1
|
Abal-Sanisidro M, Nieto-García O, Cotelo-Costoya C, de la Fuente M. Versatile and Efficient Protein Association Through Chemically Modified Sphingomyelin Nanosystems (SNs) for Enhanced Delivery. Chembiochem 2024:e202400450. [PMID: 39255447 DOI: 10.1002/cbic.202400450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/12/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Proteins are biological macromolecules well known to regulate many cellular signaling mechanisms. For instance, they are very appealing for their application as therapeutic agents, presenting high specificity and activity. Nonetheless, they suffer from unfolding, instability and low bioavailability making their administration through systemic and other routes very tough. To overcome these drawbacks, drug delivery systems and nanotechnology have arisen to deliver biomolecules in a sustained manner while, at the same time, increasing dose availability, protecting the cargo without compromising proteins' bioactivity, and enhancing intracellular delivery. In this work, we proposed the optimization of sphingomyelin nanosystems (SNs) for the delivery of a wide collection of proteins (ranging from 10-500 kDa and pI) using diverse chemical association strategies. We have further characterized SNs by varied analytical methodologies. We have also carried out in vitro experiments to validate the potential of the developed formulations. As the final goal, we aim to obtain evidence of the potential use of SNs for the development of protein therapeutics.
Collapse
Affiliation(s)
- Marcelina Abal-Sanisidro
- Nano-Oncology and Translational Therapeutics group, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706, Santiago de Compostela, Spain
- University of Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Biomedical Research Networking Center on Oncology (CIBERONC), 28029, Madrid, Spain
| | - Olaia Nieto-García
- Nano-Oncology and Translational Therapeutics group, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706, Santiago de Compostela, Spain
| | - Cristina Cotelo-Costoya
- Nano-Oncology and Translational Therapeutics group, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706, Santiago de Compostela, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics group, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706, Santiago de Compostela, Spain
- University of Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Biomedical Research Networking Center on Oncology (CIBERONC), 28029, Madrid, Spain
- DIVERSA Technologies S.L., Edificio Emprendia, Campus Sur, 15782, Santiago de Compostela, Spain
| |
Collapse
|
2
|
Hahmann J, Ishaqat A, Lammers T, Herrmann A. Sonogenetics for Monitoring and Modulating Biomolecular Function by Ultrasound. Angew Chem Int Ed Engl 2024; 63:e202317112. [PMID: 38197549 DOI: 10.1002/anie.202317112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
Ultrasound technology, synergistically harnessed with genetic engineering and chemistry concepts, has started to open the gateway to the remarkable realm of sonogenetics-a pioneering paradigm for remotely orchestrating cellular functions at the molecular level. This fusion not only enables precisely targeted imaging and therapeutic interventions, but also advances our comprehension of mechanobiology to unparalleled depths. Sonogenetic tools harness mechanical force within small tissue volumes while preserving the integrity of the surrounding physiological environment, reaching depths of up to tens of centimeters with high spatiotemporal precision. These capabilities circumvent the inherent physical limitations of alternative in vivo control methods such as optogenetics and magnetogenetics. In this review, we first discuss mechanosensitive ion channels, the most commonly utilized sonogenetic mediators, in both mammalian and non-mammalian systems. Subsequently, we provide a comprehensive overview of state-of-the-art sonogenetic approaches that leverage thermal or mechanical features of ultrasonic waves. Additionally, we explore strategies centered around the design of mechanochemically reactive macromolecular systems. Furthermore, we delve into the realm of ultrasound imaging of biomolecular function, encompassing the utilization of gas vesicles and acoustic reporter genes. Finally, we shed light on limitations and challenges of sonogenetics and present a perspective on the future of this promising technology.
Collapse
Affiliation(s)
- Johannes Hahmann
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
- Max Planck School Matter to Life, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Aman Ishaqat
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging (ExMI), Center for Biohybrid Medical Systems (CBMS), RWTH Aachen University Clinic, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Andreas Herrmann
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
- Max Planck School Matter to Life, Jahnstr. 29, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Wang L, Geng J, Wang H. Emerging Landscape of Supercharged Proteins and Peptides for Drug Delivery. ACS Pharmacol Transl Sci 2024; 7:614-629. [PMID: 38481692 PMCID: PMC10928892 DOI: 10.1021/acsptsci.3c00397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2025]
Abstract
Although groundbreaking biotechnological techniques such as gene editing have significantly progressed, the effective and targeted transport of therapeutic agents into host cells remains a major obstacle to the development of biotherapeutics. Confronting the unique challenge posed by large macromolecules such as proteins, peptides, and nucleic acids adds complexity to this issue. Recent findings reveal that the supercharging of proteins and peptides not only enables control over critical properties, such as temperature resistance and catalytic activity, but also holds promise as a viable strategy for their use in drug delivery. This review provides a concise summary of the attributes of supercharged proteins and peptides, encompassing both their natural occurrence and engineered variants. Furthermore, it sheds light on the present status and future possibilities of supercharged proteins and peptides as carriers for significant biomolecules in the realms of medical research and therapeutic applications.
Collapse
Affiliation(s)
- Lidan Wang
- Laboratory
Medicine Department, Chinese Medicine Hospital
of Puyang, Puyang 457000, China
| | - Jingping Geng
- Interdisciplinary
Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warszawa, Poland
| | - Hu Wang
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21215, United States
| |
Collapse
|
4
|
Lyu M, Yazdi M, Lin Y, Höhn M, Lächelt U, Wagner E. Receptor-Targeted Dual pH-Triggered Intracellular Protein Transfer. ACS Biomater Sci Eng 2024; 10:99-114. [PMID: 35802884 DOI: 10.1021/acsbiomaterials.2c00476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein therapeutics are of widespread interest due to their successful performance in the current pharmaceutical and medical fields, even though their broad applications have been hindered by the lack of an efficient intracellular delivery approach. Herein, we fabricated an active-targeted dual pH-responsive delivery system with favorable tumor cell entry augmented by extracellular pH-triggered charge reversal and tumor receptor targeting and pH-controlled endosomal release in a traceless fashion. As a traceable model protein, the enhanced green fluorescent protein (eGFP) bearing a nuclear localization signal was covalently coupled with a pH-labile traceless azidomethyl-methylmaleic anhydride (AzMMMan) linker followed by functionalization with different molar equivalents of two dibenzocyclooctyne-octa-arginine-cysteine (DBCO-R8C)-modified moieties: polyethylene glycol (PEG)-GE11 peptide for epidermal growth factor receptor-mediated targeting and melittin for endosomal escape. The cationic melittin domain was masked with tetrahydrophthalic anhydride revertible at mild acidic pH 6.5. At the optimally balanced ratio of functional units, the on-demand charge conversion at tumoral extracellular pH 6.5 in combination with GE11-mediated targeting triggered enhanced electrostatic cellular attraction by the R8C cell-penetrating peptides and melittin, as demonstrated by strongly enhanced cellular uptake. Successful endosomal release followed by nuclear localization of the eGFP cargo was obtained by taking advantage of melittin-mediated endosomal escape and rapid traceless release from the AzMMMan linker. The effectiveness of this multifunctional bioresponsive system suggests a promising strategy for delivery of protein drugs toward intracellular targets. A possible therapeutic relevance was indicated by an example of cytosolic delivery of cytochrome c initiating the apoptosis pathway to kill cancer cells.
Collapse
Affiliation(s)
- Meng Lyu
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Mina Yazdi
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Yi Lin
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Miriam Höhn
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| |
Collapse
|
5
|
Tu J, Liu Q, You S, Meng Z, Fang S, Yu B, Chen X, Zhou Y, Zeng L, Herrmann A, Chen G, Shen J, Zheng L, Ji J. Recombinant supercharged polypeptides for safe and efficient heparin neutralization. Biomater Sci 2023; 11:5533-5539. [PMID: 37395046 DOI: 10.1039/d3bm00628j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Heparin is a widely used anticoagulant agent in the clinic. After application, its anticoagulant effect must be reversed to prevent potential side effects. Protamine sulfate (PS) is the only clinically licensed antidote that has been used for this purpose in the last 80 years, which, however, provokes severe adverse effects, such as systemic hypotension and even death. Herein, we demonstrate the potential of supercharged polypeptides as a promising alternative for protamine sulfate. A series of supercharged polypeptides with multiple positive charges was recombinantly produced, and the heparin-neutralizing performance of the polypeptides was evaluated in comparison with PS. It was found that increasing the number of charges significantly enhanced the ability to neutralize heparin and resist the screening effect induced by salt. In particular, the polypeptide bearing 72 charges (K72) exhibited an excellent heparin-neutralizing behavior that was comparable to that of PS. Further in vivo studies revealed that the heparin-triggered bleeding was almost completely alleviated by K72 while a negligible toxic effect was observed. Therefore, such recombinant supercharged polypeptides might replace protamine sulfate as heparin-reversal agents.
Collapse
Affiliation(s)
- Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
| | - Qing Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Shengye You
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Zhuojun Meng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
| | - Binhong Yu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Xumin Chen
- Department of Nephrology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, China
| | - Yu Zhou
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Lulu Zeng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Andreas Herrmann
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianliang Shen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Lifei Zheng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnostic and Interventional Minimally Invasive Institute, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
6
|
Kang MJ, Roh KH, Lee JS, Lee JH, Park S, Lim DW. Vascular Endothelial Growth Factor Receptor 1 Targeting Fusion Polypeptides with Stimuli-Responsiveness for Anti-angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37384534 DOI: 10.1021/acsami.3c03989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Genetically engineered fusion polypeptides have been investigated to introduce unique bio-functionality and improve some therapeutic activity for anti-angiogenesis. We report herein that stimuli-responsive, vascular endothelial growth factor receptor 1 (VEGFR1) targeting fusion polypeptides composed of a VEGFR1 (fms-like tyrosine kinase-1 (Flt1)) antagonist, an anti-Flt1 peptide, and a thermally responsive elastin-based polypeptide (EBP) were rationally designed at the genetic level, biosynthesized, and purified by inverse transition cycling to develop potential anti-angiogenic fusion polypeptides to treat neovascular diseases. A series of hydrophilic EBPs with different block lengths were fused with an anti-Flt1 peptide, forming anti-Flt1-EBPs, and the effect of EBP block length on their physicochemical properties was examined. While the anti-Flt1 peptide decreased phase-transition temperatures of anti-Flt1-EBPs, compared with EBP blocks, anti-Flt1-EBPs were soluble under physiological conditions. The anti-Flt1-EBPs dose dependently inhibited the binding of VEGFR1 against vascular endothelial growth factor (VEGF) as well as tube-like network formation of human umbilical vein endothelial cells under VEGF-triggered angiogenesis in vitro because of the specific binding between anti-Flt1-EBPs and VEGFR1. Furthermore, the anti-Flt1-EBPs suppressed laser-induced choroidal neovascularization in a wet age-related macular degeneration mouse model in vivo. Our results indicate that anti-Flt1-EBPs as VEGFR1-targeting fusion polypeptides have great potential for efficacious anti-angiogenesis to treat retinal-, corneal-, and choroidal neovascularization.
Collapse
Affiliation(s)
- Min Jeong Kang
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Kug-Hwan Roh
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Jae Sang Lee
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jae Hee Lee
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - SaeGwang Park
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Dong Woo Lim
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
7
|
Ji Y, Liu D, Zhu H, Bao L, Chang R, Gao X, Yin J. Unstructured Polypeptides as a Versatile Drug Delivery Technology. Acta Biomater 2023; 164:74-93. [PMID: 37075961 DOI: 10.1016/j.actbio.2023.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Although polyethylene glycol (PEG), or "PEGylation" has become a widely applied approach for improving the efficiency of drug delivery, the immunogenicity and non-biodegradability of this synthetic polymer have prompted an evident need for alternatives. To overcome these caveats and to mimic PEG -or other natural or synthetic polymers- for the purpose of drug half-life extension, unstructured polypeptides are designed. Due to their tunable length, biodegradability, low immunogenicity and easy production, unstructured polypeptides have the potential to replace PEG as the preferred technology for therapeutic protein/peptide delivery. This review provides an overview of the evolution of unstructured polypeptides, starting from natural polypeptides to engineered polypeptides and discusses their characteristics. Then, it is described that unstructured polypeptides have been successfully applied to numerous drugs, including peptides, proteins, antibody fragments, and nanocarriers, for half-life extension. Innovative applications of unstructured peptides as releasable masks, multimolecular adaptors and intracellular delivery carriers are also discussed. Finally, challenges and future perspectives of this promising field are briefly presented. STATEMENT OF SIGNIFICANCE: : Polypeptide fusion technology simulating PEGylation has become an important topic for the development of long-circulating peptide or protein drugs without reduced activity, complex processes, and kidney injury caused by PEG modification. Here we provide a detailed and in-depth review of the recent advances in unstructured polypeptides. In addition to the application of enhanced pharmacokinetic performance, emphasis is placed on polypeptides as scaffolders for the delivery of multiple drugs, and on the preparation of reasonably designed polypeptides to manipulate the performance of proteins and peptides. This review will provide insight into future application of polypeptides in peptide or protein drug development and the design of novel functional polypeptides.
Collapse
Affiliation(s)
- Yue Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Haichao Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Lichen Bao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 210009, China
| | - Ruilong Chang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
8
|
Clostridium botulinum C3 Toxin for Selective Delivery of Cargo into Dendritic Cells and Macrophages. Toxins (Basel) 2022; 14:toxins14100711. [DOI: 10.3390/toxins14100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
The protein toxin C3bot from Clostridium botulinum is a mono-ADP-ribosyltransferase that selectively intoxicates monocyte-derived cells such as macrophages, osteoclasts, and dendritic cells (DCs) by cytosolic modification of Rho-A, -B, and -C. Here, we investigated the application of C3bot as well as its non-toxic variant C3botE174Q as transporters for selective delivery of cargo molecules into macrophages and DCs. C3bot and C3botE174Q facilitated the uptake of eGFP into early endosomes of human-monocyte-derived macrophages, as revealed by stimulated emission depletion (STED) super-resolution microscopy. The fusion of the cargo model peptide eGFP neither affected the cell-type selectivity (enhanced uptake into human macrophages ex vivo compared to lymphocytes) nor the cytosolic release of C3bot. Moreover, by cell fractionation, we demonstrated that C3bot and C3botE174Q strongly enhanced the cytosolic release of functional eGFP. Subsequently, a modular system was created on the basis of C3botE174Q for covalent linkage of cargos via thiol–maleimide click chemistry. The functionality of this system was proven by loading small molecule fluorophores or an established reporter enzyme and investigating the cellular uptake and cytosolic release of cargo. Taken together, non-toxic C3botE174Q is a promising candidate for the cell-type-selective delivery of small molecules, peptides, and proteins into the cytosol of macrophages and DCs.
Collapse
|
9
|
Cavazzini D, Spagnoli G, Mariz FC, Reggiani F, Maggi S, Franceschi V, Donofrio G, Müller M, Bolchi A, Ottonello S. Enhanced immunogenicity of a positively supercharged archaeon thioredoxin scaffold as a cell-penetrating antigen carrier for peptide vaccines. Front Immunol 2022; 13:958123. [PMID: 36032169 PMCID: PMC9405434 DOI: 10.3389/fimmu.2022.958123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
Polycationic resurfaced proteins hold great promise as cell-penetrating bioreagents but their use as carriers for the intracellular delivery of peptide immuno-epitopes has not thus far been explored. Here, we report on the construction and functional characterization of a positively supercharged derivative of Pyrococcus furiosus thioredoxin (PfTrx), a thermally hyperstable protein we have previously validated as a peptide epitope display and immunogenicity enhancing scaffold. Genetic conversion of 13 selected amino acids to lysine residues conferred to PfTrx a net charge of +21 (starting from the -1 charge of the wild-type protein), along with the ability to bind nucleic acids. In its unfused form, +21 PfTrx was readily internalized by HeLa cells and displayed a predominantly cytosolic localization. A different intracellular distribution was observed for a +21 PfTrx-eGFP fusion protein, which although still capable of cell penetration was predominantly localized within endosomes. A mixed cytosolic/endosomal partitioning was observed for a +21 PfTrx derivative harboring three tandemly repeated copies of a previously validated HPV16-L2 (aa 20-38) B-cell epitope grafted to the display site of thioredoxin. Compared to its wild-type counterpart, the positively supercharged antigen induced a faster immune response and displayed an overall superior immunogenicity, including a substantial degree of self-adjuvancy. Altogether, the present data point to +21 PfTrx as a promising novel carrier for intracellular antigen delivery and the construction of potentiated recombinant subunit vaccines.
Collapse
Affiliation(s)
- Davide Cavazzini
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Gloria Spagnoli
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Filipe Colaco Mariz
- German Cancer Research Center (DKFZ), Tumorvirus-specific Vaccination Strategies (F035), Heidelberg, Germany
| | - Filippo Reggiani
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Stefano Maggi
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Gaetano Donofrio
- Department of Veterinary Science, University of Parma, Parma, Italy
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parma, Italy
| | - Martin Müller
- German Cancer Research Center (DKFZ), Tumorvirus-specific Vaccination Strategies (F035), Heidelberg, Germany
- *Correspondence: Martin Müller, ; Angelo Bolchi,
| | - Angelo Bolchi
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parma, Italy
- *Correspondence: Martin Müller, ; Angelo Bolchi,
| | - Simone Ottonello
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parma, Italy
| |
Collapse
|
10
|
Active targeting via ligand-anchored pH-responsive strontium nanoparticles for efficient nucleic acid delivery into breast cancer cells. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00559-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
Purpose
Gene therapy is a promising and novel therapeutic strategy for many mutated gene-associated diseases, including breast cancer. However, it poses significant biological drawbacks such as rapid clearance from the circulatory system and low cellular uptake of the exogenously delivered functional nucleic acids. The development of efficient and biocompatible carriers for genetic materials has been extensively explored in the literature, and the functionalization of nanoparticles (NPs) with cancer cell-recognizing ligands has become an attractive approach to promote tumor targetability and efficient cellular internalization via endocytosis.
Methods
This study introduced self-assembling targeting ligands, including transferrin and fibronectin with the ability to electrostatically interact with strontium nanoparticles (SNPs), and then analyzed their influence on size and zeta potential of the resultant hybrid SNPs, cellular uptake and expression efficiency of transgene-loaded hybrid NPs.
Results
Smaller ligand-coated SNPs (LCSNPs) remarkably increased gene transfection activity in both MCF-7 and 4T1 cells as well as nucleic acid localization into tumor tissues with improved tumor regression activity in a 4T1-tumor xenograft mouse model.
Conclusion
LCSNPs-mediated delivery of p53 gene and MAPK siRNA provided a proof-of-concept for the functionalized nanocarrier formulation in order to inhibit breast cancer cell growth.
Collapse
|
11
|
Horn JM, Obermeyer AC. Genetic and Covalent Protein Modification Strategies to Facilitate Intracellular Delivery. Biomacromolecules 2021; 22:4883-4904. [PMID: 34855385 PMCID: PMC9310055 DOI: 10.1021/acs.biomac.1c00745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein-based therapeutics represent a rapidly growing segment of approved disease treatments. Successful intracellular delivery of proteins is an important precondition for expanded in vivo and in vitro applications of protein therapeutics. Direct modification of proteins and peptides for improved cytosolic translocation are a promising method of increasing delivery efficiency and expanding the viability of intracellular protein therapeutics. In this Review, we present recent advances in both synthetic and genetic protein modifications for intracellular delivery. Active endocytosis-based and passive internalization pathways are discussed, followed by a review of modification methods for improved cytosolic delivery. After establishing how proteins can be modified, general strategies for facilitating intracellular delivery, such as chemical supercharging or inclusion of cell-penetrating motifs, are covered. We then outline protein modifications that promote endosomal escape. We finally examine the delivery of two potential classes of therapeutic proteins, antibodies and associated antibody fragments, and gene editing proteins, such as cas9.
Collapse
|
12
|
Raabe M, Heck AJ, Führer S, Schauenburg D, Pieszka M, Wang T, Zegota MM, Nuhn L, Ng DYW, Kuan SL, Weil T. Assembly of pH-Responsive Antibody-Drug-Inspired Conjugates. Macromol Biosci 2021; 22:e2100299. [PMID: 34791790 DOI: 10.1002/mabi.202100299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/11/2021] [Indexed: 01/12/2023]
Abstract
With the advent of chemical strategies that allow the design of smart bioconjugates, peptide- and protein-drug conjugates are emerging as highly efficient therapeutics to overcome limitations of conventional treatment, as exemplified by antibody-drug conjugates (ADCs). While targeting peptides serve similar roles as antibodies to recognize overexpressed receptors on diseased cell surfaces, peptide-drug conjugates suffer from poor stability and bioavailability due to their low molecular weights. Through a combination of a supramolecular protein-based assembly platform and a pH-responsive linker, the authors devise herein the convenient assembly of a trivalent protein-drug conjugate. The conjugate should ideally possess distinct features of ADCs such as 1) recognition sites that recognize cell receptor and are arranged on 2) distinct locations on a high molecular weight protein scaffold, 3) a stimuli-responsive linker, as well as 4) an attached payload such as a drug molecule. These AD-like conjugates target cancer cells that overexpress somatostatin receptors, can enable controlled release in the microenvironment of cancer cells through a new pH-responsive biotin linker, and exhibit stability in biological media.
Collapse
Affiliation(s)
- Marco Raabe
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany.,Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany.,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Astrid Johanna Heck
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Siska Führer
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Dominik Schauenburg
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Michaela Pieszka
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany.,Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Tao Wang
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany.,Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 600213, P. R. China
| | - Maksymilian Marek Zegota
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany.,Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Lutz Nuhn
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - David Y W Ng
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Seah Ling Kuan
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany.,Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Tanja Weil
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany.,Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| |
Collapse
|
13
|
Nakashima KK, van Haren MHI, André AAM, Robu I, Spruijt E. Active coacervate droplets are protocells that grow and resist Ostwald ripening. Nat Commun 2021; 12:3819. [PMID: 34155210 PMCID: PMC8217494 DOI: 10.1038/s41467-021-24111-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/03/2021] [Indexed: 11/26/2022] Open
Abstract
Active coacervate droplets are liquid condensates coupled to a chemical reaction that turns over their components, keeping the droplets out of equilibrium. This turnover can be used to drive active processes such as growth, and provide an insight into the chemical requirements underlying (proto)cellular behaviour. Moreover, controlled growth is a key requirement to achieve population fitness and survival. Here we present a minimal, nucleotide-based coacervate model for active droplets, and report three key findings that make these droplets into evolvable protocells. First, we show that coacervate droplets form and grow by the fuel-driven synthesis of new coacervate material. Second, we find that these droplets do not undergo Ostwald ripening, which we attribute to the attractive electrostatic interactions and translational entropy within complex coacervates, active or passive. Finally, we show that the droplet growth rate reflects experimental conditions such as substrate, enzyme and protein concentration, and that a different droplet composition (addition of RNA) leads to altered growth rates and droplet fitness. These findings together make active coacervate droplets a powerful platform to mimic cellular growth at a single-droplet level, and to study fitness at a population level.
Collapse
Affiliation(s)
- Karina K Nakashima
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Merlijn H I van Haren
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Alain A M André
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Irina Robu
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
14
|
Ma C, Sun J, Li B, Feng Y, Sun Y, Xiang L, Wu B, Xiao L, Liu B, Petrovskii VS, Bin Liu, Zhang J, Wang Z, Li H, Zhang L, Li J, Wang F, Gӧstl R, Potemkin II, Chen D, Zeng H, Zhang H, Liu K, Herrmann A. Ultra-strong bio-glue from genetically engineered polypeptides. Nat Commun 2021; 12:3613. [PMID: 34127656 PMCID: PMC8203747 DOI: 10.1038/s41467-021-23117-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/19/2021] [Indexed: 12/23/2022] Open
Abstract
The development of biomedical glues is an important, yet challenging task as seemingly mutually exclusive properties need to be combined in one material, i.e. strong adhesion and adaption to remodeling processes in healing tissue. Here, we report a biocompatible and biodegradable protein-based adhesive with high adhesion strengths. The maximum strength reaches 16.5 ± 2.2 MPa on hard substrates, which is comparable to that of commercial cyanoacrylate superglue and higher than other protein-based adhesives by at least one order of magnitude. Moreover, the strong adhesion on soft tissues qualifies the adhesive as biomedical glue outperforming some commercial products. Robust mechanical properties are realized without covalent bond formation during the adhesion process. A complex consisting of cationic supercharged polypeptides and anionic aromatic surfactants with lysine to surfactant molar ratio of 1:0.9 is driven by multiple supramolecular interactions enabling such strong adhesion. We demonstrate the glue's robust performance in vitro and in vivo for cosmetic and hemostasis applications and accelerated wound healing by comparison to surgical wound closures.
Collapse
Affiliation(s)
- Chao Ma
- Department of Chemistry, Tsinghua University, Beijing, China.,Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.,School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Jing Sun
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yang Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yao Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Li Xiang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Baiheng Wu
- Institute of Process Equipment, College of energy engineering, Zhejiang University, Hangzhou, China
| | - Lingling Xiao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Baimei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Vladislav S Petrovskii
- Physics Department, Lomonosov Moscow State University, Moscow, Russian Federation.,N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Bin Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Jinrui Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zili Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Hongyan Li
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.,DWI - Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Lei Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Robert Gӧstl
- DWI - Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Moscow, Russian Federation.,DWI - Leibniz Institute for Interactive Materials, Aachen, Germany.,National Research South Ural State University, Chelyabinsk, Russian Federation
| | - Dong Chen
- Institute of Process Equipment, College of energy engineering, Zhejiang University, Hangzhou, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Hongjie Zhang
- Department of Chemistry, Tsinghua University, Beijing, China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, China. .,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
| | - Andreas Herrmann
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands. .,DWI - Leibniz Institute for Interactive Materials, Aachen, Germany. .,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
15
|
Ma C, Malessa A, Boersma AJ, Liu K, Herrmann A. Supercharged Proteins and Polypeptides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905309. [PMID: 31943419 DOI: 10.1002/adma.201905309] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Electrostatic interactions play a vital role in nature. Biomacromolecules such as proteins are orchestrated by electrostatics, among other intermolecular forces, to assemble and organize biochemistry. Natural proteins with a high net charge exist in a folded state or are unstructured and can be an inspiration for scientists to artificially supercharge other protein entities. Recent findings show that supercharging proteins allows for control of their properties such as temperature resistance and catalytic activity. One elegant method to transfer the favorable properties of supercharged proteins to other proteins is the fabrication of fusions. Genetically engineered, supercharged unstructured polypeptides (SUPs) are just one promising fusion tool. SUPs can also be complexed with artificial entities to yield thermotropic and lyotropic liquid crystals and liquids. These architectures represent novel bulk materials that are sensitive to external stimuli. Interestingly, SUPs undergo fluid-fluid phase separation to form coacervates. These coacervates can even be directly generated in living cells or can be combined with dissipative fiber assemblies that induce life-like features. Supercharged proteins and SUPs are developed into exciting classes of materials. Their synthesis, structures, and properties are summarized. Moreover, potential applications are highlighted and challenges are discussed.
Collapse
Affiliation(s)
- Chao Ma
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Anke Malessa
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Arnold J Boersma
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Andreas Herrmann
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
16
|
Deller RC, Richardson T, Richardson R, Bevan L, Zampetakis I, Scarpa F, Perriman AW. Artificial cell membrane binding thrombin constructs drive in situ fibrin hydrogel formation. Nat Commun 2019; 10:1887. [PMID: 31015421 PMCID: PMC6478844 DOI: 10.1038/s41467-019-09763-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
Cell membrane re-engineering is emerging as a powerful tool for the development of next generation cell therapies, as it allows the user to augment therapeutic cells to provide additional functionalities, such as homing, adhesion or hypoxia resistance. To date, however, there are few examples where the plasma membrane is re-engineered to display active enzymes that promote extracellular matrix protein assembly. Here, we report on a self-contained matrix-forming system where the membrane of human mesenchymal stem cells is modified to display a novel thrombin construct, giving rise to spontaneous fibrin hydrogel nucleation and growth at near human plasma concentrations of fibrinogen. The cell membrane modification process is realised through the synthesis of a membrane-binding supercationic thrombin-polymer surfactant complex. Significantly, the resulting robust cellular fibrin hydrogel constructs can be differentiated down osteogenic and adipogenic lineages, giving rise to self-supporting monoliths that exhibit Young's moduli that reflect their respective extracellular matrix compositions.
Collapse
Affiliation(s)
- Robert C Deller
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- School of Engineering, University of Liverpool, Liverpool, L69 3GH, UK
| | - Thomas Richardson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, BS8 1FD, UK
| | - Rebecca Richardson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Laura Bevan
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Ioannis Zampetakis
- Bristol Composites Institute (ACCIS), University of Bristol, Bristol, BS8 1TR, UK
| | - Fabrizio Scarpa
- Bristol Composites Institute (ACCIS), University of Bristol, Bristol, BS8 1TR, UK
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
17
|
Yin J, Hou S, Wang Q, Bao L, Liu D, Yue Y, Yao W, Gao X. Microenvironment-Responsive Delivery of the Cas9 RNA-Guided Endonuclease for Efficient Genome Editing. Bioconjug Chem 2019; 30:898-906. [PMID: 30802405 DOI: 10.1021/acs.bioconjchem.9b00022] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Successful and efficient delivery of Cas9 protein and gRNA into cells is critical for genome editing and its therapeutic application. In this study, we developed an improved supercharged polypeptide (SCP) mediated delivery system based on dithiocyclopeptide linker to realize the effective genome editing in tumor cells. The fusion protein Cas9-linker-SCP (Cas9-LS) forms positively charged complexes with gRNA in vitro to provide possibilities for gRNA delivery into cells. Under the microenvironment of tumor cells, the dithiocyclopeptide linker, containing matrix metalloproteinase 2 (MMP-2) sensitive sequence and an intramolecular disulfide bond, can be completely disconnected to promote the release of Cas9 protein with the nuclear localization sequence (NLS) in the cytoplasm and transfer to the cell nucleus for highly efficient genome editing, resulting in an obvious increase of indel efficiency in comparison to fusion protein without dithiocyclopeptide linker (Cas9-SCP). Furthermore, Cas9-LS shows no significant cytotoxicity and minimal hemolytic activity. We envision that the microenvironment-responsive Cas9 protein delivery system can facilitate more efficient genome editing in tumor cells.
Collapse
Affiliation(s)
- Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , China
| | - Shan Hou
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , China
| | - Qun Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , China
| | - Lichen Bao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , China
| | - Yali Yue
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
18
|
Vorotnikov YA, Pozmogova TN, Solovieva AO, Miroshnichenko SM, Vorontsova EV, Shestopalova LV, Mironov YV, Shestopalov MA, Efremova OA. Luminescent silica mesoparticles for protein transduction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:530-538. [PMID: 30606563 DOI: 10.1016/j.msec.2018.11.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/25/2018] [Accepted: 11/27/2018] [Indexed: 01/20/2023]
Abstract
Unlike silica nanoparticles, the potential of silica mesoparticles (SMPs) (i.e. particles of submicron size) for biological applications in particular the in vitro (let alone in vivo) cellular delivery of biological cargo has so far not been sufficiently studied. Here we examine the potential of luminescent (namely, octahedral molybdenum cluster doped) SMPs synthesised by a simple one-pot reaction for the labelling of cells and for protein transduction into larynx carcinoma (Hep-2) cells using GFP as a model protein. Our data demonstrates that the SMPs internalise into the cells within half an hour. This results in cells that detectably luminesce via conventional methods. In addition, the particles are non-toxic both in darkness and upon photo-irradiation. The SMPs were modified to allow their functionalisation by a protein, which then delivered the protein (GFP) efficiently into the cells. Thus, the luminescent SMPs offer a cheap and trackable alternative to existing materials for cellular internalisation of proteins, such as the HIV TAT protein and commercial protein delivery agents (e.g. Pierce™).
Collapse
Affiliation(s)
- Yuri A Vorotnikov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russian Federation; Scientific Institute of Clinical and Experimental Lymphology - branch of ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russian Federation
| | - Tatiana N Pozmogova
- Scientific Institute of Clinical and Experimental Lymphology - branch of ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk, Russian Federation
| | - Anastasiya O Solovieva
- Scientific Institute of Clinical and Experimental Lymphology - branch of ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russian Federation; Federal Research Center of Fundamental and Translational Medicine, 2 Timakova str., 630117 Novosibirsk, Russian Federation
| | - Svetlana M Miroshnichenko
- Scientific Institute of Clinical and Experimental Lymphology - branch of ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russian Federation; Federal Research Center of Fundamental and Translational Medicine, 2 Timakova str., 630117 Novosibirsk, Russian Federation
| | - Elena V Vorontsova
- Scientific Institute of Clinical and Experimental Lymphology - branch of ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russian Federation; Federal Research Center of Fundamental and Translational Medicine, 2 Timakova str., 630117 Novosibirsk, Russian Federation
| | - Lidiya V Shestopalova
- Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk, Russian Federation
| | - Yuri V Mironov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk, Russian Federation
| | - Michael A Shestopalov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russian Federation; Scientific Institute of Clinical and Experimental Lymphology - branch of ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk, Russian Federation; Federal Research Center of Fundamental and Translational Medicine, 2 Timakova str., 630117 Novosibirsk, Russian Federation.
| | - Olga A Efremova
- Scientific Institute of Clinical and Experimental Lymphology - branch of ICG SB RAS, 2 Timakova str., 630060 Novosibirsk, Russian Federation; Federal Research Center of Fundamental and Translational Medicine, 2 Timakova str., 630117 Novosibirsk, Russian Federation; School of Mathematics and Physical Sciences, University of Hull, Cottingham Road, HU6 7RX, Hull, UK.
| |
Collapse
|
19
|
Yin J, Wang Q, Hou S, Bao L, Yao W, Gao X. Potent Protein Delivery into Mammalian Cells via a Supercharged Polypeptide. J Am Chem Soc 2018; 140:17234-17240. [DOI: 10.1021/jacs.8b10299] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Qun Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Shan Hou
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Lichen Bao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
20
|
Te Brinke E, Groen J, Herrmann A, Heus HA, Rivas G, Spruijt E, Huck WTS. Dissipative adaptation in driven self-assembly leading to self-dividing fibrils. NATURE NANOTECHNOLOGY 2018; 13:849-855. [PMID: 30013214 DOI: 10.1038/s41565-018-0192-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/11/2018] [Indexed: 05/24/2023]
Abstract
Out-of-equilibrium self-assembly of proteins such as actin and tubulin is a key regulatory process controlling cell shape, motion and division. The design of functional nanosystems based on dissipative self-assembly has proven to be remarkably difficult due to a complete lack of control over the spatial and temporal characteristics of the assembly process. Here, we show the dissipative self-assembly of FtsZ protein (a bacterial homologue of tubulin) within coacervate droplets. More specifically, we show how such barrier-free compartments govern the local availability of the energy-rich building block guanosine triphosphate, yielding highly dynamic fibrils. The increased flux of FtsZ monomers at the tips of the fibrils results in localized FtsZ assembly, elongation of the coacervate compartments, followed by division of the fibrils into two. We rationalize the directional growth and division of the fibrils using dissipative reaction-diffusion kinetics and capillary action of the filaments as main inputs. The principle presented here, in which open compartments are used to modulate the rates of dissipative self-assembly by restricting the absorption of energy from the environment, may provide a general route to dissipatively adapting nanosystems exhibiting life-like behaviour.
Collapse
Affiliation(s)
- Esra Te Brinke
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Joost Groen
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Andreas Herrmann
- DWI Leibniz Institute for Interactive Materials, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Hans A Heus
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Germán Rivas
- Systems Biochemistry Lab, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
21
|
Schmidt S, Tavernaro I, Cavelius C, Weber E, Kümper A, Schmitz C, Fleddermann J, Kraegeloh A. Silica Nanoparticles for Intracellular Protein Delivery: a Novel Synthesis Approach Using Green Fluorescent Protein. NANOSCALE RESEARCH LETTERS 2017; 12:545. [PMID: 28948498 PMCID: PMC5612907 DOI: 10.1186/s11671-017-2280-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/19/2017] [Indexed: 05/30/2023]
Abstract
In this study, a novel approach for preparation of green fluorescent protein (GFP)-doped silica nanoparticles with a narrow size distribution is presented. GFP was chosen as a model protein due to its autofluorescence. Protein-doped nanoparticles have a high application potential in the field of intracellular protein delivery. In addition, fluorescently labelled particles can be used for bioimaging. The size of these protein-doped nanoparticles was adjusted from 15 to 35 nm using a multistep synthesis process, comprising the particle core synthesis followed by shell regrowth steps. GFP was selectively incorporated into the silica matrix of either the core or the shell or both by a one-pot reaction. The obtained nanoparticles were characterised by determination of particle size, hydrodynamic diameter, ζ-potential, fluorescence and quantum yield. The measurements showed that the fluorescence of GFP was maintained during particle synthesis. Cellular uptake experiments demonstrated that the GFP-doped nanoparticles can be used as stable and effective fluorescent probes. The study reveals the potential of the chosen approach for incorporation of functional biological macromolecules into silica nanoparticles, which opens novel application fields like intracellular protein delivery.
Collapse
Affiliation(s)
- Sarah Schmidt
- Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, SL Germany
| | - Isabella Tavernaro
- Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, SL Germany
| | | | - Eva Weber
- Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, SL Germany
| | - Alexander Kümper
- Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, SL Germany
| | - Carmen Schmitz
- Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, SL Germany
| | - Jana Fleddermann
- Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, SL Germany
| | - Annette Kraegeloh
- Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, SL Germany
| |
Collapse
|
22
|
Wang B, Han J, Ma C, Bender M, Seehafer K, Herrmann A, Bunz UHF. A Simple Optoelectronic Tongue Discriminates Amino Acids. Chemistry 2017; 23:12471-12474. [PMID: 28745413 DOI: 10.1002/chem.201702826] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Indexed: 12/12/2022]
Abstract
A self-assembled nine-element optoelectronic tongue consisting of a positively charged water-soluble poly(para-phenyleneethynylene) and three metal ions (Fe2+ , Co2+ , and Cu2+ ) at three different pH values (7, 10, and 13) discriminates all of the 20 natural amino acids in water. Unknown identification was not ideal. Addition of a highly positively charged green fluorescent protein in the presence of Fe2+ , Co2+ , and Cu2+ increased the unknown identification to above 86 %. Linear discriminant analysis (LDA) orders the responses according to the amino acid type, that is, hydrophobic, polar, anionic, or cationic.
Collapse
Affiliation(s)
- Benhua Wang
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jinsong Han
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Chao Ma
- Department of Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Markus Bender
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Andreas Herrmann
- Department of Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
23
|
|
24
|
Wang H, Ma JL, Yang YG, Song Y, Wu J, Qin YY, Zhao XL, Wang J, Zou LL, Wu JF, Li JM, Liu CB. Efficient therapeutic delivery by a novel cell-permeant peptide derived from KDM4A protein for antitumor and antifibrosis. Oncotarget 2016; 7:49075-49090. [PMID: 27081693 PMCID: PMC5226491 DOI: 10.18632/oncotarget.8682] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/28/2016] [Indexed: 01/23/2023] Open
Abstract
Cell-penetrating peptide (CPP) based delivery have provided immense potential for the therapeutic applications, however, most of nonhuman originated CPPs carry the risk of possible cytotoxicity and immunogenicity, thus may restricting to be used. Here, we describe a novel human-derived CPP, denoted hPP10, and hPP10 has cell-penetrating properties evaluated by CellPPD web server, as well as In-Vitro and In-Vivo analysis. In vitro studies showed that hPP10-FITC was able to penetrate into various cells including primary cultured cells, likely through an endocytosis pathway. And functionalized macromolecules, such as green fluorescent protein (GFP), tumor-specific apoptosis inducer Apoptin as well as biological active enzyme GCLC (Glutamate-cysteine ligase, catalytic subunit) can be delivered by hPP10 in vitro and in vivo. Collectively, our results suggest that hPP10 provide a novel and versatile tool to deliver exogenous proteins or drugs for clinical applications as well as reprogrammed cell-based therapy.
Collapse
Affiliation(s)
- Hu Wang
- The Institute of Cell Therapy, China Three Gorges University, Yichang 443002, China
- Medical School, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Jie-Lan Ma
- Medical School, China Three Gorges University, Yichang 443002, China
| | - Ying-Gui Yang
- The Institute of Cell Therapy, China Three Gorges University, Yichang 443002, China
- Medical School, China Three Gorges University, Yichang 443002, China
| | - Yang Song
- The Institute of Cell Therapy, China Three Gorges University, Yichang 443002, China
- Medical School, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Jiao Wu
- The Institute of Cell Therapy, China Three Gorges University, Yichang 443002, China
- Medical School, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Yan-Yan Qin
- Medical School, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Xue-Li Zhao
- Medical School, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Jun Wang
- The Institute of Cell Therapy, China Three Gorges University, Yichang 443002, China
- The 1st People's Hospital of Yichang, Yichang 443000, China
| | - Li-Li Zou
- The Institute of Cell Therapy, China Three Gorges University, Yichang 443002, China
- Medical School, China Three Gorges University, Yichang 443002, China
| | - Jiang-Feng Wu
- The Institute of Cell Therapy, China Three Gorges University, Yichang 443002, China
- Medical School, China Three Gorges University, Yichang 443002, China
| | - Jun-Ming Li
- The Institute of Cell Therapy, China Three Gorges University, Yichang 443002, China
- The 1st People's Hospital of Yichang, Yichang 443000, China
| | - Chang-Bai Liu
- The Institute of Cell Therapy, China Three Gorges University, Yichang 443002, China
- Medical School, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
25
|
Yang H, Ma C, Li K, Liu K, Loznik M, Teeuwen R, van Hest JCM, Zhou X, Herrmann A, Wang J. Tuning Ice Nucleation with Supercharged Polypeptides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5008-5012. [PMID: 27119590 DOI: 10.1002/adma.201600496] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 06/05/2023]
Abstract
Supercharged unfolded polypeptides (SUPs) are exploited for controlling ice nucleation via tuning the nature of charge and charge density of SUPs. The results show that positively charged SUPs facilitate ice nucleation, while negatively charged ones suppress it. Moreover, the charge density of the SUP backbone is another parameter to control it.
Collapse
Affiliation(s)
- Huige Yang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chao Ma
- Department of Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Kaiyong Li
- School of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang, 471023, P. R. China
| | - Kai Liu
- Department of Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Mark Loznik
- Department of Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Rosalie Teeuwen
- Institute for Molecules and Materials, Radboud University Nijmegen, 6525, AJ, Nijmegen, The Netherlands
| | - Jan C M van Hest
- Institute for Molecules and Materials, Radboud University Nijmegen, 6525, AJ, Nijmegen, The Netherlands
| | - Xin Zhou
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Andreas Herrmann
- Department of Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Jianjun Wang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
26
|
Liu X, Zhang P, He D, Rödl W, Preiß T, Rädler JO, Wagner E, Lächelt U. pH-Reversible Cationic RNase A Conjugates for Enhanced Cellular Delivery and Tumor Cell Killing. Biomacromolecules 2015; 17:173-82. [DOI: 10.1021/acs.biomac.5b01289] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiaowen Liu
- Pharmaceutical
Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians University Munich, Butenandstrasse 5-13, D-81377 Munich, Germany
| | - Peng Zhang
- Pharmaceutical
Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians University Munich, Butenandstrasse 5-13, D-81377 Munich, Germany
| | - Dongsheng He
- Pharmaceutical
Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians University Munich, Butenandstrasse 5-13, D-81377 Munich, Germany
- Nanosystems
Initiative
Munich, Schellingstrasse 4, D-80799 Munich, Germany
| | - Wolfgang Rödl
- Pharmaceutical
Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians University Munich, Butenandstrasse 5-13, D-81377 Munich, Germany
| | - Tobias Preiß
- Faculty
of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians University Munich, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Joachim O. Rädler
- Faculty
of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians University Munich, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
- Nanosystems
Initiative
Munich, Schellingstrasse 4, D-80799 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical
Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians University Munich, Butenandstrasse 5-13, D-81377 Munich, Germany
- Nanosystems
Initiative
Munich, Schellingstrasse 4, D-80799 Munich, Germany
| | - Ulrich Lächelt
- Pharmaceutical
Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians University Munich, Butenandstrasse 5-13, D-81377 Munich, Germany
| |
Collapse
|
27
|
Kuan SL, Wang T, Raabe M, Liu W, Lamla M, Weil T. Programming Bioactive Architectures with Cyclic Peptide Amphiphiles. Chempluschem 2015; 80:1347-1353. [PMID: 31973290 DOI: 10.1002/cplu.201500218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Indexed: 01/06/2023]
Abstract
We present a versatile approach for the synthesis of cyclic peptide amphiphiles of the hormone somatostatin (SST) with tunable lipophilic tails to program bioactive nanoarchitectures. A novel bis-alkylation reagent is synthesized that facilitates the functionalization of SST with a thiol anchor. Different hydrophobic moieties are introduced inspired by a biomimetic palmitoylation approach which opens access to cyclic peptide amphiphiles that display rich self-organization and cell membrane interactions.
Collapse
Affiliation(s)
- Seah Ling Kuan
- Institute of Organic Chemistry III-Macromolecular Chemistry & Biomaterials, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm (Germany)
| | - Tao Wang
- Institute of Organic Chemistry III-Macromolecular Chemistry & Biomaterials, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm (Germany)
| | - Marco Raabe
- Institute of Organic Chemistry III-Macromolecular Chemistry & Biomaterials, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm (Germany)
| | - Weina Liu
- Institute of Organic Chemistry III-Macromolecular Chemistry & Biomaterials, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm (Germany)
| | - Markus Lamla
- Institute of Organic Chemistry III-Macromolecular Chemistry & Biomaterials, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm (Germany)
| | - Tanja Weil
- Institute of Organic Chemistry III-Macromolecular Chemistry & Biomaterials, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm (Germany)
| |
Collapse
|
28
|
Liu K, Pesce D, Ma C, Tuchband M, Shuai M, Chen D, Su J, Liu Q, Gerasimov JY, Kolbe A, Zajaczkowski W, Pisula W, Müllen K, Clark NA, Herrmann A. Solvent-free liquid crystals and liquids based on genetically engineered supercharged polypeptides with high elasticity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:2459-2465. [PMID: 25732045 DOI: 10.1002/adma.201405182] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/11/2015] [Indexed: 06/04/2023]
Abstract
A series of solvent-free elastin-like polypeptide liquid crystals and liquids are developed by electrostatic complexation of supercharged elastin-like polypeptides with surfactants. The smectic mesophases exhibit a high elasticity and the values can be easily tuned by varying the alkyl chain lengths of the surfactants or the lengths of the elastin-like polypeptides.
Collapse
Affiliation(s)
- Kai Liu
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wu Y, Ng DYW, Kuan SL, Weil T. Protein–polymer therapeutics: a macromolecular perspective. Biomater Sci 2015. [DOI: 10.1039/c4bm00270a] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of protein–polymer hybrids emerged several decades ago with the vision that their synergistic combination will offer macromolecular hybrids with manifold features to succeed as the next generation therapeutics.
Collapse
Affiliation(s)
- Yuzhou Wu
- Institute of Organic Chemistry III
- Macromolecular Chemistry
- Albert-Einstein-Allee 11
- 89081 Ulm
- Germany
| | - David Y. W. Ng
- Institute of Organic Chemistry III
- Macromolecular Chemistry
- Albert-Einstein-Allee 11
- 89081 Ulm
- Germany
| | - Seah Ling Kuan
- Institute of Organic Chemistry III
- Macromolecular Chemistry
- Albert-Einstein-Allee 11
- 89081 Ulm
- Germany
| | - Tanja Weil
- Institute of Organic Chemistry III
- Macromolecular Chemistry
- Albert-Einstein-Allee 11
- 89081 Ulm
- Germany
| |
Collapse
|
30
|
Li Z, Tan BH, Jin G, Li K, He C. Design of polyhedral oligomeric silsesquioxane (POSS) based thermo-responsive amphiphilic hybrid copolymers for thermally denatured protein protection applications. Polym Chem 2014. [DOI: 10.1039/c4py00936c] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid micelles for simple and spontaneous protein protection using easily controllable temperature as the sole trigger in an “on-demand” fashion.
Collapse
Affiliation(s)
- Zibiao Li
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science
- Technology and Research)
- Singapore 117602, Singapore
| | - Beng H. Tan
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science
- Technology and Research)
- Singapore 117602, Singapore
| | - Guorui Jin
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science
- Technology and Research)
- Singapore 117602, Singapore
| | - Kai Li
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science
- Technology and Research)
- Singapore 117602, Singapore
| | - Chaobin He
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science
- Technology and Research)
- Singapore 117602, Singapore
- Department of Materials Science and Engineering
| |
Collapse
|