1
|
Rui J, Zhu S, Xu X, Wang Y, Liu Z, Cheng G, Long D, Cheng L, Dai F. High-performance silk/polylactic acid composite scaffold material with immunomodulation and osteogenesis function. Mater Today Bio 2024; 29:101316. [PMID: 39558930 PMCID: PMC11570744 DOI: 10.1016/j.mtbio.2024.101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/16/2024] [Accepted: 10/27/2024] [Indexed: 11/20/2024] Open
Abstract
The choice of suitable materials and effective structural design are crucial in influencing the therapeutic outcomes of bone tissue engineering scaffolds. This study introduces a controllable biodegradable composite scaffold composed of flat silkworm cocoon (FSC) and polylactic acid (PLA) as an innovative strategy for promoting bone healing in complex injuries. We focused on optimizing the scaffold's structural design, mechanical properties, and underlying mechanisms of osteogenesis. Initial experiments established the parameters for hot pressing the FSC, followed by mechanical performance tests to identify the optimal preparation conditions. Composite scaffolds incorporating PLA films were subsequently fabricated using these optimized parameters. The results indicate that the FSC/PLA composite scaffold exhibits outstanding biocompatibility, mechanical strength, and in vitro mineralization capabilities, alongside an appropriate degradation rate. Furthermore, the composite scaffolds demonstrated significant potential in promoting osteogenic differentiation and facilitating macrophage polarization toward an anti-inflammatory M2 phenotype. In vivo implantation of the scaffold in defective regions enhanced osteogenesis and mitigated inflammatory responses associated with degradation. This investigation presents an optimal composite scaffold that closely mimics the complex structure of bone, offering a novel approach to enhance bone regeneration and effectively address substantial bone defects.
Collapse
Affiliation(s)
| | | | - Xiang Xu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing, 400715, China
| | - Yi Wang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing, 400715, China
| | - Zulan Liu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing, 400715, China
| | - Guotao Cheng
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing, 400715, China
| | - Dingpei Long
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing, 400715, China
| | - Lan Cheng
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing, 400715, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing, 400715, China
| |
Collapse
|
2
|
Ren S, Wang H, Ma S, Zhou J, Zhai J, Zhu Y, Chen S, Chen S, Jia K, Xu W, Zhou Y. New strategy of personalized tissue regeneration: when autologous platelet concentrates encounter biomaterials. Front Bioeng Biotechnol 2023; 11:1297357. [PMID: 38076421 PMCID: PMC10698744 DOI: 10.3389/fbioe.2023.1297357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/06/2023] [Indexed: 04/17/2025] Open
Abstract
Components in blood play an important role in wound healing and subsequent tissue regeneration processes. The fibrin matrix and various bioactive molecules work together to participate in this complex yet vital biological process. As a means of personalized medicine, autologous platelet concentrates have become an integral part of various tissue regeneration strategies. Here, we focus on how autologous platelet concentrates play a role in each stage of tissue healing, as well as how they work in conjunction with different types of biomaterials to participate in this process. In particular, we highlight the use of various biomaterials to protect, deliver and enhance these libraries of biomolecules, thereby overcoming the inherent disadvantages of autologous platelet concentrates and enabling them to function better in tissue regeneration.
Collapse
Affiliation(s)
- Sicong Ren
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Hanchi Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Sijia Ma
- Yiwu Stomatology Hospital, Yiwu, Zhejiang, China
| | - Jing Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Jingjie Zhai
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yuemeng Zhu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Sheng Chen
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Siyu Chen
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Kewen Jia
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Wenzhou Xu
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Sahoo JK, Hasturk O, Falcucci T, Kaplan DL. Silk chemistry and biomedical material designs. Nat Rev Chem 2023; 7:302-318. [PMID: 37165164 DOI: 10.1038/s41570-023-00486-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 05/12/2023]
Abstract
Silk fibroin has applications in different medical fields such as tissue engineering, regenerative medicine, drug delivery and medical devices. Advances in silk chemistry and biomaterial designs have yielded exciting tools for generating new silk-based materials and technologies. Selective chemistries can enhance or tune the features of silk, such as mechanics, biodegradability, processability and biological interactions, to address challenges in medically relevant materials (hydrogels, films, sponges and fibres). This Review details the design and utility of silk biomaterials for different applications, with particular focus on chemistry. This Review consists of three segments: silk protein fundamentals, silk chemistries and functionalization mechanisms. This is followed by a description of different crosslinking chemistries facilitating network formation, including the formation of composite biomaterials. Utility in the fields of tissue engineering, drug delivery, 3D printing, cell coatings, microfluidics and biosensors are highlighted. Looking to the future, we discuss silk biomaterial design strategies to continue to improve medical outcomes.
Collapse
Affiliation(s)
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Thomas Falcucci
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
4
|
Perinelli DR, Bonacucina G, Pucciarelli S, Cespi M, Serri E, Polzonetti V, Tambella AM, Vincenzetti S. Rheological Properties and Growth Factors Content of Platelet-Rich Plasma: Relevance in Veterinary Biomedical Treatments. Biomedicines 2020; 8:biomedicines8100429. [PMID: 33081006 PMCID: PMC7603199 DOI: 10.3390/biomedicines8100429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022] Open
Abstract
Platelet-rich plasma (PRP) is a nontransfusional hemocomponent, considered as a powerful concentrate of growth factors (GFs) therapeutically used to stimulate tissue regeneration. The use of autologous PRP, as the patient’s own biological material, for therapeutic purposes represents a safe and effective alternative to conventional treatments in both human and veterinary medicine. The aim of this study was the characterization of canine PRP from rheological and biological points of view. Thus, a characterization of the viscoelastic properties of the PRP systems was performed in order to clarify the influence of different calcium concentrations, in the presence of autologous thrombin-rich solution, on the PRP gels’ mechanical properties, from which the applicability of these systems in biomedical treatments is strongly dependent. Then, an evaluation of the content of GFs in PRP, activated or not with thrombin, and stored at different temperatures (37 °C and −20 °C) was performed over time, outlining, for the first time, the importance of the effect of physiological temperature (37 °C) on the production of GFs. A clinical case study conducted in a dog with a complete rupture of the common calcaneal tendon (Achilles tendon) confirmed the relevance of this hemocomponent in the daily veterinary clinical activity and the potential translational value for human health.
Collapse
Affiliation(s)
- Diego Romano Perinelli
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (D.R.P.); (G.B.); (M.C.)
| | - Giulia Bonacucina
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (D.R.P.); (G.B.); (M.C.)
| | - Stefania Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy; (S.P.); (E.S.); (V.P.); (S.V.)
| | - Marco Cespi
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (D.R.P.); (G.B.); (M.C.)
| | - Evelina Serri
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy; (S.P.); (E.S.); (V.P.); (S.V.)
| | - Valeria Polzonetti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy; (S.P.); (E.S.); (V.P.); (S.V.)
| | - Adolfo Maria Tambella
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy; (S.P.); (E.S.); (V.P.); (S.V.)
- Correspondence: ; Tel.: +39-0737-403417
| | - Silvia Vincenzetti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy; (S.P.); (E.S.); (V.P.); (S.V.)
| |
Collapse
|
5
|
Tao J, Liu H, Wu W, Zhang J, Liu S, Zhang J, Huang Y, Xu X, He H, Yang S, Gou M. 3D‐Printed Nerve Conduits with Live Platelets for Effective Peripheral Nerve Repair. ADVANCED FUNCTIONAL MATERIALS 2020. [DOI: 10.1002/adfm.202004272] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jie Tao
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610065 China
| | - Haofan Liu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610065 China
| | - Wenbi Wu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610065 China
| | - Jiumeng Zhang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610065 China
| | - Sijia Liu
- Department of Rehabilitation Medicine West China Hospital Sichuan University Chengdu 610041 China
| | - Jing Zhang
- Department of Neurosurgery West China Hospital Sichuan University Chengdu 610041 China
| | - Yulan Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610065 China
| | - Xin Xu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610065 China
| | - Hongchen He
- Department of Rehabilitation Medicine West China Hospital Sichuan University Chengdu 610041 China
| | - Siming Yang
- Key Laboratory of Wound Repair and Regeneration of PLA Chinese PLA General Hospital Medical College of PLA Beijing 100853 China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610065 China
| |
Collapse
|
6
|
Heichel DL, Burke KA. Enhancing the Carboxylation Efficiency of Silk Fibroin through the Disruption of Noncovalent Interactions. Bioconjug Chem 2020; 31:1307-1312. [PMID: 32378886 DOI: 10.1021/acs.bioconjchem.0c00168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Silk fibroin is a semicrystalline protein used as a renewable polymer source and as a biomaterial platform, but existing methods to synthetically modify fibroin suffer from low efficiencies that can limit the protein's utility. This work reports on a mild synthesis that results in a 2-fold increase in carboxylation through the disruption of noncovalent interactions during the reaction. Importantly, silk fibroin maintains its ability to form β-sheets that are critical for tailoring mechanical and degradation properties, as well as for rendering solid constructs (e.g., films and scaffolds) insoluble in water. Increasing carboxyl functionalization affords control over protein charge, which permits tailoring the loading and release of small molecules using electrostatic interactions. Disruption of noncovalent interactions during aqueous carbodiimide coupling also significantly enhances conjugation efficiency of molecules containing primary amine groups, thus enabling high degrees of functionalization with biological molecules, such as proteins and peptides, for biomaterial applications.
Collapse
Affiliation(s)
- Danielle L Heichel
- Polymer Program, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, Connecticut 06269-3136, United States
| | - Kelly A Burke
- Polymer Program, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, Connecticut 06269-3136, United States.,Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Road Unit 3222, Storrs, Connecticut 06269-3222, United States.,Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road Unit 3247, Storrs, Connecticut 06269-3247, United States
| |
Collapse
|
7
|
Chouhan D, Mandal BB. Silk biomaterials in wound healing and skin regeneration therapeutics: From bench to bedside. Acta Biomater 2020; 103:24-51. [PMID: 31805409 DOI: 10.1016/j.actbio.2019.11.050] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 02/08/2023]
Abstract
Silk biomaterials are known for biomedical and tissue engineering applications including drug delivery and implantable devices owing to their biocompatible and a wide range of ideal physico-chemical properties. Herein, we present a critical overview of the progress of silk-based matrices in skin regeneration therapeutics with an emphasis on recent innovations and scientific findings. Beginning with a brief description of numerous varieties of silks, the review summarizes our current understanding of the biological properties of silk that help in the wound healing process. Various silk varieties such as silkworm silk fibroin, silk sericin, native spider silk and recombinant silk materials have been explored for cutaneous wound healing applications from the past few decades. With an aim to harness the regenerative properties of silk, numerous strategies have been applied to develop functional bioactive wound dressings and viable bio-artificial skin grafts in recent times. The review examines multiple inherent properties of silk that aid in the critical events of the healing process such as cell migration, cell proliferation, angiogenesis, and re-epithelialization. A detailed insight into the progress of silk-based cellular skin grafts is also provided that discusses various co-culture strategies and development of bilayer and tri-layer human skin equivalent under in vitro conditions. In addition, functionalized silk matrices loaded with bioactive molecules and antibacterial compounds are discussed, which have shown great potential in treating hard-to-heal wounds. Finally, clinical studies performed using silk-based translational products are reviewed that validate their regenerative properties and future applications in this area. STATEMENT OF SIGNIFICANCE: The review article discusses the recent advances in silk-based technologies for wound healing applications, covering various types of silk biomaterials and their properties suitable for wound repair and regeneration. The article demonstrates the progress of silk-based matrices with an update on the patented technologies and clinical advancements over the years. The rationale behind this review is to highlight numerous properties of silk biomaterials that aid in all the critical events of the wound healing process towards skin regeneration. Functionalization strategies to fabricate silk dressings containing bioactive molecules and antimicrobial compounds for drug delivery to the wound bed are discussed. In addition, a separate section describes the approaches taken to generate living human skin equivalent that have recently contributed in the field of skin tissue engineering.
Collapse
|
8
|
Lei XH, Yang YQ, Ma CY, Duan EK. Induction of differentiation of human stem cells ex vivo: Toward large-scale platelet production. World J Stem Cells 2019; 11:666-676. [PMID: 31616542 PMCID: PMC6789181 DOI: 10.4252/wjsc.v11.i9.666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/12/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Platelet transfusion is one of the most reliable strategies to cure patients suffering from thrombocytopenia or platelet dysfunction. With the increasing demand for transfusion, however, there is an undersupply of donors to provide the platelet source. Thus, scientists have sought to design methods for deriving clinical-scale platelets ex vivo. Although there has been considerable success ex vivo in the generation of transformative platelets produced by human stem cells (SCs), the platelet yields achieved using these strategies have not been adequate for clinical application. In this review, we provide an overview of the developmental process of megakaryocytes and the production of platelets in vivo and ex vivo, recapitulate the key advances in the production of SC-derived platelets using several SC sources, and discuss some strategies that apply three-dimensional bioreactor devices and biochemical factors synergistically to improve the generation of large-scale platelets for use in future biomedical and clinical settings.
Collapse
Affiliation(s)
- Xiao-Hua Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Qing Yang
- Faculty of Laboratory Medical Science, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Chi-Yuan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - En-Kui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
9
|
Lei XH, Yang YQ, Ma CY, Duan EK. Induction of differentiation of human stem cellsex vivo: Toward large-scale platelet production. World J Stem Cells 2019. [DOI: dx.doi.org/10.4252/wjsc.v11.i9.666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
10
|
Goczkowski M, Gobin M, Hindié M, Agniel R, Larreta-Garde V. Properties of interpenetrating polymer networks associating fibrin and silk fibroin networks obtained by a double enzymatic method. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109931. [PMID: 31499978 DOI: 10.1016/j.msec.2019.109931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 06/17/2019] [Accepted: 06/30/2019] [Indexed: 10/26/2022]
Abstract
Fibrin gels are of interest as biomaterials for regenerative medicine but present poor mechanical properties, undergo fast degradation and strongly contract in presence of cells. To face these drawbacks, a fibrin network can be associated with another polymer network, in an Interpenetrating Polymer Network (IPN) architecture. In this study, we report the properties of an IPN comprising a fibrin (Fb) network and a silk fibroin (SF) network. This IPN is synthesized through the action of 2 enzymes, each one being specific of one protein gelation, i.e. thrombin (Tb) for Fb gelation, and horseradish peroxidase (HRP) for SF gelation. The effective formation of both Fb and SF networks in an IPN architecture was first verified at qualitative and quantitative levels. The resulting IPN was easily manipulable, displayed high viscoelastic properties and showed homogeneous macro- and micro-structure. Then the degradability of the IPN by two proteases, thermolysin (TL) and trypsin (TRY), obeying different mechanisms was presented. Finally, two-dimensional culture of human fibroblasts on the IPN surface induced little material contraction, while fibroblasts showed healthy morphology, displayed high viability and produced mature extracellular matrix (ECM) proteins. Taken together, the results suggest that this new IPN have a strong potential for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mathieu Goczkowski
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules (ERRMECe), Institut des Matériaux, Cergy-Pontoise University, Cergy-Pontoise, France; Celogos, Paris, France
| | - Maxime Gobin
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules (ERRMECe), Institut des Matériaux, Cergy-Pontoise University, Cergy-Pontoise, France
| | - Mathilde Hindié
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules (ERRMECe), Institut des Matériaux, Cergy-Pontoise University, Cergy-Pontoise, France
| | - Rémy Agniel
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules (ERRMECe), Institut des Matériaux, Cergy-Pontoise University, Cergy-Pontoise, France
| | - Véronique Larreta-Garde
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules (ERRMECe), Institut des Matériaux, Cergy-Pontoise University, Cergy-Pontoise, France.
| |
Collapse
|
11
|
Perotto G, Sandri G, Pignatelli C, Milanesi G, Athanassiou A. Water-based synthesis of keratin micro- and nanoparticles with tunable mucoadhesive properties for drug delivery. J Mater Chem B 2019. [DOI: 10.1039/c9tb00443b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A water-based synthesis to produce micro and nano particles of keratin, that can be easily loaded with drugs and showed a sustained release, is reported. The particles interaction with mucin could be altered to favor or decrease their mucoadhesion.
Collapse
|
12
|
Li Z, Hu S, Cheng K. Platelets and their biomimetics for regenerative medicine and cancer therapies. J Mater Chem B 2018; 6:7354-7365. [PMID: 31372220 PMCID: PMC6675472 DOI: 10.1039/c8tb02301h] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Platelets, circulating blood cells derived from megakaryocytes, play a key role in various physical activities, including coagulation, hemostasis, the body's innate immune response, and cancer metastasis. By taking advantage of their key traits, researchers have developed strategies to exploit platelets and platelet-mimicking nanoassemblies to treat a number of conditions, including wounds, cancers, and bacterial infections. Compared to traditional polymer, lipsosome, and inorganic nanoparticles-based delivery systems, platelets and platelet-mimicking vehicles hold many advantages. Among these are their enhanced circulation time, their large volumes and surface areas for drug loading or conjugation, and their inherent ability to target some diseases. In this review, we will highlight the recent progress made in the development of disease-targeting platelets- and platelet-mimicking-vehicles as therapeutic platforms.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
13
|
Pignatelli C, Perotto G, Nardini M, Cancedda R, Mastrogiacomo M, Athanassiou A. Electrospun silk fibroin fibers for storage and controlled release of human platelet lysate. Acta Biomater 2018; 73:365-376. [PMID: 29673841 DOI: 10.1016/j.actbio.2018.04.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/31/2018] [Accepted: 04/12/2018] [Indexed: 02/03/2023]
Abstract
Human platelet lysate (hPL) is a pool of growth factors and cytokines able to induce regeneration of different tissues. Despite its good potentiality as therapeutic tool for regenerative medicine applications, hPL has been only moderately exploited in this field. A more widespread adoption has been limited because of its rapid degradation at room temperature that decreases its functionality. Another limiting factor for its extensive use is the difficulty of handling the hPL gels. In this work, silk fibroin-based patches were developed to address several points: improving the handling of hPL, enabling their delivery in a controlled manner and facilitating their storage by creating a device ready to use with expanded shelf life. Patches of fibroin loaded with hPL were synthesized by electrospinning to take advantage of the fibrous morphology. The release kinetics of the material was characterized and tuned through the control of fibroin crystallinity. Cell viability assays, performed with primary human dermal fibroblasts, demonstrated that fibroin is able to preserve the hPL biological activity and prolong its shelf-life. The strategy of storing and preserving small active molecules within a naturally-derived, protein-based fibrous scaffold was successfully implemented, leading to the design of a biocompatible device, which can potentially simplify the storage and the application of the hPL on a human patient, undergoing medical procedures such as surgery and wound care. STATEMENT OF SIGNIFICANCE Human platelets lysate (hPL) is a mixture of growth factors and cytokines able to induce the regeneration of damaged tissues. This study aims at enclosing hPL in a silk fibroin electrospun matrix to expand its utilization. Silk fibroin showed the ability to preserve the hPL activity at temperature up to 60 °C and the manipulation of fibroin's crystallinity provided a tool to modulate the hPL release kinetic. This entails the possibility to fabricate the hPL silk fibroin patches in advance and store them, resulting in an easy and fast accessibility and an expanded use of hPL for wound healing.
Collapse
Affiliation(s)
- Cataldo Pignatelli
- Smart Materials, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy; DIBRIS, University of Genoa, via Opera Pia 13, 16145 Genoa, Italy.
| | - Giovanni Perotto
- Smart Materials, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Marta Nardini
- Department of Experimental Medicine (DIMES), University of Genova, Largo Rosanna Benzi 10, 16132 Genova, Italy; IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Ranieri Cancedda
- Department of Experimental Medicine (DIMES), University of Genova, Largo Rosanna Benzi 10, 16132 Genova, Italy; IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Maddalena Mastrogiacomo
- Department of Experimental Medicine (DIMES), University of Genova, Largo Rosanna Benzi 10, 16132 Genova, Italy; IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | | |
Collapse
|
14
|
Mendes BB, Gómez-Florit M, Babo PS, Domingues RM, Reis RL, Gomes ME. Blood derivatives awaken in regenerative medicine strategies to modulate wound healing. Adv Drug Deliv Rev 2018; 129:376-393. [PMID: 29288732 DOI: 10.1016/j.addr.2017.12.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/04/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023]
Abstract
Blood components play key roles in the modulation of the wound healing process and, together with the provisional fibrin matrix ability to selectively bind bioactive molecules and control its spatial-temporal presentation, define the complex microenvironment that characterize this biological process. As a biomimetic approach, the use of blood derivatives in regenerative strategies has awakened as a source of multiple therapeutic biomolecules. Nevertheless, and despite their clinical relevance, blood derivatives have been showing inconsistent therapeutic results due to several factors, including proper control over their delivery mechanisms. Herein, we highlight recent trends on the use biomaterials to protect, sequester and deliver these pools of biomolecules in tissue engineering and regenerative medicine approaches. Particular emphasis is given to strategies that enable to control their spatiotemporal delivery and improve the selectivity of presentation profiles of the biomolecules derived from blood derivatives rich in platelets. Finally, we discussed possible directions for biomaterials design to potentiate the aimed regenerative effects of blood derivatives and achieve efficient therapies.
Collapse
|
15
|
Babo PS, Reis RL, Gomes ME. Periodontal tissue engineering: current strategies and the role of platelet rich hemoderivatives. J Mater Chem B 2017; 5:3617-3628. [DOI: 10.1039/c7tb00010c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Periodontal tissue engineering procures to regenerate the periodontal tissue assuring the right combination of scaffolds, biochemical cues and cells. The platelet rich hemoderivatives might provide the adequate growth factors and structural proteins for the predictable regeneration of periodontium.
Collapse
Affiliation(s)
- Pedro S. Babo
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- 4805-017 Barco GMR
| | - Rui L. Reis
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- 4805-017 Barco GMR
| | - Manuela E. Gomes
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- 4805-017 Barco GMR
| |
Collapse
|
16
|
Advances of blood cell-based drug delivery systems. Eur J Pharm Sci 2016; 96:115-128. [PMID: 27496050 DOI: 10.1016/j.ejps.2016.07.021] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/28/2016] [Accepted: 07/31/2016] [Indexed: 11/22/2022]
Abstract
Blood cells, including erythrocytes, leukocytes and platelets are used as drug carriers in a wide range of applications. They have many unique advantages such as long life-span in circulation (especially erythrocytes), target release capacities (especially platelets), and natural adhesive properties (leukocytes and platelets). These properties make blood cell based delivery systems, as well as their membrane-derived carriers, far superior to other drug delivery systems. Despite the advantages, the further development of blood cell-based delivery systems was hindered by limitations in the source, storage, and mass production. To overcome these problems, synthetic biomaterials that mimic blood cell and nanocrystallization of blood cells have been developed and may represent the future direction for blood cell membrane-based delivery systems. In this paper, we review recent progress of the rising blood cell-based drug delivery systems, and also discuss their challenges and future tendency of development.
Collapse
|
17
|
Kao YC, Bailey A, Samminger B, Tanimoto J, Burnouf T. Removal process of prion and parvovirus from human platelet lysates used as clinical-grade supplement for ex vivo cell expansion. Cytotherapy 2016; 18:911-24. [DOI: 10.1016/j.jcyt.2016.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/26/2016] [Accepted: 04/11/2016] [Indexed: 12/13/2022]
|
18
|
Calabrese R, Raia N, Huang W, Ghezzi CE, Simon M, Staii C, Weiss AS, Kaplan DL. Silk-ionomer and silk-tropoelastin hydrogels as charged three-dimensional culture platforms for the regulation of hMSC response. J Tissue Eng Regen Med 2016; 11:2549-2564. [DOI: 10.1002/term.2152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/19/2015] [Accepted: 12/22/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Rossella Calabrese
- Department of Biomedical Engineering; Tufts University Science and Technology Center; Medford MA USA
| | - Nicole Raia
- Department of Biomedical Engineering; Tufts University Science and Technology Center; Medford MA USA
| | - Wenwen Huang
- Department of Biomedical Engineering; Tufts University Science and Technology Center; Medford MA USA
| | - Chiara E. Ghezzi
- Department of Biomedical Engineering; Tufts University Science and Technology Center; Medford MA USA
| | - Marc Simon
- Department of Physics and Astronomy, and Center for Nanoscopic Physics; Tufts University Science and Technology Center; Medford MA USA
| | - Cristian Staii
- Department of Physics and Astronomy, and Center for Nanoscopic Physics; Tufts University Science and Technology Center; Medford MA USA
| | - Anthony S. Weiss
- School of Molecular Bioscience; University of Sydney; NSW Australia
- Charles Perkins Center; University of Sydney; NSW Australia
- Bosch Institute; University of Sydney; NSW Australia
| | - David L. Kaplan
- Department of Biomedical Engineering; Tufts University Science and Technology Center; Medford MA USA
| |
Collapse
|
19
|
Kluge JA, Kahn BT, Brown JE, Omenetto FG, Kaplan DL. Optimizing Molecular Weight of Lyophilized Silk As a Shelf-Stable Source Material. ACS Biomater Sci Eng 2016; 2:595-605. [PMID: 33465861 DOI: 10.1021/acsbiomaterials.5b00556] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Storage of silk proteins in liquid form can lead to excessive waste from premature gelation, thus an alternative storage strategy is proposed using lyophilization to generate soluble and shelf-stable powder formats for on-demand use. Initial solution stability studies highlighted instabilities of higher-molecular-weight silks that could not be resolved by solution modifications such as autoclaving, pH increases, dilution, or combinations thereof. Conversely, shelf-stable lyophilized stock powders of silk fibroin of moderate to low molecular weights were developed that could be fully constituted even after 1 year of storage at elevated temperatures. Increasing dried silk powder loading in aqueous solution facilitated increased silk solution concentrations-here up to 80 mg/mL solubility was demonstrated across a range of formulations. Powders generated from silk solutions with higher-molecular-weight distributions were less soluble than moderate or lower-molecular-weight versions, despite no differences in their solution glass-transition temperatures. Instead, the aggregation and β-sheet content of lyophilized higher molecular weight stock solutions were identified as the cause of the reduced powder solubility by circular dichroism and dynamic light scattering analyses. The solubility and molecular weight profiles of all formulations investigated were preserved after storing the lyophilized materials over 1 year, even at 37 °C. No long-term powder stability behaviors were influenced by the addition of a secondary drying step in the lyophilization procedure, suggesting that this protocol could be scaled without the burden of lengthy process times. Taken together, these findings provide a very flexible and potentially cost-saving approach to producing shelf-stable silk fibroin stock materials based on the use of moderate to lower-molecular-weight lyophilized preparations. This utility is demonstrated with the formation of silk material formats from the stored powders, including films, gels, and salt-leached porous scaffolds. In turn, a more efficient system allowing full resolubilization will enable stockpiling powder for on-demand usage and for deployment of dried silks for application demands in field settings.
Collapse
Affiliation(s)
- Jonathan A Kluge
- Vaxess Technologies, c/o Lab Central, 700 Main Street, Cambridge Massachusetts 02139, United States
| | | | | | | | | |
Collapse
|
20
|
Melke J, Midha S, Ghosh S, Ito K, Hofmann S. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater 2016; 31:1-16. [PMID: 26360593 DOI: 10.1016/j.actbio.2015.09.005] [Citation(s) in RCA: 488] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/24/2015] [Accepted: 09/06/2015] [Indexed: 01/08/2023]
Abstract
Silk fibroin (SF) is a fibrous protein which is produced mainly by silkworms and spiders. Its unique mechanical properties, tunable biodegradation rate and the ability to support the differentiation of mesenchymal stem cells along the osteogenic lineage, have made SF a favorable scaffold material for bone tissue engineering. SF can be processed into various scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified, which provides an impressive toolbox and allows SF scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing SF, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted. STATEMENT OF SIGNIFICANCE Silk fibroin is a natural biomaterial with remarkable biomedical and mechanical properties which make it favorable for a broad range of bone tissue engineering applications. It can be processed into different scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified which provides a unique toolbox and allows silk fibroin scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing silk fibroin, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted.
Collapse
|
21
|
Li AB, Kluge JA, Guziewicz NA, Omenetto FG, Kaplan DL. Silk-based stabilization of biomacromolecules. J Control Release 2015; 219:416-430. [PMID: 26403801 PMCID: PMC4656123 DOI: 10.1016/j.jconrel.2015.09.037] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/19/2015] [Indexed: 11/26/2022]
Abstract
Silk fibroin is a high molecular weight amphiphilic protein that self-assembles into robust biomaterials with remarkable properties including stabilization of biologicals and tunable release kinetics correlated to processing conditions. Cells, antibiotics,monoclonal antibodies and peptides, among other biologics, have been encapsulated in silk using various processing approaches and material formats. The mechanistic basis for the entrapment and stabilization features, along with insights into the modulation of release of the entrained compounds from silks will be reviewed with a focus on stabilization of bioactive molecules.
Collapse
Affiliation(s)
- Adrian B Li
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Jonathan A Kluge
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Nicholas A Guziewicz
- Drug Product Technologies, Amgen, 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Fiorenzo G Omenetto
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA; Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
22
|
Burnouf T, Strunk D, Koh MBC, Schallmoser K. Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials 2015; 76:371-87. [PMID: 26561934 DOI: 10.1016/j.biomaterials.2015.10.065] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/16/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023]
Abstract
The essential physiological role of platelets in wound healing and tissue repair builds the rationale for the use of human platelet derivatives in regenerative medicine. Abundant growth factors and cytokines stored in platelet granules can be naturally released by thrombin activation and clotting or artificially by freeze/thaw-mediated platelet lysis, sonication or chemical treatment. Human platelet lysate prepared by the various release strategies has been established as a suitable alternative to fetal bovine serum as culture medium supplement, enabling efficient propagation of human cells under animal serum-free conditions for a multiplicity of applications in advanced somatic cell therapy and tissue engineering. The rapidly increasing number of studies using platelet derived products for inducing human cell proliferation and differentiation has also uncovered a considerable variability of human platelet lysate preparations which limits comparability of results. The main variations discussed herein encompass aspects of donor selection, preparation of the starting material, the possibility for pooling in plasma or additive solution, the implementation of pathogen inactivation and consideration of ABO blood groups, all of which can influence applicability. This review outlines the current knowledge about human platelet lysate as a powerful additive for human cell propagation and highlights its role as a prevailing supplement for human cell culture capable to replace animal serum in a growing spectrum of applications.
Collapse
Affiliation(s)
- Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Dirk Strunk
- Experimental & Clinical Cell Therapy Institute, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Mickey B C Koh
- Blood Services Group, Health Sciences Authority, Singapore; Department for Hematology, St George's Hospital and Medical School, London, UK
| | - Katharina Schallmoser
- Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria; Department for Blood Group Serology and Transfusion Medicine, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
23
|
Hamilton DC, Shih HH, Schubert RA, Michie SA, Staats PN, Kaplan DL, Fontaine MJ. A silk-based encapsulation platform for pancreatic islet transplantation improves islet function in vivo. J Tissue Eng Regen Med 2015; 11:887-895. [PMID: 25619945 DOI: 10.1002/term.1990] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 09/04/2014] [Accepted: 12/09/2014] [Indexed: 12/15/2022]
Abstract
The success of pancreatic islet (PI) transplantation is challenged by PI functional damage during the peritransplantation period. A silk-based encapsulation platform including mesenchymal stromal cells (MSCs) was evaluated for islet cell delivery in vivo. Islet equivalents (IEQs) were transplanted into the epididymal fat pads of mice with streptozotocin-induced diabetes. Three PI combinations were tested: (A) co-encapsulated in silk with MSCs; (b) encapsulated in silk alone; or (c) pelleted. Blood glucose levels were monitored and intraperitoneal glucose tolerance test (IPGTT) was performed upon return to euglycaemia. Grafts were removed for histology and cytokine content analysis. Mice with PI grafts in silk showed a prompt return to euglycaemia. IPGTT was significantly improved with PI in silk with MSCs, compared to PI in silk alone or pelleted. Both Th1 and Th2 cytokines were increased in PI grafts in silk, but Th1 cytokines were decreased significantly with PI and MSC co-encapsulation. Histological analysis showed osteogenesis and chondrogenesis in the silk grafts containing MSCs. Future studies will evaluate MSC stability and function in vivo and improve silk biocompatibility for applications in islet transplantation. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Diana C Hamilton
- Department of Pathology, Stanford University School of Medicine, CA, USA
| | - Hank H Shih
- Department of Pathology, Stanford University School of Medicine, CA, USA
| | - Richard A Schubert
- Department of Pathology, Stanford University School of Medicine, CA, USA
| | - Sara A Michie
- Department of Pathology, Stanford University School of Medicine, CA, USA
| | - Paul N Staats
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David L Kaplan
- Department of Bioengineering, Tufts University, Medford, MA, USA
| | - Magali J Fontaine
- Department of Pathology, Stanford University School of Medicine, CA, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
24
|
Mechanical and thermal property characterization of poly-l-lactide (PLLA) scaffold developed using pressure-controllable green foaming technology. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 49:612-622. [PMID: 25686990 DOI: 10.1016/j.msec.2015.01.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/05/2014] [Accepted: 01/06/2015] [Indexed: 02/04/2023]
Abstract
Poly-l-lactide (PLLA) is one of the most promising biological materials used for tissue engineering scaffolds (TES) because of their excellent biodegradability and tenability. Here, microcellular PLLA foams were fabricated by pressure-controllable green foaming technology. Scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), wide angle X-ray diffraction measurement (WAXRD), thermogravimetric (TG) analysis, reflection-Fourier transform infrared (FTIR) analysis, enzymatic degradation study and MTT assay were used to analyze the scaffolds' morphologies, structures and crystallinities, mechanical and biodegradation properties, as well as their cytotoxicity. The results showed that PLLA foams with pore sizes from 8 to 103μm diameters were produced when the saturation pressure decreased from 7.0 to 4.0MPa. Through a combination of StepScan DSC (SSDSC) and WAXRD approaches, it was observed in PLLA foams that the crystallinity, highly-oriented metastable state and rigid amorphous phase increased with the increasing foaming pressure. It was also found that both the glass transition temperature and apparent enthalpy of PLLA significantly increased after the foaming process, which suggested that the changes of microcellular structure could provide PLLA scaffolds better thermal stability and elasticity. Moreover, MTT assessments suggested that the smaller pore size should benefit cell attachment and growth in the scaffold. The results of current work will give us better understanding of the mechanisms involved in structure and property changes of PLLA at the molecular level, which enables more possibilities for the design of PLLA scaffold to satisfy various requirements in biomedical and green chemical applications.
Collapse
|
25
|
De Pascale MR, Sommese L, Casamassimi A, Napoli C. Platelet derivatives in regenerative medicine: an update. Transfus Med Rev 2015; 29:52-61. [PMID: 25544600 DOI: 10.1016/j.tmrv.2014.11.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/03/2014] [Accepted: 11/09/2014] [Indexed: 12/26/2022]
Abstract
Prior preclinical and clinical studies support the use of platelet-derived products for the treatment of soft and hard tissue lesions. These regenerative effects are controlled by autocrine and paracrine biomolecules including growth factors and cytokines contained in platelet alpha granules. Each growth factor is involved in a phase of the healing process, such as inflammation, collagen synthesis, tissue granulation, and angiogenesis collectively promoting tissue restitution. Platelet derivatives have been prepared as platelet-rich plasma, platelet gel, platelet-rich fibrin, and platelet eye drops. These products vary in their structure, growth factors, composition, and cytokine concentrations. Here, we review the current use of platelet-derived biological products focusing on the rationale for their use and the main requirements for their preparation. Variation in the apparent therapeutic efficacy may have resulted from a lack of reproducible, standardized protocols for preparation. Despite several individual studies showing favorable treatment effects, some randomized controlled trials as well as meta-analyses have found no constant clinical benefit from the application of platelet-derived products for prevention of tissue lesions. Recently, 3 published studies in dentistry showed an improvement in bone density. Seven published studies showed positive results in joint regeneration. Five published studies demonstrated an improvement in the wound healing, and an improvement of eye epithelial healing was observed in 2 reports. Currently, at least 14 ongoing clinical trials in phase 3 or 4 have been designed with large groups of treated patients (n > 100). Because the rationale of the therapy with platelet-derived compounds is still debated, a definitive insight can be acquired only when these large randomized trials will be completed.
Collapse
Affiliation(s)
- Maria Rosaria De Pascale
- UOC Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Regional Reference Laboratory of Transplant Immunology (LIT), Azienda Ospedaliera Universitaria (AOU), Second University of Naples, Naples, Italy
| | - Linda Sommese
- UOC Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Regional Reference Laboratory of Transplant Immunology (LIT), Azienda Ospedaliera Universitaria (AOU), Second University of Naples, Naples, Italy
| | - Amelia Casamassimi
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.
| | - Claudio Napoli
- UOC Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Regional Reference Laboratory of Transplant Immunology (LIT), Azienda Ospedaliera Universitaria (AOU), Second University of Naples, Naples, Italy; Institute of Diagnostic and Nuclear Development, IRCCS, Naples, Italy
| |
Collapse
|
26
|
|