1
|
Zhang B, Li X, Jiang C, Wang C, Que H, Zheng C, Ji Z, Tao X, Xu H, Shi C. Construction of PVA/OHA-Gs@PTMC/PHA double-layer nanofiber flexible scaffold with antibacterial function for tension free rectal in-situ reconstruction. Biomaterials 2025; 317:123064. [PMID: 39754964 DOI: 10.1016/j.biomaterials.2024.123064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/25/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
The effective prevention and treatment of anastomotic leakage after intestinal anastomosis for colorectal diseases is still a major clinical challenge. In order to assist intestinal anastomosis healing and avoid anastomotic leakage caused by high tension, low blood supply or infection, we designed a double-layer nanofiber intestinal anastomosis scaffold, which was composed of electrospun PTMC/PHA nanofibers as the main layer, and electrospun PVA/OHA-Gs nanofibers with antibacterial properties as the antibacterial surface layer. This double-layer scaffold has good toughness, its maximum tensile force value could reach 8 N, elongation could reach 400 %, and it has hydrophilic properties, and its contact angle was about 60°. On the basis of reducing anastomotic tension and isolating intestinal contents, this double-layer nanofiber anastomotic scaffold not only played an antibacterial effect in the short term after surgery to reduce inflammatory response, but also had the characteristics of multiple three-dimensional network structure like extracellular matrix which could promote tissue healing. The PVA/OHA-Gs@PTMC/PHA scaffold was implanted into a rabbit model simulating mechanical intestinal obstruction, and the results showed that the nanofibers of the scaffold could be degraded in vivo while maintaining a certain stability, that is, the overall structure of the PVA/OHA-Gs@PTMC/PHA scaffold would not shrink and deform due to degradation in a certain period of time. Therefore, the treatment with this scaffold showed better healing at the anastomotic site. Compared to the direct anastomosis group and pure PTMC scaffold group, the double-layer scaffold group promoted a faster return to normal anastomotic strength within 7 days. This PVA/OHA-Gs@PTMC/PHA double-layer nanofiber flexible scaffold appears to be a promising therapeutic strategy to prevent anastomotic leakage after intestinal anastomosis.
Collapse
Affiliation(s)
- Bingxu Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325011, China
| | - Xujian Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325011, China
| | - Chuan Jiang
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Chuanguang Wang
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Haifeng Que
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Cheng Zheng
- Department of Critical Care Medicine, Taizhou Municipal Hospital, Taizhou, Zhejiang, 318000, China
| | - Zhixiao Ji
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325011, China
| | - Xudong Tao
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Hongtao Xu
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
| | - Changcan Shi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325011, China.
| |
Collapse
|
2
|
Zhang H, Wang M, Wu R, Guo J, Sun A, Li Z, Ye R, Xu G, Cheng Y. From materials to clinical use: advances in 3D-printed scaffolds for cartilage tissue engineering. Phys Chem Chem Phys 2023; 25:24244-24263. [PMID: 37698006 DOI: 10.1039/d3cp00921a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Osteoarthritis caused by articular cartilage defects is a particularly common orthopedic disease that can involve the entire joint, causing great pain to its sufferers. A global patient population of approximately 250 million people has an increasing demand for new therapies with excellent results, and tissue engineering scaffolds have been proposed as a potential strategy for the repair and reconstruction of cartilage defects. The precise control and high flexibility of 3D printing provide a platform for subversive innovation. In this perspective, cartilage tissue engineering (CTE) scaffolds manufactured using different biomaterials are summarized from the perspective of 3D printing strategies, the bionic structure strategies and special functional designs are classified and discussed, and the advantages and limitations of these CTE scaffold preparation strategies are analyzed in detail. Finally, the application prospect and challenges of 3D printed CTE scaffolds are discussed, providing enlightening insights for their current research.
Collapse
Affiliation(s)
- Hewen Zhang
- School of the Faculty of Mechanical Engineering and Mechanic, Ningbo University, Ningbo, Zhejiang Province, 315211, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Meng Wang
- Department of Joint Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China.
| | - Rui Wu
- Department of Orthopedics, Ningbo First Hospital Longshan Hospital Medical and Health Group, Ningbo 315201, P. R. China
| | - Jianjun Guo
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Aihua Sun
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Zhixiang Li
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Ruqing Ye
- Department of Joint Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China.
| | - Gaojie Xu
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Yuchuan Cheng
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| |
Collapse
|
3
|
Wu L, Wang Y, Zhao X, Mao H, Gu Z. Investigating the Biodegradation Mechanism of Poly(trimethylene carbonate): Macrophage-Mediated Erosion by Secreting Lipase. Biomacromolecules 2023; 24:921-928. [PMID: 36644840 DOI: 10.1021/acs.biomac.2c01350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Poly(trimethylene carbonate) (PTMC), as one of the representatives of biodegradable aliphatic polycarbonates, has been found to degrade in vivo via surface erosion. This unique degradation behavior and the resulting nonacidic products make it more competitive with aliphatic polyesters (e.g., polylactide) in clinical practice. However, this surface degradation mechanism is complicated and not fully understood to date despite the findings that several reactive oxygen species and enzymes can specifically degrade PTMC in vitro. Herein, the biodegradation mechanism of PTMC was investigated by using possible degradation factors, distinct cell lines, and the inhibitors of these factors. The results demonstrate that PTMC undergoes a specific macrophage-mediated erosion. Macrophages tend to fuse into giant cells and elicit a typical inflammatory response by releasing proinflammatory cytokines. In addition, macrophages are suggested to primarily secrete enzymes (lipase specifically) to erode the PTMC bulk extracellularly as inhibiting their activity effectively prevented this eroding process. The clarification of the biodegradation mechanism in this work suggests that the degradation of PTMC highly depends on the foreign body response. Thus, it reminds the researchers to consider the effect of the microenvironment on the degradation and drug release of PTMC-based implantation devices and localized drug delivery systems.
Collapse
Affiliation(s)
- Lihuang Wu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Yuqi Wang
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Xinyue Zhao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China.,NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing 210000, China
| | - Zhongwei Gu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China.,NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing 210000, China
| |
Collapse
|
4
|
The effect of chemical composition on the degradation kinetics of high molecular weight poly(trimethylene carbonate-co-L-lactide). Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Hou Z, Chen S, Hu W, Guo J, Li P, Hu J, Yang L. Long-term in vivo degradation behavior of poly(trimethylene carbonate-co-2, 2′-dimethyltrimethylene carbonate). Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Miyake R, Maehara A, Chanthaset N, Ajiro H. Thermal Property Control by Copolymerization of Trimethylene Carbonate and Its Derivative Bearing Triphenylmethyl Group. ChemistrySelect 2022. [DOI: 10.1002/slct.202104326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rikyu Miyake
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology, 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Akari Maehara
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology, 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Nalinthip Chanthaset
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology, 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Hiroharu Ajiro
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology, 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
- Data Science Center Nara Institute of Science and Technology, 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| |
Collapse
|
7
|
Nishida K, Nishimura SN, Tanaka M. Selective Accumulation to Tumor Cells with Coacervate Droplets Formed from a Water-Insoluble Acrylate Polymer. Biomacromolecules 2022; 23:1569-1580. [PMID: 35089709 DOI: 10.1021/acs.biomac.1c01343] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Selective targeting of specific cells without the use of biological ligands has not been achieved. In the present study, we revealed that the coacervate droplets formed from poly(2-methoxyethyl acrylate) (PMEA) and its derivatives selectively accumulated to tumor cells. PMEA derivatives, which are insoluble acrylate polymers, induced coacervation in water to form polymer-dense droplets via hydrophobic interaction. Interestingly, the accumulation of coacervate droplets to tumor cells was involved in the bound water content of PMEA derivatives. Coacervate droplets with a high bound water content accumulated and internalized up to 36.6-fold higher in HeLa cervical tumor cells than in normal human fibroblasts (NHDF). Moreover, the interactions between coacervate droplets and plasma membrane components such as CD44 played a key role in this accumulation process. Therefore, coacervate droplets formed from PMEA derivatives have great clinical potential in tumor cell detection, development of alternative tumor-targeting ligands, and optimization of drug delivery carriers.
Collapse
Affiliation(s)
- Kei Nishida
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shin-Nosuke Nishimura
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
8
|
Brossier T, Volpi G, Vasquez-Villegas J, Petitjean N, Guillaume O, Lapinte V, Blanquer S. Photoprintable Gelatin- graft-Poly(trimethylene carbonate) by Stereolithography for Tissue Engineering Applications. Biomacromolecules 2021; 22:3873-3883. [PMID: 34510908 DOI: 10.1021/acs.biomac.1c00687] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The stereolithography process is a powerful additive manufacturing technology to fabricate scaffolds for regenerative medicine. Nevertheless, the quest for versatile inks allowing one to produce scaffolds with controlled properties is still unsatisfied. In this original article, we tackle this bottleneck by synthesizing a panel of photoprocessable hybrid copolymers composed of gelatin-graft-poly(trimethylene carbonate)s (Gel-g-PTMCn). We demonstrated that by changing the length of PTMC blocks grafted from gelatin, it is possible to tailor the final properties of the photofabricated objects. We reported here on the synthesis of Gel-g-PTMCn with various lengths of PTMC blocks grafted from gelatin using hydroxy and amino side groups of the constitutive amino acids. Then, the characterization of the resulting hybrid copolymers was fully investigated by quantitative NMR spectroscopy before rendering them photosensitive by methacrylation of the PTMC terminal groups. Homogeneous composition of the photocrosslinked hybrid polymers was demonstrated by EDX spectroscopy and electronic microscopy. To unravel the individual contribution of the PTMC moiety on the hybrid copolymer behavior, water absorption, contact angle measurements, and degradation studies were undertaken. Interestingly, the photocrosslinked materials immersed in water were examined using tensile experiments and displayed a large panel of behavior from hydrogel to elastomer-like depending on the PTMC/gel ratio. Moreover, the absence of cytotoxicity was conducted following the ISO 10993 assay. As a proof of concept, 3D porous objects were successfully fabricated using stereolithography. Those results validate the great potential of this panel of inks for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Thomas Brossier
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34095, France.,3D Medlab, Marignane 13700, France
| | | | | | - Noémie Petitjean
- LMGC, Univ. Montpellier, CNRS, Montpellier 34090, France.,IRMB, Univ. Montpellier, INSERM, Montpellier 34090, France
| | - Olivier Guillaume
- 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, TU Wien Getreidemarkt 9/308, 1060 Vienna, Austria
| | - Vincent Lapinte
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | | |
Collapse
|
9
|
Xie L, Wang G, Wu Y, Liao Q, Mo S, Ren X, Tong L, Zhang W, Guan M, Pan H, Chu PK, Wang H. Programmed surface on poly(aryl-ether-ether-ketone) initiating immune mediation and fulfilling bone regeneration sequentially. Innovation (N Y) 2021; 2:100148. [PMID: 34557785 PMCID: PMC8454576 DOI: 10.1016/j.xinn.2021.100148] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022] Open
Abstract
The immune responses are involved in every stage after implantation but the reported immune-regulated materials only work at the beginning without fully considering the different phases of bone healing. Here, poly(aryl-ether-ether-ketone) (PEEK) is coated with a programmed surface, which rapidly releases interleukin-10 (IL-10) in the first week and slowly delivers dexamethasone (DEX) up to 4 weeks. Owing to the synergistic effects of IL-10 and DEX, an aptly weak inflammation is triggered within the first week, followed by significant M2 polarization of macrophages and upregulation of the autophagy-related factors. The suitable immunomodulatory activities pave the way for osteogenesis and the steady release of DEX facilitates bone regeneration thereafter. The sequential immune-mediated process is also validated by an 8-week implementation on a rat model. This is the first attempt to construct implants by taking advantage of both immune-mediated modulation and sequential regulation spanning all bone regeneration phases, which provides insights into the fabrication of advanced biomaterials for tissue engineering and immunological therapeutics. A programed surface is designed and fabricated for immune-mediated osteogenesis The degradation of PTMC coating enables a sequential release of IL-10 and DEX Initially, osteoimmunomodulation is achieved by IL-10 and a small amount of DEX Afterwards, sustained release of DEX fosters the peri-implant bone regeneration
Collapse
Affiliation(s)
- Lingxia Xie
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guomin Wang
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yuzheng Wu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Qing Liao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shi Mo
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xiaoxue Ren
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liping Tong
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Min Guan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
10
|
Amsden B. In Vivo Degradation Mechanisms of Aliphatic Polycarbonates and Functionalized Aliphatic Polycarbonates. Macromol Biosci 2021; 21:e2100085. [PMID: 33893715 DOI: 10.1002/mabi.202100085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/29/2021] [Indexed: 11/06/2022]
Abstract
Aliphatic polycarbonates (APCs) have been studied for decades but have not been as utilized as aliphatic polyesters in biomaterial applications such as drug delivery and tissue engineering. With the recognition that functionalized aliphatic polymers can be readily synthesized, increased attention is being paid to these materials. A frequently provided reason for utilizing these polymers is that they degrade to form diols and carbon dioxide. However, depending on the structure and molecular weight of the APC, degradation may not occur. In this review, the mechanisms by which APCs and functionalized APCs have been found to degrade in vivo are examined with the objective of providing guidance in the continued development of these polymers as biomaterials.
Collapse
Affiliation(s)
- Brian Amsden
- Department of Chemical Engineering, Queen's University, Kingston, K7L 3N6, Canada
| |
Collapse
|
11
|
Cagnon ME, Curia S, Serindoux J, Cros JM, Ng F, Lopez-Noriega A. Poly(ethylene glycol)- b-poly(1,3-trimethylene carbonate) Copolymers for the Formulation of In Situ Forming Depot Long-Acting Injectables. Pharmaceutics 2021; 13:pharmaceutics13050605. [PMID: 33922166 PMCID: PMC8146374 DOI: 10.3390/pharmaceutics13050605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/02/2021] [Accepted: 04/19/2021] [Indexed: 11/20/2022] Open
Abstract
This article describes the utilization of (methoxy)poly(ethylene glycol)-b-poly(1,3-trimethylene carbonate) ((m)PEG–PTMC) diblock and triblock copolymers for the formulation of in situ forming depot long-acting injectables by solvent exchange. The results shown in this manuscript demonstrate that it is possible to achieve long-term drug deliveries from suspension formulations prepared with these copolymers, with release durations up to several months in vitro. The utilization of copolymers with different PEG and PTMC molecular weights affords to modulate the release profile and duration. A pharmacokinetic study in rats with meloxicam confirmed the feasibility of achieving at least 28 days of sustained delivery by using this technology while showing good local tolerability in the subcutaneous environment. The characterization of the depots at the end of the in vivo study suggests that the rapid phase exchange upon administration and the surface erosion of the resulting depots are driving the delivery kinetics from suspension formulations. Due to the widely accepted utilization of meloxicam as an analgesic drug for animal care, the results shown in this article are of special interest for the development of veterinary products aiming at a very long-term sustained delivery of this therapeutic molecule.
Collapse
|
12
|
Mohajeri S, Amsden BG. In Vivo Degradation Mechanism and Biocompatibility of a Biodegradable Aliphatic Polycarbonate: Poly(Trimethylene Carbonate- co-5-Hydroxy Trimethylene Carbonate). ACS APPLIED BIO MATERIALS 2021; 4:3686-3696. [PMID: 35014453 DOI: 10.1021/acsabm.1c00160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A recently developed viscous liquid aliphatic polycarbonate, poly(trimethylene carbonate-co-5-hydroxy trimethylene carbonate), has advantageous properties for the delivery of acid-sensitive drugs such as proteins and peptides. This copolymer degrades in vitro via an alkaline-catalyzed intramolecular cyclization reaction yielding oligo (trimethylene carbonate), glycerol, and carbon dioxide, but its in vivo degradation mechanisms are presently unknown. The in vivo degradation mechanism and tissue response to this copolymer were investigated following subcutaneous implantation in Wistar rats. The molecular weight and composition of the copolymer varied in the same manner following subcutaneous implantation as observed in vitro. These findings suggest that the copolymer also degraded in vivo principally via intramolecular cyclization. The tissue response in terms of the inflammatory zone cell density, fibrous capsule thickness, and macrophage response was intermediate to that of two clinically used biodegradable sutures, Vicryl and Monocryl, indicating that the copolymer can be considered biotolerable. Collectively, the data show that further development of this copolymer as a drug delivery material is warranted.
Collapse
Affiliation(s)
- Sara Mohajeri
- Department of Chemical Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada.,Human Mobility Research Centre, Kingston General Hospital, Kingston, Ontario K7L 2V7, Canada
| | - Brian G Amsden
- Department of Chemical Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada.,Human Mobility Research Centre, Kingston General Hospital, Kingston, Ontario K7L 2V7, Canada
| |
Collapse
|
13
|
Hu XL, Mi S, Lu JL, Cao JF, Xing LY, Lin ZD, Chen DL, Lu Y, He J, Xiong CD, Li Q. In vitro degradation behavior of shape memory PLLA-TMC random copolymers. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Brossier T, Volpi G, Lapinte V, Blanquer S. Synthesis of Poly(Trimethylene Carbonate) from Amine Group Initiation: Role of Urethane Bonds in the Crystallinity. Polymers (Basel) 2021; 13:polym13020280. [PMID: 33467051 PMCID: PMC7829917 DOI: 10.3390/polym13020280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022] Open
Abstract
Semi-crystalline poly(trimethylene carbonate) (PTMC) can be efficiently prepared by ring-opening polymerization (ROP) initiated by amine using various catalysts. More promising results were reached with the one-step process of stannous octanoate unlike the two-step one-pot reaction using TBD and MSA catalysts. The ROP-amine of TMC consists in a simple isocyanate free process to produce polycarbonate-urethanes, compatible with the large availability of amines ranging from mono- to multifunctional until natural amino acids. ROP-amine of TMC leads to urethane bonds monitored by FTIR spectroscopy. The relationship between the nature of amines and the crystallinity of PTMC was discussed through X-ray diffraction and thermal studies by DSC and TGA. The impact of the crystallinity was also demonstrated on the mechanical properties of semi-crystalline PTMC in comparison to amorphous PTMC, synthesized by ROP initiated by alcohol. The semi-crystalline PTMC synthesized by ROP-amine opens many perspectives.
Collapse
Affiliation(s)
- Thomas Brossier
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34296 Montpellier, France; (T.B.); (V.L.)
- 3D Medlab, 13700 Marignane, France;
| | | | - Vincent Lapinte
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34296 Montpellier, France; (T.B.); (V.L.)
| | - Sebastien Blanquer
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34296 Montpellier, France; (T.B.); (V.L.)
- Correspondence:
| |
Collapse
|
15
|
Beck-Broichsitter M. Comparative in vitro degradation of surface-eroding poly(alkylene carbonate)s. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Taghavi S, Amsden BG. In vivo degradation behavior of enzyme-degradable poly(trimethylene carbonate)-based biohybrid networks of varying water content. ACTA ACUST UNITED AC 2020; 15:025001. [PMID: 31846945 DOI: 10.1088/1748-605x/ab62ff] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polymeric biohybrid networks have significant potential as supportive materials for soft connective tissue regeneration. Their success in this regard is determined by their initial mechanical properties, which are dependent on their water content, as well as the rate at which these properties change with time due to cell mediated degradation. In this study the in vivo degradation and tissue response following implantation of matrix metalloproteinase (MMP)-degradable poly(trimethylene carbonate) (PTMC)-based biohybrid networks were assessed in a Wistar rat model. The networks examined varied in equilibrium water content from circa 20% to 70% w/w. The networks degraded through MMP secretion by inflammatory cells at the tissue-material interface, generating a mass loss profile consistent with surface erosion but modulus and sol content changes consistent with a bulk erosion process. This degradation profile was explained in terms of a population gradient in MMP concentration from the surface to the bulk of the networks due to diffusion restrictions. A histological analysis of the tissue surrounding the implants confirmed a moderate tissue response comparable to that observed towards a VicrylTM suture, suggesting that these new materials can be considered biocompatible.
Collapse
Affiliation(s)
- Shadi Taghavi
- Department of Chemical Engineering and Human Mobility Research Centre Queen's University, Kingston ON K7L 3N6, Canada
| | | |
Collapse
|
17
|
Hydrolytic Degradation of Comb-Like Graft Poly (Lactide-co-Trimethylene Carbonate): The Role of Comonomer Compositions and Sequences. Polymers (Basel) 2019; 11:polym11122024. [PMID: 31817765 PMCID: PMC6960914 DOI: 10.3390/polym11122024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
The effect of sequence on copolymer properties is rarely studied, especially the degradation behavior of the biomaterials. A series of linear-comb block, gradient, random copolymers were successfully achieved using hydroxylated polybutadiene as the macroinitiator by simple ring-opening polymerization of l-lactide (l-LA) and 1,3-trimethylene carbonate (TMC). The hydrolytic degradation behaviors of the copolymers were systemically evaluated by using nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), differential scanning calorimeter (DSC), and scanning electron microscopy (SEM) to illustrate the influences of comonomer compositions and sequence structures. The linear-comb block copolymers (lcP(TMC-b-LLA)) with different compositions had different degradation rates, which increased with l-LA content. Thermal property changes were observed with decreased Tm and increased ΔHm in all block copolymers during the degradation. To combine different sequence structures, unique degradation behaviors were observed for the linear-comb block, gradient and random copolymers even with similar comonomer composition. The degradation rates of linear-comb PLLA-gradient-PTMC (lcP(LLA-grad-TMC)) and linear-comb PLLA-random-PTMC (lcP(LLA-ran-TMC)) were accelerated due to the loss of regularity and crystallinity, resulting in a remarkable decrease on weight retention and molar mass. The hydrolysis degradation rate increased in the order lcP(TMC-b-LLA), lcP(LLA-ran-TMC), lcP(LLA-grad-TMC). Therefore, the hydrolytic degradation behavior of comb-like graft copolymers depends on both the compositions and the sequences dramatically.
Collapse
|
18
|
Young SA, Riahinezhad H, Amsden BG. In situ-forming, mechanically resilient hydrogels for cell delivery. J Mater Chem B 2019; 7:5742-5761. [PMID: 31531443 DOI: 10.1039/c9tb01398a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Injectable, in situ-forming hydrogels can improve cell delivery in tissue engineering applications by facilitating minimally invasive delivery to irregular defect sites and improving cell retention and survival. Tissues targeted for cell delivery often undergo diverse mechanical loading including high stress, high strain, and repetitive loading conditions. This review focuses on the development of hydrogel systems that meet the requirements of mechanical resiliency, cytocompatibility, and injectability for such applications. First, we describe the most important design considerations for maintaining the viability and function of encapsulated cells, for reproducing the target tissue morphology, and for achieving degradation profiles that facilitate tissue replacement. Models describing the relationships between hydrogel structure and mechanical properties are described, focusing on design principles necessary for producing mechanically resilient hydrogels. The advantages and limitations of current strategies for preparing cytocompatible, injectable, and mechanically resilient hydrogels are reviewed, including double networks, nanocomposites, and high molecular weight amphiphilic copolymer networks. Finally, challenges and opportunities are outlined to guide future research in this developing field.
Collapse
Affiliation(s)
- Stuart A Young
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada.
| | - Hossein Riahinezhad
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada.
| | - Brian G Amsden
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
19
|
Haramiishi Y, Kawatani R, Chanthaset N, Ajiro H. Viscoelastic Evaluation of Poly(Trimethylene Carbonate)s Bearing Oligoethylene Glycol Units Which Show Thermoresponsive Properties at Body Temperature. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yoshiaki Haramiishi
- Nara Institute of Science and Technology 8916‐5 Takayama‐cho Ikoma Nara 630‐0192 Japan
| | - Ryo Kawatani
- Nara Institute of Science and Technology 8916‐5 Takayama‐cho Ikoma Nara 630‐0192 Japan
| | - Nalinthip Chanthaset
- Nara Institute of Science and Technology 8916‐5 Takayama‐cho Ikoma Nara 630‐0192 Japan
| | - Hiroharu Ajiro
- Nara Institute of Science and Technology 8916‐5 Takayama‐cho Ikoma Nara 630‐0192 Japan
| |
Collapse
|
20
|
Taghavi S, Brissenden A, Amsden BG. High modulus, enzyme-degradable poly(trimethylene carbonate)-peptide biohybrid networks formed from triblock prepolymers. J Mater Chem B 2019; 7:2819-2828. [PMID: 32255084 DOI: 10.1039/c8tb02195c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biohybrid networks have the potential to have stiffnesses equivalent to that of native soft connective tissues as well as cell-mediated degradation behavior. Most strategies to generate such materials to date have utilized crosslinking of two separate and orthogonally functionalized polymers. Herein we describe a triblock prepolymer consisting of a central enzyme degradable peptide block flanked by two synthetic, hydrolysis resistant poly(trimethylene carbonate) blocks (PTMC) or poly(ethylene glycol)-PTMC blocks terminated in methacrylate groups. To form these prepolymers heterobifunctional PTMC and PEG-PTMC were prepared, possessing a vinyl sulfone terminus and a methacrylate terminus. These polymers were conjugated to a di-cysteine containing peptide through a Michael-type addition to form cross-linkable prepolymers. These prepolymers were then photo-cured to form enzyme degradable networks. The compressive moduli of the resulting water swollen networks was within the range of many soft connective tissues and was inversely proportional to the water solubility of the prepolymers. The prepolymer water solubility in turn could be tuned by adjusting PTMC molecular weight or by the addition of a PEG block. In vitro degradation only occurred in the presence of matrix metalloproteinases, and was fastest for networks prepared with prepolymers of higher water solubility.
Collapse
Affiliation(s)
- Shadi Taghavi
- Department of Chemical Engineering and Human Mobility Research Centre, Queen's University, Kingston, ON, Canada.
| | | | | |
Collapse
|
21
|
|
22
|
Zou M, Jin R, Hu Y, Zhang Y, Wang H, Liu G, Nie Y, Wang Y. A thermo-sensitive, injectable and biodegradable in situ hydrogel as a potential formulation for uveitis treatment. J Mater Chem B 2019. [DOI: 10.1039/c9tb00939f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The thermo-sensitive hydrogels with high drug loading rate achieved sustained drug release over 2 weeks. Histopathological examination of retina confirmed the excellent biocompatibility and effective anti-inflammatory property of the hydrogel.
Collapse
Affiliation(s)
- Mengwei Zou
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Yanfei Hu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Ying Zhang
- Department of Ophthalmology
- West China Hospital
- Sichuan University
- Chengdu
- P. R. China
| | - Haibo Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Gongyan Liu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Yu Nie
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| |
Collapse
|
23
|
|
24
|
Totally biodegradable poly(trimethylene carbonate/glycolide-block-L-lactide/glycolide) copolymers: synthesis, characterization and enzyme-catalyzed degradation behavior. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.02.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Zhang X, Fevre M, Jones GO, Waymouth RM. Catalysis as an Enabling Science for Sustainable Polymers. Chem Rev 2017; 118:839-885. [DOI: 10.1021/acs.chemrev.7b00329] [Citation(s) in RCA: 472] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiangyi Zhang
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Mareva Fevre
- IBM Research−Almaden, 650 Harry Road, San Jose, California 95120, United States
| | - Gavin O. Jones
- IBM Research−Almaden, 650 Harry Road, San Jose, California 95120, United States
| | - Robert M. Waymouth
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
26
|
Fukushima K, Inoue Y, Haga Y, Ota T, Honda K, Sato C, Tanaka M. Monoether-Tagged Biodegradable Polycarbonate Preventing Platelet Adhesion and Demonstrating Vascular Cell Adhesion: A Promising Material for Resorbable Vascular Grafts and Stents. Biomacromolecules 2017; 18:3834-3843. [PMID: 28972745 DOI: 10.1021/acs.biomac.7b01210] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We developed a biodegradable polycarbonate that demonstrates antithrombogenicity and vascular cell adhesion via organocatalytic ring-opening polymerization of a trimethylene carbonate (TMC) analogue bearing a methoxy group. The monoether-tagged polycarbonate demonstrates a platelet adhesion property that is 93 and 89% lower than those of poly(ethylene terephthalate) and polyTMC, respectively. In contrast, vascular cell adhesion properties of the polycarbonate are comparable to those controls, indicating a potential for selective cell adhesion properties. This difference in the cell adhesion property is well associated with surface hydration, which affects protein adsorption and denaturation. Fibrinogen is slightly denatured on the monoether-tagged polycarbonate, whereas fibronectin is highly activated to expose the RGD motif for favorable vascular cell adhesion. The surface hydration, mainly induced by the methoxy side chain, also contributes to slowing the enzymatic degradation. Consequently, the polycarbonate exhibits decent blood compatibility, vascular cell adhesion properties, and biodegradability, which is promising for applications in resorbable vascular grafts and stents.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
27
|
Zhang Y, Liang RJ, Xu JJ, Shen LF, Gao JQ, Wang XP, Wang NN, Shou D, Hu Y. Efficient induction of antimicrobial activity with vancomycin nanoparticle-loaded poly(trimethylene carbonate) localized drug delivery system. Int J Nanomedicine 2017; 12:1201-1214. [PMID: 28243084 PMCID: PMC5315202 DOI: 10.2147/ijn.s127715] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Surgery and the local placement of an antibiotic are the predominant therapies to treat chronic osteomyelitis. Vancomycin-loaded N-trimethyl chitosan nanoparticles (VCM/TMC NPs) as a potential drug delivery system have high intracellular penetration and effective intracellular antibacterial activity. This study investigated the effects of a biocompatible material, poly(trimethylene carbonate) (PTMC), to increase the sustained effectiveness of an intracellular antibiotic and its potential application in antibiotic delivery. VCM/TMC NP-PTMC was characterized using scanning electron microscopy and Fourier transform infrared spectroscopy to determine the morphology, stability and chemical interaction of the drug with the polymer. Further, the biodegradation, antibacterial activity, protein adsorption, cell proliferation and drug release characteristics were evaluated. In addition, a Staphylococcus aureus-induced osteomyelitis rabbit model was used to investigate the antibiotic activity and bone repair capability of VCM/TMC NP-PTMC. The results showed that the composite beads of VCM/TMC NPs followed a sustained and slow release pattern and had excellent antibacterial activity and a higher protein adsorption and cell proliferation rate than the VCM-PTMC in vitro. Furthermore, VCM/TMC NP-PTMC inhibits bacteria and promotes bone repair in vivo. Thus, VCM/TMC NP-PTMC might be beneficial in periodontal management to reduce the bacterial load at the infection site and promote bone repair.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine
| | - Ruo-jia Liang
- Department of Gynaecology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou
| | | | - Li-feng Shen
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine
| | - Jian-qing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xu-ping Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine
| | - Na-ni Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine
| | - Dan Shou
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine
| | - Ying Hu
- Zhejiang Pharmaceutical College, Ningbo
| |
Collapse
|
28
|
Sorkio A, Haimi S, Verdoold V, Juuti-Uusitalo K, Grijpma D, Skottman H. Poly(trimethylene carbonate) as an elastic biodegradable film for human embryonic stem cell-derived retinal pigment epithelial cells. J Tissue Eng Regen Med 2017; 11:3134-3144. [DOI: 10.1002/term.2221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 03/15/2016] [Accepted: 04/19/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Anni Sorkio
- BioMediTech; University of Tampere; Tampere Finland
| | - Suvi Haimi
- BioMediTech; University of Tampere; Tampere Finland
- MIRA Institute for Biomedical Engineering and Technical Medicine and Department of Biomaterials Science and Technology; University of Twente; Enschede The Netherlands
| | - Vincent Verdoold
- MIRA Institute for Biomedical Engineering and Technical Medicine and Department of Biomaterials Science and Technology; University of Twente; Enschede The Netherlands
| | | | - Dirk Grijpma
- MIRA Institute for Biomedical Engineering and Technical Medicine and Department of Biomaterials Science and Technology; University of Twente; Enschede The Netherlands
- Department of Biomedical Engineering; University of Groningen, University Medical Centre Groningen; Groningen The Netherlands
| | | |
Collapse
|
29
|
Griffin M, Nayyer L, Butler PE, Palgrave RG, Seifalian AM, Kalaskar DM. Development of mechano-responsive polymeric scaffolds using functionalized silica nano-fillers for the control of cellular functions. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2016; 12:1725-33. [PMID: 27013128 PMCID: PMC4949378 DOI: 10.1016/j.nano.2016.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/25/2016] [Accepted: 02/10/2016] [Indexed: 12/31/2022]
Abstract
We demonstrate an efficient method to produce mechano-responsive polymeric scaffolds which can alter cellular functions using two different functionalized (OH and NH2) silica nano-fillers. Fumed silica-hydroxyl and fumed silica-amine nano-fillers were mixed with a biocompatible polymer (POSS-PCU) at various wt% to produce scaffolds. XPS and mechanical testing demonstrate that bulk mechanical properties are modified without changing the scaffold's surface chemistry. Mechanical testing showed significant change in bulk properties of POSS-PCU scaffolds with an addition of silica nanofillers as low as 1% (P<0.01). Scaffolds modified with NH2 silica showed significantly higher bulk mechanical properties compared to the one modified with the OH group. Enhanced cell adhesion, proliferation and collagen production over 14days were observed on scaffolds with higher bulk mechanical properties (NH2) compared to those with lower ones (unmodified and OH modified) (P<0.05) during in vitro analysis. This study provides an effective method of manufacturing mechano-responsive polymeric scaffolds, which can help to customize cellular responses for biomaterial applications.
Collapse
Affiliation(s)
- Michelle Griffin
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, United Kingdom
| | - Leila Nayyer
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, United Kingdom
| | - Peter E Butler
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, United Kingdom; Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
| | - Robert G Palgrave
- Department of Chemistry, University College London, London, United Kingdom
| | - Alexander M Seifalian
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, United Kingdom
| | - Deepak M Kalaskar
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, United Kingdom.
| |
Collapse
|
30
|
Blanquer SB, Gebraad AW, Miettinen S, Poot AA, Grijpma DW, Haimi SP. Differentiation of adipose stem cells seeded towards annulus fibrosus cells on a designed poly(trimethylene carbonate) scaffold prepared by stereolithography. J Tissue Eng Regen Med 2016; 11:2752-2762. [DOI: 10.1002/term.2170] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 01/06/2016] [Accepted: 02/10/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Sébastien B.G. Blanquer
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology; University of Twente; Enschede the Netherlands
- Collaborative Research Partner Annulus Fibrosus Rupture Program of AO Foundation; Davos Switzerland
| | - Arjen W.H. Gebraad
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology; University of Twente; Enschede the Netherlands
- Department of Oral and Maxillofacial Sciences, Clinicum; University of Helsinki; Helsinki Finland
| | - Susanna Miettinen
- Institute of Biosciences and Medical Technology (BioMediTech); University of Tampere; Tampere Finland
| | - André A. Poot
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology; University of Twente; Enschede the Netherlands
- Collaborative Research Partner Annulus Fibrosus Rupture Program of AO Foundation; Davos Switzerland
| | - Dirk W. Grijpma
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology; University of Twente; Enschede the Netherlands
- Collaborative Research Partner Annulus Fibrosus Rupture Program of AO Foundation; Davos Switzerland
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute; Department of Biomedical Engineering; Groningen the Netherlands
| | - Suvi P. Haimi
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology; University of Twente; Enschede the Netherlands
- Department of Oral and Maxillofacial Sciences, Clinicum; University of Helsinki; Helsinki Finland
| |
Collapse
|
31
|
Novel terpolymers of poly(p-dioxanone-co-trimethylene carbonate-co-L-phenylalanine): Synthesis, characterization, thermal properties and copolymerization mechanism. CHINESE JOURNAL OF POLYMER SCIENCE 2016. [DOI: 10.1007/s10118-016-1777-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Vyner MC, Amsden BG. Polymer chain flexibility-induced differences in fetuin A adsorption and its implications on cell attachment and proliferation. Acta Biomater 2016; 31:89-98. [PMID: 26607770 DOI: 10.1016/j.actbio.2015.11.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/11/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
Tissue cells are known to respond to the stiffness of the polymer substrate on which they are grown. It has been suggested that material stiffness influences the composition of the protein layer that adsorbs to the material surface, which affects subsequent cell behavior. Previously, the stiffness of a biomaterial elastomer formed from an acrylated star-poly(d,l lactide-co-ε-caprolactone) was found to influence both fibroblast proliferation as well as the adsorption of certain proteins. However, it remained unresolved as to whether material stiffness influenced protein adsorption from serum supplemented environments and which protein(s) may have been responsible for the difference in fibroblast proliferation. Using quantitative proteomics, we show that polymer stiffness influenced the composition of the protein layers that adsorb from serum supplemented media. Fetuin A was identified as a protein that influenced fibroblast proliferation and, when combined with basic fibroblast growth factor as a medium supplement, improved fibroblast proliferation over 14days. This study is the first to correlate cell proliferation to surface adsorbed fetuin A and presents the potential new application for fetuin A as biomaterial coating or surface modifier. This work also demonstrates a novel application of quantitative proteomics for the investigation of competitive protein adsorption to biomaterial surfaces. STATEMENT OF SIGNIFICANCE Cells are able to respond to the stiffness of their material substrate, but the method by which they sense material stiffness is still under investigation. Previously, material stiffness was found to impact the individual adsorption of fibronectin, a protein associated with cell attachment; however, it was unclear if stiffness was able to affect protein adsorption in environments with multiple proteins. This study shows that material stiffness affects the compositions of protein layers adsorbed from supplemented media, and suggests that cells may sense material stiffness via the adsorbed protein layer. Interestingly, fetuin A was found to be affecting cell proliferation and not fibronectin. Finally, this research demonstrates the use of relative quantitation proteomics as a potentially powerful method to improve biomaterial compatibility.
Collapse
|
33
|
Fukushima K. Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials. Biomater Sci 2016; 4:9-24. [DOI: 10.1039/c5bm00123d] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review presents recent examples of applications and functionalization strategies of poly(trimethylene carbonate), its copolymers, and its derivatives to exploit the unique physicochemical properties of the aliphatic polycarbonate backbone.
Collapse
Affiliation(s)
- K. Fukushima
- Department of Polymer Science and Engineering
- Graduate School of Science and Engineering
- Yamagata University
- Yamagata 992-8510
- Japan
| |
Collapse
|
34
|
Huyer LD, Montgomery M, Zhao Y, Xiao Y, Conant G, Korolj A, Radisic M. Biomaterial based cardiac tissue engineering and its applications. Biomed Mater 2015; 10:034004. [PMID: 25989939 PMCID: PMC4464787 DOI: 10.1088/1748-6041/10/3/034004] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease is a leading cause of death worldwide, necessitating the development of effective treatment strategies. A myocardial infarction involves the blockage of a coronary artery leading to depletion of nutrient and oxygen supply to cardiomyocytes and massive cell death in a region of the myocardium. Cardiac tissue engineering is the growth of functional cardiac tissue in vitro on biomaterial scaffolds for regenerative medicine application. This strategy relies on the optimization of the complex relationship between cell networks and biomaterial properties. In this review, we discuss important biomaterial properties for cardiac tissue engineering applications, such as elasticity, degradation, and induced host response, and their relationship to engineered cardiac cell environments. With these properties in mind, we also emphasize in vitro use of cardiac tissues for high-throughput drug screening and disease modelling.
Collapse
Affiliation(s)
- Locke Davenport Huyer
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Miles Montgomery
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Yun Xiao
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Genevieve Conant
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Anastasia Korolj
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Research Institute, University Health Network and IBBME, University of Toronto, Toronto, ON, Canada
| |
Collapse
|