the gradient printing process. First, a numerical approach was used to simulate gradient formation by computational flow as a prerequisite for experimental bioprinting of gradients. Then, hydrogels were printed in a single cartridge printing set-up to transfer the findings to biomedically relevant materials. First, composites of recombinant spider silk hydrogels with fluorapatite rods were used to generate mineralized gradients. Then, fibroblasts were encapsulated in the recombinant spider silk-fluorapatite hydrogels and gradually printed using unloaded spider silk hydrogels as the second component. Thereby, adjustable gradient features were achieved, and multimaterial constructs were generated. The process is suitable for the generation of gradient materials, e.g., for tissue engineering applications such as at the tendon/bone interface.
Collapse
Affiliation(s)
- Vanessa J. Neubauer
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany
| | - Florian Hüter
- Lehrstuhl Konstruktionslehre und CAD, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Johannes Wittmann
- Lehrstuhl Konstruktionslehre und CAD, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Vanessa T. Trossmann
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany
| | - Claudia Kleinschrodt
- Lehrstuhl Konstruktionslehre und CAD, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Bettina Alber-Laukant
- Lehrstuhl Konstruktionslehre und CAD, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Frank Rieg
- Lehrstuhl Konstruktionslehre und CAD, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuth Engine Research Center (BERC), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Zentrum für Energietechnik (ZET), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayerisches Polymerinstitut (BPI), Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Correspondence:
| |
Collapse
|
3
|
A new hydrogel with fluorapatite nanoparticles for osteogenic differentiation of human adipose-derived stem cells in tissue engineering field. Cell Tissue Res 2022; 390:399-411. [PMID: 36152061 DOI: 10.1007/s00441-022-03691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
Since scaffolds are engineered to support functional tissue formation, their design and materials play an essential role in medical fields by providing different mechanical function. The aim of this study was to investigate the synthesis and structural characterization of collagen-gelatin (COL-GEL) composite scaffolds containing fluorapatite (FA) nanoparticles as well as evaluation of the osteogenic differentiation of human adipose-derived stem cells (hADSCs). First, the composite scaffolds were evaluated using Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. The cytotoxicity of scaffolds and various concentrations of FA nanoparticles was studied through MTT assay and acridine orange/ethidium bromide staining. Next, the differentiated hADSCs were analyzed using Alizarin red and von Kossa staining, calcium content assay, alkaline phosphatase (ALP) activity, real-time RT-PCR, and immunocytochemical analyses. According to the characterization analyses, the composite scaffolds were properly integrated. The results also illustrated that COL-GEL composite scaffolds in the presence of FA nanoparticles not only showed no cytotoxicity but also increased ALP activity and calcium deposition as well as the expression of osteogenic genes, including Runx2, Col-I, ALP, and osteocalcin and the synthesis of proteins such as osteocalcin and osteopontin in vitro. The obtained data were confirmed by Alizarin red and von Kossa staining. These results are very promising for further tissue engineering experiments, in which FA nanoparticle incorporation into COL-GEL composite scaffolds is a novel approach that improves the surface COL-GEL composite scaffolds for tissue engineering application in vitro.
Collapse
|
4
|
Jeyapalina S, Hillas E, Beck JP, Agarwal J, Shea J. Fluorapatite and fluorohydroxyapatite apatite surfaces drive adipose-derived stem cells to an osteogenic lineage. J Mech Behav Biomed Mater 2022; 125:104950. [PMID: 34740011 PMCID: PMC11822887 DOI: 10.1016/j.jmbbm.2021.104950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Hydroxyapatite (HA) scaffolds are common replacement materials used in the clinical management of critical-sized bone defects. This study was undertaken to examine the potential benefits of fluoridated derivatives of hydroxyapatite, fluorapatite (FA), and fluorohydroxyapatite (FHA) as bone scaffolds in conjunction with adipose-derived stem cells (ADSCs). If FHA and FA surfaces could drive the differentiation of stem cells to an osteogenic phenotype, the combination of these ceramic scaffolds with ADSCs could produce materials with mechanical strength and remodeling potential comparable to autologous bone. This study was designed to investigate the ability of the apatite surfaces HA, FA, and FHA produced at different sintering temperatures to drive ADSCs toward osteogenic lineages. METHODS HA, FHA, and FA surfaces sintered at 1150 °C and 1250 °C were seeded with ADSCs and evaluated for cell growth and gene and protein expression of osteogenic markers at 2 and 10 days post-seeding. RESULTS In vitro, ADSC cells were viable on all surfaces; however, differentiation of these cells into osteoblastic lineage only observed in apatite surfaces. ADSCs seeded on FA and FHA expressed genes and proteins related to osteogenic differentiation markers to a greater extent by Day 2 when compared to HA and cell culture controls. By day 10, HA, FA, and FHA all expressed more bone differentiation markers compared to cell culture controls. CONCLUSION FA and FHA apatite scaffolds may promote the differentiation of ADSCs at an earlier time point than HA surfaces. Combining apatite scaffolds with ADSCs has the potential to improve bone regeneration following bone injury.
Collapse
Affiliation(s)
- Sujee Jeyapalina
- Division of Plastic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA; Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA; Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Elaine Hillas
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - James Peter Beck
- Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA; Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Jayant Agarwal
- Division of Plastic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA; Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA; Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Jill Shea
- Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA; Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
5
|
Almasi D, Lau WJ, Rasaee S, Abbasi K. Fabrication and in vitro study of 3D novel porous hydroxyapatite/polyether ether ketone surface nanocomposite. J Biomed Mater Res B Appl Biomater 2021; 110:838-847. [PMID: 34788503 DOI: 10.1002/jbm.b.34964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/18/2021] [Accepted: 10/30/2021] [Indexed: 01/12/2023]
Abstract
The unique characteristics of polyether ether ketone (PEEK) including low elastic modulus, high mechanical strength, and biocompatibility have made it an attractive alternative for the metallic biomaterials. However, its bioinert property is always the main concern, which could lead to poor osseointegration and subsequent clinical failure of the implant. Changing the surface structure to porous structure and mixing it with bioactive hydroxyapatite (HA) are the common methods, which could be used to enhance the properties of the PEEK-based implants. In this study, friction stir processing was utilized for the fabrication of porous HA/PEEK surface nanocomposite. Scanning electron microscopic image of the nanocomposite surface showed nano-scale roughness of the porous structure. Water contact angle test confirmed the increase in the wettability of the treated specimens. In vitro bioactivity test via simulated body fluid solution, initial cell adhesion, cell proliferation, and cell differentiation assay also confirmed the enhancement in bioactivity of the treated surface in comparison to the bare PEEK. This surface modification method requires no special equipment and would not damage the heat-sensitive PEEK substrate due to the low temperature used during the fabrication process.
Collapse
Affiliation(s)
- Davood Almasi
- Department of Mechanical Engineering, Imam Reza University of Applied Science and Technology, Kermanshah, Iran
| | - Woei Jye Lau
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Sajad Rasaee
- Department of Mechanical Engineering, Faculty of Energy, Kermanshah University of Technology, Kermanshah, Iran
| | - Kaveh Abbasi
- Department of Automechanics Engineering, Faculty of Shahid Beheshti, Alborz Branch, Technical and Vocation University, Karaj, Iran
| |
Collapse
|
6
|
Chen L, Ren J, Hu N, Du Q, Wei D. Rapid structural regulation, apatite-inducing mechanism and in vivo investigation of microwave-assisted hydrothermally treated titania coating. RSC Adv 2021; 11:7305-7317. [PMID: 35423257 PMCID: PMC8695042 DOI: 10.1039/d0ra08511a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/25/2021] [Indexed: 11/21/2022] Open
Abstract
Owing to the poor bioactivity of microarc oxidation (MAO) coating and the rapid activation ability of the microwave hydrothermal (MH) technique, MH treatment was applied to optimize the in vivo interface status between MAO-treated titanium and bone. In this study, consequently, new outermost layers were prepared using hydroxyapatite (HA) nanorods, HA submicron pillars or sodium titanate nanosheets. The results revealed that the NaOH concentration significantly influenced the surface structure and phase constitution of the MAO samples. Moreover, on enhancing the NaOH concentration, the number of HA phases was decreased. Further, the influence of the NaOH concentration on the interfacial bonding strength was insignificant for concentrations ≤0.5 mol L−1. Transmission electron microscopy (TEM) analysis showed that the induction of apatite was accompanied by the dissolution of the HA crystals and there was excellent crystallographic matching with the HA crystals. The in vitro and in vivo analyses revealed that the MH-treated MAO sample with the HA nanorods possessed superior apatite-formation ability and osseointegration, including a small amount of soft tissue and optimal bone–implant interfacial bonding force, thus signifying strong potential for the optimization of the bone–implant interfacial status. In this work, the micro/nano scale structures of HA nanorods integrated on a titanium were prepared using MAO and MH treatment. The in vivo results indicate that HA crystals play a crucial role in the improvement of the osseointegration.![]()
Collapse
Affiliation(s)
- Lin Chen
- Orthopedics, Second Affiliated Hospital of Harbin Medical University Harbin 150086 China
| | - Junyu Ren
- Oral Implant Center, Second Affiliated Hospital of Harbin Medical University No. 246 Xuefu Road, Nangang District Harbin 150086 China
| | - Narisu Hu
- Oral Implant Center, Second Affiliated Hospital of Harbin Medical University No. 246 Xuefu Road, Nangang District Harbin 150086 China
| | - Qing Du
- Center of Analysis and Measurement, Harbin Institute of Technology Science Park, No. 2 Yikuang Street Harbin 150001 China .,Institute for Advanced Ceramics, Department of Materials Science and Engineering, Harbin Institute of Technology Harbin 150001 China.,Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology Harbin 150001 China
| | - Daqing Wei
- Center of Analysis and Measurement, Harbin Institute of Technology Science Park, No. 2 Yikuang Street Harbin 150001 China .,Institute for Advanced Ceramics, Department of Materials Science and Engineering, Harbin Institute of Technology Harbin 150001 China.,Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
7
|
Wei D, Du Q, Wang S, Cheng S, Wang Y, Li B, Jia D, Zhou Y. Rapid Fabrication, Microstructure, and in Vitro and in Vivo Investigations of a High-Performance Multilayer Coating with External, Flexible, and Silicon-Doped Hydroxyapatite Nanorods on Titanium. ACS Biomater Sci Eng 2019; 5:4244-4262. [PMID: 33417781 DOI: 10.1021/acsbiomaterials.9b00414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A high-performance multilayer coating with external, flexible, and silicon-doped hydroxyapatite (Si-HA) nanorods was designed using bionics. Plasma electrolytic oxidation (PEO) and the microwave hydrothermal (MH) method were used to rapidly deposit this multilayer coating on a titanium (Ti) substrate, applied for 5 and 10 min, respectively. The bioactive multilayer coating was composed of four layers, and the outermost layer was an external growth layer that consisted of many Si-HA nanorods with a single-crystal structure. The Si-HA nanorods exhibited good flexibility, likely because of their complete single-crystal structures, smooth surfaces, and suitable diameters and lengths. This multilayer coating with a high surface energy was superhydrophilic and exhibited good in vitro bioactivities, such as good apatite formation ability, good cell spreading, and high osteogenic gene expression levels. After implantation in the tibia of rabbits for 16 weeks, almost no soft tissues were formed at the MH treated PEO implant-bone interface. A direct bone contact interface was formed by a bridging effect of the flexible Si-HA nanorods, which further produced a high implant-bone interface bonding strength. The current results demonstrated that the bioactive multilayer layers with the flexible Si-HA nanorods displayed a very good osseointegration ability, showing promising applications in the biomedical field.
Collapse
Affiliation(s)
- Daqing Wei
- Institute for Advanced Ceramics, Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.,Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin 150001, China.,Center of Analysis and Measurement, Harbin Institute of Technology, Harbin 150001, China
| | - Qing Du
- Institute for Advanced Ceramics, Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.,Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Shaodong Wang
- Institute for Advanced Ceramics, Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.,Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Su Cheng
- Department of Mechanical Engineering, School of Architecture and Civil Engineering, Harbin University of Science and Technology, Harbin 150001, China
| | - Yaming Wang
- Institute for Advanced Ceramics, Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.,Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Baoqiang Li
- Institute for Advanced Ceramics, Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.,Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Dechang Jia
- Institute for Advanced Ceramics, Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.,Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yu Zhou
- Institute for Advanced Ceramics, Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.,Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
8
|
Wu R, Ruan J, Sun Y, Liu M, Sha Z, Fan C, Wu Q. Long non-coding RNA HIF1A-AS2 facilitates adipose-derived stem cells (ASCs) osteogenic differentiation through miR-665/IL6 axis via PI3K/Akt signaling pathway. Stem Cell Res Ther 2018; 9:348. [PMID: 30545407 PMCID: PMC6293597 DOI: 10.1186/s13287-018-1082-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/10/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
Background This study was aimed to investigate the role and specific molecular mechanism of HIF1A-AS2/miR-665/IL6 axis in regulating osteogenic differentiation of adipose-derived stem cells (ASCs) via the PI3K/Akt signaling pathway. Methods RNAs’ expression profile in normal/osteogenic differentiation-induced ASCs (osteogenic group) was from the Gene Expression Omnibus database. The analysis was carried out using Bioconductor of R. Gene Set Enrichment Analysis and Kyoto Encyclopedia of Genes and Genomes dataset were applied to identify up- and downregulated signaling pathways. Co-expression network of specific lncRNAs and mRNAs was structured by Cytoscape, while binding sites amongst lncRNA, mRNA, and miRNA were predicted by TargetScan and miRanda. ASCs were derived from human adipose tissue and were authenticated by flow cytometry. ASC cell function was surveyed by alizarin red and alkaline phosphatase (ALP) staining. Molecular mechanism of HIF1A-AS2/miR-665/IL6 axis was investigated by RNAi, cell transfection, western blot, and qRT-PCR. RNA target relationships were validated by dual-luciferase assay. Results HIF1A-AS2 and IL6 were highly expressed while miR-665 was lowly expressed in induced ASCs. HIF1A-AS2 and IL6 improved the expression level of osteoblast markers Runx2, Osterix, and Osteocalcin and also accelerated the formation of calcium nodule and ALP activity, yet miR-665 had opposite effects. HIF1A-AS2 directly targeted miR-665, whereas miR-665 repressed IL6 expression. Moreover, the HIF1A-AS2/miR-665/IL6 regulating axis activated the PI3K/Akt signaling pathway. Conclusions LncRNA HIF1A-AS2 could sponge miR-665 and hence upregulate IL6, activate the PI3K/Akt signaling pathway, and ultimately promote ASC osteogenic differentiation. Electronic supplementary material The online version of this article (10.1186/s13287-018-1082-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruoyu Wu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jihao Ruan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Yongjin Sun
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Mengyu Liu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zhuang Sha
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai, 200233, China.
| | - Qingkai Wu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai, 200233, China. .,Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
9
|
Guo T, Cao G, Li Y, Zhang Z, Nör J, Clarkson B, Liu J. Signals in Stem Cell Differentiation on Fluorapatite-Modified Scaffolds. J Dent Res 2018; 97:1331-1338. [PMID: 29995454 PMCID: PMC6728582 DOI: 10.1177/0022034518788037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Previously, we reported that the fluorapatite (FA)-modified polycaprolactone (PCL) nanofiber could be an odontogenic/osteogenic inductive tissue-engineering scaffold by inducing stem cell differentiation and mineralization. The present study aimed to explore which of the signal pathways affected this differentiation and mineralization process. The Human Signal Transduction PathwayFinder RT2 Profiler PCR Array was used to analyze the involvement of potential signal transduction pathways during human dental pulp stem cell (DPSCs) osteogenic differentiation induced by FA-modified PCL nanofiber scaffolds. Based on the results, perturbation studies of the signaling pathways hedgehog, insulin, and Wnt were performed. Moreover, the autophagy process was studied, as indicated by the expression of the microtubule-associated protein 1 light chain 3A/B-II (LC3-II) and the cell osteogenic phenotypic changes. In a comparison of the cells grown on PCL + FA scaffolds and those on PCL-only scaffolds, the transcript expression of BMP2, BMP4, FOXA2, PTCH1, WNT1, and WNT2 (PCR array-labeled signal proteins of the hedgehog pathway); CEBPB, FASN, and HK2 (PCR array-labeled signal proteins of the insulin pathway); and CCND1, JUN, MYC, TCF7, and WISP1 (PCR array-labeled signal proteins of the Wnt pathway) doubled at day 14 when obvious cell osteogenic differentiation occurred. Phenotypically, in all the perturbation groups at day 14, ALP activity, OPN, and autophagy marker LC3-II expression were coincidently decreased. Consistently, no positive alizarin red staining or von Kossa staining was observed in the specimens from these perturbation groups at day 28. The results showed that when obvious cell differentiation occurred at day 14 on PCL + FA control groups, the inhibition of the hedgehog, insulin, and Wnt pathways significantly decreased DPSC osteogenic differentiation and mineralization. The osteogenic differentiation of DPSCs grown on FA-modified PCL scaffolds appeared to be positively modulated by the hedgehog, insulin, and Wnt signal pathways, which were coordinated with and/or mediated by the cell autophagy process.
Collapse
Affiliation(s)
- T. Guo
- Nanjing Stomatological Hospital, Medical
School of Nanjing University, Nanjing, China
- Department of Cariology, Restorative
Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI,
USA
- Department of Stomatology, Nanjing
Jinling Hospital, Nanjing, China
| | - G. Cao
- Department of Stomatology, Nanjing
Jinling Hospital, Nanjing, China
| | - Y. Li
- Department of Cariology, Restorative
Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI,
USA
- Department of Oral and Maxillofacial
Surgery, State Key Laboratory of Military Stomatology, School of Stomatology, The
Fourth Military Medical University, Xian, China
| | - Z. Zhang
- Department of Cariology, Restorative
Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI,
USA
| | - J.E. Nör
- Department of Cariology, Restorative
Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI,
USA
| | - B.H. Clarkson
- Department of Cariology, Restorative
Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI,
USA
| | - J. Liu
- Department of Cariology, Restorative
Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI,
USA
| |
Collapse
|
10
|
Fabrication of two distinct hydroxyapatite coatings and their effects on MC3T3-E1 cell behavior. Colloids Surf B Biointerfaces 2018; 171:40-48. [DOI: 10.1016/j.colsurfb.2018.06.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 11/21/2022]
|
11
|
Elsharkawy S, Mata A. Hierarchical Biomineralization: from Nature's Designs to Synthetic Materials for Regenerative Medicine and Dentistry. Adv Healthc Mater 2018; 7:e1800178. [PMID: 29943412 DOI: 10.1002/adhm.201800178] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/08/2018] [Indexed: 12/28/2022]
Abstract
Biomineralization is a highly dynamic, yet controlled, process that many living creatures employ to develop functional tissues such as tooth enamel, bone, and others. A major goal in materials science is to create bioinspired functional structures based on the precise organization of building blocks across multiple length scales. Therefore, learning how nature has evolved to use biomineralization could inspire new ways to design and develop synthetic hierarchical materials with enhanced functionality. Toward this goal, this review dissects the current understanding of structure-function relationships of dental enamel and bone using a materials science perspective and discusses a wide range of synthetic technologies that aim to recreate their hierarchical organization and functionality. Insights into how these strategies could be applied for regenerative medicine and dentistry are also provided.
Collapse
Affiliation(s)
- Sherif Elsharkawy
- Institute of Bioengineering; Queen Mary University of London; London E1 4NS UK
- School of Engineering and Materials Science; Queen Mary University of London; London E1 4NS UK
- Institute of Dentistry; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London E1 4NS UK
| | - Alvaro Mata
- Institute of Bioengineering; Queen Mary University of London; London E1 4NS UK
- School of Engineering and Materials Science; Queen Mary University of London; London E1 4NS UK
| |
Collapse
|
12
|
Fu DL, Jiang QH, He FM, Fu BP. Adhesion of bone marrow mesenchymal stem cells on porous titanium surfaces with strontium-doped hydroxyapatite coating. J Zhejiang Univ Sci B 2017. [DOI: 10.1631/jzus.b1600517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Chen W, Tian B, Lei Y, Ke QF, Zhu ZA, Guo YP. Hydroxyapatite coatings with oriented nanoplate and nanorod arrays: Fabrication, morphology, cytocompatibility and osteogenic differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:395-408. [DOI: 10.1016/j.msec.2016.04.106] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 03/28/2016] [Accepted: 04/27/2016] [Indexed: 11/30/2022]
|
14
|
The osteogenic capacity of biomimetic hierarchical micropore/nanorod-patterned Sr-HA coatings with different interrod spacings. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1161-73. [DOI: 10.1016/j.nano.2016.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/28/2015] [Accepted: 01/21/2016] [Indexed: 01/16/2023]
|
15
|
Li Y, Guo T, Zhang Z, Yao Y, Chang S, Nör J, Clarkson B, Ni L, Liu J. Autophagy Modulates Cell Mineralization on Fluorapatite-Modified Scaffolds. J Dent Res 2016; 95:650 – 656. [DOI: 10.1177/0022034516636852] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
As a major intracellular degradation and recycling machinery, autophagy plays an important role in maintaining cellular homeostasis and remodeling during normal development. Our previous study showed that fluorapatite (FA) crystal-coated electrospun polycaprolactone (PCL) was capable of inducing differentiation and mineralization of human dental pulp stem cells. However, how autophagy changes and whether autophagy plays a vital role during these processes is still unknown. In this study, we seeded STEMPRO human adipose-derived stem cells (ASCs) on both PCL+FA and PCL scaffolds to investigate the osteogenic inductive ability of FA crystals and we observed the autophagy changes of these cells. Scanning electron microscopy and fluorescence microscopy images, along with DNA quantitation, showed that both PCL+FA and PCL scaffolds could sustain ASC growth but only the PCL+FA scaffold could sustain cell mineralization. This was confirmed by alkaline phosphatase activity and Alizarin red and Von Kossa staining results. The autophagy RT2 Profiler polymerase chain reaction array analysis showed many autophagy-related genes changes during ASC differentiation. Western blot analysis indicated that several autophagy-related proteins fluctuated during the procedure. Among them, the microtubule-associated protein 1 light chain 3 (LC3)-II protein changes of the ASCs grown on the 2- or 3-dimensional environments at 6 h, 12 h, 1 d, 3 d, 7 d, 14 d, and 21 d reached a peak value at day 7 during osteogenesis. At earlier stages (from day 0 to day 3), the addition of autophagy inhibitors (3-mathyladenine, bafilomycin A1, and NH4Cl) attenuated the expression of osteogenic related markers (osteopontin, alkaline phosphatase activity, Alizarin red, and Von Kossa) compared with the control group. All data indicated that autophagy played an important role in ASC differentiation on the PCL+FA scaffold. Inhibition of autophagy before day 3 strongly inhibited osteogenic differentiation and mineralization of ASCs in the 3-dimensional model. This observation further elucidates the mechanism of autophagy in mesenchymal stem cell osteogenic differentiation.
Collapse
Affiliation(s)
- Y. Li
- Department of Cariology, Restorative Sciences, and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xian, Shaanxi, China
| | - T. Guo
- Department of Cariology, Restorative Sciences, and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
- Department of Stomatology, Nanjing Jinling Hospital, Nanjing, Jiangsu, China
| | - Z. Zhang
- Department of Cariology, Restorative Sciences, and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - Y. Yao
- Department of Cariology, Restorative Sciences, and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - S. Chang
- Department of Cariology, Restorative Sciences, and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - J.E. Nör
- Department of Cariology, Restorative Sciences, and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - B.H. Clarkson
- Department of Cariology, Restorative Sciences, and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - L. Ni
- Department of Operative Dentistry and Endodontics, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - J. Liu
- Department of Cariology, Restorative Sciences, and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Chen W, Thein-Han W, Weir MD, Chen Q, Xu HHK. Prevascularization of biofunctional calcium phosphate cement for dental and craniofacial repairs. Dent Mater 2016; 30:535-44. [PMID: 24731858 DOI: 10.1016/j.dental.2014.02.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 02/12/2014] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Calcium phosphate cement (CPC) is promising for dental and craniofacial repairs. Vascularization in bone tissue engineering constructs is currently a major challenge. The objectives of this study were to investigate the prevascularization of macroporous CPC via coculturing human umbilical vein endothelial cells (HUVEC) and human osteoblasts (HOB), and determine the effect of RGD in CPC on microcapillary formation for the first time. METHODS Macroporous CPC scaffold was prepared using CPC powder, chitosan liquid and gas-foaming porogen. Chitosan was grafted with Arg-Gly-Asp (RGD) to biofunctionalize the CPC. HUVEC and HOB were cocultured on macroporous CPC-RGD and CPC control without RGD for up to 42d. The osteogenic and angiogenic differentiation, bone matrix mineral synthesis, and formation of microcapillary-like structures were measured. RESULTS RGD-grafting in CPC increased the gene expressions of osteogenic and angiogenic differentiation markers than those of CPC control without RGD. Cell-synthesized bone mineral content also increased on CPC-RGD, compared to CPC control (p<0.05). Immunostaining with endothelial marker showed that the amount of microcapillary-like structures on CPC scaffolds increased with time. At 42d, the cumulative vessel length for CPC-RGD scaffold was 1.69-fold that of CPC control. SEM examination confirmed the morphology of self-assembled microcapillary-like structures on CPC scaffolds. SIGNIFICANCE HUVEC+HOB coculture on macroporous CPC scaffold successfully achieved prevascularization. RGD incorporation in CPC enhanced osteogenic differentiation, bone mineral synthesis, and microcapillary-like structure formation. The novel prevascularized CPC-RGD constructs are promising for dental, craniofacial and orthopedic applications.
Collapse
Affiliation(s)
- Wenchuan Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - WahWah Thein-Han
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Mechanical Engineering, University of Maryland, Baltimore County, MD 21250, USA.
| |
Collapse
|
17
|
Klymov A, Song J, Cai X, Te Riet J, Leeuwenburgh S, Jansen JA, Walboomers XF. Increased acellular and cellular surface mineralization induced by nanogrooves in combination with a calcium-phosphate coating. Acta Biomater 2016; 31:368-377. [PMID: 26691523 DOI: 10.1016/j.actbio.2015.11.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/24/2015] [Accepted: 11/29/2015] [Indexed: 11/28/2022]
Abstract
The current work evaluated the influence of nanoscale surface-topographies in combination with a calcium phosphate (CaP) coating on acellular and cellular surface mineralization. Four groups of substrates were produced, including smooth, grooved (940nm pitch, 430nm groove width, 185nm depth), smooth coated, and grooved coated. The substrates were characterized by scanning/transmission electron microscopy and atomic force microscopy. Osteoblast-like MC3T3 cells were cultured on the substrates for a period up to 35days under osteogenic conditions. Differentiation was observed by alkaline phosphatase assay and PCR of collagen I (COLI), osteopontin (OPN), osteocalcin (OC), bone-morphogenic protein 2 (BMP2), and bone sialoprotein (BSP). Mineralization was quantified by a calcium assay and Alizarin Red staining. In addition, acellular mineralization was determined after incubation of substrates in just cell culture medium without cells. Results showed that a reproducible nano-metric (∼50nm) CaP-layer could be applied on the substrates, without losing the integrity of the topographical features. While no relevant differences were found for cell viability, cells on smooth surfaces proliferated for a longer period than cells on grooved substrates. In addition, differentiation was affected by topographies, as indicated by an increased expression of OC, OPN and ALP activity. Deposition of a CaP coating significantly increased the acellular mineralization of smooth as well grooved substrate-surfaces. However, this mineralizing effect was strongly reduced in the presence of cells. In the cell seeded situation, mineralization was significantly increased by the substrate topography, while only a minor additive effect of the coating was observed. In conclusion, the model presented herein can be exploited for experimental evaluation of cell-surface interaction processes and optimization of bone-anchoring capability of implants. The model showed that substrates modified with CaP-coated coated nanogrooves display enhanced in vitro mineralization as compared to unmodified controls or substrates modified with either nanogrooves or CaP coatings. However, our results also indicated that acellular mineralization assays are not necessarily predictive for biological performance. STATEMENT OF SIGNIFICANCE The manuscript describes the possibility to combine the mechanical properties of nanosized topographies with the biochemical properties of a calcium phosphate based coating for improvement of surface mineralization. Interestingly, our results demonstrate that further incubation of our surfaces in SBF type media allowed all surfaces to mineralize rapidly to a high extent. Moreover we prove that nanotexture be used to can stimulate and organize mineralization and that the combination surface of a CaP coating and a nanotexture has the potential to be effective as a bone-implant surface. Such experiments will be of considerable interest to those in the research community and industry, who are focusing on bio-mineralization processes and optimization of modern bone-implants.
Collapse
Affiliation(s)
- Alexey Klymov
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jiankang Song
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Xinjie Cai
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost Te Riet
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sander Leeuwenburgh
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John A Jansen
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - X Frank Walboomers
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
18
|
Azadmanjiri J, Wang PY, Pingle H, Kingshott P, Wang J, Srivastava VK, Kapoor A. Enhanced attachment of human mesenchymal stem cells on nanograined titania surfaces. RSC Adv 2016. [DOI: 10.1039/c6ra10289a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
TiO2 nanotubes on the nanograined Ti surface improved cell attachment and proliferation together with physical and mechanical properties.
Collapse
Affiliation(s)
- Jalal Azadmanjiri
- School of Engineering
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Australia
| | - Peng-Yuan Wang
- Department of Chemistry and Biotechnology
- Swinburne University of Technology
- Australia
| | - Hitesh Pingle
- Department of Chemistry and Biotechnology
- Swinburne University of Technology
- Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology
- Swinburne University of Technology
- Australia
| | - James Wang
- School of Engineering
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Australia
| | - Vijay K. Srivastava
- Department of Mechanical Engineering
- Indian Institute of Technology
- Varanasi – 221005
- India
| | - Ajay Kapoor
- School of Engineering
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Australia
| |
Collapse
|
19
|
Tian B, Chen W, Dong Y, Marymont JV, Lei Y, Ke Q, Guo Y, Zhu Z. Silver nanoparticle-loaded hydroxyapatite coating: structure, antibacterial properties, and capacity for osteogenic induction in vitro. RSC Adv 2016. [DOI: 10.1039/c5ra25391h] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AgNP-HAC has the potential to be used on the surfaces of orthopedic and dental implants for infection prophylaxis.
Collapse
Affiliation(s)
- Bo Tian
- Shanghai Key Laboratory of Orthopedic Implant
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Wei Chen
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Yufeng Dong
- Department of Orthopaedic Surgery
- Louisiana State University Health Sciences Center
- Shreveport
- USA
| | - John V. Marymont
- Department of Orthopaedic Surgery
- Louisiana State University Health Sciences Center
- Shreveport
- USA
| | - Yong Lei
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Qinfei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Yaping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Zhenan Zhu
- Shanghai Key Laboratory of Orthopedic Implant
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| |
Collapse
|
20
|
Guo YP, Guan JJ, Yang J, Wang Y, Zhang CQ, Ke QF. Hybrid nanostructured hydroxyapatite-chitosan composite scaffold: bioinspired fabrication, mechanical properties and biological properties. J Mater Chem B 2015; 3:4679-4689. [PMID: 32262483 DOI: 10.1039/c5tb00175g] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The fabrication of bone scaffolds with interconnected porous structure, adequate mechanical properties, excellent biocompatibility and osteoinductivity presents a great challenge. Herein, a hybrid nanostructured hydroxyapatite-chitosan (HA-CS) composite scaffold has been fabricated according to the following steps: (i) the deposition of brushite-CS on a CS fibre porous scaffold by a dip-coating method; and (ii) the formation of a hybrid nanostructured HA-CS composite scaffold by the in situ conversion of brushite to HA using a bioinspired mineralization process. The hybrid HA-CS composite scaffold possesses three-dimensional (3D) interconnected pores with pore sizes of 30-80 μm. The HA rods with a length of ∼200 nm and width of ∼50 nm are perpendicularly oriented to the CS fibres. Interestingly, the abovementioned HA rods are composed of many smaller nanorods with a length of ∼40 nm and width of ∼10 nm oriented along the c-axis. The hybrid nanostructured HA-CS composite scaffold exhibits good mechanical properties with a compression strength of 9.41 ± 1.63 MPa and an elastic modulus of 0.17 ± 0.02 GPa, which are well-matched to those of trabecular bone. The influences of the hybrid HA-CS composite scaffold on cells have been investigated using human bone marrow stem cells (hBMSCs) as cell model and the CS fibre porous scaffold as the control sample. The hybrid HA-CS composite scaffold not only supports the adhesion and proliferation of hBMSCs, but also improves the osteoinductivity. The alkaline phosphatase activity and mineralization deposition on the hybrid HA-CS composite scaffold are higher than those on the CS fibre porous scaffold. Moreover, the hybrid HA-CS composite scaffold can promote the formation of new bone in rat calvarial defects as compared with the CS fibre porous scaffold. The excellent biocompatibility, osteoinductivity and mechanical properties suggest that the hybrid nanostructured HA-CS composite scaffold has great potential for bone tissue engineering.
Collapse
Affiliation(s)
- Ya-Ping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Various caries prevention and repair strategies are reviewed in this article ranging from the use of fluoride to nanohydroxyapatite particles. Several of the strategies which combine fluoride and calcium and phosphate treatments have both in vitro and in vivo data showing them to be efficacious if the surface integrity of the lesion is not breached. Once this has occurred, the rationale for cutting off the nutrient supplies to the pathogenic bacteria without the removal of the infected dentine, a noninvasive restorative technique, is discussed using existing clinical studies as examples. Finally two novel noninvasive restorative techniques using fluorohydroxyapatite crystals are described. The need for clinical data in support of emerging caries-preventive and restorative strategies is emphasized.
Collapse
|
22
|
Wang PY, Bennetsen DT, Foss M, Ameringer T, Thissen H, Kingshott P. Modulation of human mesenchymal stem cell behavior on ordered tantalum nanotopographies fabricated using colloidal lithography and glancing angle deposition. ACS APPLIED MATERIALS & INTERFACES 2015; 7:4979-4989. [PMID: 25664369 DOI: 10.1021/acsami.5b00107] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ordered surface nanostructures have attracted much attention in biotechnology and biomedical engineering because of their potential to modulate cell-surface interactions in a controllable manner. However, the ability to fabricate large area ordered nanostructures is limited because of high costs and low speed of fabrication. Here, we have fabricated ordered nanostructures with large surface areas (1.5 × 1.5 cm(2)) using a combination of facile techniques including colloidal self-assembly, colloidal lithography and glancing angle deposition (GLAD). Polystyrene (722 nm) colloids were self-assembled into a hexagonally close-packed (hcp) crystal array at the water-air interface, transferred on a biocompatible tantalum (Ta) surface and used as a mask to generate an ordered Ta pattern. The Ta was deposited by sputter coating through the crystal mask creating approximately 60-nm-high feature sizes. The feature size was further increased by approximately 200-nm-height respectively using GLAD, resulting in the fabrication of four different surfaces (FLAT, Ta60, GLAD100, and GLAD200). Cell adhesion, proliferation, and osteogenic differentiation of primary human adipose-derived stem cells (hADSCs) were studied on these ordered nanostructures for up to 2 weeks. Our results suggested that cell spreading, focal adhesion formation, and filopodia extension of hADSCs were inhibited on the GLAD surfaces, while the growth rate was similar between each surface. Immunostaining for type I collagen (COL1) and osteocalcin (OC) showed that there was higher osteogenic components deposited on the GLAD surfaces compared to the Ta60 and FLAT surfaces after 1 week of osteogenic culture. After 2 weeks of osteogenic culture, alkaline phosphatase (ALP) activity and the amount of calcium was higher on the GLAD surfaces. In addition, osteoblast-like cells were confluent on Ta60 and FLAT surfaces, whereas the GLAD surfaces were not fully covered suggesting that the cell-cell interactions are stronger than cell-substrate interactions on GLAD surfaces. Visible extracellular matrix deposits decorated the porous surface can be found on the GLAD surfaces. Depth profiling of surface components using a new Ar cluster source and X-ray photoelectron spectroscopy (XPS) showed that deposited extracellular matrix on GLAD surfaces is rich in nitrogen. The fabricated ordered surface nanotopographies have potential to be applied in diverse fields, and demonstrate that the behavior of human stem cells can be directed on these ordered nanotopographies, providing new knowledge for applications in biomaterials and tissue engineering.
Collapse
Affiliation(s)
- Peng-Yuan Wang
- Industrial Research Institute Swinburne (IRIS) and Department of Chemistry and Biotechnology, Swinburne University of Technology , Hawthorn, 3122 Victoria, Australia
| | | | | | | | | | | |
Collapse
|
23
|
Clark D, Wang X, Chang S, Czajka-Jakubowska A, Clarkson BH, Liu J. VEGF promotes osteogenic differentiation of ASCs on ordered fluorapatite surfaces. J Biomed Mater Res A 2015; 103:639-45. [PMID: 24797761 PMCID: PMC4221573 DOI: 10.1002/jbm.a.35215] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 01/02/2023]
Abstract
Vascular endothelial growth factor (VEGF) has been reported to mediate both osteogenesis and angiogenesis in bone regeneration. We previously found an upregulation of VEGF in adipose-derived stem cells (ASCs) when obvious mineralization occurred on a novel fluorapatite (FA)-coated surfaces. This study investigated the effect of FA and VEGF on the growth, differentiation and mineralization of (ASC) grown on ordered FA surfaces. Cells grown on FA and treated with VEGF demonstrated osteogenic differentiation as measured with ALP staining, and obvious mineralization as measured by Alizarin red staining. A combined stimulating effect of FA and VEGF was seen using both indicators. VEGF signaling pathway perturbation using a specific VEGF receptor inhibitor showed the lowest levels of ALP and Alizarin red staining, which was partially rescued when the cells were grown on FA and/or treated with the addition of VEGF. The osteogenic differentiation of ASCs stimulated by these FA surfaces as well as VEGF has been shown to be mediated through, but probably not only, the VEGF signaling pathway. The enhancement of osteogenic differentiation and mineralization supports the potential use of therapeutic VEGF and FA coatings in bone regeneration.
Collapse
Affiliation(s)
- D Clark
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, Michigan, 48109
| | | | | | | | | | | |
Collapse
|
24
|
Park SW, Lee D, Lee HR, Moon HJ, Lee BR, Ko WK, Song SJ, Lee SJ, Shin K, Jang W, Yi JK, Im SG, Kwon IK. Generation of functionalized polymer nanolayer on implant surface via initiated chemical vapor deposition (iCVD). J Colloid Interface Sci 2015; 439:34-41. [DOI: 10.1016/j.jcis.2014.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/06/2014] [Accepted: 10/14/2014] [Indexed: 12/25/2022]
|
25
|
Guan J, Yang J, Dai J, Qin Y, Wang Y, Guo Y, Ke Q, Zhang C. Bioinspired nanostructured hydroxyapatite/collagen three-dimensional porous scaffolds for bone tissue engineering. RSC Adv 2015. [DOI: 10.1039/c5ra01487e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A needle punching and bioinspired mineralization strategy has been developed to fabricate a collagen/hydroxyapatite porous scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Junjie Guan
- Department of Orthopedics Surgery
- Shanghai Jiaotong University Affiliated Sixth People's Hospital
- Shanghai 200233
- China
| | - Jun Yang
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Junqi Dai
- Department of Orthopedics Surgery
- Shanghai Jiaotong University Affiliated Sixth People's Hospital
- Shanghai 200233
- China
| | - Yunhao Qin
- Department of Orthopedics Surgery
- Shanghai Jiaotong University Affiliated Sixth People's Hospital
- Shanghai 200233
- China
| | - Yang Wang
- Department of Orthopedics Surgery
- Shanghai Jiaotong University Affiliated Sixth People's Hospital
- Shanghai 200233
- China
| | - Yaping Guo
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Qinfei Ke
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Changqing Zhang
- Department of Orthopedics Surgery
- Shanghai Jiaotong University Affiliated Sixth People's Hospital
- Shanghai 200233
- China
| |
Collapse
|
26
|
Guan JJ, Tian B, Tang S, Ke QF, Zhang CQ, Zhu ZA, Guo YP. Hydroxyapatite coatings with oriented nanoplate arrays: synthesis, formation mechanism and cytocompatibility. J Mater Chem B 2015; 3:1655-1666. [DOI: 10.1039/c4tb02085e] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel strategy has been developed to fabricate hydroxyapatite coatings with oriented nanoplate arrays for implants of human hard tissues.
Collapse
Affiliation(s)
- Jun-Jie Guan
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
- Department of Orthopedics Surgery
| | - Bo Tian
- Shanghai Key Laboratory of Orthopedic Implant
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Sha Tang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Qin-Fei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Chang-Qing Zhang
- Department of Orthopedics Surgery
- Shanghai Sixth People's Hospital
- Shanghai Jiaotong University
- Shanghai 20200233
- China
| | - Zhen-An Zhu
- Shanghai Key Laboratory of Orthopedic Implant
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Ya-Ping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| |
Collapse
|
27
|
Guo T, Li Y, Cao G, Zhang Z, Chang S, Czajka-Jakubowska A, Nör JE, Clarkson BH, Liu J. Fluorapatite-modified scaffold on dental pulp stem cell mineralization. J Dent Res 2014; 93:1290-5. [PMID: 25139361 PMCID: PMC4462802 DOI: 10.1177/0022034514547914] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/26/2014] [Accepted: 07/28/2014] [Indexed: 01/09/2023] Open
Abstract
In previous studies, fluorapatite (FA) crystal-coated surfaces have been shown to stimulate the differentiation and mineralization of human dental pulp stem cells (DPSCs) in two-dimensional cell culture. However, whether the FA surface can recapitulate these properties in three-dimensional culture is still unknown. This study examined the differences in behavior of human DPSCs cultured on electrospun polycaprolactone (PCL) NanoECM nanofibers with or without the FA crystals. Under near-physiologic conditions, the FA crystals were synthesized on the PCL nanofiber scaffolds. The FA crystals were evenly distributed on the scaffolds. DPSCs were cultured on the PCL+FA or the PCL scaffolds for up to 28 days. Scanning electron microscope images showed that DPSCs attached well to both scaffolds after the initial seeding. However, it appeared that more multicellular aggregates formed on the PCL+FA scaffolds. After 14 days, the cell proliferation on the PCL+FA was slower than that on the PCL-only scaffolds. Interestingly, even without any induction of mineralization, from day 7, the upregulation of several pro-osteogenic molecules (dmp1, dspp, runx2, ocn, spp1, col1a1) was detected in cells seeded on the PCL+FA scaffolds. A significant increase in alkaline phosphatase activity was also seen on FA-coated scaffolds compared with the PCL-only scaffolds at days 14 and 21. At the protein level, osteocalcin expression was induced only in the DPSCs on the PCL+FA surfaces at day 21 and then significantly enhanced at day 28. A similar pattern was observed in those specimens stained with Alizarin red and Von Kossa after 21 and 28 days. These data suggest that the incorporation of FA crystals within the three-dimensional PCL nanofiber scaffolds provided a favorable extracellular matrix microenvironment for the growth, differentiation, and mineralization of human DPSCs. This FA-modified PCL nanofiber scaffold shows promising potential for future bone, dental, and orthopedic regenerative applications.
Collapse
Affiliation(s)
- T Guo
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA Department of Stomatology, Nanjing Jinling Hospital, Nanjing, Jiangsu, China
| | - Y Li
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA Department of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xian, Shaanxi, China
| | - G Cao
- Department of Stomatology, Nanjing Jinling Hospital, Nanjing, Jiangsu, China
| | - Z Zhang
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - S Chang
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - A Czajka-Jakubowska
- Department of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Poznan, Poland
| | - J E Nör
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - B H Clarkson
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - J Liu
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
28
|
Xia L, Lin K, Jiang X, Fang B, Xu Y, Liu J, Zeng D, Zhang M, Zhang X, Chang J, Zhang Z. Effect of nano-structured bioceramic surface on osteogenic differentiation of adipose derived stem cells. Biomaterials 2014; 35:8514-27. [DOI: 10.1016/j.biomaterials.2014.06.028] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 06/13/2014] [Indexed: 12/12/2022]
|
29
|
Zhou J, Han Y, Lu S. Direct role of interrod spacing in mediating cell adhesion on Sr-HA nanorod-patterned coatings. Int J Nanomedicine 2014; 9:1243-60. [PMID: 24634585 PMCID: PMC3952902 DOI: 10.2147/ijn.s58236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The process in which nanostructured surfaces mediate cell adhesion is not well understood, and may be indirect (via protein adsorption) or direct. We prepared Sr-doped hydroxyapatite (Sr1-HA) 3D nanorods (with interrod spacing of 67.3 ± 3.8, 95.7 ± 4.2, and 136.8 ± 8.7 nm) and 2D nanogranulate patterned coatings on titanium. Employing the coatings under the same surface chemistry and roughness, we investigated the indirect/direct role of Sr1-HA nanotopographies in the regulation of osteoblast adhesion in both serum-free and serum-containing Dulbecco's Modified Eagle/Ham's Medium. The results reveal that the number of adherent cells, cell-secreted anchoring proteins (fibronectin, vitronectin, and collagen), vinculin and focal adhesion kinase (FAK) denoted focal adhesion (FA) contact, and gene expression of vinculin, FAK, and integrin subunits (α2, α5, αv, β1, and β3), undergo significant changes in the inter-nanorod spacing and dimensionality of Sr1-HA nanotopographies in the absence of serum; they are significantly enhanced on the <96 nm spaced nanorods and more pronounced with decreasing interrod spacing. However, they are inhibited on the >96 nm spaced nanorods compared to nanogranulated 2D topography. Although the adsorption of fibronectin and vitronectin from serum are higher on 136.8 ± 8.7 nm spaced nanorod patterned topography than nanogranulated topography, cell adhesion is inhibited on the former compared to the latter in the presence of serum, further suggesting that reduced cell adhesion is independent of protein adsorption. It is clearly indicated that 3D nanotopography can directly modulate cell adhesion by regulating integrins, which subsequently mediate anchoring proteins' secretion and FA formation rather than via protein adsorption.
Collapse
Affiliation(s)
- Jianhong Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Shemin Lu
- Department of Genetics and Molecular Biology, College of Medicine, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
30
|
Fang X, Murakami H, Demura S, Hayashi K, Matsubara H, Kato S, Yoshioka K, Inoue K, Ota T, Shinmura K, Tsuchiya H. A novel method to apply osteogenic potential of adipose derived stem cells in orthopaedic surgery. PLoS One 2014; 9:e88874. [PMID: 24586422 PMCID: PMC3929506 DOI: 10.1371/journal.pone.0088874] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 01/16/2014] [Indexed: 01/22/2023] Open
Abstract
Background A number of publications have reported that adipose derived stem cells (ADSCs) have the capacity to be induced to differentiate into osteoblasts both in vitro and in vivo. However, it has been difficult to use separate ADSCs for cortical bone regeneration and bone reconstruction so far. Inspired by the research around stromal stem cells and cell sheets, we developed a new method to fabricate ADSCs sheets to accelerate and enhance the bone regeneration and bone reconstruction. Purpose To fabricate ADSCs sheets and evaluate their capacity to be induced to differentiate to osteoblasts in vitro. Methods Human adipose derived stem cells (hADSCs) were employed in this research. The fabricating medium containing 50 µM ascorbate-2-phosphate was used to enhance the secretion of collagen protein by the ADSCs and thus to make the cell sheets of ADSCs. As the separate ADSCs were divided into osteo-induction group and control group, the ADSCs sheets were also divided into two groups depending on induction by osteogenesis medium or no induction. The osteogenic capacity of each group was evaluated by ALP staining, Alizarin Red staining and ALP activity. Results The ADSCs sheets were fabricated after one-week culture in the fabricating medium. The ALP staining of ADSCs sheets showed positive results after 5 days osteo-induction and the Alizarin Red staining of ADSCs sheets showed positive results after 1 week osteo-induction. The ALP activity showed significant differences between these four groups. The ALP activity of ADSCs sheets groups showed higher value than that of separate ADSCs. Conclusion The experiments demonstrated that ADSCs sheets have better capacity than separate ADSCs to be induced to differentiate into osteoblasts. This indicates that it is possible to use the ADSCs sheets as a source of mesenchymal stem cells for bone regeneration and bone reconstruction.
Collapse
Affiliation(s)
- Xiang Fang
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hideki Murakami
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Satoru Demura
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | | | - Satoshi Kato
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | | | - Kei Inoue
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Takashi Ota
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Kazuya Shinmura
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
- * E-mail:
| |
Collapse
|
31
|
Niu Y, Cao L, Wei J, Ma Y, Song S, Weng W, Li H, Liu C, Su J. Development of a bioactive composite of nano fluorapatite and poly(butylene succinate) for bone tissue regeneration. J Mater Chem B 2014; 2:1174-1181. [DOI: 10.1039/c3tb21371d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
Wang X, Zhang Z, Chang S, Czajka-Jakubowska A, Nör JE, Clarkson BH, Ni L, Liu J. Fluorapatite enhances mineralization of mesenchymal/endothelial cocultures. Tissue Eng Part A 2014; 20:12-22. [PMID: 23859365 PMCID: PMC3875212 DOI: 10.1089/ten.tea.2013.0113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/03/2013] [Indexed: 01/28/2023] Open
Abstract
In addition to the widely used mesenchymal stem cells (MSCs), endothelial cells appear to be a favorable cell source for hard tissue regeneration. Previously, fluorapatite was shown to stimulate and enhance mineralization of MSCs. This study aims to investigate the growth of endothelial cells on synthesized ordered fluorapatite surfaces and their effect on the mineralization of adipose-derived stem cells (ASCs) through coculture. Endothelial cells were grown on fluorapatite surfaces and characterized by cell counting, flow cytometry, scanning electron microscopy, and enzyme-linked immunosorbent assay (ELISA). Cells were then cocultured with ASCs and stained for alkaline phosphatase and mineral formation. Fibroblast growth factor (FGF) pathway perturbation and basic FGF (bFGF) treatment of the ASCs were also conducted to observe their effects on differentiation and mineralization of these cells. Fluorapatite surfaces showed good biocompatibility in supporting endothelial cells. Without a mineralization supplement, coculture with endothelial cells induced osteogenic differentiation of ASCs, which was further enhanced by the fluorapatite surfaces. This suggested a combined stimulating effect of endothelial cells and fluorapatite surfaces on the enhanced mineralization of ASCs. Greater amounts of bFGF release by endothelial cells alone or cocultures with ASCs stimulated by fluorapatite surfaces, together with FGF pathway perturbation and bFGF treatment results, suggested that the FGF signaling pathway may function in this process.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, Michigan
| | - Zhaocheng Zhang
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, Michigan
| | - Syweren Chang
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, Michigan
| | - Agata Czajka-Jakubowska
- Department of Maxillofacial Orthopaedics and Orthodontics, Poznan University of Medical Sciences, Poznan, Poland
| | - Jacques E. Nör
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, Michigan
| | - Brian H. Clarkson
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, Michigan
| | - Longxing Ni
- Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Jun Liu
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
33
|
Chen W, Long T, Guo YJ, Zhu ZA, Guo YP. Hydrothermal synthesis of hydroxyapatite coatings with oriented nanorod arrays. RSC Adv 2014. [DOI: 10.1039/c3ra43664k] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
34
|
Chen W, Long T, Guo YJ, Zhu ZA, Guo YP. Magnetic hydroxyapatite coatings with oriented nanorod arrays: hydrothermal synthesis, structure and biocompatibility. J Mater Chem B 2014; 2:1653-1660. [DOI: 10.1039/c3tb21769h] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
German SJ, Behbahani M, Miettinen S, Grijpma DW, Haimi SP. Proliferation and Differentiation of Adipose Stem Cells Towards Smooth Muscle Cells on Poly(trimethylene carbonate) Membranes. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/masy.201300100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Salvador Jimenez German
- Department of Biomaterials Science and Technology; University of Twente; Enschede The Netherlands
- Institute of Bioengineering, Biomaterials Laboratory; Aachen University of Applied Sciences; Jülich Germany
| | - Mehdi Behbahani
- Institute of Bioengineering, Biomaterials Laboratory; Aachen University of Applied Sciences; Jülich Germany
| | - Susanna Miettinen
- Institute for Biomedical Technology; University of Tampere; Tampere Finland
| | - Dirk W. Grijpma
- Department of Biomaterials Science and Technology; University of Twente; Enschede The Netherlands
- University of Groningen, University Medical Centre Groningen; Department of Biomedical Engineering; Groningen The Netherlands
| | - Suvi P. Haimi
- Department of Biomaterials Science and Technology; University of Twente; Enschede The Netherlands
- Institute for Biomedical Technology; University of Tampere; Tampere Finland
| |
Collapse
|
36
|
Role of grain size in the regulation of osteoblast response to Ti–25Nb–3Mo–3Zr–2Sn alloy. Colloids Surf B Biointerfaces 2013; 111:232-41. [DOI: 10.1016/j.colsurfb.2013.06.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/18/2013] [Accepted: 06/04/2013] [Indexed: 11/15/2022]
|
37
|
Zhou J, Li B, Lu S, Zhang L, Han Y. Regulation of osteoblast proliferation and differentiation by interrod spacing of Sr-HA nanorods on microporous titania coatings. ACS APPLIED MATERIALS & INTERFACES 2013; 5:5358-65. [PMID: 23668394 DOI: 10.1021/am401339n] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Strontium-doped hydroxyapatite (Ca9Sr1(PO4)6(OH)2, Sr1-HA) nanorods with different lateral spacing (e.g., interrod spacing) values (67.3 ± 3.8, 95.7 ± 4.2, and 136.8 ± 8.7 nm) and nanogranulates were grown on microarc-oxidized microporous TiO2, respectively, to form multilayer coatings. The coatings reveal two kinds of micro/nanoscaled hierarchical surfaces with a similar microscale roughness, e.g., nanogranulated 2D pattern and nanorod-shaped 3D pattern in nanotopography. When hFOB1.19 cells are employed, the proliferation and differentiation of osteoblasts on the coatings were evaluated by examining MTT assay, expressions of osteogenesis-related genes [alkaline phosphatase (ALP), runt-related transcription factor 2, osterix, osteopontin (OPN), osteocalcin (OCN), and collagen I (Col-I)], ALP activity, contents of intracellular Ca(2+), Col-I, OPN, and OCN, extracellular collagen secretion, and extracellular matrix mineralization. The results reveal that the proliferation and differentiation of osteoblasts can be directly regulated by the interrod spacing of the Sr1-HA nanorods, which are significantly enhanced on the nanorod-shaped 3D patterns with interrod spacing smaller than 96 nm and more pronounced with decreasing the interrod spacing but inhibited on the nanorods with spacing larger than 96 nm compared to the nanogranulated 2D pattern. The difference in the cellular activity is found to be related with the intracellular Ca(2+) concentrations, which are regulated by variation of the surface topology of Sr1-HA crystals. Our work provides insight to the surface structural design of a biomedical implant favoring osteointegration.
Collapse
Affiliation(s)
- Jianhong Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | | | | | | | | |
Collapse
|
38
|
Wang Y, Wu C, Lin K, Chang J. Facile Fabrication of Nanorod-Assembled Fluorine-Substituted Hydroxyapatite (FHA) Microspheres. Chem Asian J 2013; 8:990-6. [DOI: 10.1002/asia.201201233] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Indexed: 11/12/2022]
|
39
|
Han Y, Zhou J, Lu S, Zhang L. Enhanced osteoblast functions of narrow interligand spaced Sr-HA nano-fibers/rods grown on microporous titania coatings. RSC Adv 2013. [DOI: 10.1039/c3ra23425h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|