1
|
Isaei E, Sobhanipoor MH, Rahimlou M, Firouzeh N. The application of aptamer in tuberculosis diagnosis: a systematic review. Trop Dis Travel Med Vaccines 2024; 10:25. [PMID: 39674868 DOI: 10.1186/s40794-024-00235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/04/2024] [Indexed: 12/16/2024] Open
Abstract
Tuberculosis represents a significant menace to health, leading to millions of cases and fatalities each year. Traditional diagnostic methods, while effective, have limitations, necessitating improved tools. Aptamers possessing remarkable specificity single-stranded DNA or RNA molecules promising in TB diagnosis due to their adaptability and precise biomarker detection capabilities. In this study, we aimed to evaluate the research on aptamer applications in TB diagnosis, evaluating the efficacy, limitations, and future prospects. The present systematic review study followed PRISMA guidelines, including peer-reviewed studies on aptamer efficacy in TB diagnosis. Eligibility criteria covered experimental and human studies on TB diagnosis, prognosis, progression, and treatment response. Of 1165 identified studies, 35 met inclusion criteria. Aptamers were utilized for MTB and mycobacterial antigen detection, showcasing notable sensitivity and specificity. Targeted antigens included ESAT-6, HspX, MPT 64, and IFN-γ. Various aptamer-based assays, such as electrochemical, fluorescent, and immunosensors, demonstrated effectiveness. Multiplex assays, particularly for IFN-γ, showed enhanced diagnostic accuracy. Aptamer-based assays exhibited discrimination between active TB and other conditions, showcasing their diagnostic value. Aptamers, especially in conjunction with nanomaterials, show promise in developing advanced TB biosensors with superior detection capabilities. Cost-effective devices with heightened sensitivity for clinical and screening use are crucial for TB control, emphasizing the need for ongoing research in this field.
Collapse
Affiliation(s)
- Elham Isaei
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mehran Rahimlou
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nima Firouzeh
- Vector-Borne Disease Research Center, North Khorasan University of Medical Sciences, Bojnourd, Iran.
| |
Collapse
|
2
|
Ye Z, Chen H, Weinans H, van der Wal B, Rios JL. Novel Aptamer Strategies in Combating Bacterial Infections: From Diagnostics to Therapeutics. Pharmaceutics 2024; 16:1140. [PMID: 39339177 PMCID: PMC11435160 DOI: 10.3390/pharmaceutics16091140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial infections and antimicrobial resistance are posing substantial difficulties to the worldwide healthcare system. The constraints of conventional diagnostic and therapeutic approaches in dealing with continuously changing infections highlight the necessity for innovative solutions. Aptamers, which are synthetic oligonucleotide ligands with a high degree of specificity and affinity, have demonstrated significant promise in the field of bacterial infection management. This review examines the use of aptamers in the diagnosis and therapy of bacterial infections. The scope of this study includes the utilization of aptasensors and imaging technologies, with a particular focus on their ability to detect conditions at an early stage. Aptamers have shown exceptional effectiveness in suppressing bacterial proliferation and halting the development of biofilms in therapeutic settings. In addition, they possess the capacity to regulate immune responses and serve as carriers in nanomaterial-based techniques, including radiation and photodynamic therapy. We also explore potential solutions to the challenges faced by aptamers, such as nuclease degradation and in vivo instability, to broaden the range of applications for aptamers to combat bacterial infections.
Collapse
Affiliation(s)
- Zijian Ye
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Huaizhi Chen
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Harrie Weinans
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), 2628 CD Delft, The Netherlands
| | - Bart van der Wal
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jaqueline Lourdes Rios
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
3
|
Zuo J, Yuan Y, Qing M, Chen Y, Huang H, Zhou J, Bai L, Liang H. Surface-Activated Ti 3C 2T x Adsorption of Acetylene Black Coupled with Polyaniline as a Signal Tag for the Detection of the ESAT-6 Antigen of Mycobacterium tuberculosis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17300-17312. [PMID: 38557010 DOI: 10.1021/acsami.4c01593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Early secretory antigenic target-6 (ESAT-6) is regarded as the most immunogenic protein produced by Mycobacterium tuberculosis, whose detection is of great clinical significance for tuberculosis diagnosis. However, the detection of the ESAT-6 antigen has been hampered by the expensive cost and complex experimental procedures, resulting in low sensitivity. Herein, we developed a titanium carbide (Ti3C2Tx)-based aptasensor for ESAT-6 detection utilizing a triple-signal amplification strategy. First, acetylene black (AB) was immobilized on Ti3C2Tx through a cross-linking reaction to form the Ti3C2Tx-AB-PAn nanocomposite. Meanwhile, AB served as a conductive bridge, and Ti3C2Tx can synergistically promote the electron transfer of PAn. Ti3C2Tx-AB-PAn exhibited outstanding conductivity, high electrochemical signals, and abundant sites for the loading of ESAT-6 binding aptamer II (EBA II) to form a novel signal tag. Second, N-CNTs were adsorbed on NiMn layered double hydride (NiMn LDH) nanoflowers to obtain NiMn LDH/N-CNTs, exhibiting excellent conductivity and preeminent stability to be used as electrode modification materials. Third, the biotinylated EBA (EBA I) was immobilized onto a streptavidin-coated sensing interface, forming an amplification platform for further signal enhancement. More importantly, as a result of the synergistic effect of the triple-signal amplification platform, the aptasensor exhibited a wide detection linear range from 10 fg mL-1 to 100 ng mL-1 and a detection limit of 4.07 fg mL-1 for ESAT-6. We envision that our aptasensor provides a way for the detection of ESAT-6 to assist in the diagnosis of tuberculosis.
Collapse
Affiliation(s)
- Jianli Zuo
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Yonghua Yuan
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Min Qing
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Yuhan Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - He Huang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Jiaxu Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | | | | |
Collapse
|
4
|
Jiang X, Mu Z, Wang J, Zhou J, Bai L. A novel sandwich-type electrochemical immunosensor for sensitive detection of zearalenone using NG/PDDA/HNTs and Ti-MOF-KB composites for signal amplification. Food Chem 2024; 436:137704. [PMID: 37862986 DOI: 10.1016/j.foodchem.2023.137704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/06/2023] [Accepted: 10/07/2023] [Indexed: 10/22/2023]
Abstract
In this work, a novel sandwich-type electrochemical immunosensor based on signal amplification was developed for the ultrasensitive detection of zearalenone (ZEA). The composite consisting of poly(diallyldimethylammonium chloride) functionalized nitrogen doped graphene, halloysite nanotubes and toluidine blue (Tb/NG/PDDA/HNTs), was synthesized for the first time. Then it was modified with gold nanoparticles (AuNPs) to bind the secondary antibody (Ab2, 10 μg mL-1) and form the tracer label. In addition, ketjen black (KB) was doped into titanium-based metal-organic framework (Ti-MOF), which provided large specific surface area and employed as the sensing platform to increase the immobilization of the primary antibody (Ab1, 10 μg mL-1). This immunosensor showed a wide linear range for ZEA from 10 fg mL-1 to 100 ng mL-1 with a limit of detection (LOD) as low as 0.57 fg mL-1, which was below the maximum tolerable levels (50∼100 µg kg-1) set by the United Nations Food and Agriculture Organization (FAO).
Collapse
Affiliation(s)
- Xiaodan Jiang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhaode Mu
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Jie Wang
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Lijuan Bai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
5
|
Song Z, Liu C, He W, Pei S, Liu D, Cao X, Wang Y, He P, Zhao B, Ou X, Xia H, Wang S, Zhao Y. Insight into the drug-resistant characteristics and genetic diversity of multidrug-resistant Mycobacterium tuberculosis in China. Microbiol Spectr 2023; 11:e0132423. [PMID: 37732780 PMCID: PMC10581218 DOI: 10.1128/spectrum.01324-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/16/2023] [Indexed: 09/22/2023] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) has a severe impact on public health. To investigate the drug-resistant profile, compensatory mutations and genetic variations among MDR-TB isolates, a total of 546 MDR-TB isolates from China underwent drug-susceptibility testing and whole genome sequencing for further analysis. The results showed that our isolates have a high rate of fluoroquinolone resistance (45.60%, 249/546) and a low proportion of conferring resistance to bedaquiline, clofazimine, linezolid, and delamanid. The majority of MDR-TB isolates (77.66%, 424/546) belong to Lineage 2.2.1, followed by Lineage 4.5 (6.41%, 35/546), and the Lineage 2 isolates have a strong association with pre-XDR/XDR-TB (P < 0.05) in our study. Epidemic success analysis using time-scaled haplotypic density (THD) showed that clustered isolates outperformed non-clustered isolates. Compensatory mutations happened in rpoA, rpoC, and non-RRDR of rpoB genes, which were found more frequently in clusters and were associated with the increase of THD index, suggesting that increased bacterial fitness was associated with MDR-TB transmission. In addition, the variants in resistance associated genes in MDR isolates are mainly focused on single nucleotide polymorphism mutations, and only a few genes have indel variants, such as katG, ethA. We also found some genes underwent indel variation correlated with the lineage and sub-lineage of isolates, suggesting the selective evolution of different lineage isolates. Thus, this analysis of the characterization and genetic diversity of MDR isolates would be helpful in developing effective strategies for treatment regimens and tailoring public interventions. IMPORTANCE Multidrug-resistant tuberculosis (MDR-TB) is a serious obstacle to tuberculosis prevention and control in China. This study provides insight into the drug-resistant characteristics of MDR combined with phenotypic drug-susceptibility testing and whole genome sequencing. The compensatory mutations and epidemic success analysis were analyzed by time-scaled haplotypic density (THD) method, suggesting clustered isolates and compensatory mutations are associated with MDR-TB transmission. In addition, the insertion and deletion variants happened in some genes, which are associated with the lineage and sub-lineage of isolates, such as the mpt64 gene. This study offered a valuable reference and increased understanding of MDR-TB in China, which could be crucial for achieving the objective of precision medicine in the prevention and treatment of MDR-TB.
Collapse
Affiliation(s)
- Zexuan Song
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chunfa Liu
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wencong He
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shaojun Pei
- School of Public Health, Peking University, Beijing, China
| | - Dongxin Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaolong Cao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiting Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ping He
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bing Zhao
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xichao Ou
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Xia
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shengfen Wang
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanlin Zhao
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
6
|
Abstract
Rapid and specific assaying of molecules that report on a pathophysiological condition, environmental pollution, or drug concentration is pivotal for establishing efficient and accurate diagnostic systems. One of the main components required for the construction of these systems is the recognition element (receptor) that can identify target analytes. Oligonucleotide switching structures, or aptamers, have been widely studied as selective receptors that can precisely identify targets in different analyzed matrices with minimal interference from other components in an antibody-like recognition process. These aptasensors, especially when integrated into sensing platforms, enable a multitude of sensors that can outperform antibody-based sensors in terms of flexibility of the sensing strategy and ease of deployment to areas with limited resources. Research into compounds that efficiently enhance signal transduction and provide a suitable platform for conjugating aptamers has gained huge momentum over the past decade. The multifaceted nature of conjugated polymers (CPs), notably their versatile electrical and optical properties, endows them with a broad range of potential applications in optical, electrical, and electrochemical signal transduction. Despite the substantial body of research demonstrating the enhanced performance of sensing devices using doped or nanostructure-embedded CPs, few reviews are available that specifically describe the use of conjugated polymers in aptasensing. The purpose of this review is to bridge this gap and provide a comprehensive description of a variety of CPs, from a historical viewpoint, underpinning their specific characteristics and demonstrating the advances in biosensors associated with the use of these conjugated polymers.
Collapse
Affiliation(s)
- Razieh Salimian
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64053, France
| | - Corinne Nardin
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64053, France
| |
Collapse
|
7
|
Paneru S, Kumar D. A Novel Electrochemical Biosensor Based on Polyaniline-Embedded Copper Oxide Nanoparticles for High-Sensitive Paraoxon-Ethyl (PE) Detection. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04350-y. [PMID: 36701097 DOI: 10.1007/s12010-023-04350-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/27/2023]
Abstract
This paper proposes a fabrication of a hyper-sensitive amperometric biosensor for paraoxon-ethyl (PE) detection. In this developed biosensor, polyaniline (PANI) and copper oxide (CuO)-based nanocomposite is used as a sensing platform. The homogeneous distribution of CuO onto the PANI matrix enhances the surface area and conductivity of the nanocomposite. Additionally, the PANI produces a compatible environment for enzyme immobilization, which further enhances the rate of electron transfer. For biosensor fabrication, the nanocomposite is deposited electrophoretically onto the ITO glass substrate and immobilization of acetylcholinesterase (AChE) enzyme is conducted onto the fabricated electrode surface. The results validate good reproducibility, good stability, and high selectivity of the fabricated biosensor (AChE/PANI@CuO/ITO). The inhibition rate of paraoxon-ethyl (PE) is recorded in the concentration range of 1-200 nM with a low limit of detection of 0.096 nM or 96 pM. The sensitivity of the developed biosensor is found to be 49.86 µA(nM)-1. The developed biosensor is further successfully accomplished for the detection of PE in real samples like rice and pulse.
Collapse
Affiliation(s)
- Saroj Paneru
- Department of Applied Chemistry, Delhi Technological University, Delhi, 110042, India
| | - Devendra Kumar
- Department of Applied Chemistry, Delhi Technological University, Delhi, 110042, India.
| |
Collapse
|
8
|
Yang X, Fan S, Ma Y, Chen H, Xu JF, Pi J, Wang W, Chen G. Current progress of functional nanobiosensors for potential tuberculosis diagnosis: The novel way for TB control? Front Bioeng Biotechnol 2022; 10:1036678. [PMID: 36588948 PMCID: PMC9798010 DOI: 10.3389/fbioe.2022.1036678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB), induced by the foxy Mycobacterium tuberculosis (Mtb), is still one of the top killers worldwide among infectious diseases. Although several antibiotics have been developed to significantly relieve the tuberculosis epidemics worldwide, there are still several important scientific challenges for tuberculosis. As one of the most critical issues for tuberculosis control, the accurate and timely diagnosis of tuberculosis is critical for the following therapy of tuberculosis and thus responsible for the effective control of drug-resistant tuberculosis. Current tuberculosis diagnostic methods in clinic are still facing the difficulties that they can't provide the rapid diagnostic results with high sensitivity and accuracy, which therefore requires the development of more effective novel diagnostic strategies. In recent decades, nanomaterials have been proved to show promising potentials for novel nanobiosensor construction based on their outstanding physical, chemical and biological properties. Taking these promising advantages, nanomaterial-based biosensors show the potential to allow the rapid, sensitive and accurate tuberculosis diagnosis. Here, aiming to increase the development of more effective tuberculosis diagnostic strategy, we summarized the current progress of nanobiosensors for potential tuberculosis diagnosis application. We discussed the different kind diagnostic targets for tuberculosis diagnosis based on nanobiosensors, ranging from the detection of bacterial components from M. tuberculosis, such as DNA and proteins, to the host immunological responses, such as specific cytokine production, and to the direct whole cell detection of M. tuberculosis. We believe that this review would enhance our understandings of nanobiosensors for potential tuberculosis diagnosis, and further promote the future research on nanobiosensor-based tuberculosis diagnosis to benefit the more effective control of tuberculosis epidemic.
Collapse
Affiliation(s)
- Xuran Yang
- Department of Clinical Medicine Laboratory, Affiliated Xiaolan Hospital, Southern Medical University, Zhongshan, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hui Chen
- Department of Clinical Medicine Laboratory, Affiliated Xiaolan Hospital, Southern Medical University, Zhongshan, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China,*Correspondence: Jiang Pi, ; Wandang Wang, ; Guanghui Chen,
| | - Wandang Wang
- Department of Clinical Medicine Laboratory, Affiliated Xiaolan Hospital, Southern Medical University, Zhongshan, China,*Correspondence: Jiang Pi, ; Wandang Wang, ; Guanghui Chen,
| | - Guanghui Chen
- Department of Clinical Medicine Laboratory, Affiliated Xiaolan Hospital, Southern Medical University, Zhongshan, China,*Correspondence: Jiang Pi, ; Wandang Wang, ; Guanghui Chen,
| |
Collapse
|
9
|
Recent Progresses in Development of Biosensors for Thrombin Detection. BIOSENSORS 2022; 12:bios12090767. [PMID: 36140153 PMCID: PMC9496736 DOI: 10.3390/bios12090767] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 12/11/2022]
Abstract
Thrombin is a serine protease with an essential role in homeostasis and blood coagulation. During vascular injuries, thrombin is generated from prothrombin, a plasma protein, to polymerize fibrinogen molecules into fibrin filaments. Moreover, thrombin is a potent stimulant for platelet activation, which causes blood clots to prevent bleeding. The rapid and sensitive detection of thrombin is important in biological analysis and clinical diagnosis. Hence, various biosensors for thrombin measurement have been developed. Biosensors are devices that produce a quantifiable signal from biological interactions in proportion to the concentration of a target analyte. An aptasensor is a biosensor in which a DNA or RNA aptamer has been used as a biological recognition element and can identify target molecules with a high degree of sensitivity and affinity. Designed biosensors could provide effective methods for the highly selective and specific detection of thrombin. This review has attempted to provide an update of the various biosensors proposed in the literature, which have been designed for thrombin detection. According to their various transducers, the constructions and compositions, the performance, benefits, and restrictions of each are summarized and compared.
Collapse
|
10
|
Zhang J, Fan Y, Li J, Huang B, Wen H, Ren J. Cascade signal enhancement by integrating DNA walking and RCA reaction-assisted "silver-link" crossing electrode for ultrasensitive electrochemical detection of Staphylococcus aureus. Biosens Bioelectron 2022; 217:114716. [PMID: 36126557 DOI: 10.1016/j.bios.2022.114716] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/28/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022]
Abstract
The key factor to control the incidence rate of diseases caused by bacteria is rapid detection and early diagnosis. Herein, we proposed a new electrochemical bacterial sensor by coupling DNA walking and rolling circle amplification (RCA) reaction-assisted "silver-link" crossing electrode. Staphylococcus aureus (S. aureus) was detected using this proof-of concept strategy. Aptamer/DNA walker and auxiliary sequence (AS)/RCA reaction probe (RP) duplexes were modified on the electrode surface. The binding of S. aureus with its aptamer caused the disintegration of aptamer/DNA walker and released DNA walker. With the help of Exo III, DNA walker moved along the electrode surface and AS in AS/RP duplex was continuously digested to release RP. By introducing phi29 DNA polymerase, RCA reaction was performed using RP as the reaction primer to form long single-strand RCA extension products between the electrodes. The "silver-link" crossing electrode was formed by metallization of "gene-link", significant conductivity was thus acquired for bacteria detection. The limit of detection (LOD) was 10 CFU/mL and detection time was 2 h. The proposed sensor has high efficiency, good stability and low background signal, human serum and milk samples were successfully detected, which emerged a promising potential in the food monitoring and clinical diagnosis.
Collapse
Affiliation(s)
- Jialin Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| | - Yaqi Fan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Jinhui Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Bin Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Herui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, 410004, PR China.
| |
Collapse
|
11
|
Bioanalytical methods encompassing label-free and labeled tuberculosis aptasensors: A review. Anal Chim Acta 2022; 1234:340326. [DOI: 10.1016/j.aca.2022.340326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022]
|
12
|
Sivakumar R, Lee NY. Recent advances in airborne pathogen detection using optical and electrochemical biosensors. Anal Chim Acta 2022; 1234:340297. [PMID: 36328717 PMCID: PMC9395976 DOI: 10.1016/j.aca.2022.340297] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Abstract
The world is currently facing an adverse condition due to the pandemic of airborne pathogen SARS-CoV-2. Prevention is better than cure; thus, the rapid detection of airborne pathogens is necessary because it can reduce outbreaks and save many lives. Considering the immense role of diverse detection techniques for airborne pathogens, proper summarization of these techniques would be beneficial for humans. Hence, this review explores and summarizes emerging techniques, such as optical and electrochemical biosensors used for detecting airborne bacteria (Bacillus anthracis, Mycobacterium tuberculosis, Staphylococcus aureus, and Streptococcus pneumoniae) and viruses (Influenza A, Avian influenza, Norovirus, and SARS-CoV-2). Significantly, the first section briefly focuses on various diagnostic modalities applied toward airborne pathogen detection. Next, the fabricated optical biosensors using various transducer materials involved in colorimetric and fluorescence strategies for infectious pathogen detection are extensively discussed. The third section is well documented based on electrochemical biosensors for airborne pathogen detection by differential pulse voltammetry, cyclic voltammetry, square-wave voltammetry, amperometry, and impedance spectroscopy. The unique pros and cons of these modalities and their future perspectives are addressed in the fourth and fifth sections. Overall, this review inspected 171 research articles published in the last decade and persuaded the importance of optical and electrochemical biosensors for airborne pathogen detection.
Collapse
Affiliation(s)
- Rajamanickam Sivakumar
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
13
|
Li Y, Peng D, Guo S, Yang B, Zhou J, Zhou J, Zhang Q, Bai L. Aptasensor for Mycobacterium tuberculosis antigen MPT64 detection using anthraquinone derivative confined in ordered mesoporous carbon as a new redox nanoprobe. Bioelectrochemistry 2022; 147:108209. [PMID: 35850057 DOI: 10.1016/j.bioelechem.2022.108209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/23/2022] [Accepted: 07/09/2022] [Indexed: 11/02/2022]
Abstract
Rapid and sensitive tuberculosis (TB) diagnoses remain big challenges to current detection tools. In this work, a sensitive electrochemical aptasensor was constructed for the determination of Mycobacterium tuberculosis antigen MPT64 using a new redox nanoprobe. We found that anthraquinone derivative, anthraquinone-2-carboxylic acid (AQCA), a redox mediator, could be confined in ordered mesoporous carbon material of CMK-3. Due to the large loading amount of AQCA, as well as the confined space and electron transfer promotion effect of CMK-3, the obtained AQCA/CMK-3 nanohybrid with mass ratio of 2:1 showed excellent electroactivity and was employed as a new redox nanoprobe for signal amplification for the first time. Additionally, urchin-like Ce-MOFs were used to load a large amount of deposited gold nanocrystals (dep-Au), leading to dense immobilization of capture probe. The proposed electrochemical aptasensor for MPT64 detection showed a good linear relationship in the range from 100 fg/mL to 10 ng/mL with a low detection limit of 67.6 fg/mL. Besides, the aptasensor was utilized to detect MTP64 in human serum samples for TB diagnosis and presented satisfactory results.
Collapse
Affiliation(s)
- Yishi Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Dengyong Peng
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China; Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Bijun Yang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Jiaxu Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Qifan Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Lijuan Bai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
14
|
Sargazi S, Er S, Mobashar A, Gelen SS, Rahdar A, Ebrahimi N, Hosseinikhah SM, Bilal M, Kyzas GZ. Aptamer-conjugated carbon-based nanomaterials for cancer and bacteria theranostics: A review. Chem Biol Interact 2022; 361:109964. [PMID: 35513013 DOI: 10.1016/j.cbi.2022.109964] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded oligonucleotides that link to various substrates with great affinity and selectivity, including small molecules, peptides, proteins, cells, and tissues. For this reason, they can be used as imaging agents for cancer imaging techniques. Multifunctional nanomaterials combined with imaging probes and drugs are promising cancer diagnosis and treatment candidates. On the other hand, carbon-based nanomaterials (CNMs), including such as fullerene, carbon nanotubes, carbon-based quantum dots, carbon nanohorns, graphene oxide and its derivatives carbon nanodots, and nanodiamonds, are sort of smart materials that can be used in a variety of theranostic applications, including photo-triggered therapies. The remarkable physical characteristics, functionalizable chemistry, biocompatibility, and optical properties of these nanoparticles have enabled their utilization in less-invasive therapies. The theranostic agents that emerged by combining aptamers with CNMs have opened a novel alternative for personified medicine of cancer, target-specific imaging, and label-free diagnosis of a broad range of cancers, as well as pathogens. Aptamer-functionalized CNMs have been used as nanovesicles for targeted delivery of anti-cancer agents (i.e., doxorubicin and 5-fluorouracil) to tumor sites. Furthermore, these CNMs conjugated with aptamers have shown great advantages over standard CNMs to sensitively detect Mycobacterium tuberculosis, Escherichia coli, staphylococcus aureus, Vibrio parahaemolyticus, Salmonella typhimurium, Pseudomonas aeruginosa, and Citrobacter freundii. Regrettably, CNMs can form compounds defined as NOAA (nano-objects, and their aggregates and agglomerates larger than 100 nm), that accumulate in the body and cause toxic effects. Surface modification and pretreatment with albumin avoid agglomeration and increase the dispersibility of CNMs, so it is needed to guarantee the desirable interactions between functionalized CNMs and blood plasma proteins. This preliminary review aimed to comprehensively discuss the features and uses of aptamer-conjugated CNMs to manage cancer and bacterial infections.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 98167-43463, Iran
| | - Simge Er
- Ege University Faculty of Science Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Aisha Mobashar
- Department of Pharmacology, Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Sultan Sacide Gelen
- Ege University Faculty of Science Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, 538-98615, Zabol, Iran.
| | - Narges Ebrahimi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala, 65404, Greece.
| |
Collapse
|
15
|
Joshi H, Kandari D, Maitra SS, Bhatnagar R. Biosensors for the detection of Mycobacterium tuberculosis: a comprehensive overview. Crit Rev Microbiol 2022; 48:784-812. [PMID: 35196464 DOI: 10.1080/1040841x.2022.2035314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Tuberculosis (TB) infection is one of the leading causes of death in the world. According to WHO reports 2019, the average rate of decrease in global TB incidences was only 1.6% per year from 2000 to 2018, besides that the global decline in TB deaths was just 11%. Therefore, the dire need for early detection of the pathogen for the successful diagnosis of TB seems justified. Mycobacterium tuberculosis secretory proteins have gained more attention as TB biomarkers, for the early diagnosis and treatment of TB. Here in this review, we elaborate on the recent advancements made in the field of piezoelectric, magnetic, optical, and electrochemical biosensors, in addition to listing their merits and setbacks. Additionally, this review also discusses the construction of biosensors through modern integrated technologies, such as combinations of analytical chemistry, molecular biology, and nanotechnology. Integrated technologies enhance the detection for perceiving highly selective, specific, and sensitive signals to detect M. tuberculosis. Furthermore, this review highlights the recent challenges and scope of improvement in numerous biosensors developed for rapid, specific, selective, and sensitive detection of tuberculosis to reduce the TB burden and successful treatment.
Collapse
Affiliation(s)
- Hemant Joshi
- Laboratory of Molecular biology and Genetic engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Divya Kandari
- Laboratory of Molecular biology and Genetic engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Subhrangsu Sundar Maitra
- Laboratory of Molecular biology and Genetic engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular biology and Genetic engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Amity University of Rajasthan, Jaipur, India
| |
Collapse
|
16
|
Laabd M, Imgharn A, Hsini A, Naciri Y, Mobarak M, Szunerits S, Boukherroub R, Albourine A. Efficient detoxification of Cr(VI)-containing effluents by sequential adsorption and reduction using a novel cysteine-doped PANi@faujasite composite: Experimental study supported by advanced statistical physics prediction. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126857. [PMID: 34399223 DOI: 10.1016/j.jhazmat.2021.126857] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, the global spreading of hazardous heavy metals becomes a top-priority environmental challenge, owing to its serious detrimental health outcomes. Herein, a novel cysteine-doped polyaniline@faujasite hybrid composite (Cys-PANi@FAU-50) was synthesized via a facile in-situ polymerization route for the effective detoxification of Cr(VI)-bearing wastewaters. The Cys-PANi@FAU-50 composite displayed an open mesoporous structure richly decorated with nitrogen/oxygen-containing functional groups, which consequently boosted the diffusion, adsorption and reduction of Cr(VI) oxyanions. The Cr(VI) adsorption behavior was satisfactorily tailored via pseudo-second-order law and Langmuir model with a maximum uptake capacity of 384.6 mg/g. Based on the advanced statistical physics theory, the monolayer model with two distinct receptor sites provided a reliable microscopic and macroscopic prediction of the Cr(VI) adsorption process. Stereographically, the Cr(VI) ions were adsorbed through horizontal multi-anchorage and vertical multi-molecular mechanisms on the amine and hydroxyl groups of Cys-PANi@FAU-50, respectively. The thermodynamic functions evidenced that the Cr(VI) adsorption was an endothermic spontaneous process. XPS analysis proved that Cr(VI) ions were electrostatically adsorbed, and subsequently reduced to Cr(III), which were in turn immobilized by chelation with imine/sulfonate groups and electrostatic interactions with carboxylate groups. The Cys-PANi@FAU-50 featured an effortless regenerability and good reusability. Overall, the Cys-PANi@FAU-50 composite owns outstanding potentiality for detoxifying Cr(VI)-laden effluents.
Collapse
Affiliation(s)
- Mohamed Laabd
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Abdelaziz Imgharn
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Abdelghani Hsini
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Yassine Naciri
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Mobarak
- Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Abdallah Albourine
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
17
|
Bakhshandeh B, Sorboni SG, Haghighi DM, Ahmadi F, Dehghani Z, Badiei A. New analytical methods using carbon-based nanomaterials for detection of Salmonella species as a major food poisoning organism in water and soil resources. CHEMOSPHERE 2022; 287:132243. [PMID: 34537453 DOI: 10.1016/j.chemosphere.2021.132243] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/21/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Salmonella is one of the most prevalent causing agents of food- and water-borne illnesses, posing an ongoing public health threat. These food-poisoning bacteria contaminate the resources at different stages such as production, aggregation, processing, distribution, as well as marketing. According to the high incidence of salmonellosis, effective strategies for early-stage detection are required at the highest priority. Since traditional culture-dependent methods and polymerase chain reaction are labor-intensive and time-taking, identification of early and accurate detection of Salmonella in food and water samples can prevent significant health economic burden and lessen the costs. The immense potentiality of biosensors in diagnosis, such as simplicity in operation, the ability of multiplex analysis, high sensitivity, and specificity, have driven research in the evolution of nanotechnology, innovating newer biosensors. Carbon nanomaterials enhance the detection sensitivity of biosensors while obtaining low levels of detection limits due to their possibility to immobilize huge amounts of bioreceptor units at insignificant volume. Moreover, conjugation and functionalization of carbon nanomaterials with metallic nanoparticles or organic molecules enables surface functional groups. According to these remarkable properties, carbon nanomaterials are widely exploited in the development of novel biosensors. To be specific, carbon nanomaterials such as carbon nanotubes, graphene and fullerenes function as transducers in the analyte recognition process or surface immobilizers for biomolecules. Herein the potential application of carbon nanomaterials in the development of novel Salmonella biosensors platforms is reviewed comprehensively. In addition, the current problems and critical analyses of the future perspectives of Salmonella biosensors are discussed.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran; Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran.
| | | | - Dorrin Mohtadi Haghighi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ahmadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Dehghani
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
18
|
Chen XF, Zhao X, Yang Z. Aptasensors for the detection of infectious pathogens: design strategies and point-of-care testing. Mikrochim Acta 2022; 189:443. [PMID: 36350388 PMCID: PMC9643942 DOI: 10.1007/s00604-022-05533-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
The epidemic of infectious diseases caused by contagious pathogens is a life-threatening hazard to the entire human population worldwide. A timely and accurate diagnosis is the critical link in the fight against infectious diseases. Aptamer-based biosensors, the so-called aptasensors, employ nucleic acid aptamers as bio-receptors for the recognition of target pathogens of interest. This review focuses on the design strategies as well as state-of-the-art technologies of aptasensor-based diagnostics for infectious pathogens (mainly bacteria and viruses), covering the utilization of three major signal transducers, the employment of aptamers as recognition moieties, the construction of versatile biosensing platforms (mostly micro and nanomaterial-based), innovated reporting mechanisms, and signal enhancement approaches. Advanced point-of-care testing (POCT) for infectious disease diagnostics are also discussed highlighting some representative ready-to-use devices to address the urgent needs of currently prevalent coronavirus disease 2019 (COVID-19). Pressing issues in aptamer-based technology and some future perspectives of aptasensors are provided for the implementation of aptasensor-based diagnostics into practical application.
Collapse
Affiliation(s)
- Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China.
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China.
- Guangzhou Laboratory, Guangzhou, 510320, People's Republic of China.
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou, 510005, People's Republic of China.
| |
Collapse
|
19
|
An electrochemical aptasensor for Mycobacterium tuberculosis ESAT-6 antigen detection using bimetallic organic framework. Mikrochim Acta 2021; 188:404. [PMID: 34731314 DOI: 10.1007/s00604-021-05058-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/09/2021] [Indexed: 02/01/2023]
Abstract
A label-free electrochemical aptasensor is reported for sensitive detection of the 6-kDa early secreted antigenic target (ESAT-6). For the first time, the bimetallic organic framework (b-MOF) of Zr-MOF-on-Ce-MOF was decorated with nitrogen-doped graphene (NG) and applied as the matrix for electroactive toluidine blue (Tb) to form the NG@Zr-MOF-on-Ce-MOF@Tb nanohybrid. The prepared nanohybrid with excellent hydrophilicity, dispersibility, and large specific surface exhibited significant electrochemical response. This nanohybrid could be directly used for anchoring ESAT-6 binding aptamers (EBA) through the interaction between the 5'-phosphate group (PO43-) of EBA and Zr4+ of Zr-MOF. The signal response before and after incubating the ESAT-6 antigen has been evaluated by cyclic voltammetry at a scan rate of 100 mV s-1 from - 0.7 to 0.3 V (vs. SCE). Under optimal conditions, the proposed aptasensor displayed a wide linear range from 100 fg mL-1 to 10 ng mL-1 with a limit of detection (LOD) of 12 fg mL-1. The developed method showed good reproducibility with a relative standard deviation (RSD) of 2.27%. The aptasensor showed favorable results in the analysis of the real samples. With these merits, the aptasensor has exceptional potential as a diagnostic tool for tuberculosis in clinical practice.
Collapse
|
20
|
Kurup CP, Mohd-Naim NF, Ahmed MU. Recent trends in nanomaterial-based signal amplification in electrochemical aptasensors. Crit Rev Biotechnol 2021; 42:794-812. [PMID: 34632900 DOI: 10.1080/07388551.2021.1960792] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ultrasensitive biosensors have become a necessity in the world of scientific research, and several signal enhancement strategies have been employed to attain exceptionally low detection limits. Nanotechnology turns out to be a strong contender for signal amplification, as they can be employed as platform modifiers, catalysts, carriers or labels. Here, we have described the most recent advancements in the utilization of nanomaterials as signal amplification components in aptamer-based electrochemical biosensors. We have briefly reviewed the methods that utilized nanomaterials, namely gold and carbon, as well as nanocomposites such as: graphene, carbon nanotubes, quantum dots, and metal-organic frameworks.
Collapse
Affiliation(s)
- Chitra Padmakumari Kurup
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Noor Faizah Mohd-Naim
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.,PAPRSB Institute of Health Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| |
Collapse
|
21
|
Azmi UZM, Yusof NA, Abdullah J, Mohammad F, Ahmad SAA, Suraiya S, Raston NHA, Faudzi FNM, Khiste SK, Al-Lohedan HA. Aptasensor for the Detection of Mycobacterium tuberculosis in Sputum Utilising CFP10-ESAT6 Protein as a Selective Biomarker. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2446. [PMID: 34578762 PMCID: PMC8470133 DOI: 10.3390/nano11092446] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022]
Abstract
A portable electrochemical aptamer-antibody based sandwich biosensor has been designed and successfully developed using an aptamer bioreceptor immobilized onto a screen-printed electrode surface for Mycobacterium tuberculosis (M. tuberculosis) detection in clinical sputum samples. In the sensing strategy, a CFP10-ESAT6 binding aptamer was immobilized onto a graphene/polyaniline (GP/PANI)-modified gold working electrode by covalent binding via glutaraldehyde linkage. Upon interaction with the CFP10-ESAT6 antigen target, the aptamer will capture the target where the nano-labelled Fe3O4/Au MNPs conjugated antibody is used to complete the sandwich format and enhance the signal produced from the aptamer-antigen interaction. Using this strategy, the detection of CFP10-ESAT6 antigen was conducted in the concentration range of 5 to 500 ng/mL. From the analysis, the detection limit was found to be 1.5 ng/mL, thereby demonstrating the efficiency of the aptamer as a bioreceptor. The specificity study was carried out using bovine serum albumin (BSA), MPT64, and human serum, and the result demonstrated good specificity that is 7% higher than the antibody-antigen interaction reported in a previous study. The fabricated aptasensor for M. tuberculosis analysis shows good reproducibility with an relative standard deviation (RSD) of 2.5%. Further analysis of M. tuberculosis in sputum samples have shown good correlation with the culture method with 100% specificity and sensitivity, thus making the aptasensor a promising candidate for M. tuberculosis detection considering its high specificity and sensitivity with clinical samples.
Collapse
Affiliation(s)
- Umi Zulaikha Mohd Azmi
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (U.Z.M.A.); (J.A.); (S.A.A.A.); (F.N.M.F.)
| | - Nor Azah Yusof
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (U.Z.M.A.); (J.A.); (S.A.A.A.); (F.N.M.F.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Jaafar Abdullah
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (U.Z.M.A.); (J.A.); (S.A.A.A.); (F.N.M.F.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Faruq Mohammad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Shahrul Ainliah Alang Ahmad
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (U.Z.M.A.); (J.A.); (S.A.A.A.); (F.N.M.F.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Siti Suraiya
- School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia;
| | - Nurul Hanun Ahmad Raston
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia;
| | - Fatin Nabilah Mohd Faudzi
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (U.Z.M.A.); (J.A.); (S.A.A.A.); (F.N.M.F.)
| | - Sachin K. Khiste
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA;
| | - Hamad A. Al-Lohedan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
22
|
Wan Q, Liu X, Zu Y. Oligonucleotide aptamers for pathogen detection and infectious disease control. Theranostics 2021; 11:9133-9161. [PMID: 34522231 PMCID: PMC8419047 DOI: 10.7150/thno.61804] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
During an epidemic or pandemic, the primary task is to rapidly develop precise diagnostic approaches and effective therapeutics. Oligonucleotide aptamer-based pathogen detection assays and control therapeutics are promising, as aptamers that specifically recognize and block pathogens can be quickly developed and produced through simple chemical synthesis. This work reviews common aptamer-based diagnostic techniques for communicable diseases and summarizes currently available aptamers that target various pathogens, including the SARS-CoV-2 virus. Moreover, this review discusses how oligonucleotide aptamers might be leveraged to control pathogen propagation and improve host immune system responses. This review offers a comprehensive data source to the further develop aptamer-based diagnostics and therapeutics specific for infectious diseases.
Collapse
Affiliation(s)
| | | | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
23
|
Fei B, Zhou L, Zhang Y, Luo L, Chen Y. Application value of tissue tuberculosis antigen combined with Xpert MTB/RIF detection in differential diagnoses of intestinal tuberculosis and Crohn's disease. BMC Infect Dis 2021; 21:498. [PMID: 34049506 PMCID: PMC8161674 DOI: 10.1186/s12879-021-06210-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 05/19/2021] [Indexed: 01/28/2023] Open
Abstract
Background The purpose of this study was to examine the value of Xpert MTB/RIF assay and detection of additional Mycobacterium tuberculosis complex (MTBC) species antigens from intestinal tissue samples in differentiating intestinal tuberculosis (ITB) from Crohn’s disease (CD). Methods Several clinical specimens of intestinal tissue obtained by either endoscopic biopsy or surgical excision were used for mycobacteriologic solid cultures,Xpert MTB/RIF assays, immunohistochemistry, and histological examinations. Four antigens (38KDa, ESAT-6, MPT64, and Ag85 complex) of MTBC in the intestinal tissue were detected by immunohistochemical analysis. Results The study included 42 patients with ITB and 46 with CD. Perianal lesions and longitudinal ulcers were more common in patients with CD, while caseating granuloma and annular ulcers were more common in patients with ITB. The positive rate of MTBC detected by Xpert MTB/RIF in intestinal tissues of patients with ITB was 33.33%, which was significantly higher than that in patients with CD and that detected using acid-fast staining smears. It was also higher than that detected by tissue MTBC culture, but the difference was not statistically significant. The positive MPT64 expression rate in patients with ITB was 40.48%, which was significantly higher than that observed in patients with CD. The sensitivity of parallelly combined detection of tuberculosis protein MPT64 and Xpert MTB/RIF in diagnosing ITB was 50.0%. Conclusions The detection of Xpert MTB/RIF in intestinal tissue is a rapid and useful method for establishing an early diagnosis of ITB. The detection of MTBC using Xpert MTB/RIF and MPT64 antigen in intestinal tissues has a definitive value in the differential diagnosis ofITB and CD. The combination of these two methods can improve the detection sensitivity.
Collapse
Affiliation(s)
- Baoying Fei
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou, 310012, Zhejiang, China.
| | - Lin Zhou
- Departments of Minimally Invasive Surgery, Tuberculous Experimental Center, Hangzhou Red Cross Hospital, Hangzhou, 310003, Zhejiang, China
| | - Yu Zhang
- Department of Gastroenterology, Zhejiang Province People's Hospital, Hangzhou, 310014, Zhejiang, China
| | - Linhe Luo
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou, 310012, Zhejiang, China
| | - Yuanyuan Chen
- Tuberculosis Diagnosis and Treatment Center, Hangzhou Red Cross Hospital, Hangzhou, 310003, Zhejiang, China
| |
Collapse
|
24
|
Speranza G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:967. [PMID: 33918769 PMCID: PMC8069879 DOI: 10.3390/nano11040967] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Recent advances in nanomaterial design and synthesis has resulted in robust sensing systems that display superior analytical performance. The use of nanomaterials within sensors has accelerated new routes and opportunities for the detection of analytes or target molecules. Among others, carbon-based sensors have reported biocompatibility, better sensitivity, better selectivity and lower limits of detection to reveal a wide range of organic and inorganic molecules. Carbon nanomaterials are among the most extensively studied materials because of their unique properties spanning from the high specific surface area, high carrier mobility, high electrical conductivity, flexibility, and optical transparency fostering their use in sensing applications. In this paper, a comprehensive review has been made to cover recent developments in the field of carbon-based nanomaterials for sensing applications. The review describes nanomaterials like fullerenes, carbon onions, carbon quantum dots, nanodiamonds, carbon nanotubes, and graphene. Synthesis of these nanostructures has been discussed along with their functionalization methods. The recent application of all these nanomaterials in sensing applications has been highlighted for the principal applicative field and the future prospects and possibilities have been outlined.
Collapse
Affiliation(s)
- Giorgio Speranza
- CMM—FBK, v. Sommarive 18, 38123 Trento, Italy;
- IFN—CNR, CSMFO Lab., via alla Cascata 56/C Povo, 38123 Trento, Italy
- Department of Industrial Engineering, University of Trento, v. Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
25
|
Ștefan G, Hosu O, De Wael K, Lobo-Castañón MJ, Cristea C. Aptamers in biomedicine: Selection strategies and recent advances. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137994] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Pereira HS, Tagliaferri TL, Mendes TADO. Enlarging the Toolbox Against Antimicrobial Resistance: Aptamers and CRISPR-Cas. Front Microbiol 2021; 12:606360. [PMID: 33679633 PMCID: PMC7932999 DOI: 10.3389/fmicb.2021.606360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
In the post-genomic era, molecular treatments and diagnostics have been envisioned as powerful techniques to tackle the antimicrobial resistance (AMR) crisis. Among the molecular approaches, aptamers and CRISPR-Cas have gained support due to their practicality, sensibility, and flexibility to interact with a variety of extra- and intracellular targets. Those characteristics enabled the development of quick and onsite diagnostic tools as well as alternative treatments for pan-resistant bacterial infections. Even with such potential, more studies are necessary to pave the way for their successful use against AMR. In this review, we highlight those two robust techniques and encourage researchers to refine them toward AMR. Also, we describe how aptamers and CRISPR-Cas can work together with the current diagnostic and treatment toolbox.
Collapse
Affiliation(s)
| | | | - Tiago Antônio de Oliveira Mendes
- Laboratory of Synthetic Biology and Modelling of Biological Systems, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
27
|
Jin H. Perspectives of Aptamers for Medical Applications. APTAMERS FOR MEDICAL APPLICATIONS 2021:405-462. [DOI: 10.1007/978-981-33-4838-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
28
|
Liu Y, Zhang L, Li Q, Dai H, Xiang T, Yang G, Li L. A reusable colorimetric assay based on mixed valence state Ce-MOF@Pt nanoparticles for highly sensitive detection of visfatin. Anal Chim Acta 2020; 1146:24-32. [PMID: 33461716 DOI: 10.1016/j.aca.2020.12.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
In this work, a colorimetric assay for visfatin detection is described. The mixed valence state Ce-MOF (MVCM) modified by platinum nanoparticles (Pt NPs) is used as a novel catalyst. MVCM exhibits excellent intrinsic peroxidase-like catalytic activity due to the spontaneous recycling of the Ce(III)/Ce(IV) system. Pt NPs serve not only as a carrier of the -NH2-modified single strand DNA (S1) but also as a synergistic catalyst of MVCM. The capture probe (S2) attached to the streptavidin-modified magnetic beads (Mag-SA) could combine with the aptamer to form the Mag-SA/S2/aptamer complex. When in the presence of the target visfatin, aptamer specifically combines with the visfatin, which induces the release of Mag-SA/S2 from the Mag-SA/S2/aptamer complex. At this time, the MVCM@Pt/S1 complex connects with the released Mag-SA/S2, which quickly catalyzes the 3,3,3',3'-tetramethylbenzidine (TMB), leading to a color change. Under optimal conditions, the absorbance increases linearly when the concentration ranges from 1 ng mL-1 to 100 ng mL-1, and the detection limit is as low as 0.11 ng mL-1. Furthermore, Mag-SA/S2 can be reused at least five times by using the uracil-DNA glycosylase (UDG) and an external magnetic field. The proposed method shows satisfying reproducibility, stability, specificity, and sensitivity, and it was successfully applied to detect visfatin in spiked human serum samples. Thus, it has great potential for clinical research, detection, and catalytic applications.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400010, China
| | - Lianying Zhang
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400010, China; Department of Basic Education,Zunyi Medical and Pharmaceutic College, Guizhou, 563006, China
| | - Qinge Li
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400010, China
| | - Han Dai
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Ting Xiang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Ling Li
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
29
|
Jamei HR, Rezaei B, Ensafi AA. Ultra-sensitive and selective electrochemical biosensor with aptamer recognition surface based on polymer quantum dots and C 60/MWCNTs- polyethylenimine nanocomposites for analysis of thrombin protein. Bioelectrochemistry 2020; 138:107701. [PMID: 33254052 DOI: 10.1016/j.bioelechem.2020.107701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 10/22/2022]
Abstract
In this study, an ultra-sensitive and selective Thrombin biosensor with aptamer-recognition surface is introduced based on carbon nanocomposite. To prepare the this biosensor, screen-printed carbon electrodes (SPCE) were modified with a nanocomposite made from fullerene (C60), multi-walled carbon nanotubes (MWCNTs), polyethylenimine (PEI) and polymer quantum dots (PQdot). The unique characteristics of each component of the C60/MWCNTs-PEI/PQdot nanocomposite allow for synergy between nanoparticles while polymer quantum dots resulted in characteristics such as high stability, high surface to volume ratio, high electrical conductivity, high biocompatibility, and high mechanical and chemical stability. The large number of amine groups in C60/MWCNTs-PEI/PQdot nanocomposite created more sites for better covalent immobilization of amino-linked aptamer (APT) which improved the sensitivity and stability of the aptasensor. Differential Pulse Voltammetry (DPV) method with probe solution was used as the measurment method. Binding of thrombin protein to aptamers immobilized on the transducer resulted in reduced electron transfer at the electrode/electrolyte interface which reduces the peak current (IP) in DPV. The calibration curve was drawn using the changes in the peak current (ΔIP),. The proposed aptasensor has a very low detection limit of 6 fmol L-1, and a large linear range of 50 fmol L-1 to 20 nmol L-1. Furthermore, the proposed C60/MWCNTs-PEI/PQdot/APT aptasensor has good reproducibility, great selectivity, low response time and a good stability during its storage. Finally, the application of the proposed aptasensor for measuring thrombin on human blood serum samples was investigated. This aptasensor can be useful in bioengineering and biomedicine applications as well as for clinical studies.
Collapse
Affiliation(s)
- Hamid Reza Jamei
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Ali Asghar Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
30
|
Zuo J, Yuan Y, Zhao M, Wang J, Chen Y, Zhu Q, Bai L. An efficient electrochemical assay for miR-3675-3p in human serum based on the nanohybrid of functionalized fullerene and metal-organic framework. Anal Chim Acta 2020; 1140:78-88. [PMID: 33218492 DOI: 10.1016/j.aca.2020.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/02/2020] [Accepted: 10/10/2020] [Indexed: 01/16/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease with unclear pathogenesis, for which diagnosis has been a great challenge. Recent researches have revealed that miR-3675-3p is a promising biomarker for IPF diagnosis. Herein, the present work describes a novel electrochemical microRNA biosensor for rapid and sensitive detection of miR-3675-3p based on multiple signal amplification strategies. First of all, fullerene (C60) is doped with poly(amidoamine) (PAMAM)-functionalized metal-organic framework (MOF) to form a new nanohybrid of C60@PAMAM-MOF, which exhibits more remarkable redox activity compared with the other two synthesized C60-based nanohybrids when triggered by tetraoctylammonium bromide (TOAB). C60@PAMAM-MOF also possesses a large specific surface area and abundant amino groups to anchor Au nanoparticles (AuNPs) for the immobilization of signal probe (SP) to form tracer label and enhance the electrochemical response signal. In addition, core@shell Au-Pt nanoparticles (Au@PtNPs) are absorbed on chitosan-acetylene black (CS-AB) to act as sensing platform, which can promote electron transfer and increase the loading of capture probe (CP). Under optimum conditions, the proposed biosensor displays a wide linear range for miR-3675-3p from 10 fM to 10 nM, with a limit of detection (LOD) as low as 2.99 fM. More significantly, this biosensor shows a lower LOD and wider linear range than that of qRT-PCR, and its trial application in human serum shows favorable results, which exhibits a promising prospect for IPF diagnosis.
Collapse
Affiliation(s)
- Jianli Zuo
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yonghua Yuan
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Min Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jie Wang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yuhan Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Qiqi Zhu
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Lijuan Bai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
31
|
Abstract
Carbon nanomaterials offer unique opportunities for the assembling of electrochemical aptasensors due to their high electroconductivity, redox activity, compatibility with biochemical receptors and broad possibilities of functionalization and combination with other auxiliary reagents. In this review, the progress in the development of electrochemical aptasensors based on carbon nanomaterials in 2016–2020 is considered with particular emphasis on the role of carbon materials in aptamer immobilization and signal generation. The synthesis and properties of carbon nanotubes, graphene materials, carbon nitride, carbon black particles and fullerene are described and their implementation in the electrochemical biosensors are summarized. Examples of electrochemical aptasensors are classified in accordance with the content of the surface layer and signal measurement mode. In conclusion, the drawbacks and future prospects of carbon nanomaterials’ application in electrochemical aptasensors are briefly discussed.
Collapse
|
32
|
Wang WH, Takeuchi R, Jain SH, Jiang YH, Watanuki S, Ohtaki Y, Nakaishi K, Watabe S, Lu PL, Ito E. A novel, rapid (within hours) culture-free diagnostic method for detecting live Mycobacterium tuberculosis with high sensitivity. EBioMedicine 2020; 60:103007. [PMID: 32949995 PMCID: PMC7501073 DOI: 10.1016/j.ebiom.2020.103007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nucleic acid amplification tests (NAATs) are widely used to diagnose tuberculosis (TB), but cannot discriminate live bacilli from dead bacilli. Live bacilli can be isolated by culture methods, but this is time-consuming. We developed a de novo TB diagnostic method that detects only live bacilli with high sensitivity within hours. METHODS A prospective study was performed in Taiwan from 2017 to 2018. Sputum was collected consecutively from 1102 patients with suspected TB infection. The sputum was pretreated and heated at 46°C for 1 h to induce the secretion of MPT64 protein from live Mycobacterium tuberculosis. MPT64 was detected with our ultrasensitive enzyme-linked immunosorbent assay (ELISA) coupled with thionicotinamide-adenine dinucleotide (thio-NAD) cycling. We compared our data with those obtained using a culture test (MGIT), a smear test (Kinyoun staining), and a NAAT (Xpert). FINDINGS The limit of detection for MPT64 in our culture-free ultrasensitive ELISA was 2.0 × 10-19 moles/assay. When the criterion for a positive response was set as an absorbance value ≥17 mAbs, this value corresponded to ca. 330 CFU/mL in the culture method - almost the same high-detection sensitivity as the culture method. To confirm that MPT64 is secreted from only live bacilli, M. bovis BCG was killed using 8 μg/mL rifampicin and then heated. Following this procedure, our method detected no MPT64. Our rapid ultra-sensitive ELISA-based method required only 5 h to complete. Comparing the results of our method with those of culture tests for 944 specimens revealed a sensitivity of 86.9% (93/107, 95% CI: 79.0-92.7%) and a specificity of 92.0% (770/837, 95% CI: 89.9-93.7%). The performance data were not significantly different (McNemar's test, P = 0.887) from those of the Xpert tests. In addition, at a ≥1+ titer in the smear test, the positive predictive value of our culture-free ultrasensitive ELISA tests was in a good agreement with that of the culture tests. Furthermore, our culture-free ultrasensitive ELISA test had better validity for drug effectiveness examination than Xpert tests because our test detected only live bacilli. INTERPRETATION Our culture-free ultrasensitive ELISA method detects only live TB bacilli with high sensitivity within hours, allowing for rapid diagnosis of TB and monitoring drug efficacy. FUNDING Matching Planner Program from JST (VP29117939087), the A-STEP Program from JST (AS3015096U), Waseda University grants for Specific Research Projects (2017A-015 and 2019C-123), the Precise Measurement Technology Promotion Foundation to E.I.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 TzYou 1st Rd., Kaohsiung 80756, Taiwan
| | - Rikiya Takeuchi
- R&D Department, TAUNS Laboratories, Inc., 761-1 Kamishima, Izunokuni, Shizuoka 410-2325, Japan
| | - Shu-Huei Jain
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 TzYou 1st Rd., Kaohsiung 80756, Taiwan
| | - Yong-Huang Jiang
- R&D Department, TAUNS Laboratories, Inc., 761-1 Kamishima, Izunokuni, Shizuoka 410-2325, Japan
| | - Sonoko Watanuki
- R&D Department, TAUNS Laboratories, Inc., 761-1 Kamishima, Izunokuni, Shizuoka 410-2325, Japan
| | - Yoshiharu Ohtaki
- R&D Department, TAUNS Laboratories, Inc., 761-1 Kamishima, Izunokuni, Shizuoka 410-2325, Japan
| | - Kazunari Nakaishi
- R&D Headquarters, TAUNS Laboratories, Inc., 761-1 Kamishima, Izunokuni, Shizuoka 410-2325, Japan; Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Satoshi Watabe
- R&D Headquarters, TAUNS Laboratories, Inc., 761-1 Kamishima, Izunokuni, Shizuoka 410-2325, Japan; Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Po-Liang Lu
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, 100 TzYou 1st Rd., Kaohsiung 80756, Taiwan; College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., Kaohsiung 80756, Taiwan.
| | - Etsuro Ito
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan; Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., Kaohsiung 80756, Taiwan; Department of Biology, Waseda University, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan.
| |
Collapse
|
33
|
Chen P, Liu Z, Liu J, Liu H, Bian W, Tian D, Xia F, Zhou C. A novel electrochemiluminescence aptasensor based CdTe QDs@NH2-MIL-88(Fe) for signal amplification. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Trunzo NE, Hong KL. Recent Progress in the Identification of Aptamers Against Bacterial Origins and Their Diagnostic Applications. Int J Mol Sci 2020; 21:ijms21145074. [PMID: 32708376 PMCID: PMC7404326 DOI: 10.3390/ijms21145074] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
Aptamers have gained an increasing role as the molecular recognition element (MRE) in diagnostic assay development, since their first conception thirty years ago. The process to screen for nucleic acid-based binding elements (aptamers) was first described in 1990 by the Gold Laboratory. In the last three decades, many aptamers have been identified for a wide array of targets. In particular, the number of reports on investigating single-stranded DNA (ssDNA) aptamer applications in biosensing and diagnostic platforms have increased significantly in recent years. This review article summarizes the recent (2015 to 2020) progress of ssDNA aptamer research on bacteria, proteins, and lipids of bacterial origins that have implications for human infections. The basic process of aptamer selection, the principles of aptamer-based biosensors, and future perspectives will also be discussed.
Collapse
|
35
|
Keikha M, Eslami M, Yousefi B, Karbalaei M. Overview of multistage subunit tuberculosis vaccines: advantages and challenges. REVIEWS IN MEDICAL MICROBIOLOGY 2020; 31:144-149. [DOI: 10.1097/mrm.0000000000000213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To date, tuberculosis (TB) infection, is the most threatening infectious disease in all humans around the world. Mycobacterium tuberculosis is a facultative intracellular bacterium, possesses an exclusive life-cycle inside the macrophages, as one of the most important cells in the innate immune system. As soon as entrance in the lungs, bacteria actively replicate, but intracellular conditions such as hypoxia and nutrient starvation, lead to low replication of bacteria, or nonreplicating state. While Bacillus Calmette-Guerin vaccine is the most usable vaccine, especially in children and against active form, but this vaccine has no more protection in infected adults to latent forms of disease. Among the new generation of vaccines, fusion multistage subunit vaccines have prodigious effect on immune responses. By virtue of simultaneous presence of both expressed antigens from active and latent forms of TB in the structure of these recombinant subunit vaccines, they can strongly induce immune responses against all stages of the disease. The findings suggest subunit vaccines are the best candidates for immunization against TB, by virtue of their high safety, ease of production, specificity, and utilization of mycobacterial immunodominant antigens. Fusion multistage subunit vaccines, as novel subunit vaccines are the most ideal target for proper prevention against TB infection. Due to simultaneous use of both expressed antigens in active and latent forms of TB, these vaccines are able to induce strong immune responses versus all of TB stages.
Collapse
Affiliation(s)
- Masoud Keikha
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad
| | | | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
36
|
Song J, Li Y, Yin F, Zhang Z, Ke D, Wang D, Yuan Q, Zhang XE. Enhanced Electrochemical Impedance Spectroscopy Analysis of Microbial Biofilms on an Electrochemically In Situ Generated Graphene Interface. ACS Sens 2020; 5:1795-1803. [PMID: 32397709 DOI: 10.1021/acssensors.0c00570] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biofilms can cause many bacterial diseases, such as dental disease. An in vitro detection of biofilms may help to screen antibiofilm drugs. An impedance measurement based on an Au electrode has been successfully used for in vitro real-time monitoring of animal and human cell growth. However, microbial growth on the Au electrode produced a poor signal because of the small size of microbial cells. We have recently demonstrated that graphene derivatives can be produced on a carbon electrode through facile electrochemical activation, thus forming a reduced graphene oxide-carbon electrode (rGO-CE). Based on this fact, we hypothesized that an in vitro formed rugose graphene layer of rGO-CE may provide a large surface area for the growth of microbial biofilms and can therefore produce a strong impedance signal in response to a change in the biomass. In this study, three oral bacteria, Streptococcus mutans (S. mutans), Actinomyces viscosus (A. viscosus), and Lactobacillus fermentum (L. fermentum), were cultured on the surfaces of rGO-CE. As a result, the impedance response signal of the rGO-CE for the growth of S. mutans and A. viscosus was found to be 3.3 times and 6.0 times stronger than that of the Au electrode at 1.17 and 54.7 kHz, respectively. In particular, the poorly adhering strain of L. fermentum also produced a detectable signal on the graphene electrode but not on the Au electrode at 1.17 kHz. Furthermore, destructions of the biofilms grown on the rGO-CE by cetylpyridinium chloride were successfully monitored by impedance changes. Overall, it is promising to develop a graphene-based impedance biosensor platform for biofilm study and antibiofilm drug screening.
Collapse
Affiliation(s)
- Jin Song
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Yiwei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiao Hong Shan No. 44, Wuhan 430071, China
| | - Fang Yin
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Zhitao Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Dingkun Ke
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Dianbing Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Qipeng Yuan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
37
|
McConnell EM, Morrison D, Rey Rincon MA, Salena BJ, Li Y. Selection and applications of synthetic functional DNAs for bacterial detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115785] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Zhou J, Bai LJ, Liang GJ, Xu QG, Zhou LP, Zhou H. Organocatalytic asymmetric cascade 1,6-addition/hemiketalization/retro-Henry reaction of ortho-hydroxyphenyl-substituted p-QMs with α-nitroketones. Org Biomol Chem 2020; 18:2641-2645. [DOI: 10.1039/d0ob00397b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel organocatalytic asymmetric cascade 1,6-addition/hemiketalization/retro-Henry reaction is developed to give new chiral 2-(1-(4-hydroxyphenyl)ethyl)phenols with good yields and excellent enantioselectivities under mild reaction conditions.
Collapse
Affiliation(s)
- Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Li-Juan Bai
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Guo-Juan Liang
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Qi-Gui Xu
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Li-Ping Zhou
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Hui Zhou
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| |
Collapse
|
39
|
Sheta SM, El-Sheikh SM, Osman DI, Salem AM, Ali OI, Harraz FA, Shousha WG, Shoeib MA, Shawky SM, Dionysiou DD. A novel HCV electrochemical biosensor based on a polyaniline@Ni-MOF nanocomposite. Dalton Trans 2020; 49:8918-8926. [DOI: 10.1039/d0dt01408g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel label-free electrochemical biosensor constructed using a polyaniline@nickel metal–organic framework (Ni-MOF) nanocomposite for direct detection of HCV-RNA.
Collapse
|
40
|
Huo M, Zhou J, Bai L, Xu Q, Zhou Z, Zhou H, Liang G. High diastereoselective synthesis of spiro-barbituratechromans via domino oxa-Michael/1,6-addition reactions of ortho-hydroxyphenylsubstituted para-quinone methides with barbiturate-based olefins. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Detection of pathogenic bacteria via nanomaterials-modified aptasensors. Biosens Bioelectron 2019; 150:111933. [PMID: 31818764 DOI: 10.1016/j.bios.2019.111933] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/13/2019] [Accepted: 11/26/2019] [Indexed: 01/17/2023]
Abstract
Detection and identification of special cells via aptamer-based nano-conjugates sensors have been revolutionized over the past few years. These sensing platforms rely on selecting aptamers using systematic evolution of ligands by exponential enrichment (SELEX) in vitro, which allows for sensitive detection of cells. Integration of the aptamer-based sensors (aptasensors) with nanomaterials offers enhanced specificity and sensitivity, which in turn, offers great promise for numerous applications, spanning from bioanalysis to biomedical applications. Accordingly, the demand for using aptamer-conjugated nanomaterials for various applications has progressively increased over the past years. In light of this, this Review seeks to highlight the recent advances in the development of aptamer-conjugated nanomaterials and their utilization for the detection of various pathogens involved in infectious diseases and food contamination.
Collapse
|
42
|
Li X, Wang L, Liu H, Fu J, Zhen L, Li Y, Zhang Y, Zhang Y. C 60 Fullerenes Suppress Reactive Oxygen Species Toxicity Damage in Boar Sperm. NANO-MICRO LETTERS 2019; 11:104. [PMID: 34138040 PMCID: PMC7770955 DOI: 10.1007/s40820-019-0334-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/29/2019] [Indexed: 05/22/2023]
Abstract
We report the carboxylated C60 improved the survival and quality of boar sperm during liquid storage at 4 °C and thus propose the use of carboxylated C60 as a novel antioxidant semen extender supplement. Our results demonstrated that the sperm treated with 2 μg mL-1 carboxylated C60 had higher motility than the control group (58.6% and 35.4%, respectively; P ˂ 0.05). Moreover, after incubation with carboxylated C60 for 10 days, acrosome integrity and mitochondrial activity of sperm increased by 18.1% and 34%, respectively, compared with that in the control group. Similarly, the antioxidation abilities and adenosine triphosphate levels in boar sperm treated with carboxylated C60 significantly increased (P ˂ 0.05) compared with those in the control group. The presence of carboxylated C60 in semen extender increases sperm motility probably by suppressing reactive oxygen species (ROS) toxicity damage. Interestingly, carboxylated C60 could protect boar sperm from oxidative stress and energy deficiency by inhibiting the ROS-induced protein dephosphorylation via the cAMP-PKA signaling pathway. In addition, the safety of carboxylated C60 as an alternative antioxidant was also comprehensively evaluated by assessing the mean litter size and number of live offspring in the carboxylated C60 treatment group. Our findings confirm carboxylated C60 as a novel antioxidant agent and suggest its use as a semen extender supplement for assisted reproductive technology in domestic animals.
Collapse
Affiliation(s)
- Xinhong Li
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Lirui Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Huan Liu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jieli Fu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Linqing Zhen
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yuhua Li
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yaozhong Zhang
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, USA
| | - Yafei Zhang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
43
|
Li Y, Zhou J, Song J, Liang X, Zhang Z, Men D, Wang D, Zhang XE. Chemical nature of electrochemical activation of carbon electrodes. Biosens Bioelectron 2019; 144:111534. [DOI: 10.1016/j.bios.2019.111534] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022]
|
44
|
A novel light-electricity sensing method for PCSK9 detection based on s-PdNFs with multifunctional property. Biosens Bioelectron 2019; 144:111575. [DOI: 10.1016/j.bios.2019.111575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022]
|
45
|
Golichenari B, Nosrati R, Farokhi-Fard A, Faal Maleki M, Gheibi Hayat SM, Ghazvini K, Vaziri F, Behravan J. Electrochemical-based biosensors for detection of Mycobacterium tuberculosis and tuberculosis biomarkers. Crit Rev Biotechnol 2019; 39:1056-1077. [DOI: 10.1080/07388551.2019.1668348] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Behrouz Golichenari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Aref Farokhi-Fard
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Faal Maleki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Kiarash Ghazvini
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzam Vaziri
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, Canada
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Canada
| |
Collapse
|
46
|
Zhong H, Yu C, Gao R, Chen J, Yu Y, Geng Y, Wen Y, He J. A novel sandwich aptasensor for detecting T-2 toxin based on rGO-TEPA-Au@Pt nanorods with a dual signal amplification strategy. Biosens Bioelectron 2019; 144:111635. [PMID: 31513958 DOI: 10.1016/j.bios.2019.111635] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/08/2019] [Accepted: 08/25/2019] [Indexed: 11/19/2022]
Abstract
T-2 toxin is a mycotoxin that can cause chronic illnesses, and the detection of T-2 toxin in food is critical for human health. Herein, a novel sandwich aptasensor with a dual signal amplification strategy was developed for the detection of T-2 toxin. Molybdenum disulfide-polyaniline-chitosan-gold nanoparticles (MoS2-PANI-Chi-Au) were processed to the modified glassy carbon electrode (GCE) and used as the aptasensor platform to expedite the electronics transport and immobilize the amino-terminated capture DNA probe by Au-N bonds. The reduced graphene oxide-tetraethylene pentamine-gold@platinum nanorods (rGO-TEPA-Au@Pt NRs) were first synthesized and immobilized with a signal DNA probe. Once T-2 toxin was added into the biosensing system, the aptamer would trap T-2 toxin to turn the signal off. Next, dissociative aptamer hybridized with the capture DNA probe in GCE and linked simultaneously to the signal DNA probe on rGO-TEPA-Au@Pt NRs with another end sequence of aptamer to turn the signal on. Owing to the efficient catalytic ability of bimetallic Au@Pt nanorods, the signal was perfectly amplified through the catalysis of hydrogen peroxide (H2O2) and recorded by chronoamperometry. With the outstanding augment response, the limit of detection reached 1.79 fg mL-1 (3SB/m) and a wide linear range from 10 fg mL-1 to 100 ng mL-1 was presented. The sensitivity of the aptasensor was 19.88 μA⋅μM-1⋅cm-2. Meanwhile, the DNA aptamer-bimetallic nanorod based sensing system presented excellent specificity. The developed aptasensor provides a new platform for T-2 toxin detection with low cost for real sample assays.
Collapse
Affiliation(s)
- Hangtian Zhong
- School of Public Health and Management, Chongqing Medical University, Chongqing , China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Rufei Gao
- School of Public Health and Management, Chongqing Medical University, Chongqing , China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Jun Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yujie Yu
- School of Public Health and Management, Chongqing Medical University, Chongqing , China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yanqing Geng
- School of Public Health and Management, Chongqing Medical University, Chongqing , China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yilin Wen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Junlin He
- School of Public Health and Management, Chongqing Medical University, Chongqing , China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
47
|
Tu Phan LM, Tufa LT, Kim HJ, Lee J, Park TJ. Trends in Diagnosis for Active Tuberculosis Using Nanomaterials. Curr Med Chem 2019; 26:1946-1959. [PMID: 30207212 DOI: 10.2174/0929867325666180912105617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022]
Abstract
Background:Tuberculosis (TB), one of the leading causes of death worldwide, is difficult to diagnose based only on signs and symptoms. Methods for TB detection are continuously being researched to design novel effective clinical tools for the diagnosis of TB.Objective:This article reviews the methods to diagnose TB at the latent and active stages and to recognize prospective TB diagnostic methods based on nanomaterials.Methods:The current methods for TB diagnosis were reviewed by evaluating their advantages and disadvantages. Furthermore, the trends in TB detection using nanomaterials were discussed regarding their performance capacity for clinical diagnostic applications.Results:Current methods such as microscopy, culture, and tuberculin skin test are still being employed to diagnose TB, however, a highly sensitive point of care tool without false results is still needed. The utilization of nanomaterials to detect the specific TB biomarkers with high sensitivity and specificity can provide a possible strategy to rapidly diagnose TB. Although it is challenging for nanodiagnostic platforms to be assessed in clinical trials, active TB diagnosis using nanomaterials is highly expected to achieve clinical significance for regular application. In addition, aspects and future directions in developing the high-efficiency tools to diagnose active TB using advanced nanomaterials are expounded.Conclusion:This review suggests that nanomaterials have high potential as rapid, costeffective tools to enhance the diagnostic sensitivity and specificity for the accurate diagnosis, treatment, and prevention of TB. Hence, portable nanobiosensors can be alternative effective tests to be exploited globally after clinical trial execution.
Collapse
Affiliation(s)
- Le Minh Tu Phan
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Halal Industrialization Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Lemma Teshome Tufa
- Department of Nano Fusion and Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Hwa-Jung Kim
- Department of Microbiology and Research Institute for Medical Science, College of Medicine, Chungnam National University, 266 Munhwa- ro, Jung-gu, Daejeon 35015, Korea
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Tae Jung Park
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Halal Industrialization Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| |
Collapse
|
48
|
Bai L, Chen Y, Liu X, Zhou J, Cao J, Hou L, Guo S. Ultrasensitive electrochemical detection of Mycobacterium tuberculosis IS6110 fragment using gold nanoparticles decorated fullerene nanoparticles/nitrogen-doped graphene nanosheet as signal tags. Anal Chim Acta 2019; 1080:75-83. [PMID: 31409477 DOI: 10.1016/j.aca.2019.06.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 02/05/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains the top fatal infection continuing to threat public health, and the present detection method for MTB is facing great challenges with the global TB burden. In response to this issue, a novel electrochemical DNA biosensor was developed for detecting the IS6110 fragment within MTB. For the first time, the nanohybrid of gold nanoparticles decorated fullerene nanoparticles/nitrogen-doped graphene nanosheet (Au-nano-C60/NGS) directly served as a new signal tag to generate signal response without additional redox molecules and subsequently labeled with signal probes (SPs) to form tracer label to achieve signal amplification. Additionally, a biotin-avidin system was introduced to immobilize abundant capture probes (CPs), further improving the sensitivity of the proposed biosensor. After a typical sandwich hybridization, the proposed electrochemical DNA biosensor was incubated with tetraoctylammonium bromide (TOAB), which was used as a booster to induce the intrinsic redox activity of the tracer label, resulting in a discriminating current response. The proposed electrochemical DNA biosensor shows a broad linear range for MTB determination from 10 fM to 10 nM with a low limit of detection (LOD) of 3 fM. In addition, this proposed biosensor not only distinguishes mismatched DNA sequence, but also differentiates MTB from other pathogenic agents. More importantly, it has been preliminarily applied in clinical detection and displayed excellent ability to identify the PCR products of clinical samples. There is great potential for this developed method to be used in early diagnosis and monitor of TB.
Collapse
Affiliation(s)
- Lijuan Bai
- Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yuhan Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Xinzhu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jing Zhou
- Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jun Cao
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, 610041, PR China
| | - Liang Hou
- Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
49
|
Omstead DT, Sjoerdsma J, Bilgicer B. Polyvalent Nanoobjects for Precision Diagnostics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:69-88. [PMID: 30811215 DOI: 10.1146/annurev-anchem-061318-114938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As our ability to synthesize and modify nanoobjects has improved, efforts to explore nanotechnology for diagnostic purposes have gained momentum. The variety of nanoobjects, especially those with polyvalent properties, displays a wide range of practical and unique properties well suited for applications in various diagnostics. This review briefly covers the broad scope of multivalent nanoobjects and their use in diagnostics, ranging from ex vivo assays and biosensors to in vivo imaging. The nanoobjects discussed here include silica nanoparticles, gold nanoparticles, quantum dots, carbon dots, fullerenes, polymers, dendrimers, liposomes, nanowires, and nanotubes. In this review, we describe recent reports of novel applications of these various nanoobjects, particularly as polyvalent entities designed for diagnostics.
Collapse
Affiliation(s)
- David T Omstead
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA;
| | - Jenna Sjoerdsma
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA;
| | - Basar Bilgicer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA;
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
- Advanced Diagnostics and Therapeutics Initiative, University of Notre Dame, Notre Dame, Indiana 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana 46617, USA
| |
Collapse
|
50
|
Chen Y, Liu X, Guo S, Cao J, Zhou J, Zuo J, Bai L. A sandwich-type electrochemical aptasensor for Mycobacterium tuberculosis MPT64 antigen detection using C 60NPs decorated N-CNTs/GO nanocomposite coupled with conductive PEI-functionalized metal-organic framework. Biomaterials 2019; 216:119253. [PMID: 31202103 DOI: 10.1016/j.biomaterials.2019.119253] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/26/2019] [Accepted: 06/05/2019] [Indexed: 02/05/2023]
Abstract
The present work described a novel sandwich-type electrochemical aptasensor for rapid and sensitive determination of Mycobacterium tuberculosis MPT64 antigen. Herein, a novel carbon nanocomposite composed of fullerene nanoparticles, nitrogen-doped carbon nanotubes and graphene oxide (C60NPs-N-CNTs/GO) was facilely synthesized for the first time, which not only possessed a large specific surface area and excellent conductivity, but also exhibited outstanding inherent electroactive property, and therefore served as nanocarrier and redox nanoprobe simultaneously. Gold nanoparticles (AuNPs) was then uniformly anchored onto the surface of such nanocomposite via Au-N bonds to bind with MPT64 antigen aptamer Ⅱ (MAA Ⅱ), forming the tracer label to realize generation and amplification of electrochemical signal. Additionally, conductive polyethyleneimine (PEI)-functionalized Fe-based metal-organic framework (P-MOF) was used as a sensing platform to absorb bimetallic core-shell Au-Pt nanoparticles (Au@Pt), which could accelerate electron transfer and increase the immobilization of MPT64 antigen aptamer Ⅰ (MAA Ⅰ). After the typical sandwich-type protein-aptamer recognition, the inherent electroactivity of the tracer label was provoked by tetraoctylammonium bromide (TOAB), leading to a well-defined current response. Under the optimum condition, the proposed aptasensor showed a wide linear range for MPT64 detection from 1 fg/mL to 1 ng/mL with a limit of detection (LOD) as low as 0.33 fg/mL. More importantly, it was successfully used for MPT64 antigen detection in human serum, exhibiting a promising prospect for TB diagnosis in clinical practice.
Collapse
Affiliation(s)
- Yuhan Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China; Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xinzhu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jun Cao
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, 610041, PR China
| | - Jing Zhou
- Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jianli Zuo
- Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Lijuan Bai
- Engineering Technology Research Center for Pharmacodynamic Evaluation of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|