1
|
Meng X, Mao H, Wan M, Lu L, Chen Z, Zhang L. Mitochondrial homeostasis in odontoblast: Physiology, pathogenesis and targeting strategies. Life Sci 2024; 352:122797. [PMID: 38917871 DOI: 10.1016/j.lfs.2024.122797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024]
Abstract
Caries and pulpitis remain a major global disease burden and affect the quality of life of patients. Odontoblasts are key players in the progression of caries and pulpitis, not only secreting and mineralizing to form dentin, but also acting as a wall of defense to initiate immune defenses. Mitochondrion is an information processor for numerous cellular activities, and dysregulation of mitochondrion homeostasis not only affects cellular metabolism but also triggers a wide range of diseases. Elucidating mitochondrial homeostasis in odontoblasts can help deepen scholars' understanding of odontoblast-associated diseases. Articles on mitochondrial homeostasis in odontoblasts were evaluated for information pertinent to include in this narrative review. This narrative review focused on understanding the complex interplay between mitochondrial homeostasis in odontoblasts under physiological and pathological conditions. Furthermore, mitochondria-centered therapeutic strategies (including mitochondrial base editing, targeting platforms, and mitochondrial transplantation) were emphasized by resolving key genes that regulate mitochondrial function. Mitochondria are involved in odontoblast differentiation and function, and act as mitochondrial danger-associated molecular patterns (mtDAMPs) to mediate odontoblast pathological progression. Novel mitochondria-centered therapeutic strategies are particularly attractive as emerging therapeutic approaches for the maintenance of mitochondrial homeostasis. It is expected to probe key events of odontoblast differentiation and advance the clinical resolution of dentin formation and mineralization disorders and odontoblast-related diseases.
Collapse
Affiliation(s)
- Xiang Meng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Hanqing Mao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Minting Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Linxin Lu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Endodontics, School and Hospital of Stomatology, Wuhan University, HongShan District, LuoYu Road No. 237, Wuhan 430079, China.
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Endodontics, School and Hospital of Stomatology, Wuhan University, HongShan District, LuoYu Road No. 237, Wuhan 430079, China.
| |
Collapse
|
2
|
Ohlsson E, Bolay C, Arabulan S, Galler KM, Buchalla W, Schmalz G, Widbiller M. In-vitro-cytotoxicity of self-adhesive dental restorative materials. Dent Mater 2024; 40:739-746. [PMID: 38403539 DOI: 10.1016/j.dental.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/05/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVES Although the introduction of self-adhesive composites in restorative dentistry is very promising, the innovation of new materials also presents challenges and unknowns. Therefore, the aim of this study was to investigate the cytotoxicity of four different self-adhesive composites (SAC) in vitro and to compare them with resin-modified glass ionomer cements (RM-GIC), a more established group of materials. METHODS Samples of the following materials were prepared according to ISO 7405/10993-12 and eluted in cell culture medium for 24 h at 37 °C: Vertise Flow, Fusio Liquid Dentin, Constic, Surefil One, Photac Fil and Fuji II LC. Primary human pulp cells were obtained from extracted wisdom teeth and cultured for 24 h with the extracts in serial dilutions. Cell viability was evaluated by MTT assay, membrane disruption was quantified by LDH assay and apoptosis was assessed by flow cytometry after annexin/PI staining. RESULTS Two SAC (Constic and Vertise Flow) and one RM-GIC (Photac Fil) significantly reduced cell viability by more than 30% compared to the untreated control (p < 0.001). Disruptive cell morphological changes were observed and the cells showed signs of late apoptosis and necrosis in flow cytometry. Membrane disruption was not observed with any of the investigated materials. CONCLUSION Toxic effects occurred independently of the substance group and need to be considered in the development of materials with regard to clinical implications. CLINICAL SIGNIFICANCE SAC have many beneficial qualities, however, the cytotoxic effects of certain products should be considered when applied in close proximity to the dental pulp, as is often required.
Collapse
Affiliation(s)
- Ella Ohlsson
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-University Erlangen-Nürnberg, Glückstraße 11, 91054 Erlangen, Germany
| | - Carola Bolay
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Sevgi Arabulan
- Department of Pedodontics, Ege University, Ege University Campus, 35040 Izmir, Turkey
| | - Kerstin M Galler
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-University Erlangen-Nürnberg, Glückstraße 11, 91054 Erlangen, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Gottfried Schmalz
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; Department of Periodontology, University of Bern, 3012 Bern, Switzerland
| | - Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
3
|
Kaji T, Kuroishi T, Bando K, Takahashi M, Sugawara S. N-acetyl cysteine inhibits IL-1α release from murine keratinocytes induced by 2-hydroxyethyl methacrylate. J Toxicol Sci 2023; 48:557-569. [PMID: 37778984 DOI: 10.2131/jts.48.557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The hydrophilic compound 2-hydroxyethyl methacrylate (HEMA) is a major component of dental bonding materials, and it enhances the binding of resin-composites to biomolecules. However, HEMA is a well-known contact sensitizer. We reported previously that intradermal injection of HEMA induces the production of IL-1 locally in the skin. Keratinocytes are the first barrier against chemical insults and constitutively express IL-1α. In this study, we analyzed whether HEMA induces the production of inflammatory cytokines from murine keratinocyte cell line Pam212 cells. We demonstrated that HEMA induced the release of 17-kDa mature IL-1α and caused cytotoxicity. The activity of calpain, an IL-1α processing enzyme, was significantly higher in HEMA-treated cells. The thiol-containing antioxidant N-acetyl cysteine (NAC) inhibited HEMA-induced IL-1α release but not cytotoxicity. NAC inhibited intracellular calpain activity and reactive oxygen species (ROS) production induced by HEMA. NAC post-treatment also inhibited IL-1α release and intracellular ROS production induced by HEMA. Furthermore, HEMA-induced in vivo inflammation also inhibited by NAC. NAC inhibited polymerization of HEMA through adduct formation via sulfide bonds between the thiol group of NAC and the reactive double bond of HEMA. HEMA-induced IL-1α release and cytotoxicity were also inhibited if HEMA and NAC were pre-incubated before adding to the cells. These results suggested that NAC inhibited IL-1α release through decreases in intracellular ROS and the adduct formation with HEMA. We concluded that HEMA induces IL-1α release from skin keratinocytes, and NAC may be a promising candidate as a therapeutic agent against inflammation induced by HEMA.
Collapse
Affiliation(s)
- Takahiro Kaji
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry
| | - Toshinobu Kuroishi
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry
| | - Kanan Bando
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry
| | - Masatoshi Takahashi
- Division of Dental Biomaterials, Tohoku University Graduate School of Dentistry
| | - Shunji Sugawara
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry
| |
Collapse
|
4
|
Sangsuwan P, Tannukit S, Chotigeat W, Kedjarune-Leggat U. Biological Activities of Glass Ionomer Cement Supplemented with Fortilin on Human Dental Pulp Stem Cells. J Funct Biomater 2022; 13:jfb13030132. [PMID: 36135566 PMCID: PMC9504290 DOI: 10.3390/jfb13030132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
This study aimed to determine the most suitable recombinant fortilin and evaluate the biological activities of glass ionomer cement (GIC) incorporated with fortilin on human dental pulp stem cells (hDPSCs). Full-length and three fragments of Penaeus merguiensis fortilin were cloned and examined for their proliferative and cytoprotective effects on hDPSCs by MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. Human DPSCs were cultured with GIC supplemented with fortilin, tricalcium phosphate, or a combination of tricalcium phosphate and fortilin, designated as GIC + FL, GIC + TCP, and GIC + TCP + FL, respectively (n = 4 for each group). At given time points, hDPSCs were harvested and analyzed by MTT, quantitative reverse transcription polymerase chain reaction, alkaline phosphatase activity, and Alizarin Red assays. The full-length fortilin promoted cell proliferation and significantly increased cell survival. This protein was subsequently added into the GIC along with tricalcium phosphate to investigate the biological activities. All experimental groups showed reduced cell viability after treatment with modified GICs on days 1 and 3. The GIC + TCP + FL group significantly promoted odontoblastic differentiation at particular time points. In addition, alkaline phosphatase activity and calcium phosphate deposit were markedly increased in the GIC + TCP + FL group. Among all experimental groups, the GIC incorporated with fortilin and tricalcium phosphate demonstrated the best results on odontogenic differentiation and mineral deposition in hDPSCs.
Collapse
Affiliation(s)
- Prawichaya Sangsuwan
- Molecular Biology and Bioinformatics Program, Faculty of Science, Biological Science Division, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Sissada Tannukit
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90110, Thailand
- Cell Biology and Biomaterial Research Unit, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90110, Thailand
- Correspondence:
| | - Wilaiwan Chotigeat
- Molecular Biology and Bioinformatics Program, Faculty of Science, Biological Science Division, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Ureporn Kedjarune-Leggat
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90110, Thailand
- Cell Biology and Biomaterial Research Unit, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90110, Thailand
| |
Collapse
|
5
|
Cytotoxicity and Apoptotic Mechanism of 2-Hydroxyethyl Methacrylate via Genotoxicity and the Mitochondrial-Dependent Intrinsic Caspase Pathway and Intracellular Reactive Oxygen Species Accumulation in Macrophages. Polymers (Basel) 2022; 14:polym14163378. [PMID: 36015636 PMCID: PMC9412604 DOI: 10.3390/polym14163378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Macrophages are mainly active cells of the immune system and play a role in the defense of pathogens. However, the overactivation of macrophages by fatal pathogens can result in toxic responses. 2-hydroxyethyl methacrylate (HEMA), which is a hydrophilic monomer, is used in dental adhesive reagents and composite resins as well as biocompatible hydrogels. The mechanisms underlying the genotoxicity engendered by HEMA-induced apoptosis that leads to cytotoxicity remain unclear. Accordingly, this study was conducted to clarify such mechanisms. The results showed that HEMA induced cell toxicity in RAW264.7 macrophages depending on the concentration. A higher HEMA concentration was associated with a higher level of apoptosis and genotoxicity. Moreover, HEMA induced a concentration-dependent increase in mitochondrial dysfunction and the intrinsic caspase pathway, including the activation of caspase-3 and caspase-9. HEMA was also found to upregulate intracellular reactive oxygen species generation and to decrease the activity of antioxidant enzymes, including superoxide dismutase and catalase. Taken together, the mitochondrial-dependent intrinsic caspase pathway and intracellular reactive oxygen species accumulation were found to mediate HEMA-induced genotoxicity and apoptosis, leading to cytotoxicity in RAW264.7 macrophages.
Collapse
|
6
|
2-hydroxyethyl methacrylate-derived reactive oxygen species stimulate ATP release via TRPA1 in human dental pulp cells. Sci Rep 2022; 12:12343. [PMID: 35853988 PMCID: PMC9296549 DOI: 10.1038/s41598-022-16559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Extracellular ATP (adenosine triphosphate) and transient receptor potential ankyrin 1 (TRPA1) channels are involved in calcium signaling in odontoblasts and dental pain. The resin monomer 2-hydroxyethyl methacrylate (HEMA), used in dental restorative procedures, is related to apoptotic cell death via oxidative stress. Although the TRPA1 channel is highly sensitive to reactive oxygen species (ROS), the effect of HEMA-induced ROS on ATP release to the extracellular space and the TRPA1 channel has not been clarified in human dental pulp. In this study, we investigated the extracellular ATP signaling and TRPA1 activation by HEMA-derived ROS in immortalized human dental pulp cells (hDPSC-K4DT). Among the ROS-sensitive TRP channels, TRPA1 expression was highest in undifferentiated hDPSC-K4DT cells, and its expression levels were further enhanced by osteogenic differentiation. In differentiated hDPSC-K4DT cells, 30 mM HEMA increased intracellular ROS production and ATP release, although 3 mM HEMA had no effect. Pretreatment with the free radical scavenger PBN (N-tert-butyl-α-phenylnitrone) or TRPA1 antagonist HC-030031 suppressed HEMA-induced responses. These results suggest that ROS production induced by a higher dose of HEMA activates the TRPA1 channel in human dental pulp cells, leading to ATP release. These findings may contribute to the understanding of the molecular and cellular pathogenesis of tertiary dentin formation and pain in response to dental biomaterials.
Collapse
|
7
|
Inhibition of PLK3 Attenuates Tubular Epithelial Cell Apoptosis after Renal Ischemia–Reperfusion Injury by Blocking the ATM/P53-Mediated DNA Damage Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4201287. [PMID: 35783188 PMCID: PMC9249506 DOI: 10.1155/2022/4201287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/18/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
Abstract
Objective Renal ischemia–reperfusion (I/R) injury is a major cause of acute kidney injury (AKI) in transplanted kidneys. This study was aimed at exploring the role of PLK3 (polo-like kinase 3) in renal I/R injury, focusing on its relationship with oxidative stress-induced DNA damage and renal tubular epithelial cell (TEC) apoptosis. Methods TRAP-seq data from the development dataset GSE52004 and the validation dataset GSE121191 were analyzed using GEO2R. PLK3 overexpression plasmids and targeted silencing siRNAs were used in a model of hypoxia/reoxygenation (H/R) injury, and rAAV-9-PLK3-KD were administered to C57BL/6J mice exposed to I/R injury. The ATM-specific inhibitor KU-60019 was used to block the DNA damage response (DDR). Western blotting was performed to measure DDR- and apoptosis-associated protein expression. Cell viability was measured by CCK-8 reagent, and apoptosis was examined by flow cytometry and TUNEL assay. Furthermore, the fluorescent probes H2DCFH-DA and DHE were used to measure ROS production in vitro. The MDA level and SOD activity were measured to assess oxidative stress in vivo. KIM-1 staining and Scr and BUN were used to evaluate kidney injury. Results The mRNA and protein levels of PLK3 were markedly increased in the H/R injury and I/R injury models. GO terms showed that PLK3 was mainly involved in oxidative stress and DNA damage after renal I/R injury. Overexpression of PLK3 decreased cell viability and increased apoptosis. In contrast, targeted silencing of PLK3 expression decreased the Bax/Bcl-2 ratio by decreasing P53 phosphorylation, thereby reducing TEC apoptosis. Furthermore, KU-60019 reduced PLK3 activation and DDR-induced apoptosis, while overexpression of PLK3 reversed the mitigating effect of KU-60019 on TEC apoptosis. Similarly, rAAV-9-PLK3 KD mice exhibited a lower rate of TEC apoptosis and milder renal damage after I/R injury. Conclusion We demonstrate for the first time that PLK3 is involved in oxidative stress-induced DNA damage and TEC apoptosis in renal I/R injury. Inhibition of PLK3 attenuates TEC apoptosis after I/R injury by blocking the ATM/P53-mediated DDR. Therefore, PLK3 may serve as a potential therapeutic target for ischemic AKI.
Collapse
|
8
|
Pan S, Li T, Tan Y, Xu H. Selenium-containing nanoparticles synergistically enhance Pemetrexed&NK cell-based chemoimmunotherapy. Biomaterials 2021; 280:121321. [PMID: 34922271 DOI: 10.1016/j.biomaterials.2021.121321] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/17/2021] [Accepted: 12/11/2021] [Indexed: 12/20/2022]
Abstract
NK cell-based immunotherapy and pemetrexed (Pem)-based chemotherapy have broad application prospects in cancer treatment. However, the over-expressed NK cell inhibitory receptor on the surface of cancer cells and the low cell internalization efficiency of Pem greatly limit their clinical application. Herein, we construct a series of selenium-containing nanoparticles to synergistically enhance Pem-based chemotherapy and NK cell-based immunotherapy. The nanoparticles could deliver Pem to tumor sites and strengthen the chemotherapy efficiency of Pem by seleninic acid, which is produced by the oxidation of β-seleno ester. Moreover, seleninic acid can block the expression of inhibitory receptors against NK cells, thereby activating the immunocompetence of NK cells. The in vitro and in vivo experiments reveal the potential chemo-enhancing and immune-activating mechanism of seleninic acid, emphasizing the promising prospects of this strategy in effective chemoimmunotherapy.
Collapse
Affiliation(s)
- Shuojiong Pan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| | - Yizheng Tan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Huaping Xu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
Li Y, Guo W, Li X, Zhang J, Sun M, Tang Z, Ran W, Yang K, Huang G, Li L. Expert consensus on the clinical application of recombinant adenovirus human p53 for head and neck cancers. Int J Oral Sci 2021; 13:38. [PMID: 34785635 PMCID: PMC8595718 DOI: 10.1038/s41368-021-00145-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/05/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023] Open
Abstract
The first gene therapy product, recombinant adenovirus human p53 (rAd-p53 ), has been approved by CFDA since 2013. During these years, most of the clinical trials and the relevant basic research were carried out by Chinese oncologists. Gendicine was proved to be a safe and promising gene therapy drug for patients who suffered from head and neck squamous cell carcinoma (HNSCC). The basic therapeutic theories of gene therapy were totally different from the traditional ones, such as surgeries or radio- and chemotherapy, and the evaluation of treatment outcomes should also be changed simultaneously. However, there still existed a lot of misunderstandings about gene therapy, which resulted in improper administration, insufficient dosage calculation, and treatment cycles, and the treatment outcomes were unsatisfactory, especially for inexperienced oncologists or hospitals. Therefore, we will provide some practical guidance here on the gene therapy of rAd-p53 based on our previous research and experience, which focused on the basic theories and clinical issues, to answer the questions arising during the clinical of gene therapy and to accelerate the development of gene therapy for the benefit of patients bearing malignant tumors.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Guo
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuqin Li
- Department of Obstetrics and Gynecology, Shengjing Hospital China Medical University, Shenyang, China
| | - Jianguo Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Moyi Sun
- Department of Oral and Maxillofacial Surgery, The Third Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Zhangui Tang
- Department of Oral and Maxillofacial Surgery, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Wei Ran
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kai Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guilin Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Zunyi Medical University, Zunyi, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
A review of three-dimensional printing for pharmaceutical applications: Quality control, risk assessment and future perspectives. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Sun C, Gao S, Tan Y, Zhang Z, Xu H. Side-Chain Selenium-Grafted Polymers Combining Antiangiogenesis Treatment with Photodynamic Therapy and Chemotherapy. ACS Biomater Sci Eng 2021; 7:3201-3208. [PMID: 34096719 DOI: 10.1021/acsbiomaterials.1c00254] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The abnormal tumor vasculature in solid tumors creates hypoxia and leads to compromising the delivery and anticancer efficiency of nanomedicine. Nanomaterials with intrinsic antiangiogenesis ability might normalize tumor vessels and improve the therapeutic effect of O2-related treatment like PDT. Herein, we designed and prepared ROS-responsive side-chain selenium-grafted polymers, which had potential antiangiogenic activity, as vehicles to load photodynamic therapeutic agent Ce6 and chemotherapeutic drug oridonin. Under NIR irradiation, the C-Se bonds on the side chain of polymers could be cleaved in the presence of 1O2 produced by Ce6 and further formed organic selenic acid through selenoxide elimination reaction. The generated seleninic acid could downregulate the expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-2 (MMP-2) to inhibit angiogenesis and further relieve hypoxia. The released oridonin could significantly increase the intracellular ROS concentration. Both could modulate cancer cells' microenvironment to reinforce PDT. Therefore, these nanomedicines could be a good candidate for synergistic treatments of antiangiogenesis treatment, PDT, and chemotherapy.
Collapse
Affiliation(s)
- Chenxing Sun
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 10084, China
| | - Shiqian Gao
- Key Laboratory of Polyoxometalate Science of the Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yizheng Tan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 10084, China
| | - Zhiheng Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 10084, China
| | - Huaping Xu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 10084, China
| |
Collapse
|
12
|
Biocompatibility assessment of resin-based cements on vascularized dentin/pulp tissue-engineered analogues. Dent Mater 2021; 37:914-927. [PMID: 33691992 DOI: 10.1016/j.dental.2021.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/04/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVES A three-dimensional (3D) dentin/pulp tissue analogue, resembling the human natural tissue has been engineered in an in vitro setup, aiming to assess the cytocompatibility of resin-based dental restorative cements. METHODS Stem Cells from Apical Papilla (SCAP) and Human Umbilical Vein Endothelial Cells (HUVEC) were embedded in Collagen-I/Fibrin hydrogels at 1:3 ratio within 24-well plates. Hanging culture inserts were placed over the hydrogels, housing an odontoblast-like cell layer and a human treated-dentin barrier. Shear modulus of the hydrogels at 3.5 and 5 mg/ml was evaluated by dynamic mechanical analysis. Eluates of two resin-based cements, a dual-cure- (Breeze™, Pentron: Cement-1/C1), and a self-adhesive cement (SpeedCEMplus™, Ivoclar-Vivadent: Cement-2/C2) were applied into the dentin/pulp tissue analogue after pre-stimulation with LPS. Cytocompatibility was assessed by MTT assay, live/dead staining and real-time PCR analysis. RESULTS Both hydrogel concentrations showed similar shear moduli to the natural pulp until day (D) 7, while the 5 mg/ml-hydrogel substantially increased stiffness by D14. Both cements caused no significant toxicity to the dentin/pulp tissue analogue. C1 induced stimulation (p < 0.01) of cell viability (158 ± 3%, 72 h), while pre-stimulation with LPS attenuated this effect. C2 (±LPS) caused minor reduction of viability (15-20%, 24 h) that recovered at 72 h for the LPS+ group. Both cements caused upregulation of VEGF, ANGP-1, and downregulation of the respective receptors VEGFR-2 and Tie-1. SIGNIFICANCE Both resin-based cements showed good cytocompatibility and triggered angiogenic response within the dentin/pulp tissue analogue, indicating initiation of pulp repair responses to the released xenobiotics.
Collapse
|
13
|
Zhang J, Ma CR, Hua YQ, Li L, Ni JY, Huang YT, Duncan SE, Li S, Gao S, Fan GW. Contradictory regulation of macrophages on atherosclerosis based on polarization, death and autophagy. Life Sci 2021; 276:118957. [PMID: 33524421 DOI: 10.1016/j.lfs.2020.118957] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
The main pathological feature of atherosclerosis is lipid metabolism disorder and inflammation. Macrophages, as the most important immune cells in the body, run through the beginning and end of disease development. After macrophages overtake the atherosclerosis-susceptible area apolipoprotein low-density lipoprotein ox-LDL, they transform into foam cells that adhere to blood vessels and recruit a large number of pro-inflammatory factors to initiate the disease. Promoting the outflow of lipids in foam cells and alleviating inflammation have become the basic ideas for the study of atherosclerosis treatment strategies. The polarization of macrophages refers to the estimation of the activation of macrophages at a specific point in space and time. Determining the proportion of different macrophage phenotypes in the plaque can help identify delay or prevent disease development. However, the abnormal polarization of macrophages and the accumulation of lipid also affect the growth state of cells to some extent, thus aggravate the influence on plaque area and stability. Besides, overactive or deficient autophagy of macrophages may also lead to cell death and participate in lipid metabolism and inflammation regression. In this paper, the role of macrophages in atherosclerosis was discussed from three aspects: polarization, death, and autophagy.
Collapse
Affiliation(s)
- Jing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chuan-Rui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yun-Qing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jing-Yu Ni
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu-Ting Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Sophia Esi Duncan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Sheng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shan Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guan-Wei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China..
| |
Collapse
|
14
|
Zieniewska I, Maciejczyk M, Zalewska A. The Effect of Selected Dental Materials Used in Conservative Dentistry, Endodontics, Surgery, and Orthodontics as Well as during the Periodontal Treatment on the Redox Balance in the Oral Cavity. Int J Mol Sci 2020; 21:ijms21249684. [PMID: 33353105 PMCID: PMC7767252 DOI: 10.3390/ijms21249684] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress (OS) is a redox homeostasis disorder that results in oxidation of cell components and thus disturbs cell metabolism. OS is induced by numerous internal as well as external factors. According to recent studies, dental treatment may also be one of them. The aim of our work was to assess the effect of dental treatment on the redox balance of the oral cavity. We reviewed literature available in PubMed, Medline, and Scopus databases, including the results from 2010 to 2020. Publications were searched according to the keywords: oxidative stress and dental monomers; oxidative stress and amalgam; oxidative stress and periodontitis, oxidative stress and braces, oxidative stress and titanium; oxidative stress and dental implants, oxidative stress and endodontics treatment, oxidative stress and dental treatment; and oxidative stress and dental composite. It was found that dental treatment with the use of composites, amalgams, glass-ionomers, materials for root canal filling/rinsing, orthodontic braces (made of various metal alloys), titanium implants, or whitening agents can disturb oral redox homeostasis by affecting the antioxidant barrier and increasing oxidative damage to salivary proteins, lipids, and DNA. Abnormal saliva secretion/composition was also observed in dental patients in the course of OS. It is suggested that the addition of antioxidants to dental materials or antioxidant therapy applied during dental treatment could protect the patient against harmful effects of OS in the oral cavity.
Collapse
Affiliation(s)
- Izabela Zieniewska
- Doctoral Studies, Medical University of Bialystok, 24a M. Sklodowskiej-Curie Street, 15-274 Bialystok, Poland
- Correspondence: (I.Z.); (A.Z.)
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 15-022 Bialystok, Poland;
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, 24a M. Sklodowskiej-Curie Street, 15-274 Bialystok, Poland
- Correspondence: (I.Z.); (A.Z.)
| |
Collapse
|
15
|
Schweikl H, Birke M, Gallorini M, Petzel C, Bolay C, Waha C, Hiller KA, Buchalla W. HEMA-induced oxidative stress inhibits NF-κB nuclear translocation and TNF release from LTA- and LPS-stimulated immunocompetent cells. Dent Mater 2020; 37:175-190. [PMID: 33303231 DOI: 10.1016/j.dental.2020.10.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/05/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The release of inflammatory cytokines from antigen-stimulated cells of the immune system is inhibited by resin monomers such as 2-hydroxyethyl methacrylate (HEMA). Although the formation of oxidative stress in cells exposed to HEMA is firmly established, the mechanism behind the inhibited cytokine secretion is only partly known. The present investigation presents evidence regarding the role of HEMA-induced oxidative stress in the secretion of the pro-inflammatory cytokine TNFα from cells exposed to the antigens LTA (lipoteichoic acid) or LPS (lipopolysaccharide) of cariogenic microorganisms using BSO (L-buthionine sulfoximine) or NAC (N-acetyl cysteine) to inhibit or stabilize the amounts of the antioxidant glutathione. METHOD RAW264.7 mouse macrophages were treated with LTA, LPS or HEMA in the presence of BSO or NAC for 1h or 24h. Secretion of TNFα from cell cultures was analyzed by ELISA, and the formation of reactive oxygen (ROS) or nitrogen species (RNS) was determined by flow cytometry. Protein expression was detected by Western blotting. RESULTS The release of TNFα in both LTA- and LPS-exposed cells was decreased by HEMA, and this concentration-dependent inhibitory effect was amplified by BSO or NAC. LTA- and LPS-stimulated expression of the redox-sensitive transcription factor NF-αB (p65) in cell nuclei decreased in the presence of HEMA because the translocation of p65 from the cytosol was prevented by oxidative stress specifically increased by the monomer. CONCLUSIONS A disturbance of the cellular redox balance, particularly induced by HEMA, is a crucial factor in the inhibition of LTA- and LPS-stimulated signalling pathways leading to TNFα secretion.
Collapse
Affiliation(s)
- Helmut Schweikl
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, D-93042 Regensburg, Germany.
| | - Margaritha Birke
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, D-93042 Regensburg, Germany
| | - Marialucia Gallorini
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, D-93042 Regensburg, Germany; Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Christine Petzel
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, D-93042 Regensburg, Germany
| | - Carola Bolay
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, D-93042 Regensburg, Germany
| | - Claudia Waha
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, D-93042 Regensburg, Germany
| | - Karl-Anton Hiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, D-93042 Regensburg, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, D-93042 Regensburg, Germany
| |
Collapse
|
16
|
Taubmann A, Willershausen I, Walter C, Al-Maawi S, Kaina B, Gölz L. Genotoxic and cytotoxic potential of methacrylate-based orthodontic adhesives. Clin Oral Investig 2020; 25:2569-2581. [PMID: 32970196 PMCID: PMC8060203 DOI: 10.1007/s00784-020-03569-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/03/2020] [Indexed: 01/01/2023]
Abstract
Objectives The biocompatibility of methacrylate-based adhesives is a topic that is intensively discussed in dentistry. Since only limited evidence concerning the cyto- and genotoxicity of orthodontic adhesives is available, the aim of this study was to measure the genotoxic potential of seven orthodontic methacrylate-based adhesives. Materials and methods The XTT assay was utilized to determine the cytotoxicity of Assure Plus, Assure Bonding Resin, ExciTE F, OptiBond Solo Plus, Scotchbond Universal Adhesive, Transbond MIP, and Transbond XT after an incubation period of 24 h on human gingival fibroblasts. We also performed the γH2AX assay to explore the genotoxic potential of the adhesives within cytotoxic dose ranges after an incubation period of 6 h. Results The XTT assay showed a concentration-dependent reduction in cell viability. The decrease in cellular viability was in the same dose range most significant for Assure Plus, rendering it the adhesive material with the highest cytotoxicity. Employing the γH2AX assay, a concentration-dependent increase in H2AX phosphorylation was detected, indicating induction of DNA damage. Conclusions For most products, a linear correlation between the material concentration and γH2AX foci was observed. The most severe effect on γH2AX focus induction was found for Transbond MIP, which was the only adhesive in the test group containing the co-initiator diphenyliodonium hexafluorophosphate (DPIHP). Clinical relevance The data indicate that orthodontic adhesives, notably Transbond MIP, bear a genotoxic potential. Since the study was performed with in vitro cultivated cells, a direct translation of the findings to in vivo exposure conditions should be considered with great diligence.
Collapse
Affiliation(s)
- Andreas Taubmann
- Department of Operative Dentistry, Johannes Gutenberg University Hospital Mainz, Mainz, Germany
| | - Ines Willershausen
- Department of Orthodontics and Orofacial Orthopedics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | | | - Sarah Al-Maawi
- Frankfurt Orofacial Regenerative Medicine (FORM) Lab, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Lina Gölz
- Department of Orthodontics and Orofacial Orthopedics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
17
|
Pituru SM, Greabu M, Totan A, Imre M, Pantea M, Spinu T, Tancu AMC, Popoviciu NO, Stanescu II, Ionescu E. A Review on the Biocompatibility of PMMA-Based Dental Materials for Interim Prosthetic Restorations with a Glimpse into their Modern Manufacturing Techniques. MATERIALS 2020; 13:ma13132894. [PMID: 32605174 PMCID: PMC7372356 DOI: 10.3390/ma13132894] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022]
Abstract
This paper's primary aim is to outline relevant aspects regarding the biocompatibility of PMMA (poly(methyl methacrylate))-based materials used for obtaining interim prosthetic restorations, such as the interaction with oral epithelial cells, fibroblasts or dental pulp cells, the salivary oxidative stress response, and monomer release. Additionally, the oral environment's biochemical response to modern interim dental materials containing PMMA (obtained via subtractive or additive methods) is highlighted in this review. The studies included in this paper confirmed that PMMA-based materials interact in a complex way with the oral environment, and therefore, different concerns about the possible adverse oral effects caused by these materials were analyzed. Adjacent to these aspects, the present work describes several advantages of PMMA-based dental materials. Moreover, the paper underlines that recent scientific studies ascertain that the modern techniques used for obtaining interim prosthetic materials, milled PMMA, and 3D (three-dimensional) printed resins, have distinctive advantages compared to the conventional ones. However, considering the limited number of studies focusing on the chemical composition and biocompatibility of these modern interim prosthetic materials, especially for the 3D printed ones, more aspects regarding their interaction with the oral environment need to be further investigated.
Collapse
Affiliation(s)
- Silviu Mirel Pituru
- Department of Professional Organization and Medical Legislation-Malpractice, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.G.); (A.T.)
| | - Alexandra Totan
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.G.); (A.T.)
| | - Marina Imre
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.); (A.M.C.T.)
| | - Mihaela Pantea
- Department of Fixed Prosthodontics and Occlusology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence: (M.P.); (T.S.)
| | - Tudor Spinu
- Department of Fixed Prosthodontics and Occlusology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence: (M.P.); (T.S.)
| | - Ana Maria Cristina Tancu
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.); (A.M.C.T.)
| | - Nicoleta Olivia Popoviciu
- Department of Orthodontics and Dento-Facial Orthopedics, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (N.O.P.); (E.I.)
| | - Iulia-Ioana Stanescu
- Department of Physiology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Ecaterina Ionescu
- Department of Orthodontics and Dento-Facial Orthopedics, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (N.O.P.); (E.I.)
| |
Collapse
|
18
|
Sun C, Wang L, Xianyu B, Li T, Gao S, Xu H. Selenoxide elimination manipulate the oxidative stress to improve the antitumor efficacy. Biomaterials 2019; 225:119514. [DOI: 10.1016/j.biomaterials.2019.119514] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 11/29/2022]
|
19
|
Hadjichristou C, Papachristou E, Bonovolias I, Bakopoulou A. Three-dimensional tissue engineering-based Dentin/Pulp tissue analogue as advanced biocompatibility evaluation tool of dental restorative materials. Dent Mater 2019; 36:229-248. [PMID: 31791732 DOI: 10.1016/j.dental.2019.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/04/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Two-dimensional (2D) in vitro models have been extensively utilized for cytotoxicity assessment of dental materials, but with certain limitations in terms of direct in vitro-in vivo extrapolation (IVIVE). Three-dimensional (3D) models seem more appropriate, recapitulating the structure of human tissues. This study established a 3D dentin/pulp analogue, as advanced cytotoxicity assessment tool of dental restorative materials (DentCytoTool). METHODS DentCytoTool comprised two compartments: the upper, representing the dentin component, with a layer of odontoblast-like cells expanded on microporous membrane of a cell culture insert and covered by a treated dentin matrix; and the lower, representing a pulp analogue, incorporating HUVEC/SCAP co-cultures into collagen I/fibrin hydrogels. Representative resinous monomers (HEMA: 1-8mM; TEGDMA: 0.5-5mM) and bacterial components (LPS: 1μg/ml) were applied into the construct. Cytotoxicity was assessed by MTT and LDH assays, live/dead staining and real-time PCR for odontogenesis- and angiogenesis-related markers. RESULTS DentCytoTool supported cell viability and promoted capillary-like network formation inside the pulp analogue. LPS induced expression of odontogenesis-related markers (RUNX2, ALP, DSPP) without compromising viability of the odontoblast-like cells, while co-treatment with LPS and resin monomers induced cytotoxic effects (live/dead staining, MTT and LDH assays) in cells of both upper and lower compartments and reduced expression angiogenesis-related markers (VEGF, VEGFR2, ANGPT-1, Tie-2, PECAM-1) in a concentration- and time- dependent manner. LPS treatment aggravated TEGDMA-induced and -in certain concentrations (2-4mM)- HEMA-induced cytotoxicity. SIGNIFICANCE DentCytoTool represents a promising tissue-engineering-based cytotoxicity assessment tool, providing more insight into the mechanistic aspects of interactions of dental materials to the dentin/pulp complex.
Collapse
Affiliation(s)
- Christina Hadjichristou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), GR-54124 Thessaloniki, Greece
| | - Eleni Papachristou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), GR-54124 Thessaloniki, Greece
| | - Ioannis Bonovolias
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), GR-54124 Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), GR-54124 Thessaloniki, Greece.
| |
Collapse
|
20
|
Zhang Y, Xiao JF, Yang HF, Jiao Y, Cao WW, Shi HM, Cun JF, Tay FR, Ping J, Xiao YH. N-Acetyl Cysteine as a Novel Polymethyl Methacrylate Resin Component: Protection against Cell Apoptosis and Genotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1301736. [PMID: 31636802 PMCID: PMC6766130 DOI: 10.1155/2019/1301736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
The present study investigated the antiapoptotic and antigenotoxic capabilities of N-acetyl cysteine- (NAC-) containing polymethyl methacrylate (PMMA) resin. An in vitro Transwell insert model was used to mimic the clinical provisional restorations placed on vital teeth. Various parameters associated with cell apoptosis and genotoxicity were investigated to obtain a deeper insight into the underlying mechanisms. The exposure of human dental pulp cell (hDPC) cultures to the PMMA resin (Unifast Trad™) resulted in a rapid increase in reactive oxygen species (ROS) level beginning at 1 h, which was followed by time-dependent cell detachment and overt death. The formation of γ-H2AX and cell cycle G1 phase arrest indicated that oxidative DNA damage occurred as a result of the interactions between DNA bases and ROS, beyond the capacities of cellular redox regulation. Such oxidative DNA damage triggers the activation of p53 via the ataxia telangiectasia mutated (ATM) signaling pathway and the induction of intrinsic mitochondrial apoptosis. Oxidative stress, cell apoptosis, and DNA damage induced by the PMMA resin were recovered to almost the level of untreated controls by the incorporation of NAC. The results indicate that the PMMA resin induced the intrinsic mitochondrial apoptosis as a consequence of p53 activation via the ATM pathway in response to oxidative DNA damage. More importantly, the incorporation of NAC as a novel component into the Unifast Trad™ PMMA resin offers protective effects against cell apoptosis and genotoxicity. This procedure represents a beneficial strategy for developing more biocompatible PMMA-based resin materials.
Collapse
Affiliation(s)
- Yu Zhang
- The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, China
| | - Jian-feng Xiao
- The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, China
| | - He-feng Yang
- The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, China
| | - Yang Jiao
- Department of Stomatology, The 7th Medical Center of PLA General Hospital, Beijing, China
| | | | - Huan-min Shi
- The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, China
| | - Jing-fen Cun
- The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, China
| | - Franklin R. Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Jie Ping
- Department of Medical Administration, The 7th Medical Center of PLA General Hospital, Beijing, China
| | - Yu-hong Xiao
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force, Kunming, China
| |
Collapse
|
21
|
Jiao Y, Niu T, Liu H, Tay FR, Chen JH. Protection against HEMA-Induced Mitochondrial Injury In Vitro by Nrf2 Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3501059. [PMID: 31089407 PMCID: PMC6476051 DOI: 10.1155/2019/3501059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 01/09/2023]
Abstract
Dental resin monomers such as 2-hydroxyethyl methacrylate (HEMA) disturb vital cell functions and induce mitochondrial intrinsic apoptosis via generation of oxidative stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the gene expression of antioxidative enzymes and plays a crucial role in the maintenance of cellular redox equilibrium and mitochondrial homeostasis. The present study investigated the functional significance of Nrf2 in cellular response toward HEMA. It was found that HEMA stimulation promoted nuclear translocation of Nrf2 and increased Nrf2 and heme oxygenase-1 (HO-1) expression, which was further enhanced by Nrf2 activator tert-butylhydroquinone (tBHQ), but suppressed by Nrf2 inhibitor ML385. Pretreatment of primary human dental pulp cells (hDPCs) with tBHQ protected the cells from HEMA-induced oxidative injury (increased reactive oxygen species production and apoptosis) and mitochondrial impairment (morphological alterations, decreased ATP production, suppressed oxidative phosphorylation activity, depolarization of mitochondrial membrane potential, and disrupted electron transport chain). In contrast, pretreatment with ML385 increased cell sensitivity to these injurious processes. This protective effect on mitochondria could be related to peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α)/nuclear respiratory factor 1 (NRF1) pathway. These results contribute to the understanding of the function of Nrf2 and the development of novel therapies to counteract the adverse effects of dental resin monomers.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Stomatology, the 7th Medical Center of PLA General Hospital, Beijing 100700, China
| | - Tao Niu
- The Affiliated Stomatological Hospital of Kunming Medical University, Kunming 650000, China
| | - Huan Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China
| | - Franklin R. Tay
- Department of Endodontics, the Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ji-hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
22
|
Sb H, X J, Qh Y, Xr Z, Bb Z, Kh W, Xy S, Yt C, Xr R, Jf M, G W, Yh P. The vicious circle between mitochondrial oxidative stress and dynamic abnormality mediates triethylene glycol dimethacrylate-induced preodontoblast apoptosis. Free Radic Biol Med 2019; 134:644-656. [PMID: 30776408 DOI: 10.1016/j.freeradbiomed.2019.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Abstract
Oxidative stress (OS) plays crucial roles in triethylene glycol dimethacrylate (TEGDMA, a major component in dental resin)-induced apoptosis of dental pulp cells. Mitochondria are important target organelles for regulating the balance of OS, meanwhile, imbalance of the mitochondrial dynamic associated with mitochondrial dysfunction is one major molecular mechanism for oxidative damages. However, whether these mitochondrial dependent pathways were involved in the apoptosis of dental pulp cells induced by TDGDMA remains unclarified. We demonstrated that TEGDMA decreased viability and induced apoptosis of mouse preodontoblasts (mDPC6T cell line) in a time- and dose-dependent manner. Furthermore, TEGDMA elevated the mitochondrial OS status and induced mitochondrial dysfunction, as reflected by the significant decrease of mitochondrial membrane potential, ATP production, the activity of Complex III and citrate synthase. In this process, we detected a dramatically impaired mitochondrial dynamic that was reflected by significantly enhanced mitochondrial fragmentation. Consistently, we also found a significant enhancement of the key upstream regulators for mitochondrial fission, such as short form of optic atrophy 1, dynamic related protein 1 oligomer and Fission 1. The respective inhibition of mitochondrial OS or mitochondrial fission could mutually attenuate each other, thereby significantly preventing both mitochondrial dysfunction and cell apoptosis. In conclusion, TEGDMA-induced preodontoblasts apoptosis was mediated by the vicious circle between mitochondrial OS and dynamic abnormality, which represented a new target to prevent TEGDMA-induced dental pulp cells apoptosis.
Collapse
Affiliation(s)
- Huang Sb
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China; Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China; Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, 1081 LA, the Netherlands.
| | - Jin X
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Yu Qh
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Zhang Xr
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Zheng Bb
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Wang Kh
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Sun Xy
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Chen Yt
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Ren Xr
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Ma Jf
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China; Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Wu G
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, 1081 LA, the Netherlands.
| | - Pan Yh
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.
| |
Collapse
|
23
|
Perduns R, Volk J, Schertl P, Leyhausen G, Geurtsen W. HEMA modulates the transcription of genes related to oxidative defense, inflammatory response and organization of the ECM in human oral cells. Dent Mater 2019; 35:501-510. [DOI: 10.1016/j.dental.2019.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/19/2018] [Accepted: 01/11/2019] [Indexed: 12/21/2022]
|
24
|
Becher R, Valen H, Olderbø BP, Bølling AK, Samuelsen JT. The dental monomer 2-hydroxyethyl methacrylate (HEMA) causes transcriptionally regulated adaptation partially initiated by electrophilic stress. Dent Mater 2019; 35:125-134. [DOI: 10.1016/j.dental.2018.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022]
|
25
|
Medvedev A, Moeser M, Medvedeva L, Martsen E, Granick A, Raines L, Zeng M, Makarov S, Houck KA, Makarov SS. Evaluating biological activity of compounds by transcription factor activity profiling. SCIENCE ADVANCES 2018; 4:eaar4666. [PMID: 30263952 PMCID: PMC6157966 DOI: 10.1126/sciadv.aar4666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 08/21/2018] [Indexed: 05/30/2023]
Abstract
Assessing the biological activity of compounds is an essential objective of biomedical research. We show that one can infer the bioactivity of compounds by assessing the activity of transcription factors (TFs) that regulate gene expression. Using a multiplex reporter system, the FACTORIAL, we characterized cell response to a compound by a quantitative signature, the TF activity profile (TFAP). We found that perturbagens of biological pathways elicited distinct TFAP signatures in human cells. Unexpectedly, perturbagens of the same pathway all produced identical TFAPs, regardless of where or how they interfered. We found invariant TFAPs for mitochondrial, histone deacetylase, and ubiquitin/proteasome pathway inhibitors; cytoskeleton disruptors; and DNA-damaging agents. Using these invariant signatures permitted straightforward identification of compounds with specified bioactivities among uncharacterized chemicals. Furthermore, this approach allowed us to assess the multiple bioactivities of polypharmacological drugs. Thus, TF activity profiling affords straightforward assessment of the bioactivity of compounds through the identification of perturbed biological pathways.
Collapse
Affiliation(s)
| | - Matt Moeser
- Attagene Inc., P.O. Box 12054, Research Triangle Park, NC 27709, USA
| | - Liubov Medvedeva
- Attagene Inc., P.O. Box 12054, Research Triangle Park, NC 27709, USA
| | - Elena Martsen
- Attagene Inc., P.O. Box 12054, Research Triangle Park, NC 27709, USA
| | - Alexander Granick
- Attagene Inc., P.O. Box 12054, Research Triangle Park, NC 27709, USA
| | - Lydia Raines
- Attagene Inc., P.O. Box 12054, Research Triangle Park, NC 27709, USA
| | - Ming Zeng
- Attagene Inc., P.O. Box 12054, Research Triangle Park, NC 27709, USA
| | - Sergei Makarov
- Attagene Inc., P.O. Box 12054, Research Triangle Park, NC 27709, USA
| | - Keith A. Houck
- U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, D343-03, Research Triangle Park, NC 27711, USA
| | - Sergei S. Makarov
- Attagene Inc., P.O. Box 12054, Research Triangle Park, NC 27709, USA
| |
Collapse
|
26
|
Wang F, Zhang L, Bai X, Cao X, Jiao X, Huang Y, Li Y, Qin Y, Wen Y. Stimuli-Responsive Nanocarrier for Co-delivery of MiR-31 and Doxorubicin To Suppress High MtEF4 Cancer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22767-22775. [PMID: 29897733 DOI: 10.1021/acsami.8b07698] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Gene interference-based therapeutics represent a fascinating challenge and show enormous potential for cancer treatment, in which microRNA is used to correct abnormal gene. On the basis of the above, we introduced microRNA-31 to bind to 3'-untranslated region of mtEF4, resulting in the downregulation of its messenger RNA and protein to trigger cancer cells apoptosis through mitochondria-related pathway. To achieve better therapeutic effect, a mesoporous silica nanoparticle-based controlled nanoplatform had been developed. This system was fabricated by conjugation of microRNA-31 onto doxorubicin-loaded mesoporous silica nanoparticles with a poly(ethyleneimine)/hyaluronic acid coating, and drug release was triggered by acidic environment of tumors. By feat of surface functionalization and tumor-specific conjugation to nanoparticles, our drug delivery system could promote intracellular accumulation of drugs via the active transport at tumor site. More importantly, microRNA-31 not only directly targeted to mtEF4 to promote cell's death, but had synergistic effects when used in combination with doxorubicin, and achieved excellent superadditive effects. As such, our research might provide new insights toward detecting high mtEF4 cancer and exploiting highly effective anticancer drugs.
Collapse
Affiliation(s)
- Fang Wang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
| | - Lingyun Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiufeng Bai
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
| | - Xintao Cao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiangyu Jiao
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - Yan Huang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - Yansheng Li
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - Yan Qin
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yongqiang Wen
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| |
Collapse
|
27
|
Carve M, Wlodkowic D. 3D-Printed Chips: Compatibility of Additive Manufacturing Photopolymeric Substrata with Biological Applications. MICROMACHINES 2018; 9:E91. [PMID: 30393367 PMCID: PMC6187525 DOI: 10.3390/mi9020091] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 12/21/2022]
Abstract
Additive manufacturing (AM) is ideal for building adaptable, structurally complex, three-dimensional, monolithic lab-on-chip (LOC) devices from only a computer design file. Consequently, it has potential to advance micro- to milllifluidic LOC design, prototyping, and production and further its application in areas of biomedical and biological research. However, its application in these areas has been hampered due to material biocompatibility concerns. In this review, we summarise commonly used AM techniques: vat polymerisation and material jetting. We discuss factors influencing material biocompatibility as well as methods to mitigate material toxicity and thus promote its application in these research fields.
Collapse
Affiliation(s)
- Megan Carve
- School of Science, RMIT University, Melbourne, VIC 3083, Australia.
| | - Donald Wlodkowic
- School of Science, RMIT University, Melbourne, VIC 3083, Australia.
- Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, VIC 3083, Australia.
| |
Collapse
|
28
|
Qian QZ, Cao XK, Liu HY, Zheng GY, Qian QQ, Shen FH. TNFR/TNF-α signaling pathway regulates apoptosis of alveolar macrophages in coal workers' pneumoconiosis. Oncotarget 2018; 9:1302-1310. [PMID: 29416696 PMCID: PMC5787440 DOI: 10.18632/oncotarget.18921] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 05/23/2017] [Indexed: 12/11/2022] Open
Abstract
We explored the role of TNFR/TNF-α signalingin apoptosis among alveolar macrophages (AM) and its relevance to the development of coal workers' pneumoconiosis (CWP). Purified alveolar macrophages (AMs) were prepared from bronchoalveolar lavage fluid harvested from 366 CWP patients and 120 healthy subjects enrolled inthe study. The purified AMs were then divided into control, SOD, anti-TNFR, TNFR and NFkB inhibitor groups and analyzed for apoptosis usingflow cytometry (sub-diploid peak) and western blotting (Bcl-2, Caspase-3 and Caspase-8 expression). We found thatAM apoptosis washigher amongCWP patients than thehealthycontrols. Expression ofBcl-2, Caspase-3 and Caspase-8 was higher inAMs from CWP patientsthan in those from the controlsand correlated with increased AM apoptosis. Univariate and multivariate analyses suggested that CWP grade, initial exposure time, exposure time inyears, and CWP onset agewereall associated with altered levels of Bcl-2, Caspase-3 and Caspase-8. Inhibition of TNFR/TNF-α signaling usinganti-TNFR antibody, SOD or NFkB inhibitionreduced AM apoptosisand decreased Bcl-2, Caspase-3 and Caspase-8 expression. These data suggestinhibition of a TNFR/TNF-α signaling pathway is a potentiallyeffective means ofalleviating CWP by inhibiting AM apoptosis.
Collapse
Affiliation(s)
- Qing-Zeng Qian
- School of Public Health, North China University of Science and Technology, Tangshan 063000, P.R. China
| | - Xiang-Ke Cao
- College of Life Sciences, North China University of Science and Technology, Tangshan 063000, P.R. China
| | - Hai-Yan Liu
- School of Public Health, North China University of Science and Technology, Tangshan 063000, P.R. China
| | - Guo-Ying Zheng
- School of Public Health, North China University of Science and Technology, Tangshan 063000, P.R. China
| | - Qing-Qiang Qian
- Department of Neurology, Tangshan Gongren Hospital Affiliated to North China University of Science and Technology, Tangshan 063000, P.R. China
| | - Fu-Hai Shen
- School of Public Health, North China University of Science and Technology, Tangshan 063000, P.R. China
| |
Collapse
|
29
|
Fernandes AMM, Vilela PGF, Valera MC, Bolay C, Hiller KA, Schweikl H, Schmalz G. Effect of bleaching agent extracts on murine macrophages. Clin Oral Investig 2017; 22:1771-1781. [PMID: 29196947 DOI: 10.1007/s00784-017-2273-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 11/07/2017] [Indexed: 01/14/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the cytotoxicity and the influence of bleaching agents on immunologically cell surface antigens of murine macrophages in vitro. MATERIALS AND METHODS RAW 264.7 cells were exposed to bleaching gel extracts (40% hydrogen peroxide or 20% carbamide peroxide) and different H2O2 concentrations after 1 and 24-h exposure periods and 1-h exposure and 23-h recovery. Tests were performed with and without N-acetyl cysteine (NAC) and buthionine sulfoximine (BSO). Cell viability was determined by MTT assay. The expression of surface markers CD14, CD40, and CD54 with and without LPS stimulation was detected by flow cytometry, while the production of TNF-α was measured by ELISA. Statistical analysis was performed using the Mann-Whitney U test (α = 0.05). RESULTS Extracts of bleaching agents were cytotoxic for cells after a 1-h exposure; cells could not recover after 24 h. This effect can be mitigated by the antioxidant NAC and increased by BSO, an inhibitor of glutathione (GSH) synthesis. LPS stimulated expression of all surface markers and TNF-α production. Exposure to bleaching agent extracts and H2O2 leads to a reduction of TNF-α, CD14, and CD40 expression, while the expression of CD54 was upregulated at non-cytotoxic concentrations. Whereas NAC reduced this effect, it was increased in the presence of BSO. CONCLUSIONS Extracts of bleaching agents were irreversibly cytotoxic to macrophages after a 1-h exposure. Only the expression of CD54 was upregulated. The reactions are mediated by the non-enzymatic antioxidant GSH. CLINICAL RELEVANCE The addition of an antioxidant can downregulate unfavorable effects of dental bleaching.
Collapse
Affiliation(s)
- Aletéia M M Fernandes
- Department of Health Sciences, Endodontics Division, Nove de Julho University (UNINOVE), São Paulo, Brazil.,Department of Health Sciences, Anatomy and Pathology Division, Anhanguera University, Vergueiro, 235/249-Liberdade, São Paulo, SP, 01504-000, Brazil
| | - Polyana G F Vilela
- Department of Bioscience and Oral Diagnosis, Microbiology Division, São José dos Campos Dental School, State University of São Paulo, UNESP, Av. Eng. Francisco José Longo, 777-Jardim Sao Dimas, São José dos Campos, SP, 12245-000, Brazil
| | - Marcia C Valera
- Department of Restorative Dentistry, Endodontic Division, São José dos Campos Dental School, State University of São Paulo UNESP, Av. Eng. Francisco José Longo, 777-Jardim Sao Dimas, São José dos Campos, SP, 12245-000, Brazil
| | - Carola Bolay
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Karl Anton Hiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Helmut Schweikl
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Gottfried Schmalz
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany. .,Department of Periodontology, University of Bern, Freiburgstrasse 7, CH-3010, Bern, Switzerland.
| |
Collapse
|
30
|
Yang Y, Reichl FX, Shi J, He X, Hickel R, Högg C. Cytotoxicity and DNA double-strand breaks in human gingival fibroblasts exposed to eluates of dental composites. Dent Mater 2017; 34:201-208. [PMID: 29042079 DOI: 10.1016/j.dental.2017.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/07/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Previously, single composite components were used to study cytotoxicity and induction of DNA double-strand breaks (DNA-DSBs) of dental composite resins. In the present study, cytotoxicity and induction of DNA-DSBs in human gingival fibroblasts (HGFs) were investigated with dental composite eluates consisting of multiple components. The eluates were qualified and quantified. METHODS The composites Esthet.X® HD, Venus®, X-tra fil®, CLEARFIL™ AP-X, Admira® Fusion and QuiXfil® were polymerized and immersed into Dulbecco's modified Eagle's medium (DMEM) for 72h. Subsequently, HGFs were incubated with the corresponding composite eluates. The cell viability of HGFs was obtained from an XTT assay. DNA-DSBs were determined using a γ-H2AX assay. The qualification and quantification of eluates were performed by gas chromatography/mass spectrometry (GC/MS). RESULTS HGFs exposed to the eluates of all investigated composites showed no significant loss of cell viability, compared to negative control. Significant DNA-DSBs induction could be found in HGFs exposed to the eluates of Esthet.X® HD (0.43±0.05 foci/cell) and Venus® (0.39±0.04 foci/cell), compared to control (0.22±0.03 foci/cell). A total of 12 substances were detected from the investigated composite eluates. Five of them were methacrylates: tetraethyleneglycol dimethacrylate (TEGDMA), 2-hydroxyethyl methacrylate (HEMA), hydroxypropyl methacrylate (HPMA), ethyleneglycol dimethacrylate (EGDMA) and trimethylolpropane trimethacrylate (TMPTMA). The highest concentration of HEMA (110.5μM), HPMA (86.08μM) and TMPTMA (4.50μM) was detected in the eluates of QuiXfil®. The highest concentration of TEGDMA was 1080μM in Venus® eluates and the highest concentration of EGDMA was 3.18μM in Esthet.X® HD eluates. SIGNIFICANCE Significant DNA-DSBs induction can be found in HGFs exposed to the eluates of Esthet.X® HD and Venus®. The interactive effects among released (co)monomers and additives may influence the cytotoxicity and induction of DNA-DSBs, compared to exposure with single composite component.
Collapse
Affiliation(s)
- Yang Yang
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University of Munich, Nußbaumstr. 26, 80336 Munich, Germany
| | - Franz-Xaver Reichl
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University of Munich, Nußbaumstr. 26, 80336 Munich, Germany
| | - Jianwei Shi
- Department of Orthodontics, Ludwig-Maximilians-University of Munich, Goethestr. 70, 80336 Munich, Germany
| | - Xiuli He
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University of Munich, Nußbaumstr. 26, 80336 Munich, Germany
| | - Reinhard Hickel
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Germany
| | - Christof Högg
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University of Munich, Nußbaumstr. 26, 80336 Munich, Germany.
| |
Collapse
|
31
|
Styllou P, Styllou M, Hickel R, Högg C, Reichl FX, Scherthan H. NAC ameliorates dental composite-induced DNA double-strand breaks and chromatin condensation. Dent Mater J 2017; 36:638-646. [PMID: 28747595 DOI: 10.4012/dmj.2016-316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Released (co)monomers from dental composite components can induce DNA damage of which DNA double-strand breaks (DSBs) threaten genome integrity. Here, we tested whether the administration of the antioxidant N-acetylcysteine (NAC) is able to reduce the dental composite-induced DSBs in primary human gingiva fibroblasts. The dental composites Bis-GMA (bisphenol-A-glycerolate dimethacrylate), GMA (glycidyl methacrylate), HEMA (2-hydroxyethyl methacrylate) and TEGDMA (triethyleneglycol dimethacrylate) were found to induce co-localizing microscopic nuclear foci numbers of the DSB markers γ-H2AX and 53BP1 per cell in the order: GMA>Bis-GMA>TEGDMA>HEMA. Supplementation of (co)monomer-containing culture medium with NAC led to a significant reduction of resin-induced DSBs as well as to an amelioration of dental monomer-induced nuclear chromatin condensation in gingival fibroblasts. Thus, antioxidant treatment can reduce radical-induced chromatin and DNA damage and open avenues to mitigate genotoxic effects of dental composite compounds.
Collapse
Affiliation(s)
- Panorea Styllou
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-University of Munich.,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University of Munich
| | - Marianthi Styllou
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-University of Munich.,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University of Munich
| | - Reinhard Hickel
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-University of Munich
| | - Christof Högg
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-University of Munich.,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University of Munich
| | - Franz Xaver Reichl
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-University of Munich.,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University of Munich
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology affil. to the University of Ulm
| |
Collapse
|
32
|
Jagdish SK, Ganeshkumar A, Shakila R, Singh S, Jesudas B, Karthikeyan S. Effect of isobutyl methacrylate and methacrylic acid eluted from chairside denture hard reliners on enzymatic cellular antioxidants: An in vitro study in human primary buccal mucosal fibroblasts. J Indian Prosthodont Soc 2017; 17:189-195. [PMID: 28584421 PMCID: PMC5450898 DOI: 10.4103/jips.jips_282_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/27/2017] [Indexed: 01/08/2023] Open
Abstract
AIM This study was conducted with the objective to evaluate the cytotoxicity of monomers isobutyl methacrylate (IBMA) and methacrylic acid (MA) in human buccal mucosal fibroblast primary cell culture and to study their effect on cellular enzymatic antioxidants-glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT). MATERIALS AND METHODS The tissue for fibroblast cell culture was harvested from oral buccal mucosa of a healthy donor. Fibroblast cells were plated at a density of 1 × 104 cells per well in 96-well tissue culture plates. Cells were exposed to various concentrations of IBMA and MA. The cell viability and various enzyme activities were evaluated 24 h after exposure to the above treatments. All tests were done in triplicate. Cell viability was assessed by trypan blue dye exclusion assay and all enzyme activities were done using assay kits from Cayman Chemicals, Ann Arbor, USA. RESULTS At all concentrations tested a statistically significant decrease in viability was observed in IBMA- and MA-treated cells. Around 42% cells were viable at the highest test concentration of IBMA (80 μmol/L) and only 20% cells were viable at the highest dose (144 μmol/L) of MA exposure (P < 0.05). Dose-dependent decrease in the GPx and SOD activities was observed in cells treated with IBMA and MA (P < 0.05). CAT activity was not detectable in the controls. However, a fall in CAT activity was detected in cells exposed to IBMA and MA at all concentrations tested (P < 0.05). CONCLUSION IBMA and MA leaching out from the chairside denture hard reliners are cytotoxic on human buccal fibroblast primary cell cultures. This could be due to the oxidative stress caused by the generation of reactive oxygen species which is evidenced by the fall in activities of antioxidant enzymes (GPx, SOD, and CAT) and cytotoxicity.
Collapse
Affiliation(s)
| | - Anbazhagan Ganeshkumar
- Department of Microbiology, Hindustan College of Arts and Science, Padur, Chennai, Tamil Nadu, India
| | - Rajaraman Shakila
- Department of Prosthodontics and Implantology, Mahatma Gandhi Postgraduate Institute of Dental Sciences, Puducherry (UT), Tamil Nadu, India
| | - Shyam Singh
- Director of Postgraduate Studies, Maharana Pratap College of Dentistry and Research Centre, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Balasubramanian Jesudas
- Department of Pharmacology and Environmental Toxicology, Dr. ALM P. G. Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - Sivanesan Karthikeyan
- Department of Pharmacology and Environmental Toxicology, Dr. ALM P. G. Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
33
|
Cell responses to cariogenic microorganisms and dental resin materials—Crosstalk at the dentin-pulp interface? Dent Mater 2017; 33:514-524. [DOI: 10.1016/j.dental.2017.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 12/22/2022]
|
34
|
Flavin-containing enzymes as a source of reactive oxygen species in HEMA-induced apoptosis. Dent Mater 2017; 33:e255-e271. [DOI: 10.1016/j.dental.2017.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/02/2017] [Accepted: 01/31/2017] [Indexed: 12/18/2022]
|
35
|
Yu JJ, Zhu LX, Zhang J, Liu S, Lv FY, Cheng X, Liu GJ, Peng B. From the Cover: Activation of NF-κB-Autophagy Axis by 2-Hydroxyethyl Methacrylate Commits Dental Mesenchymal Cells to Apoptosis. Toxicol Sci 2017; 157:100-111. [DOI: 10.1093/toxsci/kfx023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
36
|
Yang Y, He X, Shi J, Hickel R, Reichl FX, Högg C. Effects of antioxidants on DNA double-strand breaks in human gingival fibroblasts exposed to dental resin co-monomer epoxy metabolites. Dent Mater 2017; 33:418-426. [PMID: 28185677 DOI: 10.1016/j.dental.2017.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/03/2017] [Accepted: 01/18/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Eluted dental resin co-monomers can be metabolized to intermediate methacrylic acid (MA) and, further, to epoxy metabolites. Antioxidants have been studied previously, with the intention of decreasing the DNA double-strand breaks (DNA-DSBs) in human gingival fibroblasts (HGFs). In this study, the effects of the antioxidants, ascorbic acid (Asc) and N-acetylcysteine (NAC), were investigated on co-monomer metabolite-induced DNA-DSBs. METHODS HGFs were incubated with MA, 2,3-epoxy-2-methyl-propionicacid-methylester (EMPME) and 2,3-epoxy-2-methylpropionic acid (EMPA), respectively, in the presence or absence of antioxidants (Asc or NAC). EC50 Values were obtained from an XTT-based viability assay. DNA-DSBs were determined using a γ-H2AX assay. RESULTS The cytotoxicity of the compounds could be ranked in the following order (mean±SEM; n=4): EMPA>EMPME>MA. The average number of DSBs-foci/cell induced by each substance at EC50-concentration could be ranked in the following order (mean±SD; n=4): EMPA>EMPME>MA. EMPA (1.72mM) and EMPME (2.58mM) induced the highest number of DSBs-foci, that is 21-fold and 13-fold, respectively, compared to control (0.48±0.08 foci/cell). The addition of Asc (50; 100; 200μM) or NAC (50; 100; 200; 500μM) to MA (15.64; 5.21mM), EMPME (2.58mM), and EMPA (1.72; 0.57mM) significantly reduced the number of foci/cell in HGFs. The highest reduction could be found in HGFs with 1.72mM EMPA, the addition of NAC (50; 100; 200; 500μM) induced a 15-fold, 17-fold, 14-fold and 14-fold lower number of DSBs-foci/cell, respectively. SIGNIFICANCE Dental co-monomer epoxy metabolites, EMPME and EMPA, can induce DNA-DSBs. The addition of antioxidants (Asc or NAC) leads to reduction of DNA-DSBs, and NAC leads to more prominent reduction of DNA-DSBs compared to Asc.
Collapse
Affiliation(s)
- Yang Yang
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-University of Munich, Goethestr. 70, 80336 Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University of Munich, Nußbaumstr. 26, 80336 Munich, Germany
| | - Xiuli He
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-University of Munich, Goethestr. 70, 80336 Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University of Munich, Nußbaumstr. 26, 80336 Munich, Germany
| | - Jianwei Shi
- Department of Orthodontics, Ludwig-Maximilians-University of Munich, Goethestr. 70, 80336 Munich, Germany
| | - Reinhard Hickel
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-University of Munich, Goethestr. 70, 80336 Munich, Germany
| | - Franz-Xaver Reichl
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-University of Munich, Goethestr. 70, 80336 Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University of Munich, Nußbaumstr. 26, 80336 Munich, Germany
| | - Christof Högg
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-University of Munich, Goethestr. 70, 80336 Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University of Munich, Nußbaumstr. 26, 80336 Munich, Germany.
| |
Collapse
|
37
|
Inamitsu H, Okamoto K, Sakai E, Nishishita K, Murata H, Tsukuba T. The dental resin monomers HEMA and TEGDMA have inhibitory effects on osteoclast differentiation with low cytotoxicity. J Appl Toxicol 2017; 37:817-824. [DOI: 10.1002/jat.3429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/04/2016] [Accepted: 11/26/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Hiroyuki Inamitsu
- Department of Dental Pharmacology; Nagasaki University Graduate School of Biomedical Sciences; Sakamoto 1-7-1 Nagasaki 852-8588 Japan
- Department of Prosthetic Dentistry; Nagasaki University Graduate School of Biomedical Sciences; Sakamoto 1-7-1 Nagasaki 852-8588 Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology; Nagasaki University Graduate School of Biomedical Sciences; Sakamoto 1-7-1 Nagasaki 852-8588 Japan
| | - Eiko Sakai
- Department of Dental Pharmacology; Nagasaki University Graduate School of Biomedical Sciences; Sakamoto 1-7-1 Nagasaki 852-8588 Japan
| | - Kazuhisa Nishishita
- Department of Dental Pharmacology; Nagasaki University Graduate School of Biomedical Sciences; Sakamoto 1-7-1 Nagasaki 852-8588 Japan
| | - Hiroshi Murata
- Department of Prosthetic Dentistry; Nagasaki University Graduate School of Biomedical Sciences; Sakamoto 1-7-1 Nagasaki 852-8588 Japan
| | - Takayuki Tsukuba
- Department of Dental Pharmacology; Nagasaki University Graduate School of Biomedical Sciences; Sakamoto 1-7-1 Nagasaki 852-8588 Japan
| |
Collapse
|
38
|
Critical role of superoxide anions and hydroxyl radicals in HEMA-induced apoptosis. Dent Mater 2017; 33:110-118. [DOI: 10.1016/j.dental.2016.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/01/2016] [Indexed: 11/18/2022]
|
39
|
Jiao Y, Ma S, Wang Y, Li J, Shan L, Sun J, Chen J. Methacryloxylethyl Cetyl Ammonium Chloride Induces DNA Damage and Apoptosis in Human Dental Pulp Cells via Generation of Oxidative Stress. Int J Biol Sci 2016; 12:580-93. [PMID: 27143955 PMCID: PMC4852205 DOI: 10.7150/ijbs.14578] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/17/2016] [Indexed: 11/05/2022] Open
Abstract
The polymerizable antibacterial monomer methacryloxylethyl cetyl ammonium chloride (DMAE-CB) has provided an effective strategy to combat dental caries. However, the application of such material raises the question about the biological safety and the question remains open. The mechanism of this toxic action, however, is not yet clearly understood. The present study aims at providing novel insight into the possible causal link between cellular oxidative stress and DNA damage, as well as apoptosis in human dental pulp cells exposed to DMAE-CB. The enhanced formation of reactive oxygen species and depletion of glutathione, as well as differential changes in activities of superoxide dismutase, glutathione peroxidase, and catalase in DMAE-CB-treated cells indicated oxidative stress. By using substances that can alter GSH synthesis, we found that GSH was the key component in the regulation of cell response towards oxidative stress induced by DMAE-CB. The increase in oxidative stress-sensitive 8-Oxo-2'-deoxyguanosine (8-OHdG) content, formation of γ-H2AX and cell cycle G1 phase arrest indicated that DNA damage occurred as a result of the interaction between DNA base and ROS beyond the capacities of antioxidant mechanisms in cells exposed to DMAE-CB. Such oxidative DNA damage thus triggers the activation of ataxia telangiectasia-mutated (ATM) signaling, the intrinsic apoptotic pathway, and destruction of mitochondrial morphology and function.
Collapse
Affiliation(s)
- Yang Jiao
- 1. State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
| | - Sai Ma
- 1. State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
| | - Yirong Wang
- 2. State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
| | - Jing Li
- 3. Department of Orthopaedic Oncology, Xijing Hospital, the Fourth Military Medical University, Xi'an, PR China
| | - Lequn Shan
- 4. Department of Orthopaedic Surgery, Tangdu hospital, the Fourth Military Medical University, Xi'an, PR China
| | - Jinlong Sun
- 1. State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
| | - Jihua Chen
- 1. State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
| |
Collapse
|
40
|
Jiao Y, Ma S, Wang Y, Li J, Shan L, Liu Q, Liu Y, Song Q, Yu F, Yu H, Liu H, Huang L, Chen J. N-Acetyl Cysteine Depletes Reactive Oxygen Species and Prevents Dental Monomer-Induced Intrinsic Mitochondrial Apoptosis In Vitro in Human Dental Pulp Cells. PLoS One 2016; 11:e0147858. [PMID: 26808507 PMCID: PMC4726696 DOI: 10.1371/journal.pone.0147858] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/08/2016] [Indexed: 01/16/2023] Open
Abstract
PURPOSE To investigate the involvement of intrinsic mitochondrial apoptosis in dental monomer-induced cytotoxicity and the influences of N-acetyl cysteine (NAC) on this process. METHODS Human dental pulp cells (hDPCs) were exposed to several dental monomers in the absence or presence of NAC, and cell viability, intracellular redox balance, morphology and function of mitochondria and key indicators of intrinsic mitochondrial apoptosis were evaluated using various commercial kits. RESULTS Dental monomers exerted dose-dependent cytotoxic effects on hDPCs. Concomitant to the over-production of reactive oxygen species (ROS) and depletion of glutathione (GSH), differential changes in activities of superoxide dismutase, glutathione peroxidase, and catalase were detected. Apoptosis, as indicated by positive Annexin V/propidium iodide (PI) staining and activation of caspase-3, was observed after dental monomer treatment. Dental monomers impaired the morphology and function of mitochondria, and induced intrinsic mitochondrial apoptosis in hDPCs via up-regulation of p53, Bax and cleaved caspase-3, and down-regulation of Bcl-2. NAC restored cell viability, relieved oxidative stress and blocked the apoptotic effects of dental monomers. CONCLUSIONS Dental monomers induced oxidative stress and mitochondrial intrinsic apoptosis in hDPCs. NAC could reduce the oxidative stress and thus protect hDPCs against dental monomer-induced apoptosis.
Collapse
Affiliation(s)
- Yang Jiao
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
- Shaanxi Key Laboratory of Military Stomatology, Xi’an, Shaanxi, PR China
| | - Sai Ma
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
- Shaanxi Key Laboratory of Military Stomatology, Xi’an, Shaanxi, PR China
| | - Yirong Wang
- Shaanxi Key Laboratory of Military Stomatology, Xi’an, Shaanxi, PR China
- State Key Laboratory of Military Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
| | - Jing Li
- Department of Orthopaedic Oncology, Xijing Hospital Affiliated to the Fourth Military Medical University, Xi’an, PR China
| | - Lequn Shan
- Department of Orthopaedic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, PR China
| | - Qian Liu
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
| | - Ying Liu
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
- Shaanxi Key Laboratory of Military Stomatology, Xi’an, Shaanxi, PR China
| | - Qian Song
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
- Shaanxi Key Laboratory of Military Stomatology, Xi’an, Shaanxi, PR China
| | - Fan Yu
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
- Shaanxi Key Laboratory of Military Stomatology, Xi’an, Shaanxi, PR China
| | - Haohan Yu
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
- Shaanxi Key Laboratory of Military Stomatology, Xi’an, Shaanxi, PR China
| | - Huan Liu
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
- Shaanxi Key Laboratory of Military Stomatology, Xi’an, Shaanxi, PR China
| | - Li Huang
- State Key Laboratory of Military Stomatology, Department of General and Emergency, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
| | - Jihua Chen
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
- Shaanxi Key Laboratory of Military Stomatology, Xi’an, Shaanxi, PR China
| |
Collapse
|
41
|
Li M, Lai L, Zhao Z, Chen T. Aquation Is a Crucial Activation Step for Anticancer Action of Ruthenium(II) Polypyridyl Complexes to Trigger Cancer Cell Apoptosis. Chem Asian J 2015; 11:310-20. [DOI: 10.1002/asia.201501048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/12/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Meng Li
- Department of Chemistry; Jinan University; Guangzhou 510631 P. R China
| | - Lanhai Lai
- Department of Chemistry; Jinan University; Guangzhou 510631 P. R China
| | - Zhennan Zhao
- Department of Chemistry; Jinan University; Guangzhou 510631 P. R China
| | - Tianfeng Chen
- Department of Chemistry; Jinan University; Guangzhou 510631 P. R China
| |
Collapse
|
42
|
Jiao Y, Ma S, Wang Y, Li J, Shan L, Chen J. Epigallocatechin-3-Gallate Reduces Cytotoxic Effects Caused by Dental Monomers: A Hypothesis. Med Sci Monit 2015; 21:3197-202. [PMID: 26489899 PMCID: PMC4622224 DOI: 10.12659/msm.895628] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Resin monomers from dental composite materials leached due to incomplete polymerization or biodegradation may cause contact allergies and damage dental pulp. The cytotoxicity of dental resin monomers is due to a disturbance of intracellular redox equilibrium, characterized by an overproduction of reactive oxygen species (ROS) and depletion of reduced glutathione (GSH). Oxidative stress caused by dental resin monomers leads to the disturbance of vital cell functions and induction of cell apoptosis in affected cells. The nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway plays a key role in the cellular defense system against oxidative and electrophilic stress. Epigallocatechin-3-gallate (EGCG) can activate the Nrf2 pathway and induce expression of a multitude of antioxidants and phase II enzymes that can restore redox homeostasis. Therefore, here, we tested the hypothesis that EGCG-mediated protection against resin monomer cytotoxicity is mediated by activation of the Nrf2 pathway. This study will help to elucidate the mechanism of resin monomer cytotoxicity and provide information that will be helpful in improving the biocompatibility of dental resin materials.
Collapse
Affiliation(s)
- Yang Jiao
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Sai Ma
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Yirong Wang
- Shaanxi Key Laboratory of Military Stomatology, Xi'an, Shaanxi, China (mainland)
| | - Jing Li
- Department of Orthopaedic Oncology, Xijing Hospital Affiliated to The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Lequn Shan
- Department of Orthopaedic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Jihua Chen
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
43
|
Passos AD, Mouza AA, Paras SV, Gogos C, Tziafas D. Designing and testing regenerative pulp treatment strategies: modeling the transdentinal transport mechanisms. Front Physiol 2015; 6:257. [PMID: 26441676 PMCID: PMC4584931 DOI: 10.3389/fphys.2015.00257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/02/2015] [Indexed: 11/13/2022] Open
Abstract
The need for simulation models to thoroughly test the inflammatory effects of dental materials and dentinogenic effects of specific signaling molecules has been well recognized in current dental research. The development of a model that simulates the transdentinal flow and the mass transfer mechanisms is of prime importance in terms of achieving the objectives of developing more effective treatment modalities in restorative dentistry. The present protocol study is part of an ongoing investigation on the development of a methodology that can calculate the transport rate of selected molecules inside a typical dentinal tubule. The transport rate of biological molecules has been investigated using a validated CFD code. In that framework we propose a simple algorithm that, given the type of molecules of the therapeutic agent and the maximum acceptable time for the drug concentration to attain a required value at the pulpal side of the tubules, can estimate the initial concentration to be imposed.
Collapse
Affiliation(s)
- Agathoklis D Passos
- Department of Chemical Engineering, Aristotle University of Thessaloniki Thessaloniki, Greece
| | - Aikaterini A Mouza
- Department of Chemical Engineering, Aristotle University of Thessaloniki Thessaloniki, Greece
| | - Spiros V Paras
- Department of Chemical Engineering, Aristotle University of Thessaloniki Thessaloniki, Greece
| | - Christos Gogos
- Department of Endodontology, School of Dentistry, Aristotle University of Thessaloniki Thessaloniki, Greece
| | - Dimitrios Tziafas
- Department of Endodontology, School of Dentistry, Aristotle University of Thessaloniki Thessaloniki, Greece
| |
Collapse
|
44
|
Jiao Y, Ma S, Li J, Shan L, Wang Y, Tian M, Yang Y, Sun J, Ban J, Chen J. N-Acetyl Cysteine (NAC)-Directed Detoxification of Methacryloxylethyl Cetyl Ammonium Chloride (DMAE-CB). PLoS One 2015; 10:e0135815. [PMID: 26274909 PMCID: PMC4537128 DOI: 10.1371/journal.pone.0135815] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/27/2015] [Indexed: 11/28/2022] Open
Abstract
Methacryloxylethyl cetyl ammonium chloride (DMAE-CB) is a polymerizable antibacterial monomer and has been proved as an effective strategy to achieve bioactive bonding with reliable bacterial inhibitory effects. However, the toxicity of DMAE-CB may hamper its wide application in clinical situations. Thus, this study was designed to investigate the toxicity of DMAE-CB and explore the possible protective effects of N-acetyl cysteine (NAC). High performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) analysis showed that chemical binding of NAC and DMAE-CB occurred in a time dependent manner. Pre-incubation of fourty-eight hours is required for adequate reaction between DMAE-CB and NAC. DMAE-CB reduced human dental pulp cells (hDPCs) viability in a dose-dependent manner. The toxic effects of DMAE-CB were accompanied by increased reactive oxygen species (ROS) level and reduced glutathione (GSH) content. NAC alleviated DMAE-CB-induced oxidative stress. Annexin V/ Propidium Iodide (PI) staining and Hoechst 33342 staining indicated that DMAE-CB induced apoptosis. Collapsed mitochondrial membrane potential (MMP) and activation of caspase-3 were also observed after DMAE-CB treatment. NAC rescued hDPCs from DMAE-CB-induced apoptosis, accompanied by lower level of MMP loss and caspase-3 activity. This study assists to elucidate the mechanism underlying the cytotoxic effects of DMAE-CB and provides theoretical supports for the searching of effective strategies to reduce toxicity of quaternary ammonium dental monomers.
Collapse
Affiliation(s)
- Yang Jiao
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
| | - Sai Ma
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
| | - Jing Li
- Department of Orthopaedic Oncology, Xijing Hospital Affiliated to the Fourth Military Medical University, Xi’an, PR China
| | - Lequn Shan
- Department of Orthopaedic Surgery, Tangdu hospital, the Fourth Military Medical University, Xi’an, PR China
| | - Yingjie Wang
- State Key Laboratory of Military Stomatology, Department of General and Emergency, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
| | - Min Tian
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
| | - Yanwei Yang
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
| | - Jinlong Sun
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
| | - Jinghao Ban
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
| | - Jihua Chen
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, PR China
- * E-mail:
| |
Collapse
|
45
|
Zhao GX, Pan H, Ouyang DY, He XH. The critical molecular interconnections in regulating apoptosis and autophagy. Ann Med 2015; 47:305-315. [PMID: 25982797 DOI: 10.3109/07853890.2015.1040831] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/08/2015] [Indexed: 01/02/2023] Open
Abstract
Apoptosis and autophagy are both highly regulated biological processes that have important roles in development, differentiation, homeostasis, and disease. These processes may take place independently, with autophagy being cytoprotective for preventing cells from apoptosis and apoptosis blocking autophagy. But in most circumstances, both may be induced sequentially with autophagy preceding apoptosis. The simultaneous activation of both processes has been observed not only in experimental settings but also in pathophysiological conditions. In fact, these two pathways are tightly connected with each other by substantial interplays between them, enabling the coordinated regulation of cell fates by these two pathways. They share some common upstream signaling components, and some components of one pathway may play important roles in the other, and vice versa. Such proteins represent the critical interconnections of the two pathways, which seem to determine the cell for survival or death. Here several critical molecular interconnections between apoptosis and autophagy pathways are reviewed, with their action mechanisms being highlighted.
Collapse
Affiliation(s)
- Gao-Xiang Zhao
- Department of Immunobiology, College of Life Science and Technology, Jinan University , Guangzhou 510632 , China
| | | | | | | |
Collapse
|
46
|
Van Landuyt KL, Krifka S, Hiller KA, Bolay C, Waha C, Van Meerbeek B, Schmalz G, Schweikl H. Evaluation of cell responses toward adhesives with different photoinitiating systems. Dent Mater 2015; 31:916-27. [PMID: 26026799 DOI: 10.1016/j.dental.2015.04.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 03/13/2015] [Accepted: 04/28/2015] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The photoinitiator diphenyl-(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) is more reactive than a camphorquinone/amine (CQ) system, and TPO-based adhesives obtained a higher degree of conversion (DC) with fewer leached monomers. The hypothesis tested here is that a TPO-based adhesive is less toxic than a CQ-based adhesive. METHODS A CQ-based adhesive (SBU-CQ) (Scotchbond Universal, 3M ESPE) and its experimental counterpart with TPO (SBU-TPO) were tested for cytotoxicity in human pulp-derived cells (tHPC). Oxidative stress was analyzed by the generation of reactive oxygen species (ROS) and by the expression of antioxidant enzymes. A dentin barrier test (DBT) was used to evaluate cell viability in simulated clinical circumstances. RESULTS Unpolymerized SBU-TPO was significantly more toxic than SBU-CQ after a 24h exposure, and TPO alone (EC50=0.06mM) was more cytotoxic than CQ (EC50=0.88mM), EDMAB (EC50=0.68mM) or CQ/EDMAB (EC50=0.50mM). Cultures preincubated with BSO (l-buthionine sulfoximine), an inhibitor of glutathione synthesis, indicated a minor role of glutathione in cytotoxic responses toward the adhesives. Although the generation of ROS was not detected, a differential expression of enzymatic antioxidants revealed that cells exposed to unpolymerized SBU-TPO or SBU-CQ are subject to oxidative stress. Polymerized SBU-TPO was more cytotoxic than SBU-CQ under specific experimental conditions only, but no cytotoxicity was detected in a DBT with a 200μm dentin barrier. SIGNIFICANCE Not only DC and monomer-release determine the biocompatibility of adhesives, but also the cytotoxicity of the (photo-)initiator should be taken into account. Addition of TPO rendered a universal adhesive more toxic compared to CQ; however, this effect could be annulled by a thin dentin barrier.
Collapse
Affiliation(s)
- Kirsten L Van Landuyt
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, D-93042, 93042 Regensburg, Germany; KU Leuven BIOMAT, Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium.
| | - Stephanie Krifka
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, D-93042, 93042 Regensburg, Germany
| | - Karl-Anton Hiller
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, D-93042, 93042 Regensburg, Germany
| | - Carola Bolay
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, D-93042, 93042 Regensburg, Germany
| | - Claudia Waha
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, D-93042, 93042 Regensburg, Germany
| | - Bart Van Meerbeek
- KU Leuven BIOMAT, Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | - Gottfried Schmalz
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, D-93042, 93042 Regensburg, Germany; School of Dental Medicine -ZMK Bern, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Helmut Schweikl
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, D-93042, 93042 Regensburg, Germany
| |
Collapse
|
47
|
Activation of the Nrf2-regulated antioxidant cell response inhibits HEMA-induced oxidative stress and supports cell viability. Biomaterials 2015; 56:114-28. [PMID: 25934285 DOI: 10.1016/j.biomaterials.2015.03.047] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/20/2015] [Accepted: 03/27/2015] [Indexed: 11/22/2022]
Abstract
Oxidative stress due to increased formation of reactive oxygen species (ROS) in target cells of dental resin monomers like 2-hydroxyethyl methacrylate (HEMA) is a major mechanism underlying the disturbance of vital cell functions including mineralization and differentiation, responses of the innate immune system, and the induction of cell death via apoptosis. Although a shift in the equilibrium between cell viability and apoptosis is related to the non-enzymatic antioxidant glutathione (GSH) in HEMA-exposed cells, the major mechanisms of adaptive antioxidant cell responses to maintain cellular redox homeostasis are still unknown. The present study provides insight into the induction of a communicating network of pathways under the control of the redox-sensitive transcription factor Nrf2, a major transcriptional activator of genes coding for enzymatic antioxidants. Here, oxidative stress was indicated by DCF fluorescence in cells after a short exposure (1 h) to HEMA, while DHR123 fluorescence significantly increased about 1.8-fold after a long exposure period (24 h) showing the formation of hydrogen peroxide (H2O2). The corresponding expression of Nrf2 was activated immediately after HEMA exposure (1 h) and remained constant up to 24 h. Nrf2-regulated expression of enzymes of the glutathione metabolism (glutathione peroxidase 1/2, glutathione reductase) decreased in HEMA-exposed cells as a result of GSH depletion, and superoxide dismutase expression was downregulated after H2O2 overproduction. However, the expression of Nrf2-controlled enzymatic antioxidants (catalase, peroxiredoxin, thioredoxin 1, thioredoxin reductase, heme oxygenase-1) and the NADPH-regenerating system (glucose 6-phosphate dehydrogenase, transaldolase) was increased. Phenolic tert-butylhydroquinone (tBHQ), a classic inducer of the Nrf2 pathway, reduced oxidative stress and protected cells from HEMA-induced cell death through a shift in the number of cells in necrosis to apoptosis. The expression of Nrf2 and related enzymatic antioxidants downstream was enhanced by tBHQ in parallel. In conclusion, this investigation expanded the detailed understanding of the underlying mechanisms of HEMA-induced oxidative stress, and highlighted the cross-talk and interdependence between various Nrf2-regulated antioxidant pathways as a major adaptive cell response. The current results demonstrate that modulation of the Nrf2-mediated cellular defense response is an effective means for manipulating the sensitivity of cells to dental resin monomers.
Collapse
|
48
|
Zhu L, Zhang J, Xiao L, Liu S, Yu J, Chen W, Zhang X, Peng B. Autophagy in resin monomer-initiated toxicity of dental mesenchymal cells: a novel therapeutic target of N-acetyl cysteine. J Mater Chem B 2015; 3:6820-6836. [PMID: 32262475 DOI: 10.1039/c5tb00894h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A proposed schematic model of autophagy involvement in resin monomer-initiated toxicity of dental mesenchymal cells and as a novel therapeutic target of NAC.
Collapse
Affiliation(s)
- Lingxin Zhu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education
- School & Hospital of Stomatology
- Wuhan University
- Wuhan 430079
- China
| | - Jie Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education
- School & Hospital of Stomatology
- Wuhan University
- Wuhan 430079
- China
| | - Lan Xiao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education
- School & Hospital of Stomatology
- Wuhan University
- Wuhan 430079
- China
| | - Shan Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education
- School & Hospital of Stomatology
- Wuhan University
- Wuhan 430079
- China
| | - Jingjing Yu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education
- School & Hospital of Stomatology
- Wuhan University
- Wuhan 430079
- China
| | - Weihai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan
- China
| | - Xianzheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan
- China
| | - Bin Peng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education
- School & Hospital of Stomatology
- Wuhan University
- Wuhan 430079
- China
| |
Collapse
|
49
|
Yeh CC, Chang JZC, Yang WH, Chang HH, Lai EHH, Kuo MYP. NADPH oxidase 4 is involved in the triethylene glycol dimethacrylate-induced reactive oxygen species and apoptosis in human embryonic palatal mesenchymal and dental pulp cells. Clin Oral Investig 2014; 19:1463-71. [DOI: 10.1007/s00784-014-1370-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 11/14/2014] [Indexed: 01/30/2023]
|
50
|
Ferracane JL, Pfeifer CS, Hilton TJ. Microstructural Features of Current Resin Composite Materials. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s40496-014-0029-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|