1
|
Ehlen Q, Costello JP, Mirsky NA, Slavin BV, Parra M, Ptashnik A, Nayak VV, Coelho PG, Witek L. Treatment of Bone Defects and Nonunion via Novel Delivery Mechanisms, Growth Factors, and Stem Cells: A Review. ACS Biomater Sci Eng 2024; 10:7314-7336. [PMID: 39527574 PMCID: PMC11632667 DOI: 10.1021/acsbiomaterials.4c01279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Bone nonunion following a fracture represents a significant global healthcare challenge, with an overall incidence ranging between 2 and 10% of all fractures. The management of nonunion is not only financially prohibitive but often necessitates invasive surgical interventions. This comprehensive manuscript aims to provide an extensive review of the published literature involving growth factors, stem cells, and novel delivery mechanisms for the treatment of fracture nonunion. Key growth factors involved in bone healing have been extensively studied, including bone morphogenic protein (BMP), vascular endothelial growth factor (VEGF), and platelet-derived growth factor. This review includes both preclinical and clinical studies that evaluated the role of growth factors in acute and chronic nonunion. Overall, these studies revealed promising bridging and fracture union rates but also elucidated complications such as heterotopic ossification and inferior mechanical properties associated with chronic nonunion. Stem cells, particularly mesenchymal stem cells (MSCs), are an extensively studied topic in the treatment of nonunion. A literature search identified articles that demonstrated improved healing responses, osteogenic capacity, and vascularization of fractures due to the presence of MSCs. Furthermore, this review addresses novel mechanisms and materials being researched to deliver these growth factors and stem cells to nonunion sites, including natural/synthetic polymers and bioceramics. The specific mechanisms explored in this review include BMP-induced osteoblast differentiation, VEGF-mediated angiogenesis, and the role of MSCs in multilineage differentiation and paracrine signaling. While these therapeutic modalities exhibit substantial preclinical promise in treating fracture nonunion, there remains a need for further research, particularly in chronic nonunion and large animal models. This paper seeks to identify such translational hurdles which must be addressed in order to progress the aforementioned treatments from the lab to the clinical setting.
Collapse
Affiliation(s)
- Quinn
T. Ehlen
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Joseph P. Costello
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Nicholas A. Mirsky
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Blaire V. Slavin
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Marcelo Parra
- Center
of Excellence in Morphological and Surgical Studies (CEMyQ), Faculty
of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
- Department
of Comprehensive Adult Dentistry, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
| | - Albert Ptashnik
- Biomaterials
Division, NYU Dentistry, New York, New York 10010, United States
| | - Vasudev Vivekanand Nayak
- Department
of Biochemistry and Molecular Biology, University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Paulo G. Coelho
- Department
of Biochemistry and Molecular Biology, University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
- Division
of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Lukasz Witek
- Biomaterials
Division, NYU Dentistry, New York, New York 10010, United States
- Department
of Biomedical Engineering, NYU Tandon School
of Engineering, Brooklyn, New York 11201, United States
- Hansjörg
Wyss Department of Plastic Surgery, NYU
Grossman School of Medicine, New
York, New York 10016, United States
| |
Collapse
|
2
|
Manon J, Englebert A, Evrard R, Schubert T, Cornu O. FixThePig: a custom 3D-printed femoral intramedullary nailing for preclinical research applications. Front Bioeng Biotechnol 2024; 12:1478676. [PMID: 39493302 PMCID: PMC11528544 DOI: 10.3389/fbioe.2024.1478676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
Background Critical-size bone defects (CSBDs) pose significant challenges in clinical orthopaedics and traumatology. Developing reliable preclinical models that accurately simulate human conditions is crucial for translational research. This study addresses the need for a reliable preclinical model by evaluating the design and efficacy of a custom-made 3D-printed intramedullary nail (IMN) specifically for CSBDs in minipigs. The study aims to answer the following questions: Can a custom-made 3D-printed IMN be designed for femoral osteosynthesis in minipigs? Does the use of the custom-made IMN result in consistent and reproducible surgical procedure, particularly in the creation and fixation of CSBDs? Can the custom-made IMN effectively treat and promote bone consolidation of CSBDs? Hypothesis The custom-made 3D-printed IMN can be designed to effectively create, fix and treat CSBDs in minipigs, resulting in consistent surgical outcomes. Materials and Methods The IMN was designed based on CT scans of minipig femurs, considering factors such as femoral curvature, length, and medullary canal diameters. It was 3D-printed in titanium and evaluated through both in vitro and in vivo testing. Female Aachen minipigs underwent bilateral femoral surgeries to create and fix CSBDs using the custom-made IMN. Post-operative follow-up included X-rays and CT scans every 2 weeks, with manual examination of explanted femurs to assess consolidation and mechanical stability after 3 months. Results The custom-made IMN effectively fitted the minipig femoral anatomy and facilitated reproducible surgical outcomes. Symmetric double osteotomies were successfully performed, and allografts showed minimal morphological discrepancies. However, proximal fixation faced challenges, leading to non-union in several cases, while most distal osteotomy sites achieved stable consolidation. Discussion The custom-made 3D-printed IMN demonstrated potential in modelling and treating CSBDs in minipigs. While the design effectively supported distal bone healing, issues with proximal fixation highlight the need for further refinements. Potential improvements include better screw placement, additional mechanical support, and adaptations such as a reduction clamp or a cephalic screw to enhance stability and distribute forces more effectively.
Collapse
Affiliation(s)
- Julie Manon
- Neuro Musculo Skeletal Lab (NMSK), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Bruxelles, Belgium
- Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, Bruxelles, Belgium
- Unité de Thérapie Tissulaire et Cellulaire de l’Appareil Locomoteur, Cliniques Universitaires Saint-Luc, Bruxelles, Belgium
| | - Alexandre Englebert
- Neuro Musculo Skeletal Lab (NMSK), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Bruxelles, Belgium
- Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, Bruxelles, Belgium
- Institute for Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Electrical Engineering Department (ELEN), UCLouvain, Louvain-la-Neuve, Belgium
| | - Robin Evrard
- Neuro Musculo Skeletal Lab (NMSK), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Bruxelles, Belgium
- Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, Bruxelles, Belgium
- Unité de Thérapie Tissulaire et Cellulaire de l’Appareil Locomoteur, Cliniques Universitaires Saint-Luc, Bruxelles, Belgium
| | - Thomas Schubert
- Neuro Musculo Skeletal Lab (NMSK), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Bruxelles, Belgium
- Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, Bruxelles, Belgium
- Unité de Thérapie Tissulaire et Cellulaire de l’Appareil Locomoteur, Cliniques Universitaires Saint-Luc, Bruxelles, Belgium
| | - Olivier Cornu
- Neuro Musculo Skeletal Lab (NMSK), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Bruxelles, Belgium
- Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, Bruxelles, Belgium
- Unité de Thérapie Tissulaire et Cellulaire de l’Appareil Locomoteur, Cliniques Universitaires Saint-Luc, Bruxelles, Belgium
| |
Collapse
|
3
|
Evrard R, Manon J, Maistriaux L, Fievé L, Darius T, Cornu O, Lengelé B, Schubert T. Enhancing the biological integration of massive bone allografts: A porcine preclinical in vivo pilot-study. Bone 2024; 187:117213. [PMID: 39084545 DOI: 10.1016/j.bone.2024.117213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Critical bone loss can have several origins: infections, tumors or trauma. Therefore, massive bone allograft can be a solution for limb salvage. Such a biological reconstruction should have the ideal biomechanical qualities. However, their complication rate remains too high. Perfusion-decellularization of massive allografts could promote the vitality of these grafts, thereby improving their integration and bone remodeling. Three perfusion-decellularized massive bone allografts were compared to 3 fresh frozen massive bone allografts in a preclinical in vivo porcine study using an orthopedic surgery model. Three pigs each underwent a critical diaphyseal femoral defects followed by an allogeneic intercalary femoral graft on their both femurs (one decellularized and one conventional fresh frozen as "native") to reconstruct the defect. Clinical imaging was performed over 3 months of follow-up. The grafts were then explanted and examined by non-decalcified histology, fluoroscopic microscopy and immunohistochemistry. Bone consolidation was achieved in both groups at the same time. However, the volume of bone callus appeared to be greater in the decellularized group. Histology demonstrated a superior bone remodeling in the decellularized group, with a higher number of osteoclasts (p < 0.001) and larger areas of osteoid matrix and newly formed bone as compared to the "native" group. Immunohistochemistry showed a superior vitality and remodeling in both the cortical and medullary cavities for osteocalcin (p < 0.001), Ki67 (p < 0.001), CD3 (p < 0.001) and α-SMA (p < 0.001) as compared the "native" group. Three months after implantation, the decellularized grafts were proven to be biologically more active compared to native grafts. Fluoroscopic microscopy revealed more ossification fronts in the depth of the decellularized grafts (p = 0.021). This pilot study provides the first in vivo demonstration on the enhanced biological capacities of massive bone allograft decellularized by perfusion as compared to conventional massive bone allografts.
Collapse
Affiliation(s)
- Robin Evrard
- Institut de Recherche Expérimentale et Clinique, Neuro Musculo-Skeletal Lab, Université Catholique de Louvain, Avenue E. Mounier, 52-B1.52.04 - 1200, Bruxelles, Belgium; Institut de Recherche Expérimentale et Clinique, Pôle Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Avenue E. Mounier, 52-B1.52.04 - 1200, Bruxelles, Belgium; Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10-1200, Bruxelles, Belgium; Unité de Thérapie Tissulaire et Cellulaire de l'Appareil Locomoteur, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10-1200, Bruxelles, Belgium.
| | - Julie Manon
- Institut de Recherche Expérimentale et Clinique, Neuro Musculo-Skeletal Lab, Université Catholique de Louvain, Avenue E. Mounier, 52-B1.52.04 - 1200, Bruxelles, Belgium; Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10-1200, Bruxelles, Belgium; Institut de Recherche Expérimentale et Clinique, Pôle Morphologie, Université Catholique de Louvain, Avenue E. Mounier, 52-B1.52.04 - 1200, Bruxelles, Belgium; Unité de Thérapie Tissulaire et Cellulaire de l'Appareil Locomoteur, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10-1200, Bruxelles, Belgium
| | - Louis Maistriaux
- Institut de Recherche Expérimentale et Clinique, Pôle Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Avenue E. Mounier, 52-B1.52.04 - 1200, Bruxelles, Belgium; Institut de Recherche Expérimentale et Clinique, Pôle Morphologie, Université Catholique de Louvain, Avenue E. Mounier, 52-B1.52.04 - 1200, Bruxelles, Belgium
| | - Lies Fievé
- Institut de Recherche Expérimentale et Clinique, Pôle Morphologie, Université Catholique de Louvain, Avenue E. Mounier, 52-B1.52.04 - 1200, Bruxelles, Belgium
| | - Tom Darius
- Institut de Recherche Expérimentale et Clinique, Pôle Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Avenue E. Mounier, 52-B1.52.04 - 1200, Bruxelles, Belgium; Département de Chirurgie, Chirurgie abdominale et unité de transplantation, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10-1200, Bruxelles, Belgium
| | - Olivier Cornu
- Institut de Recherche Expérimentale et Clinique, Neuro Musculo-Skeletal Lab, Université Catholique de Louvain, Avenue E. Mounier, 52-B1.52.04 - 1200, Bruxelles, Belgium; Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10-1200, Bruxelles, Belgium; Unité de Thérapie Tissulaire et Cellulaire de l'Appareil Locomoteur, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10-1200, Bruxelles, Belgium
| | - Benoit Lengelé
- Institut de Recherche Expérimentale et Clinique, Pôle Morphologie, Université Catholique de Louvain, Avenue E. Mounier, 52-B1.52.04 - 1200, Bruxelles, Belgium; Service de Chirurgie Plastique, Reconstructrice et Esthétique, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10-1200, Bruxelles, Belgium
| | - Thomas Schubert
- Institut de Recherche Expérimentale et Clinique, Neuro Musculo-Skeletal Lab, Université Catholique de Louvain, Avenue E. Mounier, 52-B1.52.04 - 1200, Bruxelles, Belgium; Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10-1200, Bruxelles, Belgium; Unité de Thérapie Tissulaire et Cellulaire de l'Appareil Locomoteur, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10-1200, Bruxelles, Belgium
| |
Collapse
|
4
|
Yoshizato H, Morimoto T, Nonaka T, Otani K, Kobayashi T, Nakashima T, Hirata H, Tsukamoto M, Mawatari M. Animal Model for Anterior Lumbar Interbody Fusion: A Literature Review. Spine Surg Relat Res 2024; 8:373-382. [PMID: 39131411 PMCID: PMC11310536 DOI: 10.22603/ssrr.2023-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/22/2023] [Indexed: 08/13/2024] Open
Abstract
Lumbar interbody fusion (LIF) is a surgical procedure for treating lumbar spinal stenosis and deformities. It removes a spinal disc and insert a cage or bone graft to promote solid fusion. Extensive research on LIF has been supported by numerous animal studies, which are being developed to enhance fusion rates and reduce the complications associated with the procedure. In particular, the anterior approach is significant in LIF research and regenerative medicine studies concerning intervertebral discs, as it utilizes the disc and the entire vertebral body. Several animal models have been used for anterior LIF (ALIF), each with distinct characteristics. However, a comprehensive review of ALIF models in different animals is currently lacking. Medium-sized and large animals, such as dogs and sheep, have been employed as ALIF models because of their suitable spine size for surgery. Conversely, small animals, such as rats, are rarely employed as ALIF models because of anatomical challenges. However, recent advancements in surgical implants and techniques have gradually allowed rats in ALIF models. Ambitious studies utilizing small animal ALIF models will soon be conducted. This review aims to review the advantages and disadvantages of various animal models, commonly used approaches, and bone fusion rate, to provide valuable insights to researchers studying the spine.
Collapse
Affiliation(s)
- Hiromu Yoshizato
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Tadatsugu Morimoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Toshihiro Nonaka
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Koji Otani
- Department of Orthopedic Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | | | - Takema Nakashima
- Department of Orthopaedic Surgery, JCHO Saga Central Hospital, Saga, Japan
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masatsugu Tsukamoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
5
|
Wong KW, Chen YS, Lin CL. Evaluation optimum ratio of synthetic bone graft material and platelet rich fibrin mixture in a metal 3D printed implant to enhance bone regeneration. J Orthop Surg Res 2024; 19:299. [PMID: 38755635 PMCID: PMC11097440 DOI: 10.1186/s13018-024-04784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND This study aims to evaluate the optimal ratio of synthetic bone graft (SBG) material and platelet rich fibrin (PRF) mixed in a metal 3D-printed implant to enhance bone regeneration. METHODS Specialized titanium hollow implants (5 mm in diameter and 6 mm in height for rabbit; 6 mm in diameter and 5 mm in height for pig) were designed and manufactured using 3D printing technology. The implants were divided into three groups and filled with different bone graft combinations, namely (1) SBG alone; (2) PRF to SBG in 1:1 ratio; (3) PRF to SBG in 2:1 ratio. These three groups were replicated tightly into each bone defect in distal femurs of rabbits (nine implants, n = 3) and femoral shafts of pigs (fifteen implants, n = 5). Animal tissue sections were obtained after euthanasia at the 8th postoperative week. The rabbit specimens were stained with analine blue, while the pig specimens were stained with Masson-Goldner's trichrome stain to perform histologically examination. All titanium hollow implants were well anchored, except in fracture specimens (three in the rabbit and one fracture in the pig). RESULT Rabbit specimens under analine blue staining showed that collagen tissue increased by about 20% and 40% in the 1:1 ratio group and the 2:1 ratio group, respectively. Masson-Goldner's trichrome stain results showed that new bone growth increased by 32% in the 1:1 ratio PRF to SBG, while - 8% in the 2:1 ratio group. CONCLUSION This study demonstrated that placing a 1:1 ratio combination of PRF and SBG in a stabilized titanium 3D printed implant resulted in an optimal increase in bone growth.
Collapse
Affiliation(s)
- Kin Weng Wong
- Department of Orthopaedic Surgery, Chi-Mei Medical Center, Tainan, 710, Taiwan
| | - Yu-San Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, 2 No.155, Sec.2, Linong Street, Taipei, 112, Taiwan
| | - Chun-Li Lin
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, 2 No.155, Sec.2, Linong Street, Taipei, 112, Taiwan.
| |
Collapse
|
6
|
Evrard R, Manon J, Maistriaux L, Rafferty C, Fieve L, Heller U, Cornu O, Gianello P, Schubert T, Lengele B. Decellularization of Massive Bone Allografts By Perfusion: A New Protocol for Tissue Engineering. Tissue Eng Part A 2024; 30:31-44. [PMID: 37698880 DOI: 10.1089/ten.tea.2023.0182] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
In terms of large bone defect reconstructions, massive bone allografts may sometimes be the only solution. However, they are still burdened with a high postoperative complication rate. Our hypothesis is that the immunogenicity of residual cells in the graft is involved in this issue. Decellularization by perfusion might therefore be the answer to process and create more biologically effective massive bone allografts. Seventy-two porcine bones were used to characterize the efficiency of our sodium hydroxide-based decellularization protocol. A sequence of solvent perfusion through each nutrient artery was set up to ensure the complete decellularization of whole long bones. Qualitative (histology and immunohistochemistry [IHC]) and quantitative (fluoroscopic absorbance and enzyme-linked immunosorbent assay) evaluations were performed to assess the decellularization and the preservation of the extracellular matrix in the bone grafts. Cytotoxicity and compatibility were also tested. Comparatively to nontreated bones, our experiments showed a very high decellularization quality, demonstrating that perfusion is mandatory to achieve an entire decellularization. Moreover, results showed a good preservation of the bone composition and microarchitecture, Haversian systems and vascular network included. This protocol reduces the human leukocyte antigen antigenic load of the graft by >50%. The majority of measured growth factors is still present in the same amount in the decellularized bones compared to the nontreated bones. Histology and IHC show that the bones were cell compatible, noncytotoxic, and capable of inducing osteoblastic differentiation of mesenchymal stem cells. Our decellularization/perfusion protocol allowed to create decellularized long bone graft models, thanks to their inner vascular network, ready for in vivo implantation or to be further used as seeding matrices.
Collapse
Affiliation(s)
- Robin Evrard
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Neuro Musculo-Skeletal Lab, Université Catholique de Louvain, Bruxelles, Belgique
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Pôle Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Bruxelles, Belgique
- Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, Bruxelles, Belgique
| | - Julie Manon
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Neuro Musculo-Skeletal Lab, Université Catholique de Louvain, Bruxelles, Belgique
- Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, Bruxelles, Belgique
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Pôle Morphologie, Université Catholique de Louvain, Bruxelles, Belgique
| | - Louis Maistriaux
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Pôle Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Bruxelles, Belgique
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Pôle Morphologie, Université Catholique de Louvain, Bruxelles, Belgique
| | - Chiara Rafferty
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Pôle Morphologie, Université Catholique de Louvain, Bruxelles, Belgique
| | - Lies Fieve
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Pôle Morphologie, Université Catholique de Louvain, Bruxelles, Belgique
| | - Ugo Heller
- Centre Hospitalo-Universitaire Necker Enfants Malades, Service de Chirurgie Maxillo-Faciale et Reconstructrice, Paris, France
| | - Olivier Cornu
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Neuro Musculo-Skeletal Lab, Université Catholique de Louvain, Bruxelles, Belgique
- Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, Bruxelles, Belgique
| | - Pierre Gianello
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Pôle Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Bruxelles, Belgique
| | - Thomas Schubert
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Neuro Musculo-Skeletal Lab, Université Catholique de Louvain, Bruxelles, Belgique
- Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, Bruxelles, Belgique
| | - Benoit Lengele
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Pôle Morphologie, Université Catholique de Louvain, Bruxelles, Belgique
- Service de Chirurgie Plastique, Reconstructrice et Esthétique, Cliniques Universitaires Saint-Luc, Bruxelles, Belgique
| |
Collapse
|
7
|
Manon J, Evrard R, Fievé L, Bouzin C, Magnin D, Xhema D, Darius T, Bonaccorsi-Riani E, Gianello P, Docquier PL, Schubert T, Lengelé B, Behets C, Cornu O. A New Osteogenic Membrane to Enhance Bone Healing: At the Crossroads between the Periosteum, the Induced Membrane, and the Diamond Concept. Bioengineering (Basel) 2023; 10:143. [PMID: 36829637 PMCID: PMC9952848 DOI: 10.3390/bioengineering10020143] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
The lack of viability of massive bone allografts for critical-size bone defect treatment remains a challenge in orthopedic surgery. The literature has reviewed the advantages of a multi-combined treatment with the synergy of an osteoconductive extracellular matrix (ECM), osteogenic stem cells, and growth factors (GFs). Questions are still open about the need for ECM components, the influence of the decellularization process on the latter, the related potential loss of function, and the necessity of using pre-differentiated cells. In order to fill in this gap, a bone allograft surrounded by an osteogenic membrane made of a decellularized collagen matrix from human fascia lata and seeded with periosteal mesenchymal stem cells (PMSCs) was analyzed in terms of de-/recellularization, osteogenic properties, PMSC self-differentiation, and angiogenic potential. While the decellularization processes altered the ECM content differently, the main GF content was decreased in soft tissues but relatively increased in hard bone tissues. The spontaneous osteogenic differentiation was necessarily obtained through contact with a mineralized bone matrix. Trying to deepen the knowledge on the complex matrix-cell interplay could further propel these tissue engineering concepts and lead us to provide the biological elements that allow bone integration in vivo.
Collapse
Affiliation(s)
- Julie Manon
- Morphology Lab (MORF), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 1200 Brussels, Belgium
- Transplantation and Experimental Surgery Lab (CHEX), IREC, UCLouvain, 1200 Brussels, Belgium
- Neuromusculoskeletal Lab (NMSK), IREC, UCLouvain, 1200 Brussels, Belgium
- Centre de Thérapie Cellulaire et Tissulaire Locomoteur, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
- Department of Orthopaedic and Trauma Surgery, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Robin Evrard
- Morphology Lab (MORF), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 1200 Brussels, Belgium
- Transplantation and Experimental Surgery Lab (CHEX), IREC, UCLouvain, 1200 Brussels, Belgium
- Neuromusculoskeletal Lab (NMSK), IREC, UCLouvain, 1200 Brussels, Belgium
- Centre de Thérapie Cellulaire et Tissulaire Locomoteur, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
- Department of Orthopaedic and Trauma Surgery, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Lies Fievé
- Morphology Lab (MORF), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 1200 Brussels, Belgium
| | - Caroline Bouzin
- Imaging Platform (2IP), IREC, UCLouvain, 1200 Brussels, Belgium
| | - Delphine Magnin
- Bio & Soft Matter (BSMA), Institute of Condensed Matter and Nanosciences (IMCN), UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Daela Xhema
- Transplantation and Experimental Surgery Lab (CHEX), IREC, UCLouvain, 1200 Brussels, Belgium
| | - Tom Darius
- Transplantation and Experimental Surgery Lab (CHEX), IREC, UCLouvain, 1200 Brussels, Belgium
- Department of Abdominal Surgery and Transplantation, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Eliano Bonaccorsi-Riani
- Transplantation and Experimental Surgery Lab (CHEX), IREC, UCLouvain, 1200 Brussels, Belgium
- Department of Abdominal Surgery and Transplantation, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Pierre Gianello
- Transplantation and Experimental Surgery Lab (CHEX), IREC, UCLouvain, 1200 Brussels, Belgium
| | - Pierre-Louis Docquier
- Neuromusculoskeletal Lab (NMSK), IREC, UCLouvain, 1200 Brussels, Belgium
- Department of Orthopaedic and Trauma Surgery, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Thomas Schubert
- Neuromusculoskeletal Lab (NMSK), IREC, UCLouvain, 1200 Brussels, Belgium
- Centre de Thérapie Cellulaire et Tissulaire Locomoteur, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
- Department of Orthopaedic and Trauma Surgery, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Benoît Lengelé
- Morphology Lab (MORF), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 1200 Brussels, Belgium
- Department of Plastic and Reconstructive Surgery, Cliniques Universitaires Saint-Luc, UCLouvain, 1200 Brussels, Belgium
| | - Catherine Behets
- Morphology Lab (MORF), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 1200 Brussels, Belgium
| | - Olivier Cornu
- Neuromusculoskeletal Lab (NMSK), IREC, UCLouvain, 1200 Brussels, Belgium
- Centre de Thérapie Cellulaire et Tissulaire Locomoteur, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
- Department of Orthopaedic and Trauma Surgery, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
8
|
Fluid Flow Analysis of Integrated Porous Bone Scaffold and Cancellous Bone at Different Skeletal Sites: In Silico Study. Transp Porous Media 2022. [DOI: 10.1007/s11242-022-01849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Rahman G, Frazier TP, Gimble JM, Mohiuddin OA. The Emerging Use of ASC/Scaffold Composites for the Regeneration of Osteochondral Defects. Front Bioeng Biotechnol 2022; 10:893992. [PMID: 35845419 PMCID: PMC9280640 DOI: 10.3389/fbioe.2022.893992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Articular cartilage is composed of chondrocytes surrounded by a porous permeable extracellular matrix. It has a limited spontaneous healing capability post-injury which, if left untreated, can result in severe osteochondral disease. Currently, osteochondral (OC) defects are treated by bone marrow stimulation, artificial joint replacement, or transplantation of bone, cartilage, and periosteum, while autologous osteochondral transplantation is also an option; it carries the risk of donor site damage and is limited only to the treatment of small defects. Allografts may be used for larger defects; however, they have the potential to elicit an immune response. A possible alternative solution to treat osteochondral diseases involves the use of stromal/stem cells. Human adipose-derived stromal/stem cells (ASCs) can differentiate into cartilage and bone cells. The ASC can be combined with both natural and synthetic scaffolds to support cell delivery, growth, proliferation, migration, and differentiation. Combinations of both types of scaffolds along with ASCs and/or growth factors have shown promising results for the treatment of OC defects based on in vitro and in vivo experiments. Indeed, these findings have translated to several active clinical trials testing the use of ASC-scaffold composites on human subjects. The current review critically examines the literature describing ASC-scaffold composites as a potential alternative to conventional therapies for OC tissue regeneration.
Collapse
Affiliation(s)
- Gohar Rahman
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | | | - Omair A. Mohiuddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
10
|
Tang N, Wang X, Zhu J, Sun K, Li S, Tao K. Labelling stem cells with a nanoprobe for evaluating the homing behaviour in facial nerve injury repair. Biomater Sci 2022; 10:808-818. [PMID: 34989358 DOI: 10.1039/d1bm01823j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is crucial and clinically relevant to clarify the homing efficiency and retention of stem cells in different implanting strategies of cell therapy for various injuries. However, the need for a tool for investigating the mechanisms is still unmet. We herein introduce multi-modal BaGdF5:Yb,Tm nanoparticles as a nanoprobe to label adipose-derived stem cells (ADSCs) and detect the homing behavior with a micro-computed tomography (micro-CT) imaging technique. The migration of cells injected locally or intravenously, with or without a chemokine, CXCL 12, was compared. A higher homing efficiency of ADSCs was observed in both intravenously injected groups, in contrast to the low efficiency of cell retention in local implantation. Meanwhile, CXCL 12 promoted the homing of ADSCs, especially in the intravenous route. Nonetheless, the administration of CXCL 12 showed its therapeutic efficacy, whereas intravenous injection of ADSCs almost did not. Our work provided a tool for in vivo imaging of the behavior of implanted cells in preclinical studies of cell therapy, and more importantly, implied that the parameters for implanting stem cells in clinical operation should be carefully considered.
Collapse
Affiliation(s)
- Na Tang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xueyi Wang
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P. R. China.
| | - Jin Zhu
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P. R. China.
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Shiting Li
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P. R. China.
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
11
|
Jia B, Chen J, Wang Q, Sun X, Han J, Guastaldi F, Xiang S, Ye Q, He Y. SIRT6 Promotes Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells Through Antagonizing DNMT1. Front Cell Dev Biol 2021; 9:648627. [PMID: 34239868 PMCID: PMC8258422 DOI: 10.3389/fcell.2021.648627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/22/2021] [Indexed: 01/02/2023] Open
Abstract
Background Adipose-derived stem cells (ADSCs) are increasingly used in regenerative medicine because of their potential to differentiate into multiple cell types, including osteogenic lineages. Sirtuin protein 6 (SIRT6) is a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase that plays important roles in cell differentiation. NOTCH signaling has also been reported to involve in osteogenic differentiation. However, the function of SIRT6 in osteogenic differentiation of ADSCs and its relation to the NOTCH signaling pathways are yet to be explored. Methods The in vitro study with human ADSCs (hADSCs) and in vivo experiments with nude mice have been performed. Alkaline phosphatase (ALP) assays and ALP staining were used to detect osteogenic activity. Alizarin Red staining was performed to detect calcium deposition induced by osteogenic differentiation of ADSCs. Western blot, RT-qPCR, luciferase reporter assay, and co-immunoprecipitation assay were applied to explore the relationship between of SIRT6, DNA methyltransferases (DNMTs) and NOTCHs. Results SIRT6 promoted ALP activity, enhanced mineralization and upregulated expression of osteogenic-related genes of hADSCs in vitro and in vivo. Further mechanistic studies showed that SIRT6 deacetylated DNMT1, leading to its unstability at protein level. The decreased expression of DNMT1 prevented the abnormal DNA methylation of NOTCH1 and NOTCH2, resulting in the upregulation of their transcription. SIRT6 overexpression partially suppressed the abnormal DNA methylation of NOTCH1 and NOTCH2 by antagonizing DNMT1, leading to an increased capacity of ADSCs for their osteogenic differentiation. Conclusion This study demonstrates that SIRT6 physical interacts with the DNMT1 protein, deacetylating and destabilizing DNMT1 protein, leading to the activation of NOTCH1 and NOTCH2, Which in turn promotes the osteogenic differentiation of ADSCs.
Collapse
Affiliation(s)
- Bo Jia
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China.,Department of Stomatology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Jun Chen
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Qin Wang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xiang Sun
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jiusong Han
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Fernando Guastaldi
- Skeletal Biology Research Center, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA, United States
| | - Shijian Xiang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qingsong Ye
- School of Stomatology and Medicine, Foshan University, Foshan, China.,Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yan He
- Laboratory of Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Comparison of Freshly Isolated Adipose Tissue-derived Stromal Vascular Fraction and Bone Marrow Cells in a Posterolateral Lumbar Spinal Fusion Model. Spine (Phila Pa 1976) 2021; 46:631-637. [PMID: 32991510 DOI: 10.1097/brs.0000000000003709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Rat posterolateral lumbar fusion model. OBJECTIVE The aim of this study was to compare the efficacy of freshly isolated adipose tissue-derived stromal vascular fraction (A-SVF) and bone marrow cells (BMCs) cells in achieving spinal fusion in a rat model. SUMMARY OF BACKGROUND DATA Adipose tissue-derived stromal cells (ASCs) offer advantages as a clinical cell source compared to bone marrow-derived stromal cells (BMSCs), including larger available tissue volumes and reduced donor site morbidity. While pre-clinical studies have shown that ex vivo expanded ASCs can be successfully used in spinal fusion, the use of A-SVF cells better allows for clinical translation. METHODS A-SVF cells were isolated from the inguinal fat pads, whereas BMCs were isolated from the long bones of syngeneic 6- to 8-week-old Lewis rats and combined with Vitoss (Stryker) bone graft substitute for subsequent transplantation. Posterolateral spinal fusion surgery at L4-L5 was performed on 36 female Lewis rats divided into three experimental groups: Vitoss bone graft substitute only (VO group); Vitoss + 2.5 × 106 A-SVF cells/side; and, Vitoss + 2.5 × 106 BMCs/side. Fusion was assessed 8 weeks post-surgery via manual palpation, micro-computed tomography (μCT) imaging, and histology. RESULTS μCT imaging analyses revealed that fusion volumes and μCT fusion scores in the A-SVF group were significantly higher than in the VO group; however, they were not significantly different between the A-SVF group and the BMC group. The average manual palpation score was highest in the A-SVF group compared with the BMC and VO groups. Fusion masses arising from cell-seeded implants yielded better bone quality than nonseeded bone graft substitute. CONCLUSION In a rat model, A-SVF cells yielded a comparable fusion mass volume and radiographic rate of fusion to BMCs when combined with a clinical-grade bone graft substitute. These results suggest the feasibility of using freshly isolated A-SVF cells in spinal fusion procedures.Level of Evidence: N/A.
Collapse
|
13
|
Tang G, Liu Z, Liu Y, Yu J, Wang X, Tan Z, Ye X. Recent Trends in the Development of Bone Regenerative Biomaterials. Front Cell Dev Biol 2021; 9:665813. [PMID: 34026758 PMCID: PMC8138062 DOI: 10.3389/fcell.2021.665813] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
The goal of a biomaterial is to support the bone tissue regeneration process at the defect site and eventually degrade in situ and get replaced with the newly generated bone tissue. Biomaterials that enhance bone regeneration have a wealth of potential clinical applications from the treatment of non-union fractures to spinal fusion. The use of bone regenerative biomaterials from bioceramics and polymeric components to support bone cell and tissue growth is a longstanding area of interest. Recently, various forms of bone repair materials such as hydrogel, nanofiber scaffolds, and 3D printing composite scaffolds are emerging. Current challenges include the engineering of biomaterials that can match both the mechanical and biological context of bone tissue matrix and support the vascularization of large tissue constructs. Biomaterials with new levels of biofunctionality that attempt to recreate nanoscale topographical, biofactor, and gene delivery cues from the extracellular environment are emerging as interesting candidate bone regenerative biomaterials. This review has been sculptured around a case-by-case basis of current research that is being undertaken in the field of bone regeneration engineering. We will highlight the current progress in the development of physicochemical properties and applications of bone defect repair materials and their perspectives in bone regeneration.
Collapse
Affiliation(s)
- Guoke Tang
- Department of Orthopedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Hunan, China
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhiqin Liu
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Hunan, China
| | - Yi Liu
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jiangming Yu
- Department of Orthopedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhihong Tan
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Hunan, China
| | - Xiaojian Ye
- Department of Orthopedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
14
|
Wang L, Luo D, Wu J, Xie K, Guo Y, Gan Y, Wu W, Hao Y. A clinical study on bone defect reconstruction and functional recovery in benign bone tumors of the lower extremity, treated by bone marrow mesenchymal stem cell rapid screening-enrichment-composite system. World J Surg Oncol 2021; 19:98. [PMID: 33820559 PMCID: PMC8022380 DOI: 10.1186/s12957-021-02198-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND With the development of medical technology, credible options for defect reconstructions after the resection of benign bone tumors of the lower extremities have become a high priority. As the current reconstructive methods commonly used in clinical practice have some flaws, new methods of reconstruction need to be explored. We aimed to prepare a new kind of bioactive scaffold for the repair of bone defects through a stem cell rapid screening-enrichment-composite technology system developed by our team. Furthermore, we aimed to investigate the curative effects of these bioactive scaffolds. METHODS Firstly, cell count, trypan blue exclusion rate, and ALP staining were used to evaluate changes in enrichment efficiency, cell activity, and osteogenic ability before and after enrichment. Then, the scaffolds were placed under the skin of nude mice to verify their osteogenic effects in vivo. Finally, the scaffolds were used for the reconstruction of bone defects after operations for benign bone tumors in a patient's lower limb. The healing status of the defect site at 1 and 3 months was assessed by X-ray, and the Musculoskeletal Tumor Society (MSTS) score was applied to reflect the recovery of patient limb function. RESULTS The system effectively enriched stem cells without affecting the activity and osteogenic abilities of the bone marrow mesenchymal stem cells (BMSCs). Meanwhile, the bioactive scaffolds obtained better osteogenic effects. In patients, the active scaffolds showed better bone integration and healing status, and the patients also obtained higher MSTS scores at 1 and 3 months after surgery. CONCLUSION As a new technique, the rapid screening-enrichment-composite technology of stem cells demonstrates a better therapeutic effect in the reconstruction of bone defects after surgery for benign bone tumors of the lower extremities, which will further improve patient prognosis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Dinghao Luo
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Junxiang Wu
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Kai Xie
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Yu Guo
- Department of Bone Oncology, Peking University People's Hospital, Peking University School of Medicine, 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Yaokai Gan
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Wen Wu
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| | - Yongqiang Hao
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
15
|
Khazaei S, Keshavarz G, Bozorgi A, Nazari H, Khazaei M. Adipose tissue-derived stem cells: a comparative review on isolation, culture, and differentiation methods. Cell Tissue Bank 2021; 23:1-16. [PMID: 33616792 DOI: 10.1007/s10561-021-09905-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/01/2021] [Indexed: 01/14/2023]
Abstract
Adipose tissue-derived stem cells (ADSCs) are an available source of mesenchymal stem cells with the appropriate capacity to in vitro survive, propagate, and differentiate into cells from three lineages of ectoderm, mesoderm, and endoderm. The biological features of ADSCs depend on the donor physiology and health status, isolation procedure, culture conditions, and differentiation protocols used. Adipose tissue samples are provided by surgery and lipoaspiration-based methods and subjected to various mechanical and chemical digestion techniques to finally generate a heterogeneous mixture named stromal vascular fraction (SVF). ADSCs are purified through varied cell populations that exist within SVF and cultured under standard conditions to give rise to a highly rich resource of stem cells directly applied in the clinic or differentiated into a wide range of cells. The development and optimization of conventional isolation, expansion, and differentiation methods seem noteworthy to preserve the desirable biological functions of ADSCs in pre-clinical and clinical investigations.
Collapse
Affiliation(s)
- Saber Khazaei
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazal Keshavarz
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azam Bozorgi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Nazari
- Department of Orofacial Surgery, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
16
|
Shen J, Sun D, Yu S, Fu J, Wang X, Wang S, Xie Z. Radiological and clinical outcomes using induced membrane technique combined with bone marrow concentrate in the treatment of chronic osteomyelitis of immature patients. Bone Joint Res 2021; 10:31-40. [PMID: 33380210 PMCID: PMC7845462 DOI: 10.1302/2046-3758.101.bjr-2020-0229.r1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aims Treatment of chronic osteomyelitis (COM) for young patients remains a challenge. Large bone deficiencies secondary to COM can be treated using induced membrane technique (IMT). However, it is unclear which type of bone graft is optimal. The goal of the study was to determine the clinical effectiveness of bone marrow concentrator modified allograft (BMCA) versus bone marrow aspirate mixed allograft (BMAA) for children with COM of long bones. Methods Between January 2013 and December 2017, 26 young patients with COM were enrolled. Different bone grafts were applied to repair bone defects secondary to IMT procedure for infection eradication. Group BMCA was administered BMCA while Group BMAA was given BMAA. The results of this case-control study were retrospectively analyzed. Results Patient infection in both groups was eradicated after IMT surgery. As for reconstruction surgery, no substantial changes in the operative period (p = 0.852), intraoperative blood loss (p = 0.573), or length of hospital stay (p = 0.362) were found between the two groups. All patients were monitored for 12 to 60 months. The median time to bone healing was 4.0 months (interquartile range (IQR) 3.0 to 5.0; range 3 to 7) and 5.0 months (IQR 4.0 to 7.0; range 3 to 10) in Groups BMCA and BMAA, respectively. The time to heal in Group BMCA versus Group BMAA was substantially lower (p = 0.024). Conclusion IMT with BMCA or BMAA may attain healing in large bone defects secondary to COM in children. The bone healing time was significantly shorter for BMCA, indicating that this could be considered as a new strategy for bone defect after COM treatment. Cite this article: Bone Joint Res 2021;10(1):31–40.
Collapse
Affiliation(s)
- Jie Shen
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Dong Sun
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Shengpeng Yu
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University, Chongqing, China.,Department of Orthopaedics, Dujiangyan Medical Center, Dujiangyan, Sichuan, China
| | - Jingshu Fu
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaohua Wang
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Shulin Wang
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhao Xie
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
17
|
De Bleye C, Fontaine M, Dumont E, Sacré PY, Hubert P, Theys N, Ziemons E. Raman imaging as a new analytical tool for the quality control of the monitoring of osteogenic differentiation in forming 3D bone tissue. J Pharm Biomed Anal 2020; 186:113319. [PMID: 32361470 DOI: 10.1016/j.jpba.2020.113319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/20/2022]
Abstract
In this study, adipose-derived stem cells (ASCs) are used to produce 3D bone grafts. The safety and the feasibility of using these bone grafts have been already showed and quality controls are already implemented. However, a cheaper, fast and non-destructive technique is required to monitor the osteogenic differentiation process. Here, the use of Raman imaging to monitor the synthesis of the extracellular matrix and its progressive mineralization occurring during the osteogenic differentiation process is investigated for the first time on a 3D in forming bone tissue. The attention was focused on Raman bands related to this matrix belonging to phosphate, phenylalanine and hydroxyproline, which are very distinctive and intense. The kinetic of the osteogenic differentiation process was first compared between a 2D and a 3D forming bone tissue. It was observed that the kinetics of the osteogenic differentiation process is slower in 3D in forming bone tissue. In a second step, an evaluation of the reliability of the Raman imaging method was performed including a study of the influence of the harvest biopsies position on the forming 3D bone tissue. The repeatability and the specificity of this method were also demonstrated. In a last step, several batches of ASCs were cultured and analyzed in 3D at different time points using Raman imaging. From the mean Raman spectra, mineral to matrix ratios (MTMR) were determined and used to evaluate the formation of mineral deposits accompanying the extracellular matrix synthesis which is indicative of an ongoing osteogenic differentiation process. These ratios peaked between the day 35 and 49. This observation was very interesting since it corresponds to the time at which the 3D bone grafts are used for the patient surgery. To conclude, Raman imaging allowed fast acquisition and time-resolved monitoring in vitro of the mineralization of extracellular matrix during osteogenic differentiation.
Collapse
Affiliation(s)
- C De Bleye
- University of Liege (ULiege), CIRM, Vibra-Santé HUB, Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, CHU, Avenue Hippocrate 15, B36, 4000 Liège, Belgium.
| | - M Fontaine
- Novadip Biosciences, Rue Grandbonpré 11, 1435 Mont-Saint-Guibert, Belgium
| | - E Dumont
- University of Liege (ULiege), CIRM, Vibra-Santé HUB, Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, CHU, Avenue Hippocrate 15, B36, 4000 Liège, Belgium
| | - P-Y Sacré
- University of Liege (ULiege), CIRM, Vibra-Santé HUB, Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, CHU, Avenue Hippocrate 15, B36, 4000 Liège, Belgium
| | - Ph Hubert
- University of Liege (ULiege), CIRM, Vibra-Santé HUB, Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, CHU, Avenue Hippocrate 15, B36, 4000 Liège, Belgium
| | - N Theys
- Novadip Biosciences, Rue Grandbonpré 11, 1435 Mont-Saint-Guibert, Belgium
| | - E Ziemons
- University of Liege (ULiege), CIRM, Vibra-Santé HUB, Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, CHU, Avenue Hippocrate 15, B36, 4000 Liège, Belgium
| |
Collapse
|
18
|
Shafaei H, Kalarestaghi H. Adipose-derived stem cells: An appropriate selection for osteogenic differentiation. J Cell Physiol 2020; 235:8371-8386. [PMID: 32239731 DOI: 10.1002/jcp.29681] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) are a major component of various forms of tissue engineering. MSCs have self-renewal and multidifferential potential. Osteogenic differentiation of MSCs is an area of attention in bone regeneration. One form of MSCs are adipose-derived stem cells (ASCs), which can be simply harvested and differentiated into several cell lineages, such as chondrocytes, adipocytes, or osteoblasts. Due to special properties, ASCs are frequently used in vitro and in vivo bone regeneration. Identifying factors involved in osteogenic differentiation of ASCs is important for better understanding the mechanism of osteogenic differentiation. Different methods are used to stimulate osteogenesis of ASCs in literature, including common osteogenic media, growth factors, hormones, hypoxia, mechanical and chemical stimuli, genetic modification, and nanotechnology. This review article provides an overview describing the isolation procedure, characterization, properties, current methods for osteogenic differentiation of ASCs, and their basic biological mechanism.
Collapse
Affiliation(s)
- Hajar Shafaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Kalarestaghi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
19
|
Hong SJ, Oh SH, Lee SL, Kim NH, Choe YH, Yim HJ, Lee JH. Bone regeneration by bone morphogenetic protein-2 from porous beads with leaf-stacked structure for critical-sized femur defect model in dogs. J Biomater Appl 2020; 34:1437-1448. [PMID: 32122178 DOI: 10.1177/0885328220910033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sung Jin Hong
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Se Heang Oh
- Department of nanobiomedical science, Dankook University, Yongin, Republic of Korea
| | - Sung Lim Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Na-Hyun Kim
- Gyeongnam Department of Environment & Toxicology, Korea Institute of Toxicology, Munsan, Republic of Korea
| | - Yong Ho Choe
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyeong Jun Yim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Hoon Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Veterinary medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
20
|
Kuterbekov M, Jonas AM, Glinel K, Picart C. Osteogenic Differentiation of Adipose-Derived Stromal Cells: From Bench to Clinics. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:461-474. [PMID: 32098603 DOI: 10.1089/ten.teb.2019.0225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In addition to mesenchymal stem cells, adipose-derived stem/stromal cells (ASCs) are an attractive source for a large variety of cell-based therapies. One of their most important potential applications is related to the regeneration of bone tissue thanks to their capacity to differentiate in bone cells. However, this requires a proper control of their osteogenic differentiation, which depends not only on the initial characteristics of harvested cells but also on the conditions used for their culture. In this review, we first briefly describe the preclinical and clinical trials using ASCs for bone regeneration and present the quantitative parameters used to characterize the osteogenic differentiation of ASCs. We then focus on the soluble factors influencing the osteogenic differentiation of ACS, including the steroid hormones and various growth factors, notably the most osteoinductive ones, the bone morphogenetic proteins (BMPs). Impact statement Adipose-derived stromal/stem cells are reviewed for their use in bone regeneration.
Collapse
Affiliation(s)
- Mirasbek Kuterbekov
- Institute of Condensed Matter & Nanosciences (Bio & Soft Matter), Université Catholique de Louvain, Louvain-la-Neuve, Belgium.,Grenoble Institute of Technology, University Grenoble Alpes, LMGP, Grenoble, France
| | - Alain M Jonas
- Institute of Condensed Matter & Nanosciences (Bio & Soft Matter), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Karine Glinel
- Institute of Condensed Matter & Nanosciences (Bio & Soft Matter), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Catherine Picart
- Grenoble Institute of Technology, University Grenoble Alpes, LMGP, Grenoble, France.,Biomimetism and Regenerative Medicine Lab, CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Université Grenoble-Alpes/CEA/CNRS, Grenoble, France
| |
Collapse
|
21
|
Probst FA, Fliefel R, Burian E, Probst M, Eddicks M, Cornelsen M, Riedl C, Seitz H, Aszódi A, Schieker M, Otto S. Bone regeneration of minipig mandibular defect by adipose derived mesenchymal stem cells seeded tri-calcium phosphate- poly(D,L-lactide-co-glycolide) scaffolds. Sci Rep 2020; 10:2062. [PMID: 32029875 PMCID: PMC7005305 DOI: 10.1038/s41598-020-59038-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/21/2020] [Indexed: 12/29/2022] Open
Abstract
Reconstruction of bone defects represents a serious issue for orthopaedic and maxillofacial surgeons, especially in extensive bone loss. Adipose-derived mesenchymal stem cells (ADSCs) with tri-calcium phosphates (TCP) are widely used for bone regeneration facilitating the formation of bone extracellular matrix to promote reparative osteogenesis. The present study assessed the potential of cell-scaffold constructs for the regeneration of extensive mandibular bone defects in a minipig model. Sixteen skeletally mature miniature pigs were divided into two groups: Control group and scaffolds seeded with osteogenic differentiated pADSCs (n = 8/group). TCP-PLGA scaffolds with or without cells were integrated in the mandibular critical size defects and fixed by titanium osteosynthesis plates. After 12 weeks, ADSCs seeded scaffolds (n = 7) demonstrated significantly higher bone volume (34.8% ± 4.80%) than scaffolds implanted without cells (n = 6, 22.4% ± 9.85%) in the micro-CT (p < 0.05). Moreover, an increased amount of osteocalcin deposition was found in the test group in comparison to the control group (27.98 ± 2.81% vs 17.10 ± 3.57%, p < 0.001). In conclusion, ADSCs seeding on ceramic/polymer scaffolds improves bone regeneration in large mandibular defects. However, further improvement with regard to the osteogenic capacity is necessary to transfer this concept into clinical use.
Collapse
Affiliation(s)
- Florian Andreas Probst
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig-Maximilians-University, Munich, 80337, Germany.,Laboratory of Experimental Surgery and Regenerative Medicine (ExperiMed), Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians-University, Munich, 80336, Germany
| | - Riham Fliefel
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig-Maximilians-University, Munich, 80337, Germany. .,Laboratory of Experimental Surgery and Regenerative Medicine (ExperiMed), Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians-University, Munich, 80336, Germany. .,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Alexandria University, Alexandria, 21514, Egypt.
| | - Egon Burian
- Laboratory of Experimental Surgery and Regenerative Medicine (ExperiMed), Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians-University, Munich, 80336, Germany.,Department of Neuroradiology, Klinikum rechts der Isar, Technical University Munich, Munich, 81675, Germany
| | - Monika Probst
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University Munich, Munich, 81675, Germany
| | - Matthias Eddicks
- Clinic for Swine, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Oberschleissheim, 85764, Germany
| | - Matthias Cornelsen
- Fluid Technology and Microfluidics, University of Rostock, Rostock, 18059, Germany
| | - Christina Riedl
- Laboratory of Experimental Surgery and Regenerative Medicine (ExperiMed), Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians-University, Munich, 80336, Germany
| | - Hermann Seitz
- Fluid Technology and Microfluidics, University of Rostock, Rostock, 18059, Germany
| | - Attila Aszódi
- Laboratory of Experimental Surgery and Regenerative Medicine (ExperiMed), Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians-University, Munich, 80336, Germany
| | - Matthias Schieker
- Laboratory of Experimental Surgery and Regenerative Medicine (ExperiMed), Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians-University, Munich, 80336, Germany
| | - Sven Otto
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig-Maximilians-University, Munich, 80337, Germany.,Laboratory of Experimental Surgery and Regenerative Medicine (ExperiMed), Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians-University, Munich, 80336, Germany
| |
Collapse
|
22
|
Chen Y, Zheng Z, Zhou R, Zhang H, Chen C, Xiong Z, Liu K, Wang X. Developing a Strontium-Releasing Graphene Oxide-/Collagen-Based Organic-Inorganic Nanobiocomposite for Large Bone Defect Regeneration via MAPK Signaling Pathway. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15986-15997. [PMID: 30945836 DOI: 10.1021/acsami.8b22606] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Significant efforts have been dedicated to fabricating favorable biomaterial-based bone substitutes for the repair of large bone defects. However, the development of bone biomaterials with suitable physiochemical and osteoinductive properties remains a challenge. Here, novel strontium-graphene oxide (Sr-GO) nanocomposites that allow long-term release of Sr ions are fabricated, which are used to reinforce collagen (Col) scaffolds through covalent cross-linking. The prepared Sr-GO-Col scaffold demonstrates significantly high water retention rates and excellent mechanical properties compared with unmodified Col scaffolds. The Sr-GO-modified Col scaffolds display a strong effect on adipose-derived stem cells by facilitating cell adhesion and osteogenic differentiation and by promoting the secretion of angiogenic factors to stimulate the in vitro tube formation of endothelial cells. Additionally, the secretion of angiogenic VEGF and osteogenic BMP-2 proteins is increased, which may be attributed to the synergistic effects of GO and Sr on the activation of the MAPK signaling pathway. The Sr-GO-Col constructs were then transplanted into rat critical-size calvarial bone defects, which showed the best bone regeneration and angiogenesis outcome at 12 weeks. Moreover, histological staining results show that the Sr-GO-Col group achieved complete defect bridging with the newly formed bone tissue and the residual Sr-GO nanoparticles are phagocytosed and degraded by multinucleated giant cells. These findings reveal that the incorporation of inorganic Sr-GO nanocomposites into biocompatible Col scaffolds is a viable strategy for fabricating favorable substitutes that enhance the regeneration of large bone defects.
Collapse
Affiliation(s)
- Yahong Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , P. R. China
| | | | - Renpeng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , P. R. China
| | - Huizhong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , P. R. China
| | - Chuhsin Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , P. R. China
| | - Zhezhen Xiong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , P. R. China
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , P. R. China
| | - Xiansong Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , P. R. China
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, National Tissue Engineering Center of China , Shanghai Jiao Tong University School of Medicine , Shanghai 200011 , P. R. China
| |
Collapse
|
23
|
Minardi S, Taraballi F, Cabrera FJ, Van Eps J, Wang X, Gazze SA, Fernandez-Mourev JS, Tampieri A, Francis L, Weiner BK, Tasciotti E. Biomimetic hydroxyapatite/collagen composite drives bone niche recapitulation in a rabbit orthotopic model. Mater Today Bio 2019; 2:100005. [PMID: 32159142 PMCID: PMC7061691 DOI: 10.1016/j.mtbio.2019.100005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/02/2019] [Accepted: 04/14/2019] [Indexed: 02/06/2023] Open
Abstract
Synthetic osteoinductive materials that mimic the human osteogenic niche have emerged as ideal candidates to address this area of unmet clinical need. In this study, we evaluated the osteoinductive potential in a rabbit orthotopic model of a magnesium-doped hydroxyapatite/type I collagen (MHA/Coll) composite. The composite was fabricated to exhibit a highly fibrous structure of carbonated MHA with 70% (±2.1) porosity and a Ca/P ratio of 1.5 (±0.03) as well as a diverse range of elasticity separated to two distinct stiffness peaks of low (2.35 ± 1.16 MPa) and higher (9.52 ± 2.10 MPa) Young's Modulus. Data suggested that these specific compositional and nanomechanical material properties induced the deposition of de novo mineral phase, while modulating the expression of early and late osteogenic marker genes, in a 3D in vitro model using human bone marrow-derived mesenchymal stem cells (hBM-MSCs). When tested in the rabbit orthotopic model, MHA/Col1 scaffold induction of new trabecular bone mass was observed by DynaCT scan, only 2 weeks after implantation. Bone histomorphometry at 6 weeks revealed a significant amount of de novo bone matrix formation. qPCR demonstrated MHA/Coll scaffold full cellularization in vivo and the expression of both osteogenesis-associated genes (Spp1, Sparc, Col1a1, Runx2, Dlx5) as well as hematopoietic (Vcam1, Cd38, Sele, Kdr) and bone marrow stromal cell marker genes (Vim, Itgb1, Alcam). Altogether, these data provide evidence of the solid osteoinductive potential of MHA/Coll and its suitability for multiple approaches of bone regeneration.
Collapse
Affiliation(s)
- S Minardi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave. Houston, TX 77030, USA.,National Research Council of Italy, Institute of Science and Technology for Ceramics (ISTEC-CNR), Via Granarolo 64, 48018 Faenza, RA Italy.,Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave. Houston, TX 77030, USA
| | - F Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave. Houston, TX 77030, USA.,Houston Methodist Orthopedic and Sports Medicine, 6565 Fannin Street, Houston, TX 77030, USA
| | - F J Cabrera
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave. Houston, TX 77030, USA
| | - J Van Eps
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave. Houston, TX 77030, USA
| | - X Wang
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave. Houston, TX 77030, USA
| | - S A Gazze
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK
| | - Joseph S Fernandez-Mourev
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave. Houston, TX 77030, USA.,Department of Surgery, Houston Methodist Hospital, 6565 Fannin St., Suite 1660, Houston, TX 77030, USA
| | - A Tampieri
- National Research Council of Italy, Institute of Science and Technology for Ceramics (ISTEC-CNR), Via Granarolo 64, 48018 Faenza, RA Italy
| | - L Francis
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK
| | - B K Weiner
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave. Houston, TX 77030, USA.,Houston Methodist Orthopedic and Sports Medicine, 6565 Fannin Street, Houston, TX 77030, USA
| | - E Tasciotti
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave. Houston, TX 77030, USA.,Houston Methodist Orthopedic and Sports Medicine, 6565 Fannin Street, Houston, TX 77030, USA.,Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave. Houston, TX 77030, USA
| |
Collapse
|
24
|
Peña Fernández M, Dall’Ara E, Bodey AJ, Parwani R, Barber AH, Blunn GW, Tozzi G. Full-Field Strain Analysis of Bone–Biomaterial Systems Produced by the Implantation of Osteoregenerative Biomaterials in an Ovine Model. ACS Biomater Sci Eng 2019; 5:2543-2554. [DOI: 10.1021/acsbiomaterials.8b01044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marta Peña Fernández
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth, PO1 3DJ, U.K
| | - Enrico Dall’Ara
- Department of Oncology and Metabolism and INSIGNEO Institute for in silico Medicine, University of Sheffield, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, U.K
| | - Andrew J. Bodey
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Fermi Avenue, Didcot, OX11 0DE, U.K
| | - Rachna Parwani
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth, PO1 3DJ, U.K
| | - Asa H. Barber
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth, PO1 3DJ, U.K
- School of Engineering, London South Bank University, 103 Borough Road, London, SE1 0AA, U.K
| | - Gordon W. Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth, PO1 2DT, U.K
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth, PO1 3DJ, U.K
| |
Collapse
|
25
|
Salamanna F, Giavaresi G, Contartese D, Bigi A, Boanini E, Parrilli A, Lolli R, Gasbarrini A, Barbanti Brodano G, Fini M. Effect of strontium substituted ß-TCP associated to mesenchymal stem cells from bone marrow and adipose tissue on spinal fusion in healthy and ovariectomized rat. J Cell Physiol 2019; 234:20046-20056. [PMID: 30950062 DOI: 10.1002/jcp.28601] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/11/2019] [Accepted: 03/19/2019] [Indexed: 01/05/2023]
Abstract
Despite alternatives to autogenous bone graft for spinal fusion have been investigated, it has been shown that osteoconductive materials alone do not give a rate of fusion comparable with autogenous bone. This study analyzed a strontium substituted ß-tricalcium phosphate (Sr-ßTCP) associated with syngeneic, unexpanded, and undifferentiated mesenchymal stem cells from bone marrow (BMSC) or adipose tissue (ADSC) as a new tissue engineering approach for spinal fusion procedures. A posterolateral fusion was performed in 15 ovariectomized (OVX) and 15 sham-operated (SHAM) Inbred rats. Both SHAM and OVX animals were divided into three groups: Sr-ßTCP, Sr-ßTCP + BMCSs, and Sr-ßTCP + ADSCs. Animals were euthanized 8 weeks after surgery and the spines evaluated by manual palpation, micro-CT, and histology. For both SHAM and OVX animals, the fusion tissue in the Sr-ßTCP + BMSCs group was more solid. This effect was significantly higher in OVX animals by comparing the Sr-ßTCP + BMCSs group with Sr-ßTCP + ADSCs. Radiographical score, based on micro-CT 2D image, highlighted that the Sr-ßTCP + BMCSs group presented a similar fusion to Sr-ßTCP and higher than Sr-ßTCP + ADSCs in both SHAM and OVX animals. Micro-CT 3D parameters did not show significant differences among groups. Histological score showed significantly higher fusion in Sr-ßTCP + BMSCs group than Sr-ßTCP and Sr-ßTCP + ADSCs, for both SHAM and OVX animals. In conclusion, our results suggest that addition of BMSCs to a Sr-ßTCP improve bone formation and fusion, both in osteoporotic and nonosteoporotic animal, whereas spinal fusion is not enhanced in rats treated with Sr-ßTCP + ADSCs. Thus, for conducting cells therapy in spinal surgery BMSCs still seems to be a better choice compared with ADSCs.
Collapse
Affiliation(s)
- Francesca Salamanna
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gianluca Giavaresi
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Deyanira Contartese
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Adriana Bigi
- Department of Chemistry "G.Ciamician", University of Bologna, Bologna, Italy
| | - Elisa Boanini
- Department of Chemistry "G.Ciamician", University of Bologna, Bologna, Italy
| | - Annapaola Parrilli
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Roberta Lolli
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandro Gasbarrini
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giovanni Barbanti Brodano
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Milena Fini
- Laboratory of Biomechanics and Technological Innovation, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
26
|
Chu L, Li R, Liao Z, Yang Y, Dai J, Zhang K, Zhang F, Xie Y, Wei J, Zhao J, Yu Z, Tang T. Highly Effective Bone Fusion Induced by the Interbody Cage Made of Calcium Silicate/Polyetheretherketone in a Goat Model. ACS Biomater Sci Eng 2019; 5:2409-2416. [PMID: 33405749 DOI: 10.1021/acsbiomaterials.8b01193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interbody fusion surgery is often used to settle matters such as degenerative disc disease or disc herniation in clinical orthopedics. Considering the deficiencies of the current treatment methods, we developed an interbody fusion cage made of calcium silicate (CS)/polyetheretherketone (PEEK) and hoped that the bioactive cage could exhibit great fusion ability and maintain stable mechanical function. In the goat model of cervical interbody fusion, the CS/PEEK cage showed stronger interbody fusion at 12 and 26 weeks compared with pure PEEK cage based on the X-ray analysis. The micro-CT scanning and analysis indicated that the CS/PEEK cage induced more new bone ingrowth than the PEEK cage and led to nearly complete interbody fusion at 26 weeks. Moreover, the CS/PEEK group showed excellent mechanical stability and stiffness as evaluated by the spine kinematic assay at the time points. The histological assessment showed the rapid osseointegration and mineralized bone formation around the CS/PEEK cage. This study confirmed that the bioactive CS/PEEK cage is capable of inducing highly effective bone fusion and has high potential to be used in the clinics of spine surgery.
Collapse
Affiliation(s)
- Linyang Chu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Rui Li
- Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong 518057, P. R. China
| | - Zhenhua Liao
- Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong 518057, P. R. China
| | - Ying Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Jianjun Dai
- Institute of Animal Science and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 200011, P. R. China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Feng Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Youzhuan Xie
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| |
Collapse
|
27
|
<i>In Vitro</i> Comparative Study of Osteogenic Differentiation Ability between Adipose and Bone Marrow Mesenchymal Stem Cell Applied to Bovine Demineralized Bone Matrix. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2018. [DOI: 10.4028/www.scientific.net/jbbbe.38.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ideal bone graft must possess the desirable trait such as osteoconductive, osteoinductive and osteogenesis. Demineralized Bone Matrix (DBM) provides both osteoconductive and osteoinductive trait. Referring to the tissue engineering principle, the addition of mesenchymal stem cell would add the osteogenic trait to this procedure. The design of this study is experimental using Bovine DBM. Bone Marrow Mesenchymal Stem Cell (BMSCs) and Adipose Mesenchymal Stem Cells (ASCs) were taken from New Zealand white rabbit. There are two groups of treatment, divided into DBM implanted with BMSCs and DBM implanted with ASCs. Each BMSCs and ASCs groups is incubated in the normal and osteogenic culture plate. Evaluation is performed by counting the osteoblast and immunohistochemistry stain using Alkaline Phosphate and Osteocalcin. After 4 weeks of incubation, we found that the osteoblast count in BMSCs groups is higher compared to the ASCs groups in both culture condition (p<0.01) along with Alkaline Phosphate staining (p<0.05), while the Osteocalcin staining showed insignificant differences (p>0.05). This study revealed that xenogenic bovine DBM can act as the potential osteoinductive scaffold for the MSCs to differentiate. The tissue engineering application by combining MSCs and Bovine DBM can be considered as an alternative in managing bone defect cases.
Collapse
|
28
|
Abstract
Bone nonunion is a pathological condition in which all bone healing processes have stopped, resulting in abnormal mobility between 2 bone segments. The incidence of bone-related injuries will increase in an aging population, leading to such injuries reaching epidemic proportions. Tissue engineering and cell therapy using mesenchymal stem cells (MSCs) have raised the possibility of implanting living tissue for bone reconstruction. Bone marrow was first proposed as the source of stem cells for bone regeneration. However, as the quantity of MSCs in the bone marrow decreases, the capacity of osteogenic differentiation of bone marrow stem cells is also impaired by the donor's age in terms of reduced MSC replicative capacity; an increased number of apoptotic cells; formation of colonies positive for alkaline phosphatase; and decreases in the availability, growth potential, and temporal mobilization of MSCs for bone formation in case of fracture. Adipose-derived stem cells (ASCs) demonstrate several advantages over those from bone marrow, including a less invasive harvesting procedure, a higher number of stem cell progenitors from an equivalent amount of tissue harvested, increased proliferation and differentiation capacities, and better angiogenic and osteogenic properties in vivo. Subcutaneous native adipose tissue was not affected by the donor's age in terms of cellular senescence and yield of ASC isolation. In addition, a constant mRNA level of osteocalcin and alkaline phosphatase with a similar level of matrix mineralization of ASCs remained unaffected by donor age after osteogenic differentiation. The secretome of ASCs was also unaffected by age when aiming to promote angiogenesis by vascular endothelial growth factor (VEGF) release in hypoxic conditions. Therefore, the use of adipose cells for bone tissue engineering is not limited by the donor's age from the isolation of stem cells up to the manufacturing of a complex osteogenic graft.
Collapse
Affiliation(s)
- Denis Dufrane
- 1 Novadip Biosciences, Mont-Saint-Guibert, Belgium.,2 Theracell Consulting, Lasne, Belgium
| |
Collapse
|
29
|
Mesenchymal stem cells and porous β-tricalcium phosphate composites prepared through stem cell screen-enrich-combine(-biomaterials) circulating system for the repair of critical size bone defects in goat tibia. Stem Cell Res Ther 2018; 9:157. [PMID: 29895312 PMCID: PMC5998551 DOI: 10.1186/s13287-018-0906-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Efficacious bone substitute is essential for the treatment of a critical size bone defect. Currently, the bone substitutes commonly used in clinical practice lack osteogenic capacity and the therapeutic efficacy is not ideal. Herein, a novel stem cell screen-enrich-combine(-biomaterials) circulating system (SECCS) was introduced to provide the substitutes with osteogenic ability. The stem cell screening, enrichment, and recombination with substitutes could be integrated during the surgical operation. Using SECCS, the bioactive mesenchymal stem cells (MSCs) and porous β-tricalcium phosphate (β-TCP) composites (MSCs/β-TCP) were rapidly prepared for critical size bone defect repair and validated in goat models of critical size tibia defects. METHODS Twelve goats with right hind limb tibia defects of 30 mm were randomly divided into two groups: six (the experimental group) were treated with MSCs/β-TCP prepared by SECCS and the other six goats (the control group) were treated with pure porous β-TCP. The repair effect was assessed by x-ray, computed tomography (CT), micro-CT, histology and histomorphology 6 months after the operation. In addition, the enrichment efficacy of MSCs and the characteristics of the MSCs/β-TCP prepared by SECCS were evaluated. RESULTS The SECCS could compound about 81.3 ± 3.0% of the MSCs in bone marrow to the porous β-TCP without affecting the cell viability. The average number of MSCs for retransplantation was 27,655.0 ± 5011.6 for each goat from the experimental group. In vitro, satisfactory biocompatibility of the MSCs/β-TCP was performed, with the MSCs spreading adequately, proliferating actively, and retaining the osteogenic potential. In vivo, the defect repair by MSCs/β-TCP with good medullary cavity recanalization and cortical remodeling was significantly superior to that of pure porous β-TCP. CONCLUSIONS The MSCs/β-TCP prepared through SECCS demonstrated significant therapeutic efficacy in goat models of critical size bone defect. This provides a novel therapeutic strategy for critical size bone defects caused by severe injury, infection, and bone tumor resection with a high profile of safety, effectiveness, simplicity, and ease.
Collapse
|
30
|
De Mori A, Peña Fernández M, Blunn G, Tozzi G, Roldo M. 3D Printing and Electrospinning of Composite Hydrogels for Cartilage and Bone Tissue Engineering. Polymers (Basel) 2018; 10:E285. [PMID: 30966320 PMCID: PMC6414880 DOI: 10.3390/polym10030285] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/02/2018] [Accepted: 03/07/2018] [Indexed: 12/19/2022] Open
Abstract
Injuries of bone and cartilage constitute important health issues costing the National Health Service billions of pounds annually, in the UK only. Moreover, these damages can become cause of disability and loss of function for the patients with associated social costs and diminished quality of life. The biomechanical properties of these two tissues are massively different from each other and they are not uniform within the same tissue due to the specific anatomic location and function. In this perspective, tissue engineering (TE) has emerged as a promising approach to address the complexities associated with bone and cartilage regeneration. Tissue engineering aims at developing temporary three-dimensional multicomponent constructs to promote the natural healing process. Biomaterials, such as hydrogels, are currently extensively studied for their ability to reproduce both the ideal 3D extracellular environment for tissue growth and to have adequate mechanical properties for load bearing. This review will focus on the use of two manufacturing techniques, namely electrospinning and 3D printing, that present promise in the fabrication of complex composite gels for cartilage and bone tissue engineering applications.
Collapse
Affiliation(s)
- Arianna De Mori
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| | - Marta Peña Fernández
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK.
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK.
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| |
Collapse
|
31
|
Duarte RM, Varanda P, Reis RL, Duarte ARC, Correia-Pinto J. Biomaterials and Bioactive Agents in Spinal Fusion. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:540-551. [DOI: 10.1089/ten.teb.2017.0072] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rui M. Duarte
- School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Orthopedic Surgery Department, Hospital de Braga, Braga, Portugal
| | - Pedro Varanda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Orthopedic Surgery Department, Hospital de Braga, Braga, Portugal
| | - Rui L. Reis
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Portugal
| | - Ana Rita C. Duarte
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Portugal
| | - Jorge Correia-Pinto
- School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Pediatric Surgery Department, Hospital de Braga, Braga, Portugal
| |
Collapse
|
32
|
Zhu Y, Zhang K, Zhao R, Ye X, Chen X, Xiao Z, Yang X, Zhu X, Zhang K, Fan Y, Zhang X. Bone regeneration with micro/nano hybrid-structured biphasic calcium phosphate bioceramics at segmental bone defect and the induced immunoregulation of MSCs. Biomaterials 2017; 147:133-144. [DOI: 10.1016/j.biomaterials.2017.09.018] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/07/2017] [Accepted: 09/17/2017] [Indexed: 01/07/2023]
|
33
|
Bunpetch V, Zhang ZY, Zhang X, Han S, Zongyou P, Wu H, Hong-Wei O. Strategies for MSC expansion and MSC-based microtissue for bone regeneration. Biomaterials 2017; 196:67-79. [PMID: 29602560 DOI: 10.1016/j.biomaterials.2017.11.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) have gained increasing attention as a potential approach for the treatment of bone injuries due to their multi-lineage differentiation potential and also their ability to recognize and home to damaged tissue sites, secreting bioactive factors that can modulate the immune system and enhance tissue repair. However, a wide gap between the number of MSCs obtainable from the donor site and the number required for implantation, as well as the lack of understanding of MSC functions under different in vitro and in vivo microenvironment, hinders the progression of MSCs toward clinical settings. The clinical translation of MSCs pre-requisites a scalable expansion process for the biomanufacturing of therapeutically qualified cells. This review briefly introduces the features of implanted MSCs to determine the best strategies to optimize their regenerative capacity, as well as the current MSC implantation for bone diseases. Current achievements for expansion of MSCs using various culturing methods, bioreactor technologies, biomaterial platforms, as well as microtissue-based expansion strategies are also discussed, providing new insights into future large-scale MSC expansion and clinical applications.
Collapse
Affiliation(s)
- Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing Technologies of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, China.
| | - Xiaoan Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shan Han
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pan Zongyou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haoyu Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ouyang Hong-Wei
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China; Department of Sports Medicine, School of Medicine, Zhejiang University, China; Translational Research Centre of Regenerative Medicine and 3D Printing Technologies of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, China.
| |
Collapse
|
34
|
A novel cytotherapy device for rapid screening, enriching and combining mesenchymal stem cells into a biomaterial for promoting bone regeneration. Sci Rep 2017; 7:15463. [PMID: 29133959 PMCID: PMC5684202 DOI: 10.1038/s41598-017-15451-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 10/24/2017] [Indexed: 01/26/2023] Open
Abstract
Bone defects are a common challenge in clinic, usually warranting bone grafts. However, current strategies to obtain effective graft materials have many drawbacks. Mesenchymal stem cell (MSC)-based therapy is a promising alternative. We designed an innovative appliance named the stem cell screen-enrich-combine(-biomaterials) circulating system (SECCS). In this study, 42 patients who required bone graft underwent SECCS-based treatment. Their bone marrow samples and beta-tricalcium phosphate (β-TCP) granules were processed in the SECCS for 10-15 minutes, to produce MSC/β-TCP composites. These composites were grafted back into bone defect sites. The results showed 85.53% ± 7.95% autologous MSCs were successfully screened, enriched, and seeded on the β-TCP scaffolds synchronously. The cell viability remained unchanged after SECCS processing. Clinically, all patients obtained satisfactory bone healing. Thus, without in vitro culture, the SECCS can produce bioactive MSC/β-TCP composites for bone regeneration during surgery. The SECCS represents a convenient, rapid, low-cost, and safe method for bone regeneration.
Collapse
|
35
|
Lui YF, Ip WY. Biological Evaluation of Flexible Polyurethane/Poly l-Lactic Acid Composite Scaffold as a Potential Filler for Bone Regeneration. MATERIALS 2017; 10:ma10091042. [PMID: 28902161 PMCID: PMC5615697 DOI: 10.3390/ma10091042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/19/2017] [Accepted: 08/31/2017] [Indexed: 12/28/2022]
Abstract
Degradable bone graft substitute for large-volume bone defects is a continuously developing field in orthopedics. With the advance in biomaterial in past decades, a wide range of new materials has been investigated for their potential in this application. When compared to common biopolymers within the field such as PLA or PCL, elastomers such as polyurethane offer some unique advantages in terms of flexibility. In cases of bone defect treatments, a flexible soft filler can help to establish an intimate contact with surrounding bones to provide a stable bone-material interface for cell proliferation and ingrowth of tissue. In this study, a porous filler based on segmented polyurethane incorporated with poly l-lactic acid was synthesized by a phase inverse salt leaching method. The filler was put through in vitro and in vivo tests to evaluate its potential in acting as a bone graft substitute for critical-sized bone defects. In vitro results indicated there was a major improvement in biological response, including cell attachment, proliferation and alkaline phosphatase expression for osteoblast-like cells when seeded on the composite material compared to unmodified polyurethane. In vivo evaluation on a critical-sized defect model of New Zealand White (NZW) rabbit indicated there was bone ingrowth along the defect area with the introduction of the new filler. A tight interface formed between bone and filler, with osteogenic cells proliferating on the surface. The result suggested polyurethane/poly l-lactic acid composite is a material with the potential to act as a bone graft substitute for orthopedics application.
Collapse
Affiliation(s)
- Yuk Fai Lui
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China.
| | - Wing Yuk Ip
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
36
|
Barba M, Di Taranto G, Lattanzi W. Adipose-derived stem cell therapies for bone regeneration. Expert Opin Biol Ther 2017; 17:677-689. [PMID: 28374644 DOI: 10.1080/14712598.2017.1315403] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Cell-based therapies exploit the heterogeneous and self-sufficient biological environment of stem cells to restore, maintain and improve tissue functions. Adipose-derived stem cells (ASCs) are, to this aim, promising cell types thanks to advantageous isolation procedures, growth kinetics, plasticity and trophic properties. Specifically, bone regeneration represents a suitable, though often challenging, target setting to test and apply ASC-based therapeutic strategies. Areas covered: ASCs are extremely plastic and secrete bioactive peptides that mediate paracrine functions, mediating their trophic actions in vivo. Numerous preclinical studies demonstrated that ASCs improve bone healing. Clinical trials are ongoing to validate the clinical feasibility of these approaches. This review is intended to define the state-of-the-art on ASCs, encompassing the biological features that make them suitable for bone regenerative strategies, and to provide an update on existing preclinical and clinical applications. Expert opinion: ASCs offer numerous advantages over other stem cells in terms of feasibility of clinical translation. Data obtained from in vivo experimentation are encouraging, and clinical trials are ongoing. More robust validations are thus expected to be achieved during the next few years, and will likely pave the way to optimized patient-tailored treatments for bone regeneration.
Collapse
Affiliation(s)
- Marta Barba
- a Institute of Anatomy and Cell Biology , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Giuseppe Di Taranto
- b Department of Plastic, Reconstructive and Aesthetic Surgery , University of Rome "Sapienza" , Policlinico Umberto I, Rome , Italy
| | - Wanda Lattanzi
- a Institute of Anatomy and Cell Biology , Università Cattolica del Sacro Cuore , Rome , Italy
| |
Collapse
|
37
|
Rubessa M, Polkoff K, Bionaz M, Monaco E, Milner DJ, Holllister SJ, Goldwasser MS, Wheeler MB. Use of Pig as a Model for Mesenchymal Stem Cell Therapies for Bone Regeneration. Anim Biotechnol 2017; 28:275-287. [PMID: 28267421 DOI: 10.1080/10495398.2017.1279169] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bone is a plastic tissue with a large healing capability. However, extensive bone loss due to disease or trauma requires extreme therapy such as bone grafting or tissue-engineering applications. Presently, bone grafting is the gold standard for bone repair, but presents serious limitations including donor site morbidity, rejection, and limited tissue regeneration. The use of stem cells appears to be a means to overcome such limitations. Bone marrow mesenchymal stem cells (BMSC) have been the choice thus far for stem cell therapy for bone regeneration. However, adipose-derived stem cells (ASC) have similar immunophenotype, morphology, multilineage potential, and transcriptome compared to BMSC, and both types have demonstrated extensive osteogenic capacity both in vitro and in vivo in several species. The use of scaffolds in combination with stem cells and growth factors provides a valuable tool for guided bone regeneration, especially for complex anatomic defects. Before translation to human medicine, regenerative strategies must be developed in animal models to improve effectiveness and efficiency. The pig presents as a useful model due to similar macro- and microanatomy and favorable logistics of use. This review examines data that provides strong support for the clinical translation of the pig model for bone regeneration.
Collapse
Key Words
- ASC, adipose-derived stem cells
- BMP, bone morphogenetic protein
- BMSC, bone marrow mesenchymal stem cells
- Bone
- DEG, differentially expressed genes
- FDR, false-discovery rate
- HA, hydroxyapatite
- HA/TCP, hydroxyapatite/tricalcium phosphate
- MRI, magnetic resonance imaging
- MSC, mesenchymal stem cells
- ONFH, osteonecrosis of the femoral head
- PCL, Poly (ϵ-caprolactone)
- PEG, polyethylene glycol
- PLGA, polylactic-coglycolic acid
- TCP, beta tri-calcium phosphate
- USSC, unrestricted somatic stem cell
- scaffolds
- stem cells
- swine
- tissue engineering
Collapse
Affiliation(s)
- Marcello Rubessa
- a University of Illinois at Urbana-Champaign , Urbana , Illinois , USA
| | - Kathryn Polkoff
- a University of Illinois at Urbana-Champaign , Urbana , Illinois , USA
| | | | - Elisa Monaco
- b Oregon State University , Corvallis , Oregon , USA
| | - Derek J Milner
- a University of Illinois at Urbana-Champaign , Urbana , Illinois , USA
| | | | - Michael S Goldwasser
- a University of Illinois at Urbana-Champaign , Urbana , Illinois , USA.,d New Hanover Regional Medical Center , Wilmington , North Carolina , USA
| | - Matthew B Wheeler
- a University of Illinois at Urbana-Champaign , Urbana , Illinois , USA
| |
Collapse
|
38
|
Fomekong E, Dufrane D, Berg BV, André W, Aouassar N, Veriter S, Raftopoulos C. Application of a three-dimensional graft of autologous osteodifferentiated adipose stem cells in patients undergoing minimally invasive transforaminal lumbar interbody fusion: clinical proof of concept. Acta Neurochir (Wien) 2017; 159:527-536. [PMID: 28039550 DOI: 10.1007/s00701-016-3051-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/08/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND The authors applied a scaffold-free osteogenic three-dimensional (3D) graft made of adipose-derived mesenchymal stem cells (AMSCs) in patients undergoing minimally invasive transforaminal lumbar interbody fusion (MI-TLIF). METHODS Three patients (two patients and one patient with 1 and 2 levels, respectively) with degenerative spondylolisthesis underwent MI-TLIF with 3D graft made of AMSCs. To obtain the AMSCs, fatty tissue was collected from the abdomen by lipoaspiration and differentiated afterwards in our Cell/Tissue bank. Clinical outcomes, including the Oswestry Disability Index (ODI) and visual analog scale (VAS) as well as fusion status were assessed preoperatively and up to 12 months postoperatively. RESULTS At 12 months, all four operated AMSC levels could be assessed (n = 4). Grade 3 fusion could be confirmed at two levels out of four. Mean VAS score improved from 8.3 to 2 and ODI also improved from 47 to 31%. No donor site complication was observed. The final AMSC osteogenic product was stable, did not rupture with forceps manipulation, and was easily implanted directly into the cage with no marked modification of operating time. CONCLUSIONS A scaffold-free 3D graft made of AMSCs can be manufactured and used as a promising alternative for spinal fusion procedures. Nevertheless, further studies of a larger series of patients are needed to confirm its effectiveness.
Collapse
Affiliation(s)
- E Fomekong
- Department of Neurosurgery, University Hospital Saint Luc, Université Catholique de Louvain (UCL), Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - D Dufrane
- Endocrine Cell Therapy Unit, Center of Tissue and Cell Therapy, university hospital Saint-Luc, Université Catholique de Louvain (UCL), Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - B Vande Berg
- Department of Radiology, University Hospital Saint Luc, Université Catholique de Louvain (UCL), Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - W André
- Endocrine Cell Therapy Unit, Center of Tissue and Cell Therapy, university hospital Saint-Luc, Université Catholique de Louvain (UCL), Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - N Aouassar
- Endocrine Cell Therapy Unit, Center of Tissue and Cell Therapy, university hospital Saint-Luc, Université Catholique de Louvain (UCL), Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - S Veriter
- Endocrine Cell Therapy Unit, Center of Tissue and Cell Therapy, university hospital Saint-Luc, Université Catholique de Louvain (UCL), Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - C Raftopoulos
- Department of Neurosurgery, University Hospital Saint Luc, Université Catholique de Louvain (UCL), Avenue Hippocrate, 10, 1200, Brussels, Belgium.
| |
Collapse
|
39
|
Mesenchymal Stem Cells for the Treatment of Spinal Arthrodesis: From Preclinical Research to Clinical Scenario. Stem Cells Int 2017; 2017:3537094. [PMID: 28286524 PMCID: PMC5327761 DOI: 10.1155/2017/3537094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023] Open
Abstract
The use of spinal fusion procedures has rapidly augmented over the last decades and although autogenous bone graft is the “gold standard” for these procedures, alternatives to its use have been investigated over many years. A number of emerging strategies as well as tissue engineering with mesenchymal stem cells (MSCs) have been planned to enhance spinal fusion rate. This descriptive systematic literature review summarizes the in vivo studies, dealing with the use of MSCs in spinal arthrodesis surgery and the state of the art in clinical applications. The review has yielded promising evidence supporting the use of MSCs as a cell-based therapy in spinal fusion procedures, thus representing a suitable biological approach able to reduce the high cost of osteoinductive factors as well as the high dose needed to induce bone formation. Nevertheless, despite the fact that MSCs therapy is an interesting and important opportunity of research, in this review it was detected that there are still doubts about the optimal cell concentration and delivery method as well as the ideal implantation techniques and the type of scaffolds for cell delivery. Thus, further inquiry is necessary to carefully evaluate the clinical safety and efficacy of MSCs use in spine fusion.
Collapse
|
40
|
Van Nieuwenhove I, Salamon A, Adam S, Dubruel P, Van Vlierberghe S, Peters K. Gelatin- and starch-based hydrogels. Part B: In vitro mesenchymal stem cell behavior on the hydrogels. Carbohydr Polym 2017; 161:295-305. [PMID: 28189242 DOI: 10.1016/j.carbpol.2017.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/02/2017] [Accepted: 01/04/2017] [Indexed: 12/22/2022]
Abstract
Tissue regeneration often occurs only to a limited extent. By providing a three-dimensional matrix serving as a surrogate extracellular matrix that promotes adult stem cell adhesion, proliferation and differentiation, scaffold-guided tissue regeneration aims at overcoming this limitation. In this study, we applied hydrogels made from crosslinkable gelatin, the hydrolyzed form of collagen, and functionalized starch which were characterized in depth and optimized as described in Van Nieuwenhove et al., 2016. "Gelatin- and Starch-Based Hydrogels. Part A: Hydrogel Development, Characterization and Coating", Carbohydrate Polymers 152:129-39. Collagen is the main structural protein in animal connective tissue and the most abundant protein in mammals. Starch is a carbohydrate consisting of a mixture of amylose and amylopectin. Hydrogels were developed with varying chemical composition (ratio of starch to gelatin applied) and different degrees of methacrylation of the applied gelatin phase. The hydrogels used exhibited no adverse effect on viability of the stem cells cultured on them. Moreover, initial cell adhesion did not differ significantly between them, while the strongest proliferation was observed on the hydrogel with the highest degree of cross-linking. On the least crosslinked and thus most flexible hydrogels, the highest degree of adipogenic differentiation was found, while osteogenic differentiation was the strongest on the most rigid, starch-blended hydrogels. Hydrogel coating with extracellular matrix compounds aggrecan or fibronectin prior to cell seeding exhibited no significant effects. Thus, gelatin-based hydrogels can be optimized regarding maximum promotion of either adipogenic or osteogenic stem cell differentiation in vitro, which makes them promising candidates for in vivo evaluation in clinical studies aiming at either soft or hard tissue regeneration.
Collapse
Affiliation(s)
- Ine Van Nieuwenhove
- Polymer Chemistry & Biomaterials Group, Ghent University, Krijgslaan 281, Building S4-Bis, 9000 Ghent, Belgium.
| | - Achim Salamon
- Department of Cell Biology, University Medicine Rostock, Schillingallee 69, 18057 Rostock, Germany.
| | - Stefanie Adam
- Department of Cell Biology, University Medicine Rostock, Schillingallee 69, 18057 Rostock, Germany.
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group, Ghent University, Krijgslaan 281, Building S4-Bis, 9000 Ghent, Belgium.
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Ghent University, Krijgslaan 281, Building S4-Bis, 9000 Ghent, Belgium.
| | - Kirsten Peters
- Department of Cell Biology, University Medicine Rostock, Schillingallee 69, 18057 Rostock, Germany.
| |
Collapse
|
41
|
Lafosse A, Dufeys C, Beauloye C, Horman S, Dufrane D. Impact of Hyperglycemia and Low Oxygen Tension on Adipose-Derived Stem Cells Compared with Dermal Fibroblasts and Keratinocytes: Importance for Wound Healing in Type 2 Diabetes. PLoS One 2016; 11:e0168058. [PMID: 27992567 PMCID: PMC5167273 DOI: 10.1371/journal.pone.0168058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/25/2016] [Indexed: 12/11/2022] Open
Abstract
Aim Adipose-derived stem cells (ASC) are currently proposed for wound healing in those with type 2 diabetes mellitus (T2DM). Therefore, this study investigated the impact of diabetes on adipose tissue in relation to ASC isolation, proliferation, and growth factor release and the impact of hyperglycemia and low oxygen tension (found in diabetic wounds) on dermal fibroblasts, keratinocytes, and ASC in vitro. Methods Different sequences of hypoxia and hyperglycemia were applied in vitro to ASC from nondiabetic (n = 8) or T2DM patients (n = 4) to study cell survival, proliferation, and growth factor release. Comparisons of dermal fibroblasts (n = 8) and keratinocytes (primary lineage) were made. Results No significant difference of isolation and proliferation capacities was found in ASC from nondiabetic and diabetic humans. Hypoxia and hyperglycemia did not impact cell viability and proliferation. Keratinocyte Growth Factor release was significantly lower in diabetic ASC than in nondiabetic ASC group in each condition, while Vascular Endothelial Growth Factor release was not affected by the diabetic origin. Nondiabetic ASC exposition to hypoxia (0.1% oxygen) combined with hyperglycemia (25mM glucose), resulted in a significant increase in VEGF secretion (+64%, p<0.05) with no deleterious impact on KGF release in comparison to physiological conditions (5% oxygen and 5 mM glucose). Stromal cell-Derived Factor-1α (-93%, p<0.001) and KGF (-20%, p<0.05) secretion by DF decreased in these conditions. Conclusions A better profile of growth factor secretion (regarding wound healing) was found in vitro for ASC in hyperglycemia coupled with hypoxia in comparison to dermal fibroblasts and keratinocytes. Interestingly, ASC from T2DM donors demonstrated cellular growth rates and survival (in hypoxia and hyperglycemic conditions) similar to those of healthy ASC (from normoglycemic donors); however, KGF secretion was significantly depleted in ASC obtained from T2DM patients. This study demonstrated the impact of diabetes on ASC for regenerative medicine and wound healing.
Collapse
Affiliation(s)
| | - Cécile Dufeys
- Pole de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christophe Beauloye
- Pole de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Sandrine Horman
- Pole de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Denis Dufrane
- Novadip Biosciences, Mont-Saint-Guibert, Belgium
- * E-mail:
| |
Collapse
|
42
|
Chen CY, Chiang TS, Chiou LL, Lee HS, Lin FH. 3D cell clusters combined with a bioreactor system to enhance the drug metabolism activities of C3A hepatoma cell lines. J Mater Chem B 2016; 4:7000-7008. [PMID: 32263566 DOI: 10.1039/c6tb01627h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since clinical drugs need to be approved for their liver metabolism efficiency before commercialization, a powerful in vitro drug-screening platform is imperative and indispensable for the clinical medicine and pharmaceutical industries. An essential issue in the development of drug screening platforms is choosing cell candidates that mimic and perform cell/tissue functions of normal hepatic tissues in vivo. In this study, we developed a self-designed bioreactor system to provide and mimic an appropriate environment for systematic cell expansion, micro-tissue formation, and increased cellular cytochrome P450 (CYP) enzymatic activities. Since CYP3A4 is the most plentiful and crucial enzyme in drug metabolism among liver CYP superfamily members, we demonstrated that micro-tissue formation under three-dimensional dynamic conditions could enhance cellular CYP3A4 enzymatic activity, maintain cell viability, and preserve adhesive abilities. Furthermore, Ca-alginate scaffolds used in this study can be completely removed by a non-toxic chelating reagent (EDTA solution), and the functional micro-tissues can be collected by slow-speed centrifugation. In conclusion, these micro-tissues are advantageous and show great potential in in vitro drug metabolizing assays.
Collapse
Affiliation(s)
- Ching-Yun Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
43
|
Ishida W, Elder BD, Holmes C, Lo SFL, Witham TF. Variables Affecting Fusion Rates in the Rat Posterolateral Spinal Fusion Model with Autogenic/Allogenic Bone Grafts: A Meta-analysis. Ann Biomed Eng 2016; 44:3186-3201. [PMID: 27473706 DOI: 10.1007/s10439-016-1701-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/21/2016] [Indexed: 01/14/2023]
Abstract
The rat posterolateral spinal fusion model with autogenic/allogenic bone graft (rat PFABG) has been increasingly utilized as an experimental model to assess the efficacy of novel fusion treatments. The objective of this study was to investigate the reliability of the rat PFABG model and examine the effects of different variables on spinal fusion. A web-based literature search from January, 1970 to September, 2015, yielded 26 studies, which included 40 rat PFABG control groups and 449 rats. Data regarding age, weight, sex, and strain of rats, graft volume, graft type, decorticated levels, surgical approach, institution, the number of control rats, fusion rate, methods of fusion assessment, and timing of fusion assessment were collected and analyzed. The primary outcome variable of interest was fusion rate, as evaluated by manual palpation. Fusion rates varied widely, from 0 to 96%. The calculated overall fusion rate was 46.1% with an I 2 value of 62.4, which indicated moderate heterogeneity. Weight >300 g, age >14 weeks, male rat, Sprague-Dawley strain, and autogenic coccyx grafts increased fusion rates with statistical significance. Additionally, an assessment time-point ≥8 weeks had a trend towards statistical significance (p = 0.070). Multi-regression analysis demonstrated that timing of assessment and age as continuous variables, as well as sex as a categorical variable, can predict the fusion rate with R 2 = 0.82. In an inter-institution reliability analysis, the pooled overall fusion rate was 50.0% [44.8, 55.3%], with statistically significant differences among fusion outcomes at different institutions (p < 0.001 and I 2 of 72.2). Due to the heterogeneity of fusion outcomes, the reliability of the rat PFABG model was relatively limited. However, selection of adequate variables can optimize its use as a control group in studies evaluating the efficacy of novel fusion therapies.
Collapse
Affiliation(s)
- Wataru Ishida
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1800 Orleans St., Room 6007, Baltimore, MD, 21287, USA
| | - Benjamin D Elder
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1800 Orleans St., Room 6007, Baltimore, MD, 21287, USA.
| | - Christina Holmes
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1800 Orleans St., Room 6007, Baltimore, MD, 21287, USA
| | - Sheng-Fu L Lo
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1800 Orleans St., Room 6007, Baltimore, MD, 21287, USA
| | - Timothy F Witham
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1800 Orleans St., Room 6007, Baltimore, MD, 21287, USA
| |
Collapse
|
44
|
Fang X, Xie J, Zhong L, Li J, Rong D, Li X, Ouyang J. Biomimetic gelatin methacrylamide hydrogel scaffolds for bone tissue engineering. J Mater Chem B 2016; 4:1070-1080. [DOI: 10.1039/c5tb02251g] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The biomimetic GelMA scaffolds which have highly porous, interconnected macropores, and rough surface could promote ADSC to differentiate into osteoblasts and bone formation.
Collapse
Affiliation(s)
- Xingxing Fang
- Guangdong Provincial Medical Biomechanical Key Laboratory
- Department of Anatomy
- Southern Medical University
- Guangzhou
- China
| | - Jin Xie
- Guangdong Provincial Medical Biomechanical Key Laboratory
- Department of Anatomy
- Southern Medical University
- Guangzhou
- China
| | - Lixin Zhong
- School of Public Health and Tropical Medicine
- Southern Medical University
- Guangzhou
- China
| | - Jierong Li
- School of Public Health and Tropical Medicine
- Southern Medical University
- Guangzhou
- China
| | - Dongming Rong
- Department of Orthopaedic
- Zhujiang Hospital
- Southern Medical University
- Guangzhou
- China
| | - Xiongshen Li
- 1st School of Clinical Medicine
- Southern Medical University
- Guangzhou
- China
| | - Jun Ouyang
- Guangdong Provincial Medical Biomechanical Key Laboratory
- Department of Anatomy
- Southern Medical University
- Guangzhou
- China
| |
Collapse
|
45
|
BMP6-Engineered MSCs Induce Vertebral Bone Repair in a Pig Model: A Pilot Study. Stem Cells Int 2015; 2016:6530624. [PMID: 26770211 PMCID: PMC4685143 DOI: 10.1155/2016/6530624] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 01/13/2023] Open
Abstract
Osteoporotic patients, incapacitated due to vertebral compression fractures (VCF), suffer grave financial and clinical burden. Current clinical treatments focus on symptoms' management but do not combat the issue at the source. In this pilot study, allogeneic, porcine mesenchymal stem cells, overexpressing the BMP6 gene (MSC-BMP6), were suspended in fibrin gel and implanted into a vertebral defect to investigate their effect on bone regeneration in a clinically relevant, large animal pig model. To check the effect of the BMP6-modified cells on bone regeneration, a fibrin gel only construct was used for comparison. Bone healing was evaluated in vivo at 6 and 12 weeks and ex vivo at 6 months. In vivo CT showed bone regeneration within 6 weeks of implantation in the MSC-BMP6 group while only minor bone formation was seen in the defect site of the control group. After 6 months, ex vivo analysis demonstrated enhanced bone regeneration in the BMP6-MSC group, as compared to control. This preclinical study presents an innovative, potentially minimally invasive, technique that can be used to induce bone regeneration using allogeneic gene modified MSCs and therefore revolutionize current treatment of challenging conditions, such as osteoporosis-related VCFs.
Collapse
|
46
|
Dufrane D, Docquier PL, Delloye C, Poirel HA, André W, Aouassar N. Scaffold-free Three-dimensional Graft From Autologous Adipose-derived Stem Cells for Large Bone Defect Reconstruction: Clinical Proof of Concept. Medicine (Baltimore) 2015; 94:e2220. [PMID: 26683933 PMCID: PMC5058905 DOI: 10.1097/md.0000000000002220] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Long bone nonunion in the context of congenital pseudarthrosis or carcinologic resection (with intercalary bone allograft implantation) is one of the most challenging pathologies in pediatric orthopedics. Autologous cancellous bone remains the gold standard in this context of long bone nonunion reconstruction, but with several clinical limitations. We then assessed the feasibility and safety of human autologous scaffold-free osteogenic 3-dimensional (3D) graft (derived from autologous adipose-derived stem cells [ASCs]) to cure a bone nonunion in extreme clinical and pathophysiological conditions. Human ASCs (obtained from subcutaneous adipose tissue of 6 patients and expanded up to passage 4) were incubated in osteogenic media and supplemented with demineralized bone matrix to obtain the scaffold-free 3D osteogenic structure as confirmed in vitro by histomorphometry for osteogenesis and mineralization. The 3D "bone-like" structure was finally transplanted for 3 patients with bone tumor and 3 patients with bone pseudarthrosis (2 congenital, 1 acquired) to assess the clinical feasibility, safety, and efficacy. Although minor clones with structural aberrations (aneuploidies, such as tri or tetraploidies or clonal trisomy 7 in 6%-20% of cells) were detected in the undifferentiated ASCs at passage 4, the osteogenic differentiation significantly reduced these clonal anomalies. The final osteogenic product was stable, did not rupture with forceps manipulation, did not induce donor site morbidity, and was easily implanted directly into the bone defect. No acute (<3 mo) side effects, such as impaired wound healing, pain, inflammatory reaction, and infection, or long-term side effects, such as tumor development, were associated with the graft up to 4 years after transplantation. We report for the first time that autologous ASC can be fully differentiated into a 3D osteogenic-like implant without any scaffold. We demonstrated that this engineered tissue can safely promote osteogenesis in extreme conditions of bone nonunions with minor donor site morbidity and no oncological side effects.
Collapse
Affiliation(s)
- Denis Dufrane
- From the Endocrine Cell Therapy, Center of Tissue and Cell Therapy, Cliniques Universitaires Saint-Luc, Brussels, Belgium (DD, WA, NA); Orthopedic Surgery Service, Department of Surgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium (P-LD, CD); and Center for Human Genetics, Cliniques Universitaires Saint-Luc - Université Catholique de Louvain, Brussels, Belgium (HAP)
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Bone defects do not heal in 5-10% of the fractures. In order to enhance bone regeneration, drug delivery systems are needed. They comprise a scaffold with or without inducing factors and/or cells. To test these drug delivery systems before application in patients, they finally need to be tested in animal models. The choice of animal model depends on the main research question; is a functional or mechanistic evaluation needed? Furthermore, which type of bone defects are investigated: load-bearing (i.e. orthopedic) or non-load-bearing (i.e. craniomaxillofacial)? This determines the type of model and in which type of animal. The experiments need to be set-up using the 3R principle and must be reported following the ARRIVE guidelines.
Collapse
|
48
|
Vériter S, André W, Aouassar N, Poirel HA, Lafosse A, Docquier PL, Dufrane D. Human Adipose-Derived Mesenchymal Stem Cells in Cell Therapy: Safety and Feasibility in Different "Hospital Exemption" Clinical Applications. PLoS One 2015; 10:e0139566. [PMID: 26485394 PMCID: PMC4615620 DOI: 10.1371/journal.pone.0139566] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/15/2015] [Indexed: 02/07/2023] Open
Abstract
Based on immunomodulatory, osteogenic, and pro-angiogenic properties of adipose-derived stem cells (ASCs), this study aims to assess the safety and efficacy of ASC-derived cell therapies for clinical indications. Two autologous ASC-derived products were proposed to 17 patients who had not experienced any success with conventional therapies: (1) a scaffold-free osteogenic three-dimensional graft for the treatment of bone non-union and (2) a biological dressing for dermal reconstruction of non-healing chronic wounds. Safety was studied using the quality control of the final product (genetic stability, microbiological/mycoplasma/endotoxin contamination) and the in vivo evaluation of adverse events after transplantation. Feasibility was assessed by the ability to reproducibly obtain the final ASC-based product with specific characteristics, the time necessary for graft manufacturing, the capacity to produce enough material to treat the lesion, the surgical handling of the graft, and the ability to manufacture the graft in line with hospital exemption regulations. For 16 patients (one patient did not undergo grafting because of spontaneous bone healing), in-process controls found no microbiological/mycoplasma/endotoxin contamination, no obvious deleterious genomic anomalies, and optimal ASC purity. Each type of graft was reproducibly obtained without significant delay for implantation and surgical handling was always according to the surgical procedure and the implantation site. No serious adverse events were noted for up to 54 months. We demonstrated that autologous ASC transplantation can be considered a safe and feasible therapy tool for extreme clinical indications of ASC properties and physiopathology of disease.
Collapse
Affiliation(s)
- Sophie Vériter
- Endocrine Cell Therapy, Centre of Tissular and Cellular Therapy, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Wivine André
- Endocrine Cell Therapy, Centre of Tissular and Cellular Therapy, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Najima Aouassar
- Endocrine Cell Therapy, Centre of Tissular and Cellular Therapy, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Hélène Antoine Poirel
- Center for Human Genetics, Cliniques Universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium
| | - Aurore Lafosse
- Plastic Surgery, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | | | - Denis Dufrane
- Endocrine Cell Therapy, Centre of Tissular and Cellular Therapy, Cliniques Universitaires Saint Luc, Brussels, Belgium
- * E-mail:
| |
Collapse
|
49
|
Jung S, Kleineidam B, Kleinheinz J. Regenerative potential of human adipose-derived stromal cells of various origins. J Craniomaxillofac Surg 2015; 43:2144-51. [PMID: 26541747 DOI: 10.1016/j.jcms.2015.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/22/2015] [Accepted: 10/01/2015] [Indexed: 12/12/2022] Open
Abstract
In regenerative concepts, the potential of adult stem cells holds great promise concerning an individualized therapeutic approach. These cells provide renewable progenitor cells to replace aged tissue, and play a significant role in tissue repair and regeneration. In this investigation, the characteristics of different types of adipose tissue are analysed systematically with special attention to their proliferation and differentiation potential concerning the angiogenic and osteogenic lineage. Tissue samples from subcutaneous, visceral, and omental fat were processed according to standard procedures. The cells were characterized and cultivated under suitable conditions for osteogenic and angiogenic cell culture. The development of the different cell cultures as well as their differentiation were analysed morphologically and immunohistochemically from cell passages P1 to P12. Harvesting and isolation of multipotent cells from all three tissue types could be performed reproducibly. The cultivation of these cells under osteogenic conditions led to a morphological and immunohistochemical differentiation; mineralization could be detected. The most stable results were observed for the cells of subcutaneous origin. An osteogenic differentiation from adipose-derived cells from all analysed fatty tissues can be achieved easily and reproducibly. In therapeutic concepts including angiogenic regeneration, adipose-derived cells from subcutaneous tissue provide the optimal cellular base.
Collapse
Affiliation(s)
- Susanne Jung
- Department of Cranio-Maxillofacial Surgery, Research Unit Vascular Biology of Oral Structures (VABOS), University Hospital Muenster, Germany.
| | - Benedikt Kleineidam
- Department of Cranio-Maxillofacial Surgery, Research Unit Vascular Biology of Oral Structures (VABOS), University Hospital Muenster, Germany
| | - Johannes Kleinheinz
- Department of Cranio-Maxillofacial Surgery, Research Unit Vascular Biology of Oral Structures (VABOS), University Hospital Muenster, Germany
| |
Collapse
|
50
|
Comprehensive Review of Adipose Stem Cells and Their Implication in Distraction Osteogenesis and Bone Regeneration. BIOMED RESEARCH INTERNATIONAL 2015; 2015:842975. [PMID: 26448947 PMCID: PMC4584039 DOI: 10.1155/2015/842975] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/02/2015] [Indexed: 12/31/2022]
Abstract
Bone is one of the most dynamic tissues in the human body that can heal following injury without leaving a scar. However, in instances of extensive bone loss, this intrinsic capacity of bone to heal may not be sufficient and external intervention becomes necessary. Several techniques are available to address this problem, including autogenous bone grafts and allografts. However, all these techniques have their own limitations. An alternative method is the technique of distraction osteogenesis, where gradual and controlled distraction of two bony segments after osteotomy leads to induction of new bone formation. Although distraction osteogenesis usually gives satisfactory results, its major limitation is the prolonged duration of time required before the external fixator is removed, which may lead to numerous complications. Numerous methods to accelerate bone formation in the context of distraction osteogenesis have been reported. A viable alternative to autogenous bone grafts for a source of osteogenic cells is mesenchymal stem cells from bone marrow. However, there are certain problems with bone marrow aspirate. Hence, scientists have investigated other sources for mesenchymal stem cells, specifically adipose tissue, which has been shown to be an excellent source of mesenchymal stem cells. In this paper, the potential use of adipose stem cells to stimulate bone formation is discussed.
Collapse
|