1
|
Zhu J, Luo Q, Cao T, Yang G, Xiao L. Injectable cartilage microtissues based on 3D culture using porous gelatin microcarriers for cartilage defect treatment. Regen Biomater 2024; 11:rbae064. [PMID: 38903559 PMCID: PMC11187498 DOI: 10.1093/rb/rbae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Cartilage tissues possess an extremely limited capacity for self-repair, and current clinical surgical approaches for treating articular cartilage defects can only provide short-term relief. Despite significant advances in the field of cartilage tissue engineering, avoiding secondary damage caused by invasive surgical procedures remains a challenge. In this study, injectable cartilage microtissues were developed through 3D culture of rat bone marrow mesenchymal stem cells (BMSCs) within porous gelatin microcarriers (GMs) and induced differentiation. These microtissues were then injected for the purpose of treating cartilage defects in vivo, via a minimally invasive approach. GMs were found to be noncytotoxic and favorable for cell attachment, proliferation and migration evaluated with BMSCs. Moreover, cartilage microtissues with a considerable number of cells and abundant extracellular matrix components were obtained from BMSC-laden GMs after induction differentiation culture for 28 days. Notably, ATDC5 cells were complementally tested to verify that the GMs were conducive to cell attachment, proliferation, migration and chondrogenic differentiation. The microtissues obtained from BMSC-laden GMs were then injected into articular cartilage defect areas in rats and achieved superior performance in alleviating inflammation and repairing cartilage. These findings suggest that the use of injectable cartilage microtissues in this study may hold promise for enhancing the long-term outcomes of cartilage defect treatments while minimizing the risk of secondary damage associated with traditional surgical techniques.
Collapse
Affiliation(s)
- Jing Zhu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Qiuchen Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Tiefeng Cao
- Department of Gynaecology, First Affiliated Hospital of Sun YatSen University, Guangzhou 510070, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lin Xiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
2
|
Thanaskody K, Jusop AS, Tye GJ, Wan Kamarul Zaman WS, Dass SA, Nordin F. MSCs vs. iPSCs: Potential in therapeutic applications. Front Cell Dev Biol 2022; 10:1005926. [PMID: 36407112 PMCID: PMC9666898 DOI: 10.3389/fcell.2022.1005926] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/21/2022] [Indexed: 01/24/2023] Open
Abstract
Over the past 2 decades, mesenchymal stem cells (MSCs) have attracted a lot of interest as a unique therapeutic approach for a variety of diseases. MSCs are capable of self-renewal and multilineage differentiation capacity, immunomodulatory, and anti-inflammatory properties allowing it to play a role in regenerative medicine. Furthermore, MSCs are low in tumorigenicity and immune privileged, which permits the use of allogeneic MSCs for therapies that eliminate the need to collect MSCs directly from patients. Induced pluripotent stem cells (iPSCs) can be generated from adult cells through gene reprogramming with ectopic expression of specific pluripotency factors. Advancement in iPS technology avoids the destruction of embryos to make pluripotent cells, making it free of ethical concerns. iPSCs can self-renew and develop into a plethora of specialized cells making it a useful resource for regenerative medicine as they may be created from any human source. MSCs have also been used to treat individuals infected with the SARS-CoV-2 virus. MSCs have undergone more clinical trials than iPSCs due to high tumorigenicity, which can trigger oncogenic transformation. In this review, we discussed the overview of mesenchymal stem cells and induced pluripotent stem cells. We briefly present therapeutic approaches and COVID-19-related diseases using MSCs and iPSCs.
Collapse
Affiliation(s)
- Kalaiselvaan Thanaskody
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amirah Syamimi Jusop
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia,Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sylvia Annabel Dass
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia,*Correspondence: Fazlina Nordin,
| |
Collapse
|
3
|
Hayashi K, Matsuda M, Nakahata M, Takashima Y, Tanaka M. Stimulus-Responsive, Gelatin-Containing Supramolecular Nanofibers as Switchable 3D Microenvironments for Cells. Polymers (Basel) 2022; 14:polym14204407. [PMID: 36297985 PMCID: PMC9607093 DOI: 10.3390/polym14204407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Polymer- and/or protein-based nanofibers that promote stable cell adhesion have drawn increasing attention as well-defined models of the extracellular matrix. In this study, we fabricated two classes of stimulus-responsive fibers containing gelatin and supramolecular crosslinks to emulate the dynamic cellular microenvironment in vivo. Gelatin enabled cells to adhere without additional surface functionalization, while supramolecular crosslinks allowed for the reversible switching of the Young’s modulus through changes in the concentration of guest molecules in culture media. The first class of nanofibers was prepared by coupling the host–guest inclusion complex to gelatin before electrospinning (pre-conjugation), while the second class of nanofibers was fabricated by coupling gelatin to polyacrylamide functionalized with host or guest moieties, followed by conjugation in the electrospinning solution (post-conjugation). In situ AFM nano-indentation demonstrated the reversible switching of the Young’s modulus between 2–3 kPa and 0.2–0.3 kPa under physiological conditions by adding/removing soluble guest molecules. As the concentration of additives does not affect cell viability, the supramolecular fibers established in this study are a promising candidate for various biomedical applications, such as standardized three-dimensional culture matrices for somatic cells and the regulation of stem cell differentiation.
Collapse
Affiliation(s)
- Kentaro Hayashi
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Mami Matsuda
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Masaki Nakahata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka 565-0871, Japan
- Correspondence: (Y.T.); (M.T.)
| | - Motomu Tanaka
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
- Correspondence: (Y.T.); (M.T.)
| |
Collapse
|
4
|
Wang S, Tao Y. Construction of graphene oxide-modified peptide-coated nanofibrous enhances the osteogenic conversion of induced pluripotent stem cells. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2100374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Shu Wang
- Chongqing Emergency Medical Center, Chongqing, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Yang Tao
- Chongqing Emergency Medical Center, Chongqing, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| |
Collapse
|
5
|
Hua Y, Yoshimochi K, Li J, Takekita K, Shimotsuma M, Li L, Qu X, Zhang J, Sawa Y, Liu L, Miyagawa S. Development and evaluation of a novel xeno-free culture medium for human-induced pluripotent stem cells. Stem Cell Res Ther 2022; 13:223. [PMID: 35658933 PMCID: PMC9166585 DOI: 10.1186/s13287-022-02879-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/03/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human-induced pluripotent stem cells (hiPSCs) are considered an ideal resource for regenerative medicine because of their ease of access and infinite expansion ability. To satisfy the sizable requirement for clinical applications of hiPSCs, large-scale, expansion-oriented, xeno-free, and cost-effective media are critical. Although several xeno-free media for hiPSCs have been generated over the past decades, few of them are suitable for scalable expansion of cultured hiPSCs because of their modest potential for proliferation and high cost. METHODS In this study, we developed a xeno-free ON2/AscleStem PSC medium (ON2) and cultured 253G1 hiPSCs on different matrices, including iMatrix-511 and gelatin nanofiber (GNF) in ON2. Over 20 passages, we evaluated cell proliferation by doubling times; pluripotency by flow cytometry, immunofluorescence staining and qRT-PCR; and differentiation ability by three germ layer differentiation in vitro and teratoma formation in severe combined immunodeficiency mice, followed by histological analysis. In addition, we compared the maintenance effect of ON2 on hiPSCs with StemFit® AK02 (AK02N) and Essential 8™ (E8). Besides 253G1 hiPSCs, we cultivated different hiPSC lines, including Ff-l01 hiPSCs, ATCC® ACS-1020™ hiPSCs, and Down's syndrome patient-specific ATCC® ACS-1003™ hiPSCs in ON2. RESULTS We found that 253G1 hiPSCs in ON2 demonstrated normal morphology and karyotype and high self-renewal and differentiation abilities on the tested matrices for over 20 passages. Moreover, 253G1 hiPSCs kept on GNF showed higher growth and stemness, as verified by the shorter doubling time and higher expression levels of pluripotent markers. Compared to AK02N and E8 media, 253G1 hiPSCs grown in ON2 showed higher pluripotency, as demonstrated by the increased expression level of pluripotent factors. In addition, all hiPSC lines cultivated in ON2 were able to grow for at least 10 passages with compact clonal morphology and were positive for all detected pluripotent markers. CONCLUSIONS Our xeno-free ON2 was compatible with various matrices and ideal for long-term expansion and maintenance of not only healthy-derived hiPSCs but also patient-specific hiPSCs. This highly efficient medium enabled the rapid expansion of hiPSCs in a reliable and cost-effective manner and could act as a promising tool for disease modeling and large-scale production for regenerative medicine in the future.
Collapse
Affiliation(s)
- Ying Hua
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Kenji Yoshimochi
- NACALAI TESQUE, INC. Research and Development Department, Kyoto, 604-0855, Japan
| | - Junjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.,Division of Cardiovascular Surgery, Department of Design for Tissue Regeneration, Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Kazuhiro Takekita
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Motoshi Shimotsuma
- NACALAI TESQUE, INC. Research and Development Department, Kyoto, 604-0855, Japan
| | - Lingjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Xiang Qu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Jingbo Zhang
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | | | - Li Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan. .,Division of Cardiovascular Surgery, Department of Design for Tissue Regeneration, Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| |
Collapse
|
6
|
Rofaani E, He Y, Peng J, Chen Y. Epithelial folding of alveolar cells derived from human induced pluripotent stem cells on artificial basement membrane. Acta Biomater 2022; 163:170-181. [PMID: 35306184 DOI: 10.1016/j.actbio.2022.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
Abstract
Epithelial folding depends on mechanical properties of both epithelial cells and underlying basement membrane (BM). While folding is essential for tissue morphogenesis and functions, it is difficult to recapitulate features of a growing epithelial monolayer for in vitro modeling due to lack of in vivo like BM. Herein, we report a method to overcome this difficulty by culturing on an artificial basement membrane (ABM) the primordial lung progenitors (PLPs) from human induced pluripotent stem cells (hiPSCs). The ABM was achieved by self-assembling collagen IV and laminin, the two principal natural BM proteins, in the pores of a monolayer of crosslinked gelatin nanofibers deposited on a honeycomb micro-frame. The hiPSC-PLPs were seeded on the ABM for alveolar differentiation under submerged and air-liquid interface culture conditions. As results, the forces generated by the growing epithelial monolayer led to a geometry-dependent folding. Analysis of strain distribution in a clamped membrane provided instrumental insights into some of the observed phenomena. Moreover, the forces generated by the growing epithelial layer led to a high-level expression of surfactant protein C and a high percentage of aquaporin 5 positive cells compared with the results obtained with a nanofiber-covered bulk substrate. Thus, this work demonstrated the importance of recapitulating natural BM for advanced epithelial modeling. STATEMENT OF SIGNIFICANCE: The effort to develop in vitro epithelial models has not been entirely successful to date, due to lack of in vivo like basement membrane (BM). This lack has been overcome by using a microfabricated dense thin and pliable sheet like structure made of natural BM proteins. With such an artificial BM, alveolar epithelial deformation and folding could be studied and date could be correlated to numerical analyses of a plate theory. This method is simple and effective, enabling further developments in epithelial tissue modeling.
Collapse
Affiliation(s)
- Elrade Rofaani
- PASTEUR, Département de Chimie, École Normale Supérieure, CNRS, PSL University, Sorbonne Université, Paris 75005, France; National Research and Innovation Agency, Jakarta 10340, Indonesia
| | - Yong He
- PASTEUR, Département de Chimie, École Normale Supérieure, CNRS, PSL University, Sorbonne Université, Paris 75005, France
| | - Juan Peng
- PASTEUR, Département de Chimie, École Normale Supérieure, CNRS, PSL University, Sorbonne Université, Paris 75005, France.
| | - Yong Chen
- PASTEUR, Département de Chimie, École Normale Supérieure, CNRS, PSL University, Sorbonne Université, Paris 75005, France.
| |
Collapse
|
7
|
Yang S, Zheng L, Chen Z, Jiao Z, Liu T, Nie Y, Kang Y, Pan B, Song K. Decellularized Pig Kidney with a Micro-Nano Secondary Structure Contributes to Tumor Progression in 3D Tumor Model. MATERIALS 2022; 15:ma15051935. [PMID: 35269166 PMCID: PMC8911967 DOI: 10.3390/ma15051935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023]
Abstract
In spite of many anti-cancer drugs utilized in clinical treatment, cancer is still one of the diseases with the highest morbidity and mortality worldwide, owing to the complexity and heterogeneity of the tumor microenvironment. Compared with conventional 2D tumor models, 3D scaffolds could provide structures and a microenvironment which stimulate native tumor tissues more accurately. The extracellular matrix (ECM) is the main component of the cell in the microenvironment that is mainly composed of three-dimensional nanofibers, which can form nanoscale fiber networks, while the decellularized extracellular matrix (dECM) has been widely applied to engineered scaffolds. In this study, pig kidney was used as the source material to prepare dECM scaffolds. A chemical crosslinking method was used to improve the mechanical properties and other physical characteristics of the decellularized pig kidney-derived scaffold. Furthermore, a human breast cancer cell line (MCF-7) was used to further investigate the biocompatibility of the scaffold to fabricate a tumor model. The results showed that the existence of nanostructures in the scaffold plays an important role in cell adhesion, proliferation, and differentiation. Therefore, the pig kidney-derived matrix scaffold prepared by decellularization could provide more cell attachment sites, which is conducive to cell adhesion and proliferation, physiological activities, and tumor model construction.
Collapse
Affiliation(s)
- Shuangjia Yang
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; (S.Y.); (L.Z.); (Z.C.); (T.L.)
| | - Le Zheng
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; (S.Y.); (L.Z.); (Z.C.); (T.L.)
| | - Zilong Chen
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; (S.Y.); (L.Z.); (Z.C.); (T.L.)
| | - Zeren Jiao
- Artie McFerrin Department of Chemical Engineering, College Station, Texas A&M University, Texas, TX 77843-3122, USA;
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; (S.Y.); (L.Z.); (Z.C.); (T.L.)
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Correspondence: (Y.N.); (Y.K.); (B.P.); (K.S.)
| | - Yue Kang
- Department of Breast Surgery, Cancer Hospital of China Medical University, 44 Xiaoheyan Road, Dadong District, Shenyang 110042, China
- Correspondence: (Y.N.); (Y.K.); (B.P.); (K.S.)
| | - Bo Pan
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian 116023, China
- Correspondence: (Y.N.); (Y.K.); (B.P.); (K.S.)
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; (S.Y.); (L.Z.); (Z.C.); (T.L.)
- Correspondence: (Y.N.); (Y.K.); (B.P.); (K.S.)
| |
Collapse
|
8
|
Zhou P, Qin L, Ge Z, Xie B, Huang H, He F, Ma S, Ren L, Shi J, Pei S, Dong G, Qi Y, Lan F. Design of chemically defined synthetic substrate surfaces for the in vitro maintenance of human pluripotent stem cells: A review. J Biomed Mater Res B Appl Biomater 2022; 110:1968-1990. [PMID: 35226397 DOI: 10.1002/jbm.b.35034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/11/2022]
Abstract
Human pluripotent stem cells (hPSCs) have the potential of long-term self-renewal and differentiation into nearly all cell types in vitro. Prior to the downstream applications, the design of chemically defined synthetic substrates for the large-scale proliferation of quality-controlled hPSCs is critical. Although great achievements have been made, Matrigel and recombinant proteins are still widely used in the fundamental research and clinical applications. Therefore, much effort is still needed to improve the performance of synthetic substrates in the culture of hPSCs, realizing their commercial applications. In this review, we summarized the design of reported synthetic substrates and especially their limitations in terms of cell culture. Moreover, much attention was paid to the development of promising peptide displaying surfaces. Besides, the biophysical regulation of synthetic substrate surfaces as well as the three-dimensional culture systems were described.
Collapse
Affiliation(s)
- Ping Zhou
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Liying Qin
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Zhangjie Ge
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Biyao Xie
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Hongxin Huang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Fei He
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Shengqin Ma
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Lina Ren
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jiamin Shi
- Department of Laboratory Animal Centre, Changzhi Medical College, Changzhi, China
| | - Suying Pei
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Genxi Dong
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Yongmei Qi
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Feng Lan
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen Key Laboratory of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Shenzhen, China
| |
Collapse
|
9
|
Li S, Yoshioka M, Li J, Liu L, Ye S, Kamei KI, Chen Y. Nanocasting of fibrous morphology on a substrate for long-term propagation of human induced pluripotent stem cells. Biomed Mater 2022; 17. [PMID: 35114658 DOI: 10.1088/1748-605x/ac51b8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/03/2022] [Indexed: 11/12/2022]
Abstract
Human-induced pluripotent stem cells (hiPSCs) can be self-renewed for many generations on nanofibrous substrates. Herein, a casting method is developed to replicate the nanofibrous morphology into a thin layer of polymethylsiloxane (PDMS). The template is obtained by electrospinning and chemical crosslinking of gelatin nanofibers on a glass slide. The replicas of the template are surface-functionalized by gelatin and used for propagation of hiPSCs over tenth generations. The performance of the propagated hiPSCs is checked by immunofluorescence imaging, flowcytometry, and RT-PCR, confirming the utility of the method. The results are also compared with those obtained using electrospun nanofiber substrates. Inherently, the PDMS replicas is of low stiffness and can be reproduced easily. Compared to other patterning techniques, casting is more flexible and cost-effective, suggesting that this method might find applications in cell-based assays that rely on stringent consideration of both substrate stiffness and surface morphology.
Collapse
Affiliation(s)
- Sisi Li
- Chemistry, Ecole Normale Superieure, 24 rue Lhomond, Paris, Île-de-France, 75230, FRANCE
| | - Momoko Yoshioka
- Kyoto University, Yoshida Ushinomiya-cho, Kyoto, 606-8501, JAPAN
| | - Junjun Li
- Institute for Integrated Cell-Material Sciences, Yoshida Ushinomiya-cho, Kyoto, 606-8501, JAPAN
| | - Li Liu
- Kyoto University, Yoshida Ushinomiya-cho, Kyoto, 606-8501, JAPAN
| | - Sixin Ye
- University of Paris, 94276 Le Kremlin Bicêtre, Paris, 75006, FRANCE
| | - Ken-Ichiro Kamei
- Institute for Integrated Cell-Material Sciences, Yoshida Ushinomiya-cho, Kyoto, 606-8501, JAPAN
| | - Yong Chen
- Chemistry, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris Cedex 05, Paris, Île-de-France, 75230, FRANCE
| |
Collapse
|
10
|
Huang B, Peng J, Huang X, Liang F, Wang L, Shi J, Yamada A, Chen Y. Generation of Interconnected Neural Clusters in Multiscale Scaffolds from Human-Induced Pluripotent Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55939-55952. [PMID: 34788005 DOI: 10.1021/acsami.1c18465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of in vitro neural networks depends to a large extent on the scaffold properties, including the scaffold stiffness, porosity, and dimensionality. Herein, we developed a method to generate interconnected neural clusters in a multiscale scaffold consisting of a honeycomb microframe covered on both sides with a monolayer of cross-linked gelatin nanofibers. Cortical neural precursor cells were first produced from human-induced pluripotent stem cells and then loaded into the scaffold for a long period of differentiation toward cortical neural cells. As a result, neurons and astrocytes self-organized in the scaffold to form clusters in each of the honeycomb compartments with remarkable inter-cluster connections. These cells highly expressed neuron- and astrocyte-specific proteins, including NF200, tau, synapsin I, and glial fibrillary acidic protein, and showed spatially correlated neural activities. Two types of neural clusters, that is, spheroid-like and hourglass-like clusters, were found, indicating the complexity of neural-scaffold interaction and the variability of three-dimensional neural organization. Furthermore, we incorporated a reconstituted basement membrane into the scaffold and performed co-culture of the neural network with brain microvascular endothelial cells. As a proof of concept, an improved neurovascular unit model was tested, showing large astrocytic end-feet on the back side of the endothelium.
Collapse
Affiliation(s)
- Boxin Huang
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Université, Sorbonne Université, CNRS, 75005 Paris, France
| | - Juan Peng
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Université, Sorbonne Université, CNRS, 75005 Paris, France
| | - Xiaochen Huang
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Université, Sorbonne Université, CNRS, 75005 Paris, France
| | - Feng Liang
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Université, Sorbonne Université, CNRS, 75005 Paris, France
| | - Li Wang
- MesoBioTech, 231 Rue Saint-Honoré, 75001 Paris, France
| | - Jian Shi
- MesoBioTech, 231 Rue Saint-Honoré, 75001 Paris, France
| | - Ayako Yamada
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Université, Sorbonne Université, CNRS, 75005 Paris, France
| | - Yong Chen
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Université, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
11
|
Zhang H, Chen Y, Fan C, Liu R, Huang J, Zhang Y, Tang C, Zhou B, Chen X, Ju W, Zhao Y, Han J, Wu P, Zhang S, Shen W, Yin Z, Chen X, Ouyang H. Cell-subpopulation alteration and FGF7 activation regulate the function of tendon stem/progenitor cells in 3D microenvironment revealed by single-cell analysis. Biomaterials 2021; 280:121238. [PMID: 34810035 DOI: 10.1016/j.biomaterials.2021.121238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/03/2021] [Accepted: 11/01/2021] [Indexed: 01/02/2023]
Abstract
Three dimensional (3D) microenvironments more accurately replicate native microenvironments for stem cell maintenance and function compared with two dimensional (2D) microenvironments. However, the molecular mechanisms by which 3D microenvironments regulate stem cell function remain largely unexplored at the single-cell level. Here, using a single-cell analysis and functional analysis, we found not all cell-subpopulations respond to 3D microenvironments based on a systematically 3D gelatin microcarrier culture system we developed for the expansion and function maintenance of hTSPCs. 3D microenvironments alter the cell-subpopulation distribution of human tendon stem/progenitor cells (hTSPCs) by improving the proportion of ICAM1+ITGB8+ and FGF7+CYGB+ subpopulations. We also revealed the activated FGF7 signaling in the two subpopulations is responsible for the enhanced tenogenesis of hTSPCs through cell-cell interactions. The hTSPCs cultured in 3D niche with a specific cell-subpopulation structure exhibited superior stem-cell characteristics and functions both in vitro and in vivo. Together, our study demonstrates that 3D microenvironments can regulate stem-cell function by modulating the critical cell subpopulation and identifies FGF7 as a novel regulator for tenogenic differentiation and tendon regeneration.
Collapse
Affiliation(s)
- Hong Zhang
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Yangwu Chen
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Chunmei Fan
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Richun Liu
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Jiayun Huang
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Yanjie Zhang
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Chenqi Tang
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Bo Zhou
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Xiaoyi Chen
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Wei Ju
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Yanyan Zhao
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Jie Han
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Peishan Wu
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Shichen Zhang
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Weiliang Shen
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China; Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zi Yin
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| | - Xiao Chen
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| | - Hongwei Ouyang
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
12
|
Hang Y, Ma X, Liu C, Li S, Zhang S, Feng R, Shang Q, Liu Q, Ding Z, Zhang X, Yu L, Lu Q, Shao C, Chen H, Shi Y, He J, Kaplan DL. Blastocyst-Inspired Hydrogels to Maintain Undifferentiation of Mouse Embryonic Stem Cells. ACS NANO 2021; 15:14162-14173. [PMID: 34516077 DOI: 10.1021/acsnano.0c10468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stem cell fate is determined by specific niches that provide multiple physical, chemical, and biological cues. However, the hierarchy or cascade of impact of these cues remains elusive due to their spatiotemporal complexity. Here, anisotropic silk protein nanofiber-based hydrogels with suitable cell adhesion capacity are developed to mimic the physical microenvironment inside the blastocele. The hydrogels enable mouse embryonic stem cells (mESCs) to maintain stemness in vitro in the absence of both leukemia inhibitory factor (LIF) and mouse embryonic fibroblasts (MEFs), two critical factors in the standard protocol for mESC maintenance. The mESCs on hydrogels can achieve superior pluripotency, genetic stability, developmental capacity, and germline transmission to those cultured with the standard protocol. Such biomaterials establish an improved dynamic niche through stimulating the secretion of autocrine factors and are sufficient to maintain the pluripotency and propagation of ESCs. The mESCs on hydrogels are distinct in their expression profiles and more resemble ESCs in vivo. The physical cues can thus initiate a self-sustaining stemness-maintaining program. In addition to providing a relatively simple and low-cost option for expansion and utility of ESCs in biological research and therapeutic applications, this biomimetic material helps gain more insights into the underpinnings of early mammalian embryogenesis.
Collapse
Affiliation(s)
- Yingjie Hang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaoliang Ma
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Chunxiao Liu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Siyuan Li
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Sixuan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Ruyan Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Qianwen Shang
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Qi Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Liyin Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Changshun Shao
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Yufang Shi
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Jiuyang He
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute Academy of Science, Beijing 100101, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
13
|
Chang PH, Chao HM, Chern E, Hsu SH. Chitosan 3D cell culture system promotes naïve-like features of human induced pluripotent stem cells: A novel tool to sustain pluripotency and facilitate differentiation. Biomaterials 2020; 268:120575. [PMID: 33341735 DOI: 10.1016/j.biomaterials.2020.120575] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/03/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
A simplified and cost-effective culture system for maintaining the pluripotency of human induced pluripotent stem cells (hiPSCs) is crucial for stem cell applications. Although recombinant protein-based feeder-free hiPSC culture systems have been developed, their manufacturing processes are expensive and complicated, which hinders hiPSC technology progress. Chitosan, a versatile biocompatible polysaccharide, has been reported as a biomaterial for three-dimensional (3D) cell culture system that promotes the physiological activities of mesenchymal stem cells and cancer cells. In the current study, we demonstrated that chitosan membranes sustained proliferation and pluripotency of hiPSCs in long-term culture (up to 365 days). Moreover, using vitronectin as the comparison group, the pluripotency of hiPSCs grown on the membranes was altered into a naïve-like state, which, for pluripotent stem cells, is an earlier developmental stage with higher stemness. On the chitosan membranes, hiPSCs self-assembled into 3D spheroids with an average diameter of ~100 μm. These hiPSC spheroids could be directly differentiated into lineage-specific cells from the three germ layers with 3D structures. Collectively, chitosan membranes not only promoted the naïve pluripotent features of hiPSCs but also provided a novel 3D differentiation platform. This convenient biomaterial-based culture system may enable the effective expansion and accessibility of hiPSCs for regenerative medicine, disease modeling, and drug screening.
Collapse
Affiliation(s)
- Po-Hsiang Chang
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsiao-Mei Chao
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan; Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 10617, Taiwan.
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
14
|
Radiom M, He Y, Peng-Wang J, Baeza-Squiban A, Berret JF, Chen Y. Alveolar mimics with periodic strain and its effect on the cell layer formation. Biotechnol Bioeng 2020; 117:2827-2841. [PMID: 32542664 DOI: 10.1002/bit.27458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/09/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022]
Abstract
We report on the development of a new model of alveolar air-tissue interface on a chip. The model consists of an array of suspended hexagonal monolayers of gelatin nanofibers supported by microframes and a microfluidic device for the patch integration. The suspended monolayers are deformed to a central displacement of 40-80 µm at the air-liquid interface by application of air pressure in the range of 200-1,000 Pa. With respect to the diameter of the monolayers, that is, 500 µm, this displacement corresponds to a linear strain of 2-10% in agreement with the physiological strain range in the lung alveoli. The culture of A549 cells on the monolayers for an incubation time of 1-3 days showed viability in the model. We exerted a periodic strain of 5% at a frequency of 0.2 Hz for 1 hr to the cells. We found that the cells were strongly coupled to the nanofibers, but the strain reduced the coupling and induced remodeling of the actin cytoskeleton, which led to a better tissue formation. Our model can serve as a versatile tool in lung investigations such as in inhalation toxicology and therapy.
Collapse
Affiliation(s)
- Milad Radiom
- Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université Paris Diderot Paris-VII, Paris, France
| | - Yong He
- Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, Pasteur, École Normale Supérieure-PSL Research University, Paris, France
| | - Juan Peng-Wang
- Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, Pasteur, École Normale Supérieure-PSL Research University, Paris, France
| | - Armelle Baeza-Squiban
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Université Paris Diderot Paris-VII, Paris, France
| | - Jean-François Berret
- Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université Paris Diderot Paris-VII, Paris, France
| | - Yong Chen
- Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, Pasteur, École Normale Supérieure-PSL Research University, Paris, France
| |
Collapse
|
15
|
Chan SW, Rizwan M, Yim EKF. Emerging Methods for Enhancing Pluripotent Stem Cell Expansion. Front Cell Dev Biol 2020; 8:70. [PMID: 32117992 PMCID: PMC7033584 DOI: 10.3389/fcell.2020.00070] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Pluripotent stem cells (PSCs) have great potential to revolutionize the fields of tissue engineering and regenerative medicine as well as stem cell therapeutics. However, the end goal of using PSCs for therapeutic use remains distant due to limitations in current PSC production. Conventional methods for PSC expansion have limited potential to be scaled up to produce the number of cells required for the end-goal of therapeutic use due to xenogenic components, high cost or low efficiency. In this mini review, we explore novel methods and emerging technologies of improving PSC expansion: the use of the two-dimensional mechanobiological strategies of topography and stiffness and the use of three-dimensional (3D) expansion methods including encapsulation, microcarrier-based culture, and suspension culture. Additionally, we discuss the limitations of conventional PSC expansion methods as well as the challenges in implementing non-conventional methods.
Collapse
Affiliation(s)
- Sarah W. Chan
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Muhammad Rizwan
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Evelyn K. F. Yim
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
- Centre for Biotechnology and Bioengineering, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
16
|
Bentele T, Amadei F, Kimmle E, Veschgini M, Linke P, Sontag-González M, Tennigkeit J, Ho AD, Özbek S, Tanaka M. New Class of Crosslinker-Free Nanofiber Biomaterials from Hydra Nematocyst Proteins. Sci Rep 2019; 9:19116. [PMID: 31836799 PMCID: PMC6910907 DOI: 10.1038/s41598-019-55655-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/30/2019] [Indexed: 11/10/2022] Open
Abstract
Nematocysts, the stinging organelles of cnidarians, have remarkable mechanical properties. Hydra nematocyst capsules undergo volume changes of 50% during their explosive exocytosis and withstand osmotic pressures of beyond 100 bar. Recently, two novel protein components building up the nematocyst capsule wall in Hydra were identified. The cnidarian proline-rich protein 1 (CPP-1) characterized by a "rigid" polyproline motif and the elastic Cnidoin possessing a silk-like domain were shown to be part of the capsule structure via short cysteine-rich domains that spontaneously crosslink the proteins via disulfide bonds. In this study, recombinant Cnidoin and CPP-1 are expressed in E. coli and the elastic modulus of spontaneously crosslinked bulk proteins is compared with that of isolated nematocysts. For the fabrication of uniform protein nanofibers by electrospinning, the preparative conditions are systematically optimized. Both fibers remain stable even after rigorous washing and immersion into bulk water owing to the simultaneous crosslinking of cysteine-rich domains. This makes our nanofibers clearly different from other protein nanofibers that are not stable without chemical crosslinkers. Following the quantitative assessment of mechanical properties, the potential of Cnidoin and CPP-1 nanofibers is examined towards the maintenance of human mesenchymal stem cells.
Collapse
Affiliation(s)
- Theresa Bentele
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Heidelberg University, 69120, Heidelberg, Germany
| | - Federico Amadei
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Esther Kimmle
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Mariam Veschgini
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Philipp Linke
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Mariana Sontag-González
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
- School of Earth and Environmental Sciences, Science Medicine and Health, University of Wollongong, NSW 2522, Wollongong, Australia
| | - Jutta Tennigkeit
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Heidelberg University, 69120, Heidelberg, Germany
| | - Anthony D Ho
- Department of Medicine V, University of Heidelberg, 69120, Heidelberg, Germany
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, 606-8501, Kyoto, Japan
| | - Suat Özbek
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Heidelberg University, 69120, Heidelberg, Germany.
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany.
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, 606-8501, Kyoto, Japan.
| |
Collapse
|
17
|
de Lima Nascimento TR, de Amoêdo Campos Velo MM, Silva CF, Costa Cruz SBS, Gondim BLC, Mondelli RFL, Castellano LRC. Current Applications of Biopolymer-based Scaffolds and Nanofibers as Drug Delivery Systems. Curr Pharm Des 2019; 25:3997-4012. [PMID: 31701845 DOI: 10.2174/1381612825666191108162948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The high surface-to-volume ratio of polymeric nanofibers makes them an effective vehicle for the release of bioactive molecules and compounds such as growth factors, drugs, herbal extracts and gene sequences. Synthetic polymers are commonly used as sensors, reinforcements and energy storage, whereas natural polymers are more prone to mimicking an extracellular matrix. Natural polymers are a renewable resource and classified as an environmentally friendly material, which might be used in different techniques to produce nanofibers for biomedical applications such as tissue engineering, implantable medical devices, antimicrobial barriers and wound dressings, among others. This review sheds some light on the advantages of natural over synthetic polymeric materials for nanofiber production. Also, the most important techniques employed to produce natural nanofibers are presented. Moreover, some pieces of evidence regarding toxicology and cell-interactions using natural nanofibers are discussed. Clearly, the potential extrapolation of such laboratory results into human health application should be addressed cautiously.
Collapse
Affiliation(s)
- Tatiana Rita de Lima Nascimento
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | | | - Camila Félix Silva
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Sara Brito Silva Costa Cruz
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Brenna Louise Cavalcanti Gondim
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil.,Post-Graduation Program in Dentistry, Department of Dentistry, State University of Paraíba, Campina Grande, PB, Brazil
| | - Rafael Francisco Lia Mondelli
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of Sao Paulo, SP, Brazil
| | - Lúcio Roberto Cançado Castellano
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| |
Collapse
|
18
|
Yu L, Li J, Minami I, Qu X, Miyagawa S, Fujimoto N, Hasegawa K, Chen Y, Sawa Y, Kotera H, Liu L. Clonal Isolation of Human Pluripotent Stem Cells on Nanofibrous Substrates Reveals an Advanced Subclone for Cardiomyocyte Differentiation. Adv Healthc Mater 2019; 8:e1900165. [PMID: 31087474 DOI: 10.1002/adhm.201900165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/02/2019] [Indexed: 11/06/2022]
Abstract
Human pluripotent stem cells (hPSCs) have been widely used for various applications including disease modeling and regenerative medicine, among others. Recently, an increasing number of studies has focused on heterogeneity among hPSCs, which could affect cell quality and subsequent applications. In this study, a nanofibrous platform is developed for single human induced pluripotent stem cell isolation and culture. One type of single cell-derived subclone is established and found to have a distinct morphology compared to other subclones. When used for differentiation toward cardiomyocytes, this type of subclone demonstrates higher differentiation efficiency, increased maturation, and stronger beating compared to those derived from the other subclones. The findings provide a convenient method for single-cell isolation and culture, and demonstrate that variations in differentiation tendencies exist among subclones from the same cell line. This substrate adhesion-based selection process could be used to obtain cell lines with improved differentiation efficiency toward cardiomyocytes and other cell types, which would be advantageous for studies in various fields.
Collapse
Affiliation(s)
- Leqian Yu
- Institutes for Integrated Cell‐Material Sciences (WPI‐iCeMS)Kyoto University Kyoto 606‐8501 Japan
- Department of Micro EngineeringKyoto University Kyoto 615‐8540 Japan
| | - Junjun Li
- Institutes for Integrated Cell‐Material Sciences (WPI‐iCeMS)Kyoto University Kyoto 606‐8501 Japan
- Department of Cardiovascular SurgeryOsaka University Graduate School of Medicine Osaka 565‐0871 Japan
| | - Itsunari Minami
- Department of Cell Design for Tissue ConstructionFaculty of MedicineOsaka University Osaka 565‐0871 Japan
| | - Xiang Qu
- Department of Cardiovascular SurgeryOsaka University Graduate School of Medicine Osaka 565‐0871 Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular SurgeryOsaka University Graduate School of Medicine Osaka 565‐0871 Japan
| | - Nanae Fujimoto
- Department of Cardiovascular SurgeryOsaka University Graduate School of Medicine Osaka 565‐0871 Japan
| | - Kouichi Hasegawa
- Institutes for Integrated Cell‐Material Sciences (WPI‐iCeMS)Kyoto University Kyoto 606‐8501 Japan
| | - Yong Chen
- Institutes for Integrated Cell‐Material Sciences (WPI‐iCeMS)Kyoto University Kyoto 606‐8501 Japan
- PASTEURDépartement de chimieécole normale supérieurePSL Research UniversitySorbonne UniversitésUPMC Université Paris 06 CNRS Paris 75005 France
| | - Yoshiki Sawa
- Department of Cardiovascular SurgeryOsaka University Graduate School of Medicine Osaka 565‐0871 Japan
| | - Hidetoshi Kotera
- Institutes for Integrated Cell‐Material Sciences (WPI‐iCeMS)Kyoto University Kyoto 606‐8501 Japan
- Department of Micro EngineeringKyoto University Kyoto 615‐8540 Japan
| | - Li Liu
- Institutes for Integrated Cell‐Material Sciences (WPI‐iCeMS)Kyoto University Kyoto 606‐8501 Japan
- Department of Cardiovascular SurgeryOsaka University Graduate School of Medicine Osaka 565‐0871 Japan
| |
Collapse
|
19
|
Maintenance of an undifferentiated state of human-induced pluripotent stem cells through botulinum hemagglutinin-mediated regulation of cell behavior. J Biosci Bioeng 2019; 127:744-751. [PMID: 30660482 DOI: 10.1016/j.jbiosc.2018.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/14/2018] [Accepted: 11/29/2018] [Indexed: 01/01/2023]
Abstract
Applications of human induced pluripotent stem cell (hiPSC) culture are impaired by problems with long term maintenance of pluripotency. In this study, we report that exposure to botulinum hemagglutinin (HA), an E-cadherin function-blocking agent, suppressed deviation from an undifferentiated state in hiPSC colonies. Time-lapse imaging of live cells revealed that cells in central regions of colonies moved slowly and underwent a morphological change to a cobblestone-like shape via interaction between contacting cells, forming dense, multiple layers. Staining and migration analysis showed that actin stress fibers and paxillin spots were diminished in colony central regions, and this was associated with alteration of cellular morphology and migratory behavior. However, in culture with HA exposure, cells in the central and peripheral regions of hiPSC colonies were migratory and arranged in loose monolayers, resulting in relatively uniform dispersion of cells in colonies. We also found that a well-organized network of actin stress fibers was of significance in the central and peripheral regions of a colony, resulting in activation of paxillin and E-cadherin expression in hiPSCs. After routine application of HA for serial passages, hiPSCs remained pluripotent and capable of differentiating into all three germ layers. These observations indicate that relaxation of cell-cell junctions by HA induced rearrangements of the cytoskeleton and cell adhesion in hiPSC colonies by promoting migratory behaviors. These results suggest that this simple and readily reproducible culture strategy is a potentially useful tool for improving the robust and scalable maintenance of undifferentiated hiPSC cultures.
Collapse
|
20
|
Tang Z, Jiang F, Zhang Y, Zhang Y, Huang X, Wang Y, Zhang D, Ni N, Liu F, Luo M, Fan X, Zhang W, Gu P. Mussel-inspired injectable hydrogel and its counterpart for actuating proliferation and neuronal differentiation of retinal progenitor cells. Biomaterials 2018; 194:57-72. [PMID: 30583149 DOI: 10.1016/j.biomaterials.2018.12.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022]
Abstract
Biomaterials-mediated retinal progenitor cell (RPC)-based transplantation therapy has shown substantial potential for retinal degeneration (RD), but it is limited by the poor RPC survival, proliferation and differentiation. Herein, the gelatin-hyaluronic acid (Gel-HA)-based hydrogels formed via moderate Michael-type addition reaction with or without the introduction of mussel-inspired polydopamine (PDA), i.e. Gel-HA-PDA and its counterpart Gel-HA hydrogels are developed, and their effects on the biological behaviour of RPCs, including adhesion, survival, proliferation, differentiation, delivery and migration are investigated. The hybrid hydrogels can adopt the intricate structure of the retina with suitable mechanical strength, degradation rate and biological activity to support cellular adhesion, survival and delivery. Meanwhile, Gel-HA hydrogel can remarkably promote RPC proliferation with much larger cell clusters, while Gel-HA-PDA hydrogel significantly enhances RPC adhesion and migration, and directs RPCs to preferentially differentiate toward retinal neurons such as photoreceptors (the most crucial cell-type for RD treatment), which is mainly induced by the activation of integrin α5β1-phosphatidylinositol-3-kinase (PI3K) pathway. This study demonstrates that Gel-HA hydrogel possesses great potential for RPC proliferation, while mussel-inspired PDA-modified Gel-HA hydrogel with superior biocompatibility can significantly promote RPC neuronal differentiation, providing new insights for developing biomedical materials applied for RPC-based transplantation therapy.
Collapse
Affiliation(s)
- Zhimin Tang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Fang Jiang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yi Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Xiaolin Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Yuyao Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Dandan Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Ni Ni
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Feng Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Min Luo
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China.
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Ping Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China.
| |
Collapse
|
21
|
Mechanistic Analysis of Physicochemical Cues in Promoting Human Pluripotent Stem Cell Self-Renewal and Metabolism. Int J Mol Sci 2018; 19:ijms19113459. [PMID: 30400347 PMCID: PMC6275035 DOI: 10.3390/ijms19113459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 10/27/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022] Open
Abstract
We have previously reported that a porous membrane of polyethylene terephthalate (PET) enables significant augmentation of human pluripotent stem cell (hPSC) proliferation and differentiation. The interaction between hPSCs and the PET surface induces β-catenin-mediated wingless/integrated (Wnt) signaling, leading to upregulation of the expression of adhesion molecules in hPSCs. In this study, we sought to unveil mechanisms underlying the role of the PET membrane in hPSC self-renewal and metabolism. We discovered that physicochemical cues of the PET membrane considerably alter hPSC metabolism by increasing the cell yield and suppressing the generation of toxic byproduct, indicating an effective cell self-renewal and a less apoptotic culture environment in the membrane culture system. Furthermore, we discovered that a caspase-8 medicated apoptotic pathway plays a profound role in obstructing hPSCs grown on a traditional tissue culture plate (TCP). Treating hPSCs seeded on a TCP surface with a caspase-8 inhibitor significantly suppressed cellular apoptotic pathway and improved cell proliferation and metabolism. Our experimental results provided valuable insights into signal pathways influencing hPSC self-renewal during routine maintenance and expansion, which would shed light on large-scale preparation of hPSCs for clinical applications.
Collapse
|
22
|
Zhou P, Yin B, Zhang R, Xu Z, Liu Y, Yan Y, Zhang X, Zhang S, Li Y, Liu H, Yuan YA, Wei S. Molecular basis for RGD-containing peptides supporting adhesion and self-renewal of human pluripotent stem cells on synthetic surface. Colloids Surf B Biointerfaces 2018; 171:451-460. [DOI: 10.1016/j.colsurfb.2018.07.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/06/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
|
23
|
Wang B, Tu X, Wei J, Wang L, Chen Y. Substrate elasticity dependent colony formation and cardiac differentiation of human induced pluripotent stem cells. Biofabrication 2018; 11:015005. [DOI: 10.1088/1758-5090/aae0a5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
DeBrot A, Yao L. The combination of induced pluripotent stem cells and bioscaffolds holds promise for spinal cord regeneration. Neural Regen Res 2018; 13:1677-1684. [PMID: 30136677 PMCID: PMC6128052 DOI: 10.4103/1673-5374.238602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2018] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injuries (SCIs) are debilitating conditions for which no effective treatment currently exists. The damage of neural tissue causes disruption of neural tracts and neuron loss in the spinal cord. Stem cell replacement offers a solution for SCI treatment by providing a source of therapeutic cells for neural function restoration. Induced pluripotent stem cells (iPSCs) have been investigated as a potential type of stem cell for such therapies. Transplantation of iPSCs has been shown to be effective in restoring function after SCIs in animal models while they circumvent ethical and immunological concerns produced by other stem cell types. Another approach for the treatment of SCI involves the graft of a bioscaffold at the site of injury to create a microenvironment that enhances cellular viability and guides the growing axons. Studies suggest that a combination of these two treatment methods could have a synergistic effect on functional recovery post-neural injury. While much progress has been made, more research is needed before clinical trials are possible. This review highlights recent advancements using iPSCs and bioscaffolds for treatment of SCI.
Collapse
Affiliation(s)
- Ashley DeBrot
- Department of Biological Sciences, Wichita State University, Wichita, KS, USA
| | - Li Yao
- Department of Biological Sciences, Wichita State University, Wichita, KS, USA
| |
Collapse
|
25
|
Mashimo Y, Yoshioka M, Tokunaga Y, Fockenberg C, Terada S, Koyama Y, Shibata-Seki T, Yoshimoto K, Sakai R, Hakariya H, Liu L, Akaike T, Kobatake E, How SE, Uesugi M, Chen Y, Kamei KI. Fabrication of a Multiplexed Artificial Cellular MicroEnvironment Array. J Vis Exp 2018. [PMID: 30247461 DOI: 10.3791/57377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cellular microenvironments consist of a variety of cues, such as growth factors, extracellular matrices, and intercellular interactions. These cues are well orchestrated and are crucial in regulating cell functions in a living system. Although a number of researchers have attempted to investigate the correlation between environmental factors and desired cellular functions, much remains unknown. This is largely due to the lack of a proper methodology to mimic such environmental cues in vitro, and simultaneously test different environmental cues on cells. Here, we report an integrated platform of microfluidic channels and a nanofiber array, followed by high-content single-cell analysis, to examine stem cell phenotypes altered by distinct environmental factors. To demonstrate the application of this platform, this study focuses on the phenotypes of self-renewing human pluripotent stem cells (hPSCs). Here, we present the preparation procedures for a nanofiber array and the microfluidic structure in the fabrication of a Multiplexed Artificial Cellular MicroEnvironment (MACME) array. Moreover, overall steps of the single-cell profiling, cell staining with multiple fluorescent markers, multiple fluorescence imaging, and statistical analyses, are described.
Collapse
Affiliation(s)
- Yasumasa Mashimo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology
| | - Momoko Yoshioka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | - Yumie Tokunaga
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | | | - Shiho Terada
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | - Yoshie Koyama
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | - Teiko Shibata-Seki
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology
| | - Koki Yoshimoto
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | - Risako Sakai
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | - Hayase Hakariya
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | - Li Liu
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | - Toshihiro Akaike
- Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science
| | - Eiry Kobatake
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology
| | - Siew-Eng How
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah
| | - Motonari Uesugi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University; Institute for Chemical Research, Kyoto University
| | - Yong Chen
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University; Ecole Normale Supérieure
| | - Ken-Ichiro Kamei
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University;
| |
Collapse
|
26
|
Zhang C, Xie B, Zou Y, Zhu D, Lei L, Zhao D, Nie H. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional biomaterials for cell fate regulation. Adv Drug Deliv Rev 2018; 132:33-56. [PMID: 29964080 DOI: 10.1016/j.addr.2018.06.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/01/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023]
Abstract
The interaction of biological cells with artificial biomaterials is one of the most important issues in tissue engineering and regenerative medicine. The interaction is strongly governed by physical and chemical properties of the materials and displayed with differentiated cellular behaviors, including cell self-renewal, differentiation, reprogramming, dedifferentiation, or transdifferentiation as a result. A number of engineered biomaterials with micro- or nano-structures have been developed to mimic structural components of cell niche and specific function of extra cellular matrix (ECM) over past two decades. In this review article, we briefly introduce the fabrication of biomaterials and their classification into zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) ones. More importantly, the influence of different biomaterials on inducing cell self-renewal, differentiation, reprogramming, dedifferentiation, and transdifferentiation was discussed based on the progress at 0D, 1D, 2D and 3D levels, following which the current research limitations and research perspectives were provided.
Collapse
Affiliation(s)
- Can Zhang
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Bei Xie
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Yujian Zou
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Dan Zhu
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Lei Lei
- Department of Orthodontics, Xiangya Stomatological Hospital, Central South University, Changsha 410008, China.
| | - Dapeng Zhao
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China.
| | - Hemin Nie
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China; Shenzhen Research Institute of Hunan University, Nanshan Hi-new Technology and Industry Park, Shenzhen 518057, China.
| |
Collapse
|
27
|
Yu L, Li J, Hong J, Takashima Y, Fujimoto N, Nakajima M, Yamamoto A, Dong X, Dang Y, Hou Y, Yang W, Minami I, Okita K, Tanaka M, Luo C, Tang F, Chen Y, Tang C, Kotera H, Liu L. Low Cell-Matrix Adhesion Reveals Two Subtypes of Human Pluripotent Stem Cells. Stem Cell Reports 2018; 11:142-156. [PMID: 30008324 PMCID: PMC6067523 DOI: 10.1016/j.stemcr.2018.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 01/06/2023] Open
Abstract
We show that a human pluripotent stem cell (hPSC) population cultured on a low-adhesion substrate developed two hPSC subtypes with different colony morphologies: flat and domed. Notably, the dome-like cells showed higher active proliferation capacity and increased several pluripotent genes’ expression compared with the flat monolayer cells. We further demonstrated that cell-matrix adhesion mediates the interaction between cell morphology and expression of KLF4 and KLF5 through a serum response factor (SRF)-based regulatory double loop. Our results provide a mechanistic view on the coupling among adhesion, stem cell morphology, and pluripotency, shedding light on the critical role of cell-matrix adhesion in the induction and maintenance of hPSC. Low-adhesion substrates reveal two different subtypes co-exist in the hPSC population SRF-based regulatory loop-coupled adhesion, cell morphology, and KLF4/5 expression The low-adhesion substrates are more suitable for high-pluripotency cell culture
Collapse
Affiliation(s)
- Leqian Yu
- Institutes for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Nanometrics Laboratory, Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Junjun Li
- Institutes for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Jiayin Hong
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yasuhiro Takashima
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Nanae Fujimoto
- Institutes for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Nanometrics Laboratory, Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Minako Nakajima
- Institutes for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Nanometrics Laboratory, Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Akihisa Yamamoto
- Institutes for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Xiaofeng Dong
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yujiao Dang
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100876, China
| | - Yu Hou
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100876, China
| | - Wei Yang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Itsunari Minami
- Department of Cell Design for Tissue Construction Faculty of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Keisuke Okita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Motomu Tanaka
- Institutes for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Physical Chemistry of Biosystems, Institute for Physical Chemistry, Heidelberg University, Heidelberg D69120, Germany
| | - Chunxiong Luo
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Fuchou Tang
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100876, China
| | - Yong Chen
- Institutes for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Ecole Normale Supérieure, CNRS-ENS-UPMC UMR 8640, 24 Rue Lhomond, Paris 75005, France
| | - Chao Tang
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Hidetoshi Kotera
- Institutes for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Nanometrics Laboratory, Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan.
| | - Li Liu
- Institutes for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.
| |
Collapse
|
28
|
Ren Y, Ma Z, Yu T, Ling M, Wang H. Methanol fixed fibroblasts serve as feeder cells to maintain stem cells in the pluripotent state in vitro. Sci Rep 2018; 8:7780. [PMID: 29773904 PMCID: PMC5958091 DOI: 10.1038/s41598-018-26238-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/03/2018] [Indexed: 12/28/2022] Open
Abstract
Preparation of mouse embryonic fibroblast (MEF) feeder cells to maintain pluripotent stem cells (PSCs) is time consuming and involved in animal issues. Here, we demonstrated a novel method to prepare feeder cells with high efficiency, timesaving, and low costs. MEFs in 3 × 104 cell/cm2 were fixed by methanol for 5 min and air drying for 5 min. Thereafter, the methanol fixed MEF cells (MT-MEF) were able to be used directly to culture PSCs or stored at room temperature for the future usage. PSCs cultured on MT-MEF could be continuously expanded for over 40 passages with the naïve pluripotency. MT-MEFs could also be used to maintain human and pig iPSCs. Moreover, methanol fixed MEFs’ culture dish was able to be reused for at least 4 times, and to be applied for antibiotic resistant screening assay to establishing stable transfected PSC lines. Alternatively, the immortalized cell lines, for instance NIH3T3 cells, could also be fixed by methanol and used as feeder cells to maintain PSCs. Thus, this novel means of methanol fixed feeder cells can completely replace the mitomycin C and gamma radiation treated MEF feeder cells, and be used to maintain PSCs derived from mouse as well as other animal species.
Collapse
Affiliation(s)
- Yahui Ren
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ziyu Ma
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tong Yu
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Min Ling
- Department of Innovation Experimental College, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huayan Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
29
|
Kamei KI, Mashimo Y, Yoshioka M, Tokunaga Y, Fockenberg C, Terada S, Koyama Y, Nakajima M, Shibata-Seki T, Liu L, Akaike T, Kobatake E, How SE, Uesugi M, Chen Y. Microfluidic-Nanofiber Hybrid Array for Screening of Cellular Microenvironments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603104. [PMID: 28272774 DOI: 10.1002/smll.201603104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/06/2017] [Indexed: 06/06/2023]
Abstract
Cellular microenvironments are generally sophisticated, but crucial for regulating the functions of human pluripotent stem cells (hPSCs). Despite tremendous effort in this field, the correlation between the environmental factors-especially the extracellular matrix and soluble cell factors-and the desired cellular functions remains largely unknown because of the lack of appropriate tools to recapitulate in vivo conditions and/or simultaneously evaluate the interplay of different environment factors. Here, a combinatorial platform is developed with integrated microfluidic channels and nanofibers, associated with a method of high-content single-cell analysis, to study the effects of environmental factors on stem cell phenotype. Particular attention is paid to the dependence of hPSC short-term self-renewal on the density and composition of extracellular matrices and initial cell seeding densities. Thus, this combinatorial approach provides insights into the underlying chemical and physical mechanisms that govern stem cell fate decisions.
Collapse
Affiliation(s)
- Ken-Ichiro Kamei
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yasumasa Mashimo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Environmental Chemistry and Engineering, Graduate School of Interdisciplinary Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Momoko Yoshioka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yumie Tokunaga
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Christopher Fockenberg
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shiho Terada
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoshie Koyama
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Minako Nakajima
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Teiko Shibata-Seki
- Department of Environmental Chemistry and Engineering, Graduate School of Interdisciplinary Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Li Liu
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Toshihiro Akaike
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
- Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, Kasuga, Tsukuba-shi, Ibaraki, 305-0821, Japan
| | - Eiry Kobatake
- Department of Environmental Chemistry and Engineering, Graduate School of Interdisciplinary Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Siew-Eng How
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, 88400, Malaysia
| | - Motonari Uesugi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Yong Chen
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Ecole Normale Supérieure, CNRS-ENS-UPMC UMR 8640, 24 Rue Lhomond, Paris, 75005, France
| |
Collapse
|
30
|
Liu L, Kamei KI, Yoshioka M, Nakajima M, Li J, Fujimoto N, Terada S, Tokunaga Y, Koyama Y, Sato H, Hasegawa K, Nakatsuji N, Chen Y. Nano-on-micro fibrous extracellular matrices for scalable expansion of human ES/iPS cells. Biomaterials 2017; 124:47-54. [PMID: 28187394 DOI: 10.1016/j.biomaterials.2017.01.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/06/2017] [Accepted: 01/28/2017] [Indexed: 01/22/2023]
Abstract
Human pluripotent stem cells (hPSCs) hold great potential for industrial and clinical applications. Clinical-grade scaffolds and high-quality hPSCs are required for cell expansion as well as easy handling and manipulation of the products. Current hPSC culture methods do not fulfill these requirements because of a lack of proper extracellular matrices (ECMs) and cell culture wares. We developed a layered nano-on-micro fibrous cellular matrix mimicking ECM, named "fiber-on-fiber (FF)" matrix, which enables easy handling and manipulation of cultured cells. While non-woven sheets of cellulose and polyglycolic acid were used as a microfiber layer facilitating mechanical stability, electrospun gelatin nanofibers were crosslinked on the microfiber layer, generating a mesh structure with connected nanofibers facilitating cell adhesion and growth. Our results showed that the FF matrix supports effective hPSC culture with maintenance of their pluripotency and normal chromosomes over two months, as well as effective scaled-up expansion, with fold increases of 54.1 ± 15.6 and 40.4 ± 8.4 in cell number per week for H1 human embryonic stem cells and 253G1 human induced pluripotent stem cells, respectively. This simple approach to mimick the ECM may have important implications after further optimization to generate lineage-specific products.
Collapse
Affiliation(s)
- Li Liu
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Ken-Ichiro Kamei
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan.
| | - Momoko Yoshioka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Minako Nakajima
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Junjun Li
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Nanae Fujimoto
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan; Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Shiho Terada
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Yumie Tokunaga
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Yoshie Koyama
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Hideki Sato
- QOL Research Center, Gunze Limited, Kyoto, 623-8512 Japan
| | - Kouichi Hasegawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan; Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences (NCBS), Bangalore, 560065, India
| | - Norio Nakatsuji
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan; Institute for Frontier Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Yong Chen
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan; Ecole Normale Supérieure, CNRS-ENS-UPMC UMR 8640, 24 Rue Lhomond, Paris, 75005, France.
| |
Collapse
|
31
|
|
32
|
Deng Y, Yang Y, Wei S. Peptide-Decorated Nanofibrous Niche Augments In Vitro Directed Osteogenic Conversion of Human Pluripotent Stem Cells. Biomacromolecules 2017; 18:587-598. [DOI: 10.1021/acs.biomac.6b01748] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yi Deng
- School
of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuanyi Yang
- Department
of Materials Engineering, Sichuan College of Architectural Technology, Deyang 618000, China
| | | |
Collapse
|
33
|
Li J, Zhang F, Yu L, Fujimoto N, Yoshioka M, Li X, Shi J, Kotera H, Liu L, Chen Y. Culture substrates made of elastomeric micro-tripod arrays for long-term expansion of human pluripotent stem cells. J Mater Chem B 2017; 5:236-244. [DOI: 10.1039/c6tb02246d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Elastomeric micro-tripod arrays were used as novel substrates for culturing and long-term expansion of human pluripotent stem cells.
Collapse
Affiliation(s)
- J. Li
- Institute for Integrated Cell-Material Science (iCeMS)
- Kyoto University
- Kyoto 606-8507
- Japan
| | - F. Zhang
- Institute for Integrated Cell-Material Science (iCeMS)
- Kyoto University
- Kyoto 606-8507
- Japan
- Ecole Normale Supérieure-PSL Research University
| | - L. Yu
- Institute for Integrated Cell-Material Science (iCeMS)
- Kyoto University
- Kyoto 606-8507
- Japan
- Department of Micro Engineering
| | - N. Fujimoto
- Institute for Integrated Cell-Material Science (iCeMS)
- Kyoto University
- Kyoto 606-8507
- Japan
- Department of Micro Engineering
| | - M. Yoshioka
- Institute for Integrated Cell-Material Science (iCeMS)
- Kyoto University
- Kyoto 606-8507
- Japan
| | - X. Li
- Institute for Integrated Cell-Material Science (iCeMS)
- Kyoto University
- Kyoto 606-8507
- Japan
- Ecole Normale Supérieure-PSL Research University
| | - J. Shi
- Ecole Normale Supérieure-PSL Research University
- CNRS-ENS-UPMC UMR 8640
- Paris
- France
| | - H. Kotera
- Department of Micro Engineering
- Kyoto University
- Kyoto 615-8540
- Japan
| | - L. Liu
- Institute for Integrated Cell-Material Science (iCeMS)
- Kyoto University
- Kyoto 606-8507
- Japan
| | - Y. Chen
- Institute for Integrated Cell-Material Science (iCeMS)
- Kyoto University
- Kyoto 606-8507
- Japan
- Ecole Normale Supérieure-PSL Research University
| |
Collapse
|
34
|
Li X, Yu L, Li J, Minami I, Nakajima M, Noda Y, Kotera H, Liu L, Chen Y. On chip purification of hiPSC-derived cardiomyocytes using a fishnet-like microstructure. Biofabrication 2016; 8:035017. [DOI: 10.1088/1758-5090/8/3/035017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Biological Effects of Culture Substrates on Human Pluripotent Stem Cells. Stem Cells Int 2016; 2016:5380560. [PMID: 27656216 PMCID: PMC5021488 DOI: 10.1155/2016/5380560] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/04/2016] [Indexed: 01/03/2023] Open
Abstract
In recent years, as human pluripotent stem cells (hPSCs) have been commonly cultured in feeder-free conditions, a number of cell culture substrates have been applied or developed. However, the functional roles of these substrates in maintaining hPSC self-renewal remain unclear. Here in this review, we summarize the types of these substrates and their effect on maintaining hPSC self-renewal. Endogenous extracellular matrix (ECM) protein expression has been shown to be crucial in maintaining hPSC self-renewal. These ECM molecules interact with integrin cell-surface receptors and transmit their cellular signaling. We discuss the possible effect of integrin-mediated signaling pathways on maintaining hPSC self-renewal. Activation of integrin-linked kinase (ILK), which transmits ECM-integrin signaling to AKT (also known as protein kinase B), has been shown to be critical in maintaining hPSC self-renewal. Also, since naïve pluripotency has been widely recognized as an alternative pluripotent state of hPSCs, we discuss the possible effects of culture substrates and integrin signaling on naïve hPSCs based on the studies of mouse embryonic stem cells. Understanding the role of culture substrates in hPSC self-renewal and differentiation enables us to control hPSC behavior precisely and to establish scalable or microfabricated culture technologies for regenerative medicine and drug development.
Collapse
|
36
|
Tang Y, Liu L, Li J, Yu L, Wang L, Shi J, Chen Y. Induction and differentiation of human induced pluripotent stem cells into functional cardiomyocytes on a compartmented monolayer of gelatin nanofibers. NANOSCALE 2016; 8:14530-14540. [PMID: 27412150 DOI: 10.1039/c6nr04545f] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Extensive efforts have been devoted to develop new substrates for culture and differentiation of human induced pluripotent stem cells (hiPSCs) toward cardiac cell-based assays. A more exciting prospect is the construction of cardiac tissue for robust drug screening and cardiac tissue repairing. Here, we developed a patch method by electrospinning and crosslinking of monolayer gelatin nanofibers on a honeycomb frame made of poly(ethylene glycol) diacrylate (PEGDA). The monolayer of the nanofibrous structure can support cells with minimal exogenous contact and a maximal efficiency of cell-medium exchange whereas a single hiPSC colony can be uniformly formed in each of the honeycomb compartments. By modulating the treatment time of the ROCK inhibitor Y-27632, the shape of the hiPSC colony could be controlled from a flat layer to a hemisphere. Afterwards, the induction and differentiation of hiPSCs were achieved on the same patch, leading to a uniform cardiac layer with homogeneous contraction. This cardiac layer could then be used for extracellular recording with a commercial multi-electrode array, showing representative field potential waveforms of matured cardiac tissues with appropriate drug responses.
Collapse
Affiliation(s)
- Yadong Tang
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Zhou P, Wu F, Zhou T, Cai X, Zhang S, Zhang X, Li Q, Li Y, Zheng Y, Wang M, Lan F, Pan G, Pei D, Wei S. Simple and versatile synthetic polydopamine-based surface supports reprogramming of human somatic cells and long-term self-renewal of human pluripotent stem cells under defined conditions. Biomaterials 2016; 87:1-17. [PMID: 26897536 DOI: 10.1016/j.biomaterials.2016.02.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 02/04/2016] [Indexed: 01/03/2023]
Abstract
Human pluripotent stem cells (hPSCs) possess great value in the aspect of cellular therapies due to its self-renewal and potential to differentiate into all somatic cell types. A few defined synthetic surfaces such as polymers and adhesive biological materials conjugated substrata were established for the self-renewal of hPSCs. However, none of them was effective in the generation of human induced pluripotent stem cells (hiPSCs) and long-term maintenance of multiple hPSCs, and most of them required complicated manufacturing processes. Polydopamine has good biocompatibility, is able to form a stable film on nearly all solid substrates surface, and can immobilize adhesive biomolecules. In this manuscript, a polydopamine-mediated surface was developed, which not only supported the reprogramming of human somatic cells into hiPSCs under defined conditions, but also sustained the growth of hiPSCs on diverse substrates. Moreover, the proliferation and pluripotency of hPSCs cultured on the surface were comparable to Matrigel for more than 20 passages. Besides, hPSCs were able to differentiate to cardiomyocytes and neural cells on the surface. This polydopamine-based synthetic surface represents a chemically-defined surface extensively applicable both for fundamental research and cell therapies of hPSCs.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, 100081, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Fujian Wu
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Tiancheng Zhou
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiujuan Cai
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Siqi Zhang
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xiaohong Zhang
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Qiuhong Li
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yongliang Li
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, 100081, China
| | - Yunfei Zheng
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, 100081, China
| | - Mengke Wang
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, 100081, China
| | - Feng Lan
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Guangjin Pan
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, 100081, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
38
|
Tang Y, Liu L, Li J, Yu L, Severino FPU, Wang L, Shi J, Tu X, Torre V, Chen Y. Effective motor neuron differentiation of hiPSCs on a patch made of crosslinked monolayer gelatin nanofibers. J Mater Chem B 2016; 4:3305-3312. [PMID: 32263265 DOI: 10.1039/c6tb00351f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) are differentiated into mature motor neurons by using a culture patch made of crosslinked monolayer gelatin nanofibers. Compared to the conventional culture dish method, the patch method is more effective for culture and differentiation of stem cells, because cells are supported by a net-like structure made of crosslinked monolayer nanofibers instead of a planar substrate. The pores of the net-like structure have sizes smaller than those of cells but large enough to minimize the exogenous cell-material contact and to increase the permeability as well as the efficiency of cell-cell interactions. As expected, the differentiated hiPSCs showed the up-regulation of the expression of neuron specific proteins and the signature of matured motor neurons, allowing plug-and-play with a commercial multi-electrode array for neuron spike recording.
Collapse
Affiliation(s)
- Yadong Tang
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Peng IC, Yeh CC, Lu YT, Muduli S, Ling QD, Alarfaj AA, Munusamy MA, Kumar SS, Murugan K, Lee HC, Chang Y, Higuchi A. Continuous harvest of stem cells via partial detachment from thermoresponsive nanobrush surfaces. Biomaterials 2016; 76:76-86. [DOI: 10.1016/j.biomaterials.2015.10.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/15/2015] [Accepted: 10/18/2015] [Indexed: 12/19/2022]
|
40
|
Higuchi A, Kao SH, Ling QD, Chen YM, Li HF, Alarfaj AA, Munusamy MA, Murugan K, Chang SC, Lee HC, Hsu ST, Kumar SS, Umezawa A. Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Sci Rep 2015; 5:18136. [PMID: 26656754 PMCID: PMC4677349 DOI: 10.1038/srep18136] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/13/2015] [Indexed: 12/18/2022] Open
Abstract
The tentative clinical application of human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human induced pluripotent stem cells, is restricted by the possibility of xenogenic contamination resulting from the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. Therefore, we investigated hPSC cultures on biomaterials with different elasticities that were grafted with different nanosegments. We prepared dishes coated with polyvinylalcohol-co-itaconic acid hydrogels grafted with an oligopeptide derived from vitronectin (KGGPQVTRGDVFTMP) with elasticities ranging from 10.3 to 30.4 kPa storage moduli by controlling the crosslinking time. The hPSCs cultured on the stiffest substrates (30.4 kPa) tended to differentiate after five days of culture, whereas the hPSCs cultured on the optimal elastic substrates (25 kPa) maintained their pluripotency for over 20 passages under xeno-free conditions. These results indicate that cell culture matrices with optimal elasticity can maintain the pluripotency of hPSCs in culture.
Collapse
Affiliation(s)
- Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jhongli, Taoyuan, 32001 Taiwan.,Department of Reproduction, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.,Nano Medical Engineering Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.,Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shih-Hsuan Kao
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jhongli, Taoyuan, 32001 Taiwan
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, No. 32, Ln 160, Jian-Cheng Road, Hsi-Chi City, Taipei, 221, Taiwan.,Graduate Institute of Systems Biology and Bioinformatics, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001 Taiwan
| | - Yen-Ming Chen
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jhongli, Taoyuan, 32001 Taiwan
| | - Hsing-Fen Li
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jhongli, Taoyuan, 32001 Taiwan
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Murugan A Munusamy
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Shih-Chang Chang
- Department of Surgery, Cathay General Hospital, No.280, Sec. 4, Ren'ai Rd., Da'an Dist., Taipei, 10693, Taiwan
| | - Hsin-Chung Lee
- Department of Surgery, Cathay General Hospital, No.280, Sec. 4, Ren'ai Rd., Da'an Dist., Taipei, 10693, Taiwan.,Graduate Institute of Translational and Interdisciplinary Medicine, College of Health Science and Technology, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001 Taiwan
| | - Shih-Tien Hsu
- Department of Internal Medicine, Taiwan Landseed Hospital, 77, Kuangtai Road, Pingjen City, Taoyuan 32405, Taiwan
| | - S Suresh Kumar
- Department of Medical Microbiology and Parasitology, Universities Putra Malaysia, Serdang 43400, Slangor, Malaysia
| | - Akihiro Umezawa
- Department of Reproduction, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
41
|
Kumar A, Starly B. Large scale industrialized cell expansion: producing the critical raw material for biofabrication processes. Biofabrication 2015; 7:044103. [DOI: 10.1088/1758-5090/7/4/044103] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|