1
|
Wang L, Jiang S, Zhou J, Gholipourmalekabadi M, Cao Y, Lin K, Zhuang Y, Yuan C. From hard tissues to beyond: Progress and challenges of strontium-containing biomaterials in regenerative medicine applications. Bioact Mater 2025; 49:85-120. [PMID: 40124596 PMCID: PMC11928986 DOI: 10.1016/j.bioactmat.2025.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Tissue engineering and regenerative medicine have emerged as crucial disciplines focused on the development of new tissues and organs to overcome the limitations of traditional treatments for tissue damage caused by accidents, diseases, or aging. Strontium ion (Sr2+) has garnered significant attention for its multifaceted role in promoting regeneration medicine and therapy, especially in bone tissue regeneration. Recently, numerous studies further confirm that Sr2+ also plays a critical in soft tissue regeneration. This review firstly summarizes the influence of Sr2+ on critical biological processes such as osteogenesis, angiogenesis, immune modulation, matrix synthesis, mineralization, and antioxidative defence mechanisms. Then details the classification, properties, advantages, and limitations of Sr-containing biomaterials (SrBMs). Additionally, this review extends to the current applications of SrBMs in regenerative medicine for diverse tissues, including bone, cartilage, skeletal muscle, dental pulp, cardiac tissue, skin, hair follicles, etc. Moreover, the review addresses the challenges associated with current SrBMs and provides insights for their future designing and applications in regenerative medicine.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Shengjie Jiang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Jialiang Zhou
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Yuan Cao
- Colorado College, 819 N Tejon Street Box 56, Colorado Springs, 80903, Colorado, USA
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Yu Zhuang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| |
Collapse
|
2
|
Akobundu UU, Ifijen IH, Duru P, Igboanugo JC, Ekanem I, Fagbolade M, Ajayi AS, George M, Atoe B, Matthews JT. Exploring the role of strontium-based nanoparticles in modulating bone regeneration and antimicrobial resistance: a public health perspective. RSC Adv 2025; 15:10902-10957. [PMID: 40196828 PMCID: PMC11974500 DOI: 10.1039/d5ra00308c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/20/2025] [Indexed: 04/09/2025] Open
Abstract
Strontium-based nanoparticles (SrNPs) have emerged as a versatile and promising class of nanomaterials with a wide range of potential applications in healthcare, particularly in the fields of bone regeneration and combating antimicrobial resistance (AMR). Recent research has highlighted the unique properties of SrNPs, including their ability to promote osteogenesis, enhance bone healing, and exhibit strong antimicrobial activity against multidrug-resistant pathogens. These attributes position SrNPs as innovative therapeutic agents with the potential to address challenges such as osteoporosis, bone infections, and the growing global AMR crisis. This comprehensive review critically examines the dual functional potential of SrNPs by analyzing their synthesis methods, physicochemical properties, biological interactions, and translational applications in orthopedic and antimicrobial therapies. Specifically, the review emphasizes SrNPs' ability to enhance bone density, accelerate fracture healing, and reduce the economic burden associated with prolonged treatment and rehabilitation for bone-related diseases. Furthermore, their novel application as antimicrobial agents is explored, highlighting their ability to target bacterial metabolic pathways and combat the rise of antibiotic resistance. The review focuses on the synthesis methods used for SrNPs, particularly co-precipitation, hydrothermal synthesis, and sol-gel techniques. Each method is explored for its ability to produce SrNPs with controlled size, shape, and functionality, while addressing their scalability, cost-effectiveness, and environmental impact. Additionally, the toxicological risks associated with SrNPs are also explored, emphasizing the need for comprehensive preclinical and clinical evaluations to ensure safety for humans and ecosystems. The regulatory and ethical landscape of SrNPs highlights the need for global safety protocols, equitable access, and international cooperation to ensure ethical nanotechnology use. Environmental fate studies address bioaccumulation risks and ecological concerns. This review identifies opportunities and challenges in advancing bone regenerative medicine and combating AMR while emphasizing sustainable and ethical SrNP development for researchers, policymakers, and stakeholders.
Collapse
Affiliation(s)
| | - Ikhazuagbe H Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria Iyanomo Benin City Nigeria
| | - Prince Duru
- Emergency Medicine Department, University of Tennessee Medical Center 1924 Alcoa Hwy Knoxville TN 37920 USA
| | - Juliet C Igboanugo
- Department of Health, Human Performance and Recreation, University of Arkansas 155 Stadium Drive Fayetteville AR 72701 USA
| | - Innocent Ekanem
- College of Engineering Technology and SHEQ Specialist-Rocjhester Gas and Electric (RG&E), Rochester Institute of Technology (RIT) Rochester NY USA
| | - Moshood Fagbolade
- Department of Biological Sciences, Mississippi State University 295 Lee Boulevard Mississippi State MS 39762 USA
| | | | - Mayowa George
- Biological and Agricultural Engineering, Kansas State University 1016 Seaton Hall Manhattan KS 66506 USA
| | - Best Atoe
- Atoe Specialist Medical Centre Limited 54, Atoe Street, Off Adolor College Road, Ugbowo Benin City Edo State Nigeria
| | - John Tsado Matthews
- Department of Chemistry, Ibrahim Badamasi Babangida University Lapai Niger State Nigeria
| |
Collapse
|
3
|
Mamidi N, Franco De Silva F, Orash Mahmoudsalehi A. Advanced disease therapeutics using engineered living drug delivery systems. NANOSCALE 2025; 17:7673-7696. [PMID: 40040419 DOI: 10.1039/d4nr05298f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Biological barriers significantly impede the delivery of nanotherapeutics to diseased tissues, diminishing therapeutic efficacy across pathologies such as cancer and inflammatory disorders. Although conventional strategies integrate multifunctional designs and molecular components into nanomaterials (NMs), many approaches remain insufficient to overcome these barriers. Key challenges, including inadequate drug accumulation at target sites and nonspecific biodistribution, persist in nanotherapeutic development. NMs, which harness the ability to precisely modulate drug delivery spatiotemporally and control release kinetics, represent a transformative platform for targeted cancer therapy. In this review, we highlight the biological obstacles limiting effective cancer treatment and evaluate how stimuli-responsive NMs address these constraints. By leveraging exogenous and endogenous stimuli, such NMs improve therapeutic specificity, reduce off-target effects, and amplify drug activity within pathological microenvironments. We systematically analyze the rational design and synthesis of stimuli-responsive NMs, driven by advances in oncology, biomaterials science, and nanoscale engineering. Furthermore, we highlight advances across NM classes-including polymeric, lipid-based, inorganic, and hybrid systems and explore functionalization approaches using targeting ligands, antibodies, and biomimetic coatings. Diverse delivery strategies are evaluated, such as small-molecule prodrug activation, peptide- and protein-based targeting, nucleic acid payloads, and engineered cell-mediated transport. Despite the promise of stimuli-responsive NMs, challenges such as biocompatibility, scalable fabrication, and clinical translation barriers must be addressed. By elucidating structure-function relationships and refining stimulus-triggered mechanisms, these NMs pave the way for transformative precision oncology strategies, enabling patient-specific therapies with enhanced efficacy and safety. This synthesis of interdisciplinary insights aims to catalyze innovation in next-generation nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Wisconsin Center for Nanobiosystems, School of Pharmacy, University of Wisconsin-Madison, Wisconsin-53705, USA.
| | - Fátima Franco De Silva
- Department of Food Engineering, Tecnologico de Monterrey, Monterrey, Nuevo Leon-64849, Mexico
| | - Amin Orash Mahmoudsalehi
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon-64849, Mexico
| |
Collapse
|
4
|
Guo YH, Yu YB, Wu JJ, Kan YK, Wu X, Wang Z. Curdlan/chitosan NIR-responsive in situ forming gel: An injectable scaffold for the treatment of epiphyseal plate injury. Int J Biol Macromol 2025; 308:142052. [PMID: 40090650 DOI: 10.1016/j.ijbiomac.2025.142052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Premature closure of the epiphyseal plate inducing by the formation of bone bridges after epiphyseal plate injury, can lead to limb shortening and angular deformity, causing adverse effects on the growth and development of adolescents. Therefore, preventing the formation of bone bridges has become the primary task for children with epiphyseal plate fractures. In our study, a novel near-infrared (NIR)-responsive bone repair scaffold (CGCB), namely black phosphorus (BP)-loaded in-situ gel based on curdlan (CUD), β-glycerophosphate (GP) and chitosan (CS), was developed. In vitro studies confirmed that the CGCB can promote the differentiation and migration of chondrocytes and has potential cartilage repair ability. A drilled model of epiphyseal plate injury further confirmed that CGCB can promote the repair of epiphyseal plate injury and NIR irradiation combined with CGCB significantly repaired the injury site by increasing expression of Sox9 and Aggrecan. The above findings indicate that the near-infrared (NIR) responsive bone repair scaffold (CGCB) can effectively inhibit bone bridge formation, prevent early closure of the epiphyseal plate, and provide new ideas for repairing epiphyseal plate defects in children.
Collapse
Affiliation(s)
- Yi-Hao Guo
- The First Hospital of China Medical University, Shenyang 110122, China
| | - Yi-Bin Yu
- Health Sciences Institute, China Medical University, Shenyang 110122, China
| | - Jia-Jun Wu
- Health Sciences Institute, China Medical University, Shenyang 110122, China
| | - Ya-Kun Kan
- The First Hospital of China Medical University, Shenyang 110122, China
| | - Xiao Wu
- He University, Shenyang 110163, China.
| | - Zhuo Wang
- Health Sciences Institute, China Medical University, Shenyang 110122, China.
| |
Collapse
|
5
|
Sun Q, Li CH, Liu QS, Zhang YB, Hu BS, Feng Q, Lang Y. Research status of biomaterials based on physical signals for bone injury repair. Regen Ther 2025; 28:544-557. [PMID: 40027992 PMCID: PMC11872413 DOI: 10.1016/j.reth.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/02/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Bone defects repair continues to be a significant challenge facing the world. Biological scaffolds, bioactive molecules, and cells are the three major elements of bone tissue engineering, which have been widely used in bone regeneration therapy, especially with the rise of bioactive molecules in recent years. According to their physical properties, they can be divided into force, magnetic field (MF), electric field (EF), ultrasonic wave, light, heat, etc. However, the transmission of bioactive molecules has obvious shortcomings that hinder the development of the tissue-rearing process. This paper reviews the mechanism of physical signal induction in bone tissue engineering in recent years. It summarizes the application strategies of physical signal in bone tissue engineering, including biomaterial designs, physical signal loading strategies and related pathways. Finally, the ongoing challenges and prospects for the future are discussed.
Collapse
Affiliation(s)
- Qi Sun
- Department of Orthopedics, Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine, Hangzhou, 311499, China
| | - Chao-Hua Li
- Department of Orthopedics, Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine, Hangzhou, 311499, China
| | - Qi-Shun Liu
- Department of Orthopedics, Zhejiang Medical & Health Group Hangzhou Hospital, Hangzhou, 310015, China
| | - Yuan-Bin Zhang
- Department of Orthopedics, Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine, Hangzhou, 311499, China
| | - Bai-Song Hu
- Department of Orthopedics, Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine, Hangzhou, 311499, China
| | - Qi Feng
- Department of Orthopedics, Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine, Hangzhou, 311499, China
| | - Yong Lang
- Department of Orthopedics, Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine, Hangzhou, 311499, China
| |
Collapse
|
6
|
Tao S, Yang Y, Wu C, Yang J, Wang Z, Zhou F, Liang K, Deng Y, Li J, Li J. Nanocapsuled Neutrophil Extracellular Trap Scavenger Combating Chronic Infectious Bone Destruction Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411274. [PMID: 39823437 PMCID: PMC11904938 DOI: 10.1002/advs.202411274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/29/2024] [Indexed: 01/19/2025]
Abstract
Chronic infectious bone destruction diseases, such as periodontitis, pose a significant global health challenge. Repairing the bone loss caused by these chronic infections remains challenging. In addition to pathogen removal, regulating host immunity is imperative. The retention of neutrophil extracellular traps (NETs) in chronic infectious niches is found to be a barrier to inflammation resolution. However, whether ruining the existing NETs within the local infectious bone lesions can contribute to inflammation resolve and bone repair remains understudied. Herein, a nanocapsuled delivery system that scavenges NETs dual-responsively to near-infrared light as a switch and to NETs themselves as a microenvironment sensor is designed. Besides, the photothermal and photodynamic effects endow the nanocapsules with antibacterial properties. Together with the ability to clear NETs, these features facilitate the restoration of the normal host response. The immunocorrective properties and inherent pro-osteogenic effects finally promote local bone repair. Together, the NET scavenging nanocapsules address the challenge of impaired bone repair in chronic infections due to biased host response caused by excessive NETs. This study provides new concepts and strategies for repairing bone destruction attributable to chronic infections via correcting biased host responses in chronic infectious diseases.
Collapse
Affiliation(s)
- Siying Tao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yingming Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ziyou Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Fangjie Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
7
|
Wang J, Zhang Q, Wang H, Liu C, Jiang L, Liu W, Wu Y, Wang Y, Vivian, Yan H, Lin J, Sun X. A Sr@Ag-based spatiotemporal and step-release scaffold against chronic osteomyelitis, fabricated by coaxial 3D-printing. Biomaterials 2025; 314:122899. [PMID: 39437580 DOI: 10.1016/j.biomaterials.2024.122899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Chronic osteomyelitis (OM) represents a severe and persistent infectious bone disease. Effective treatment requires controlled anti-inflammatory releases and bone regeneration across disease phases. A Sr@Ag-based scaffold was successfully printed, featuring micron-scale coaxial fibers containing Ag-doped hydroxyapatite (HA) in the outer layer of PLLA and Sr-doped HA in the inner layer of PLLA, facilitating the spatiotemporal and sequential release of Ag and Sr ions during OM treatment. Most antibacterial agent (Ag) was released during the first 20 days, followed by a slow-release plateau over the next 40 days in phosphate-buffered saline solution (PBS). Meanwhile, the pro-angiogenic agent (Sr) was released in minimal amounts during the initial 20 days, followed by a rapid and considerable release in the following 40 days. The coaxial design effectively inhibited the growth of Staphylococcus aureus and Escherichia coli while preserving the viability of bone cells. The ion-based scaffold exhibited broad-spectrum antibacterial effects and enhanced bone-regenerating gene expression in a complex air-bacteria environment. The Sr@Ag-based coaxial scaffold demonstrated effective antibacterial activity during the early stage and exhibited excellent non-toxic bone regeneration results during the middle and late stages in vivo. This work offered a promising treatment strategy through sequential anti-inflammatory and pro-osteogenic effects for infectious bone-defect diseases.
Collapse
Affiliation(s)
- Jingyun Wang
- Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Qin Zhang
- Department of Orthopaedics, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, Jiangsu, 215000, People's Republic of China; Department of Orthopaedics, First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Hetong Wang
- Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Chunlin Liu
- Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; School of Mechanical Engineering, Chengdu University, Chengdu, Sichuan, 610000, People's Republic of China.
| | - Le Jiang
- Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wanting Liu
- Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yixian Wu
- Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yifan Wang
- Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Vivian
- Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Hao Yan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Jun Lin
- Department of Orthopaedics, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, Jiangsu, 215000, People's Republic of China; Department of Orthopaedics, First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, 215000, People's Republic of China.
| | - Xiaodan Sun
- Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
8
|
Wu A, Su J, Zhang Y, Zhang D, Chen Y. Prospects of black phosphorus nanosheets in the treatment of peri-implantitis. Biomed Mater 2025; 20:022007. [PMID: 39951892 DOI: 10.1088/1748-605x/adb66e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/14/2025] [Indexed: 02/17/2025]
Abstract
Peri-implantitis represents an inflammatory condition characterized by the presence of plaque-related soft and hard tissue damage surrounding dental implants, often resulting in progressive alveolar bone loss and, ultimately, implant failure. Black phosphorus (BP), a novel two-dimensional (2D) material that has recently emerged in the biomedical field, has attracted increasing attention due to its unique osteogenic properties and exceptional antibacterial and antioxidant characteristics. Additionally, its outstanding biomedical attributes enhance angiogenesis and nerve regeneration. Compared to other biomaterials, its high specific surface area, high photothermal conversion efficiency, and complete biodegradability make BP a promising candidate for treating infection-related bone defects. This article reviews the biological properties of BP nanosheets (BPNSs) and discusses their potential applications in the context of peri-implantitis, aiming to provide fresh insights for future research and applications of BPNS.
Collapse
Affiliation(s)
- Ailin Wu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, People's Republic of China
| | - Jun Su
- The Fourth People's Hospital of Jinan, The Teaching Hospital of Shandong First Medical University, Jinan, People's Republic of China
| | - Yongzhi Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, People's Republic of China
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, People's Republic of China
| | - Yanhua Chen
- Jinan Stomatological hospital, Jinan, People's Republic of China
| |
Collapse
|
9
|
Bigham A, Serrano-Ruiz M, Caporali M, Fasolino I, Peruzzini M, Ambrosio L, Raucci MG. Black phosphorus-based nanoplatforms for cancer therapy: chemistry, design, biological and therapeutic behaviors. Chem Soc Rev 2025; 54:827-897. [PMID: 39618201 DOI: 10.1039/d4cs00007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Cancer, a significant threat to human lives, has been the target of research for several decades. Although conventional therapies have drawbacks, such as side effects, low efficacy, and weak targeting, they have been applied extensively due to a lack of effective alternatives. The emergence of nanotechnology in medicine has opened up new possibilities and offered promising solutions for cancer therapy. In recent years, 2D nanomaterials have attracted enormous attention in nanomedicine due to their large surface-to-volume ratio, photo-responsivity, excellent electrical conductivity, etc. Among them, black phosphorus (BP) is a 2D nanomaterial consisting of multiple layers weakly bonded together through van der Waals forces. Its distinct structure makes BP suitable for biomedical applications, such as drug/gene carriers, PTT/PDT, and imaging agents. BP has demonstrated remarkable potential since its introduction in cancer therapy in 2015, particularly due to its selective anticancer activity even without the aid of near-infrared (NIR) or anticancer drugs. The present review makes efforts to cover and discuss studies published on the anticancer activity of BP. Based on the type of cancer, the subcategories are organized to shed light on the potential of BP nanosheets and BP quantum dots (BPQDs) against breast, brain, skin, prostate, and bone cancers, and a section is devoted to other cancer types. Since extensive attention has been paid to breast cancer cells and in vivo models, various subsections, including mono-, dual, and triple therapeutic approaches are established for this cancer type. Furthermore, the review outlines various synthesis approaches employed to produce BP nanomaterials, providing insights into key synthesis parameters. This review provides an up-to-date platform for the potential reader to understand what has been done about BP cancer therapy based on each disease, and the conclusions and outlook cover the directions in which this approach is going to proceed in the future.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Manuel Serrano-Ruiz
- Institute for Chemistry of OrganoMetallic Compounds, National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 5019 Sesto Fiorentino, Italy
| | - Maria Caporali
- Institute for Chemistry of OrganoMetallic Compounds, National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 5019 Sesto Fiorentino, Italy
| | - Ines Fasolino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
| | - Maurizio Peruzzini
- Institute for Chemistry of OrganoMetallic Compounds, National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 5019 Sesto Fiorentino, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
| |
Collapse
|
10
|
Su BY, Xu Y, Yang Q, Wu JY, Zhao B, Guo ZH, Xu C, Ren H, Xu JZ, Li ZM. Biodegradable magnesium and zinc composite microspheres with synergistic osteogenic effect for enhanced bone regeneration. BIOMATERIALS ADVANCES 2024; 164:213977. [PMID: 39094444 DOI: 10.1016/j.bioadv.2024.213977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Biodegradable polymer microspheres in bone tissue engineering have become appealing as their non-invasive advantages in irregular damage bone repair. However, current microspheres used in BTE still lack sufficient osteogenic capacity to induce effective bone regeneration. In this study, we developed osteogenic composite microspheres concurrently loaded with magnesium oxide (MgO) and zinc oxide (ZnO), both of which are osteogenic active substances, using a facile and scalable emulsification method. The osteogenic composite microspheres exhibited a sequential yet complementary release profile characterized by a rapid release of Mg2+ and a gradual release of Zn2+ in a physiological environment, thereby maintaining the concentration of bioactive ions at a sustained high level. As a result, the combination of Mg2+ and Zn2+ in the composite microspheres led to a synergistic enhancement in biomimetic mineralization and the upregulation in the expression of osteogenic-related genes and proteins at the cellular level. Through a critical-sized calvarial rate defect model, the osteogenic composite microspheres were demonstrated to have strong osteogenic ability to promote new bone formation via ultrasonic imaging, histological and immunohistochemical evaluations. In sum, these osteogenic composite microspheres as microcarriers of Mg2+ and Zn2+ have great potential in the delivery of therapeutic ions for treating bone defects.
Collapse
Affiliation(s)
- Biao-Yao Su
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yong Xu
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Qiumei Yang
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jin-Yong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Baisong Zhao
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Zi-Han Guo
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chun Xu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Haohao Ren
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Jia-Zhuang Xu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhong-Ming Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
11
|
Sun T, Li C, Luan J, Zhao F, Zhang Y, Liu J, Shao L. Black phosphorus for bone regeneration: Mechanisms involved and influencing factors. Mater Today Bio 2024; 28:101211. [PMID: 39280114 PMCID: PMC11402231 DOI: 10.1016/j.mtbio.2024.101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
BP has shown good potential for promoting bone regeneration. However, the understanding of the mechanisms of BP-enhanced bone regeneration is still limited. This review first summarizes the recent advances in applications of BP in bone regeneration. We further highlight the possibility that BP enhances bone regeneration by regulating the behavior of mesenchymal stem cells (MSCs), osteoblasts, vascular endothelial cells (VECs), and macrophages, mainly through the regulation of cytoskeletal remodeling, energy metabolism, oxidation resistance and surface adsorption properties, etc. In addition, moderating the physicochemical properties of BP (i.e., shape, size, and surface charge) can alter the effects of BP on bone regeneration. This review reveals the underlying mechanisms of BP-enhanced bone regeneration and provides strategies for further material design of BP-based materials for bone regeneration.
Collapse
Affiliation(s)
- Ting Sun
- Foshan Stomatology Hospital & School of Medicine, Foshan University, Foshan, 528000, China
- School of Dentistry, Jinan University, Guangzhou, 510630, China
| | - Chufeng Li
- School of Dentistry, Jinan University, Guangzhou, 510630, China
| | - Jiayi Luan
- Foshan Stomatology Hospital & School of Medicine, Foshan University, Foshan, 528000, China
| | - Fujian Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
12
|
Chen S, Qiu Z, Zhao L, Huang X, Xiao X. Functionalized BP@(Zn+Ag)/EPLA Nanofibrous Scaffolds Fabricated by Cryogenic 3D Printing for Bone Tissue Engineering. Adv Healthc Mater 2024; 13:e2401038. [PMID: 38923359 DOI: 10.1002/adhm.202401038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/16/2024] [Indexed: 06/28/2024]
Abstract
This study fabricates a functionalized scaffold by cryogenic three-dimensional (3D) printing using an aminated poly-L-lactic acid (EPLA) solution containing nanosilver/zinc-coated black phosphorus (BP@(Zn+Ag)) nanocomposites. The nanocomposites are prepared by a green method of in situ photodeposition of silver and zinc nanoparticles (AgNPs and ZnNPs) on BP nanosheets (BPNs) under visible light irradiation without any chemical reductant. Scanning electron microscope (SEM) and X-ray energy dispersive spectrometer (EDS) confirm the uniform distribution of BP@(Zn+Ag) nanoparticles in the EPLA nanofibrous matrix. The in vitro tests show that the fabricated BP@(Zn+Ag)/EPLA nanofibrous scaffold exhibits excellent antibacterial activity (over 96%) against E. coli and S. aureus, as well as enhanced cell viability and osteogenic activity to facilitate the growth and differentiation of osteoblasts. The in vivo rat calvarial defect model also demonstrates that the BP@(Zn+Ag)/EPLA nanofibrous scaffold promotes new bone tissue formation around the implant site. Therefore, the prepared multifunctional 3D printed BP@(Zn+Ag)/EPLA nanofibrous scaffold has great potential for bone tissue engineering (BTE) applications.
Collapse
Affiliation(s)
- Shunyu Chen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zhoucheng Qiu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China
| | - Lihua Zhao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China
| | - Xiufeng Xiao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China
| |
Collapse
|
13
|
Bai Y, Wang Z, He X, Zhu Y, Xu X, Yang H, Mei G, Chen S, Ma B, Zhu R. Application of Bioactive Materials for Osteogenic Function in Bone Tissue Engineering. SMALL METHODS 2024; 8:e2301283. [PMID: 38509851 DOI: 10.1002/smtd.202301283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/04/2023] [Indexed: 03/22/2024]
Abstract
Bone tissue defects present a major challenge in orthopedic surgery. Bone tissue engineering using multiple versatile bioactive materials is a potential strategy for bone-defect repair and regeneration. Due to their unique physicochemical and mechanical properties, biofunctional materials can enhance cellular adhesion, proliferation, and osteogenic differentiation, thereby supporting and stimulating the formation of new bone tissue. 3D bioprinting and physical stimuli-responsive strategies have been employed in various studies on bone regeneration for the fabrication of desired multifunctional biomaterials with integrated bone tissue repair and regeneration properties. In this review, biomaterials applied to bone tissue engineering, emerging 3D bioprinting techniques, and physical stimuli-responsive strategies for the rational manufacturing of novel biomaterials with bone therapeutic and regenerative functions are summarized. Furthermore, the impact of biomaterials on the osteogenic differentiation of stem cells and the potential pathways associated with biomaterial-induced osteogenesis are discussed.
Collapse
Affiliation(s)
- Yuxin Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Zhaojie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xiaolie He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yanjing Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xu Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Huiyi Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Guangyu Mei
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Shengguang Chen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Endocrinology and Metabolism, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China
| | - Bei Ma
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, China
| |
Collapse
|
14
|
Guo F, Li J, Chen Z, Wang T, Wang R, Wang T, Bian Y, Du Y, Yuan H, Pan Y, Jin J, Jiang H, Han F, Jiang J, Wu F, Wang Y. An Injectable Black Phosphorus Hydrogel for Rapid Tooth Extraction Socket Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25799-25812. [PMID: 38727024 DOI: 10.1021/acsami.4c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The excess production of reactive oxygen species (ROS) will delay tooth extraction socket (TES) healing. In this study, we developed an injectable thermosensitive hydrogel (NBP@BP@CS) used to treat TES healing. The hydrogel formulation incorporated black phosphorus (BP) nanoflakes, recognized for their accelerated alveolar bone regeneration and ROS-scavenging properties, and dl-3-n-butylphthalide (NBP), a vasodilator aimed at enhancing angiogenesis. In vivo investigations strongly demonstrated that NBP@BP@CS improved TES healing due to antioxidation and promotion of alveolar bone regeneration by BP nanoflakes. The sustained release of NBP from the hydrogel promoted neovascularization and vascular remodeling. Our results demonstrated that the designed thermosensitive hydrogel provided great opportunity not only for ROS elimination but also for the promotion of osteogenesis and angiogenesis, reflecting the "three birds with one stone" concept, and has tremendous potential for rapid TES healing.
Collapse
Affiliation(s)
- Fanyi Guo
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jianfeng Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Ziyu Chen
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Tianxiao Wang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ruyu Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Tianyao Wang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yifeng Bian
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yongchu Pan
- Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jianliang Jin
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, School of Basic Medical Sciences, Key Laboratory for Aging & Disease, School of Biomedical Engineering and informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Huijun Jiang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Fan Wu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| |
Collapse
|
15
|
Zhan X, Yan J, Xiang D, Tang H, Cao L, Zheng Y, Lin H, Xia D. Near-infrared light responsive gold nanoparticles coating endows polyetheretherketone with enhanced osseointegration and antibacterial properties. Mater Today Bio 2024; 25:100982. [PMID: 38371468 PMCID: PMC10869918 DOI: 10.1016/j.mtbio.2024.100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024] Open
Abstract
Polyetheretherketone (PEEK) is considered as a promising dental implant material owing to its excellent physicochemical and mechanical properties. However, its wide range of applications is limited by its biologically inert nature. In this study, a near-infrared (NIR) light responsive bioactive coating with gold nanoparticles (AuNPs) and metronidazole adhered to the PEEK surface via dopamine polymerization. Compared to pure PEEK, the hydrophilicity of the treated PEEK surface was significantly improved. In addition, under NIR light, the surface coating exhibited photothermal conversion effect, and gold nanoparticles and the antibiotic can be released from the coating. This improved the antibacterial properties of PEEK materials. Moreover, the coating was more conducive to the early adhesion of bone mesenchymal stem cells. The results of in vitro and in vivo osteogenic activity studies showed that the developed coating promoted osseointegration of PEEK implants, and NIR light irradiation further improved the antibacterial ability and osteogenic activity of PEEK implants. Through RNA sequencing, the potential underlying mechanism of promoting bone formation of the AuNPs coating combined metronidazole was interpreted. In summary, the developed coating is a potential surface treatment strategy that endows PEEK with enhanced osseointegration and antibacterial properties.
Collapse
Affiliation(s)
- Xinxin Zhan
- Department of Dental Materials, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Jianglong Yan
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, 60611, USA
| | - Dong Xiang
- Department of Dental Materials, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Hao Tang
- Department of Dental Materials, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Lulu Cao
- Department of Dental Materials, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Hong Lin
- Department of Dental Materials, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Dandan Xia
- Department of Dental Materials, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| |
Collapse
|
16
|
Qin W, Xing T, Ma J, Tang B, Chen W. Decoration with electronegative 2D materials based on chemical transition layers on CFR-PEEK implants for promoting osteogenesis. J Mech Behav Biomed Mater 2024; 152:106436. [PMID: 38325168 DOI: 10.1016/j.jmbbm.2024.106436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Due to the unique lamellar structures, physicochemical and biological properties, electronegative two-dimensional (2D) materials have been explored for surface modification of carbon fibers reinforced polyetheretherketone (CFR-PEEK) composite. Deposition of electronegative 2D materials based on a porous surface created by concentrated H2SO4 has been studied to promote osteogenesis of CFR-PEEK. Generally, a porous layer will be pre-built on CFR-PEEK through severe corrosion of concentrated sulfuric acid to help the loading of 2D materials. However, the severe corrosion will greatly reduce surface mechanical strength, especially wear resistance and hardness, which increases the risk of collapse or even peeling of the bioactive coating by external force. Herein, instead of the severe corrosion, a mild corrosion by concentrated HNO3 was applied to modify the surface of CFR-PEEK to pre-create a dense transition layer for the further surface decoration of electronegative 2D materials (graphene oxide (GO) and black phosphorus (BP), representatively). The results indicated that hardness and wear resistance of the dense transition layer were markedly higher than those of the porous layer. Although GO and BP can be both loaded on these two transition layers, -SO3H on the porous transition layer showed moderate cytotoxicity, while -NO2 on the dense transition layer showed good cytocompatibility. The dense transition layer displayed higher mineralized deposition in vitro and new bone formation rate in vivo than the porous transition layer, moreover, GO and BP coatings improved osteogenesis. This work offers inspirations for the construction of electronegative 2D material coating on CFR-PEEK based on chemical transition layers.
Collapse
Affiliation(s)
- Wen Qin
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Tong Xing
- Engineering Research Center of Heavy Mechanical, Ministry of Education, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Jing Ma
- College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Bin Tang
- College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030060, China.
| |
Collapse
|
17
|
Zhao Y, Sun Y, Xie X, Liang Y, Cavalcanti-Adam EA, Feng W. Compact Micropatterned Chip Empowers Undisturbed and Programmable Drug Addition in High-Throughput Cell Screening. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306814. [PMID: 37793694 DOI: 10.1002/adma.202306814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Simultaneously adding multiple drugs and other chemical reagents to individual droplets at specific time points presents a significant challenge, particularly when dealing with tiny droplets in high-throughput screening applications. In this study, a micropatterned polymer chip is developed as a miniaturized platform for light-induced programmable drug addition in cell-based screening. This chip incorporates a porous superhydrophobic polymer film with atom transfer radical polymerization reactivity, facilitating the efficient grafting of azobenzene methacrylate, a photoconformationally changeable group, onto the hydrophilic regions of polymer matrix at targeted locations and with precise densities. By employing light irradiation, the cyclodextrin-azobenzene host-guest complexes formed on the polymer chip can switch from an "associated" to a "dissociated" state, granting precise photochemical control over the supramolecular coding system and its surface patterning ability. Significantly, the exceptional spatial and temporal control offered by these chemical transitions empowers to utilize digital light processing systems for simultaneous regulation and release of cyclodextrin-bearing drugs across numerous droplets containing suspended or adhered cells. This approach minimizes mechanical disruption while achieving precise control over the timing of addition, dosage, and integration varieties of released drugs in high-throughput screening, all programmable to meet specific requirements.
Collapse
Affiliation(s)
- Yuanyi Zhao
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yingxue Sun
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xinjian Xie
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yujia Liang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | | | - Wenqian Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
18
|
Qi W, Zhang R, Wang Z, Du H, Zhao Y, Shi B, Wang Y, Wang X, Wang P. Advances in the Application of Black Phosphorus-Based Composite Biomedical Materials in the Field of Tissue Engineering. Pharmaceuticals (Basel) 2024; 17:242. [PMID: 38399457 PMCID: PMC10892510 DOI: 10.3390/ph17020242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Black Phosphorus (BP) is a new semiconductor material with excellent biocompatibility, degradability, and optical and electrophysical properties. A growing number of studies show that BP has high potential applications in the biomedical field. This article aims to systematically review the research progress of BP composite medical materials in the field of tissue engineering, mining BP in bone regeneration, skin repair, nerve repair, inflammation, treatment methods, and the application mechanism. Furthermore, the paper discusses the shortcomings and future recommendations related to the development of BP. These shortcomings include stability, photothermal conversion capacity, preparation process, and other related issues. However, despite these challenges, the utilization of BP-based medical materials holds immense promise in revolutionizing the field of tissue repair.
Collapse
Affiliation(s)
- Wanying Qi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (W.Q.); (R.Z.)
| | - Ru Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (W.Q.); (R.Z.)
| | - Zaishang Wang
- School of Pharmacy, Guilin Medical University, Guilin 541001, China;
| | - Haitao Du
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (H.D.); (Y.Z.); (Y.W.)
| | - Yiwu Zhao
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (H.D.); (Y.Z.); (Y.W.)
| | - Bin Shi
- Shandong Medicinal Biotechnology Center, Jinan 250062, China;
| | - Yi Wang
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (H.D.); (Y.Z.); (Y.W.)
| | - Xin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Ping Wang
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (H.D.); (Y.Z.); (Y.W.)
| |
Collapse
|
19
|
Feng Q, Zhou X, He C. NIR light-facilitated bone tissue engineering. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1925. [PMID: 37632228 DOI: 10.1002/wnan.1925] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023]
Abstract
In the last decades, near-infrared (NIR) light has attracted considerable attention due to its unique properties and numerous potential applications in bioimaging and disease treatment. Bone tissue engineering for bone regeneration with the help of biomaterials is currently an effective means of treating bone defects. As a controlled light source with deeper tissue penetration, NIR light can provide real-time feedback of key information on bone regeneration in vivo utilizing fluorescence imaging and be used for bone disease treatment. This review provides a comprehensive overview of NIR light-facilitated bone tissue engineering, from the introduction of NIR probes as well as NIR light-responsive materials, and the visualization of bone regeneration to the treatment of bone-related diseases. Furthermore, the existing challenges and future development directions of NIR light-based bone tissue engineering are also discussed. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Qian Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| |
Collapse
|
20
|
Li X, Lin Y, Yang Z, Guan L, Wang Z, Liu A, Yang B, Tang L, Lin Q. Cancer cell membrane biomimetic nanosystem for homologous targeted dual-mode imaging and combined therapy. J Colloid Interface Sci 2023; 652:770-779. [PMID: 37619256 DOI: 10.1016/j.jcis.2023.08.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
HYPOTHESIS The use of tumor cell membrane-camouflaged nanoparticles, specifically the multifunctional biomimetic core-shell nanosystem MPCONPs, can enhance the targeting ability and immune escape functionality of traditional chemotherapy, leading to more precise drug delivery and improved treatment outcomes. EXPERIMENTS Preparation of MPCONPs: Autologous tumor cell membrane (CM) fragments are collected and used to create a shell for the nanoparticles. A trypsin-sensitive cationic polylysine framework is synthesized and embedded with oxaliplatin (l-OHP) and Ce6-AuNDs (a singlet oxygen generator). The MPCONPs are formed by assembling these components. FINDINGS MPCONPs, as nanoparticles camouflaged with tumor CM, have enhanced cellular uptake in cancer cells and improved the efficacy of photodynamic therapy (PDT) and chemotherapy (CT). This offers great potential for their use as individualized therapeutic agents for clinical oncology treatment.
Collapse
Affiliation(s)
- Xingchen Li
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yangliu Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhe Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lin Guan
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ze Wang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Annan Liu
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lu Tang
- Breast Surgery Department, China- Japan Union hospital of Jilin University, China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
21
|
Yu Z, Wang H, Ying B, Mei X, Zeng D, Liu S, Qu W, Pan X, Pu S, Li R, Qin Y. Mild photothermal therapy assist in promoting bone repair: Related mechanism and materials. Mater Today Bio 2023; 23:100834. [PMID: 38024841 PMCID: PMC10643361 DOI: 10.1016/j.mtbio.2023.100834] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
Achieving precision treatment in bone tissue engineering (BTE) remains a challenge. Photothermal therapy (PTT), as a form of precision therapy, has been extensively investigated for its safety and efficacy. It has demonstrated significant potential in the treatment of orthopedic diseases such as bone tumors, postoperative infections and osteoarthritis. However, the high temperatures associated with PTT can lead to certain limitations and drawbacks. In recent years, researchers have explored the use of biomaterials for mild photothermal therapy (MPT), which offers a promising approach for addressing these limitations. This review provides a comprehensive overview of the mechanisms underlying MPT and presents a compilation of photothermal agents and their utilization strategies for bone tissue repair. Additionally, the paper discusses the future prospects of MPT-assisted bone tissue regeneration, aiming to provide insights and recommendations for optimizing material design in this field.
Collapse
Affiliation(s)
- Zehao Yu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Hao Wang
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Boda Ying
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Xiaohan Mei
- National & Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun, 130012, People’s Republic of China
| | - Dapeng Zeng
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Shibo Liu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Wenrui Qu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Xiangjun Pan
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Si Pu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Ruiyan Li
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Yanguo Qin
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| |
Collapse
|
22
|
Qin W, Xing T, Tang B, Chen W. Mechanical properties and osteogenesis of CFR-PEEK composite with interface strengthening by graphene oxide for implant application. J Mech Behav Biomed Mater 2023; 148:106222. [PMID: 37948919 DOI: 10.1016/j.jmbbm.2023.106222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
In this work, 1 wt% of graphite oxide (GO) was used to strengthen the interface of carbon fibers (CF) reinforced polyetheretherketone (CFR-PEEK) composites, so as to obtain sufficiently high mechanical properties and bioactive surfaces which are two fundamental requirements for orthopedic/dental implants. Concretely, aminated GO was grafted onto oxidized CF in aqueous solution in a mild and non-toxic manner, subsequently, the CF grafted by GO was used for injection molding to prepare CFR-PEEK implant. The dispersibility of CF in the composites were remarkably boosted. Mechanical tests indicated that the flexural strength, compressive strength and hardness of CFR-PEEK were increased by 51%, 46%, and 30%, respectively. Furthermore, the flexural modulus increased to 11.67 ± 0.20 GPa and the compression modulus increased to 6.12 ± 0.11 GPa, which both meet the elastic modulus of human bone (6-30 GPa). The wear resistance was slightly improved. In the in vitro cell evaluation, CFR-PEEK with interface strengthening by GO showed no cytotoxicity and exhibited significantly enhanced adhesion and proliferation of Bone marrow mesenchymal stem cells (BMSCs) on the surface. More importantly, osteogenesis-related protein expression in vitro and osteogenetic evaluation in vivo all disclosed greatly accelerated osteo-differentiation of BMSCs on the composites due to the additive effect of GO at the interface. Based on this scheme, the CFR-PEEK composites with the dual functions of mechanical enhancement and osteointegration promotion holds great potential as implants in orthopedic/dental applications.
Collapse
Affiliation(s)
- Wen Qin
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Tong Xing
- Engineering Research Center of Heavy Mechanical, Ministry of Education, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Bin Tang
- College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030060, China.
| |
Collapse
|
23
|
Zhang Z, Wang R, Xue H, Knoedler S, Geng Y, Liao Y, Alfertshofer M, Panayi AC, Ming J, Mi B, Liu G. Phototherapy techniques for the management of musculoskeletal disorders: strategies and recent advances. Biomater Res 2023; 27:123. [PMID: 38017585 PMCID: PMC10685661 DOI: 10.1186/s40824-023-00458-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/28/2023] [Indexed: 11/30/2023] Open
Abstract
Musculoskeletal disorders (MSDs), which include a range of pathologies affecting bones, cartilage, muscles, tendons, and ligaments, account for a significant portion of the global burden of disease. While pharmaceutical and surgical interventions represent conventional approaches for treating MSDs, their efficacy is constrained and frequently accompanied by adverse reactions. Considering the rising incidence of MSDs, there is an urgent demand for effective treatment modalities to alter the current landscape. Phototherapy, as a controllable and non-invasive technique, has been shown to directly regulate bone, cartilage, and muscle regeneration by modulating cellular behavior. Moreover, phototherapy presents controlled ablation of tumor cells, bacteria, and aberrantly activated inflammatory cells, demonstrating therapeutic potential in conditions such as bone tumors, bone infection, and arthritis. By constructing light-responsive nanosystems, controlled drug delivery can be achieved to enable precise treatment of MSDs. Notably, various phototherapy nanoplatforms with integrated imaging capabilities have been utilized for early diagnosis, guided therapy, and prognostic assessment of MSDs, further improving the management of these disorders. This review provides a comprehensive overview of the strategies and recent advances in the application of phototherapy for the treatment of MSDs, discusses the challenges and prospects of phototherapy, and aims to promote further research and application of phototherapy techniques.
Collapse
Affiliation(s)
- Zhenhe Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Rong Wang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Hang Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Yongtao Geng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yuheng Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Michael Alfertshofer
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Strasse 13, 67071, Ludwigshafen, Rhine, Germany
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
24
|
Karmakar R, Dey S, Alam A, Khandelwal M, Pati F, Rengan AK. Attributes of Nanomaterials and Nanotopographies for Improved Bone Tissue Engineering and Regeneration. ACS APPLIED BIO MATERIALS 2023; 6:4020-4041. [PMID: 37691480 DOI: 10.1021/acsabm.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Bone tissue engineering (BTE) is a multidisciplinary area that can solve the limitation of conventional grafting methods by developing viable and biocompatible bone replacements. The three essential components of BTE, i.e., Scaffold material and Cells and Growth factors altogether, facilitate support and guide for bone formation, differentiation of the bone tissues, and enhancement in the cellular activities and bone regeneration. However, there is a scarcity of the appropriate materials that can match the mechanical property as well as functional similarity to native tissue, considering the bone as hard tissue. In such scenarios, nanotechnology can be leveraged upon to achieve the desired aspects of BTE, and that is the key point of this review article. This review article examines the significant areas of nanotechnology research that have an impact on regeneration of bone: (a) scaffold with nanomaterials helps to enhance physicochemical interactions, biocompatibility, mechanical stability, and attachment; (b) nanoparticle-based approaches for delivering bioactive chemicals, growth factors, and genetic material. The article begins with the introduction of components and healing mechanisms of bone and the factors associated with them. The focus of this article is on the various nanotopographies that are now being used in scaffold formation, by describing how they are made, and how these nanotopographies affect the immune system and potential underlying mechanisms. The advantages of 4D bioprinting in BTE by using nanoink have also been mentioned. Additionally, we have investigated the importance of an in silico approach for finding the interaction between drugs and their related receptors, which can help to formulate suitable systems for delivery. This review emphasizes the role of nanoscale approach and how it helps to increase the efficacy of parameters of scaffold as well as drug delivery system for tissue engineering and bone regeneration.
Collapse
Affiliation(s)
- Rounik Karmakar
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Sreenath Dey
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Aszad Alam
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Mudrika Khandelwal
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| |
Collapse
|
25
|
Yang S, Chen Z, Zhuang P, Tang Y, Chen Z, Wang F, Cai Z, Wei J, Cui W. Seamlessly Adhesive Bionic Periosteum Patches Via Filling Microcracks for Defective Bone Healing. SMALL METHODS 2023; 7:e2300370. [PMID: 37356079 DOI: 10.1002/smtd.202300370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/30/2023] [Indexed: 06/27/2023]
Abstract
Current artificial designs of the periosteum focus on osteogenic or angiogenic properties, while ignoring the filling and integration with bone microcracks, which trigger a prolonged excessive inflammatory reaction and lead to failure of bone regeneration. In this study, seamless adhesive biomimetic periosteum patches (HABP/Sr-PLA) were prepared to fill microcracks in defective bone via interfacial self-assembly induced by Sr ions mediated metal-ligand interactions among pamidronate disodium-modified hyaluronic acid (HAPD), black phosphorus (BP), and hydrophilic polylactic acid (PLA). In vitro, HABP/Sr-PLA exhibited excellent self-healing properties, seamlessly filled bone microcracks, and significantly enhanced osteogenesis and angiogenesis. Furthermore, in a rat cranial defect model, HABP/Sr-PLA was demonstrated to significantly promote the formation of blood vessels and new bone under mild 808 nm photothermal stimulation (42.8 °C), and the highest protein expression of CD31 and OPN was five times higher than that of the control group and other groups. Therefore, the proposed seamless microcrack-filled bionic periosteum patch is a promising clinical strategy for promoting bone repair.
Collapse
Affiliation(s)
- Shu Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhijie Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Pengzhen Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Zehao Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Jie Wei
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| |
Collapse
|
26
|
Cao Z, Bian Y, Hu T, Yang Y, Cui Z, Wang T, Yang S, Weng X, Liang R, Tan C. Recent advances in two-dimensional nanomaterials for bone tissue engineering. JOURNAL OF MATERIOMICS 2023; 9:930-958. [DOI: 10.1016/j.jmat.2023.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Liu X, Gaihre B, Park S, Li L, Dashtdar B, Astudillo Potes MD, Terzic A, Elder BD, Lu L. 3D-printed scaffolds with 2D hetero-nanostructures and immunomodulatory cytokines provide pro-healing microenvironment for enhanced bone regeneration. Bioact Mater 2023; 27:216-230. [PMID: 37122896 PMCID: PMC10130629 DOI: 10.1016/j.bioactmat.2023.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Three-dimensional (3D) printing technology is driving forward the progresses of various engineering fields, including tissue engineering. However, the pristine 3D-printed scaffolds usually lack robust functions in stimulating desired activity for varied regeneration applications. In this study, we combined the two-dimensional (2D) hetero-nanostructures and immuno-regulative interleukin-4 (IL-4) cytokines for the functionalization of 3D-printed scaffolds to achieve a pro-healing immuno-microenvironment for optimized bone injury repair. The 2D hetero-nanostructure consists of graphene oxide (GO) layers, for improved cell adhesion, and black phosphorous (BP) nanosheets, for the continuous release of phosphate ions to stimulate cell growth and osteogenesis. In addition, the 2D hetero-nanolayers facilitated the adsorption of large content of immuno-regulative IL-4 cytokines, which modulated the polarization of macrophages into M2 phenotype. After in vivo implantation in rat, the immuno-functioned 3D-scaffolds achieved in vivo osteo-immunomodulation by building a pro-healing immunological microenvironment for better angiogenesis and osteogenesis in the defect area and thus facilitated bone regeneration. These results demonstrated that the immuno-functionalization of 3D-scaffolds with 2D hetero-nanostructures with secondary loading of immuno-regulative cytokines is an encouraging strategy for improving bone regeneration.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sungjo Park
- Department of Cardiovascular Medicine and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Linli Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Babak Dashtdar
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Maria D. Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Andre Terzic
- Department of Cardiovascular Medicine and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Benjamin D. Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Corresponding author. Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
28
|
Li Y, Liu C, Cheng X, Wang J, Pan Y, Liu C, Zhang S, Jian X. PDA-BPs integrated mussel-inspired multifunctional hydrogel coating on PPENK implants for anti-tumor therapy, antibacterial infection and bone regeneration. Bioact Mater 2023; 27:546-559. [PMID: 37397628 PMCID: PMC10313727 DOI: 10.1016/j.bioactmat.2023.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/27/2023] [Accepted: 04/20/2023] [Indexed: 07/04/2023] Open
Abstract
Currently, many cancer patients with bone defects are still threatened by tumor recurrence, postoperative bacterial infection, and massive bone loss. Many methods have been studied to endow bone implants with biocompatibility, but it is difficult to find an implant material that can simultaneously solve the problems of anticancer, antibacterial and bone promotion. Here, a multifunctional gelatin methacrylate/dopamine methacrylate adhesive hydrogel coating containing 2D black phosphorus (BP) nanoparticle protected by polydopamine (pBP) is prepared by photocrosslinking to modify the surface of poly (aryl ether nitrile ketone) containing phthalazinone (PPENK) implant. The multifunctional hydrogel coating works in conjunction with pBP, which can deliver drug through photothermal mediation and kill bacteria through photodynamic therapy at the initial phase followed by promotion of osteointegration. In this design, photothermal effect of pBP control the release of doxorubicin hydrochloride loaded via electrostatic attraction. Meanwhile, pBP can generate reactive oxygen species (ROS) to eliminate bacterial infection under 808 nm laser. In the slow degradation process, pBP not only effectively consumes excess ROS and avoid apoptosis induced by ROS in normal cells, but also degrade into PO43- to promote osteogenesis. In summary, nanocomposite hydrogel coatings provide a promising strategy for treatment of cancer patients with bone defects.
Collapse
Affiliation(s)
- Yizheng Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Chengde Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xitong Cheng
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jinyan Wang
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yue Pan
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Cheng Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Shouhai Zhang
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xigao Jian
- Liaoning Province Engineering Research Centre of High-Performance Resins, Dalian, 116024, China
| |
Collapse
|
29
|
Xing Y, Qiu L, Liu D, Dai S, Sheu CL. The role of smart polymeric biomaterials in bone regeneration: a review. Front Bioeng Biotechnol 2023; 11:1240861. [PMID: 37662432 PMCID: PMC10469876 DOI: 10.3389/fbioe.2023.1240861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Addressing critical bone defects necessitates innovative solutions beyond traditional methods, which are constrained by issues such as immune rejection and donor scarcity. Smart polymeric biomaterials that respond to external stimuli have emerged as a promising alternative, fostering endogenous bone regeneration. Light-responsive polymers, employed in 3D-printed scaffolds and photothermal therapies, enhance antibacterial efficiency and bone repair. Thermo-responsive biomaterials show promise in controlled bioactive agent release, stimulating osteocyte differentiation and bone regeneration. Further, the integration of conductive elements into polymers improves electrical signal transmission, influencing cellular behavior positively. Innovations include advanced 3D-printed poly (l-lactic acid) scaffolds, polyurethane foam scaffolds promoting cell differentiation, and responsive polymeric biomaterials for osteogenic and antibacterial drug delivery. Other developments focus on enzyme-responsive and redox-responsive polymers, which offer potential for bone regeneration and combat infection. Biomaterials responsive to mechanical, magnetic, and acoustic stimuli also show potential in bone regeneration, including mechanically-responsive polymers, magnetic-responsive biomaterials with superparamagnetic iron oxide nanoparticles, and acoustic-responsive biomaterials. In conclusion, smart biopolymers are reshaping scaffold design and bone regeneration strategies. However, understanding their advantages and limitations is vital, indicating the need for continued exploratory research.
Collapse
Affiliation(s)
| | | | | | | | - Chia-Lin Sheu
- Department of Biomedical Engineering, Shantou University, Shantou, China
| |
Collapse
|
30
|
Li Z, Zhang Q, Yang S, Li Y, Atrens A, Kanwar JR, Zhong W, Lin B, Wen C, Zhou Y, Xiao Y. An Optimized Method for Microcomputed Tomography Analysis of Trabecular Parameters of Metal Scaffolds for Bone Ingrowth. Tissue Eng Part C Methods 2023; 29:276-283. [PMID: 37233718 DOI: 10.1089/ten.tec.2023.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Owing to its superior mechanical and biological properties, titanium metal is widely used in dental implants, orthopedic devices, and bone regenerative materials. Advances in 3D printing technology have led to more and more metal-based scaffolds being used in orthopedic applications. Microcomputed tomography (μCT) is commonly applied to evaluate the newly formed bone tissues and scaffold integration in animal studies. However, the presence of metal artifacts dramatically hinders the accuracy of μCT analysis of new bone formation. To acquire reliable and accurate μCT results that reflect new bone formation in vivo, it is crucial to lessen the impact of metal artifacts. Herein, an optimized procedure for calibrating μCT parameters using histological data was developed. In this study, the porous titanium scaffolds were fabricated by powder bed fusion based on computer-aided design. These scaffolds were implanted in femur defects created in New Zealand rabbits. After 8 weeks, tissue samples were collected to assess new bone formation using μCT analysis. Resin-embedded tissue sections were then used for further histological analysis. A series of deartifact two-dimensional (2D) μCT images were obtained by setting the erosion radius and the dilation radius in the μCT analysis software (CTan) separately. To get the μCT results closer to the real value, the 2D μCT images and corresponding parameters were subsequently selected by matching the histological images in the particular region. After applying the optimized parameters, more accurate 3D images and more realistic statistical data were obtained. The results demonstrate that the newly established method of adjusting μCT parameters can effectively reduce the influence of metal artifacts on data analysis to some extent. For further validation, other metal materials should be analyzed using the process established in this study.
Collapse
Affiliation(s)
- Zhengmao Li
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Zhang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuang Yang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Andrej Atrens
- School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland, Australia
| | - Jagat Rakesh Kanwar
- Faculty of Health, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Wen Zhong
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bingpeng Lin
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Yinghong Zhou
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Herston, Queensland, Australia
| | - Yin Xiao
- School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
31
|
Wan T, Zhang M, Jiang HR, Zhang YC, Zhang XM, Wang YL, Zhang PX. Tissue-Engineered Nanomaterials Play Diverse Roles in Bone Injury Repair. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091449. [PMID: 37176994 PMCID: PMC10180507 DOI: 10.3390/nano13091449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Nanomaterials with bone-mimicking characteristics and easily internalized by the cell could create suitable microenvironments in which to regulate the therapeutic effects of bone regeneration. This review provides an overview of the current state-of-the-art research in developing and using nanomaterials for better bone injury repair. First, an overview of the hierarchical architecture from the macroscale to the nanoscale of natural bone is presented, as these bone tissue microstructures and compositions are the basis for constructing bone substitutes. Next, urgent clinical issues associated with bone injury that require resolution and the potential of nanomaterials to overcome them are discussed. Finally, nanomaterials are classified as inorganic or organic based on their chemical properties. Their basic characteristics and the results of related bone engineering studies are described. This review describes theoretical and technical bases for the development of innovative methods for repairing damaged bone and should inspire therapeutic strategies with potential for clinical applications.
Collapse
Affiliation(s)
- Teng Wan
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Hao-Ran Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Yi-Chong Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Xiao-Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Yi-Lin Wang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
32
|
Photosynthetic microporous bioactive glass ceramic beads for treating avascular osteonecrosis. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
33
|
Zhao Y, Chen Z, Shao W, Yang S, Cui W, Cai Z, Cheng L, Lin R. Black phosphorus-enhanced injectable hydrogel for infected soft tissue healing. APL Bioeng 2023; 7:016103. [PMID: 36644416 PMCID: PMC9838687 DOI: 10.1063/5.0121241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/28/2022] [Indexed: 01/11/2023] Open
Abstract
The misuse of antibiotics makes clinical treatment of soft tissue infection a huge challenge in prosthesis replacement. In this study, a black phosphorus (BP)-enhanced antibacterial injectable hydrogel (HAABP) was developed by the dynamic coordinative cross-linking among thiolated hyaluronic acid, silver ion (Ag+), and BP. HAABP has been proven to possess typical porous structures, excellent injectability, and rapid self-healing properties. In addition, the shear modulus was positive correlative to the concentration of BP. In vitro, HAABP maintained good cytocompatibility and showed a highly efficient synergistic inhibitory effect on Staphylococcus aureus through the irradiation of near infrared light and the release of Ag+. In vivo, HAABP not only inhibited the persistent infection but also accelerated the deposition of collagen fibers and angiogenesis by down-regulating the inflammatory factor TNF-α in the infectious wound defect, thereby repairing the natural barrier of tissue. This study developed a BP-enhanced injectable hydrogel that provided a simple and efficient synergistic antibacterial strategy to treat soft tissue infections around prostheses.
Collapse
Affiliation(s)
| | | | | | - Shu Yang
- Department of Orthopaedics, Shanghai Key Laboratory for
Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology
and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, 197 Ruijin 2nd Road, Shanghai 200025, People's Republic
of China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for
Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology
and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, 197 Ruijin 2nd Road, Shanghai 200025, People's Republic
of China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for
Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology
and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, 197 Ruijin 2nd Road, Shanghai 200025, People's Republic
of China
| | - Liang Cheng
- Authors to whom correspondence should be addressed:; ; and
| | - Ruixin Lin
- Authors to whom correspondence should be addressed:; ; and
| |
Collapse
|
34
|
Chen J, Huan W, Mao L, Huang M, Wu Y, Zhuang S, Cui S. Impaired barrier integrity of endothelial cells induced by PEGylated black phosphorus nanosheets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160645. [PMID: 36464060 DOI: 10.1016/j.scitotenv.2022.160645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
PEGylated black phosphorus nanosheets (PEG-BPNSs) have shown promising applications in biomedicine and potentially interact with the vasculature following iatrogenic exposures. Whether the exposure to PEG-BPNSs could induce toxic effects on endothelial cells that line the blood vessels remains largely unknown. Herein, we investigate the cellular response and transcriptional profiling of human umbilical vein endothelial cells (HUVECs) after the exposure to BPNSs and PEG-BPNSs. BPNSs and PEG-BPNSs induce cellular elongation and cause significant cytotoxicity to HUVECs at 0.8 μg/mL, with viabilities of 87.8% and 87.7% respectively. The transcriptome analysis indicates that BPNSs and PEG-BPNSs at 0.4 μg/mL cause marked alterations in the expression of genes associated with detection of stimulus, ion transmembrane transport and components of plasma membrane. BPNSs and PEG-BPNSs at 0.4 μg/mL decrease the transendothelial electrical resistance (TEER) across monolayers of HUVECs by 22.8% and 20.3% compared to the control, respectively. The disturbance of tight junctions (TJs) after 24 h exposure to 0.4 μg/mL BPNSs and PEG-BPNSs is indicated with the downregulated mRNA expression of zona occluden-1 (ZO-1) by respective 16.5% and 29.9%, which may be involved in the impairment of endothelial barrier integrity. Overall, the response of HUVECs to PEG-BPNSs and BPNSs has no statistical difference, suggesting that PEGylation does not attenuate the BPNSs-induced endothelial injury. This study demonstrates the detrimental effects of BPNSs and PEG-BPNSs on barrier integrity of HUVECs, contributing to our understanding on the potential toxicological mechanisms.
Collapse
Affiliation(s)
- Jiayan Chen
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Lijuan Mao
- Analysis Center of Agrobiology and Environmental Sciences, Faculty of Agriculture, Life and Environment Sciences (ACAES), Zhejiang University, Hangzhou 310058, China
| | - Meiling Huang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiqu Wu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Shixuan Cui
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
35
|
Li HX, Zhao KC, Jiang JJ, Zhu QS. Research progress on black phosphorus hybrids hydrogel platforms for biomedical applications. J Biol Eng 2023; 17:8. [PMID: 36717887 PMCID: PMC9887857 DOI: 10.1186/s13036-023-00328-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Hydrogels, also known as three-dimensional, flexible, and polymer networks, are composed of natural and/or synthetic polymers with exceptional properties such as hydrophilicity, biocompatibility, biofunctionality, and elasticity. Researchers in biomedicine, biosensing, pharmaceuticals, energy and environment, agriculture, and cosmetics are interested in hydrogels. Hydrogels have limited adaptability for complicated biological information transfer in biomedical applications due to their lack of electrical conductivity and low mechanical strength, despite significant advances in the development and use of hydrogels. The nano-filler-hydrogel hybrid system based on supramolecular interaction between host and guest has emerged as one of the potential solutions to the aforementioned issues. Black phosphorus, as one of the representatives of novel two-dimensional materials, has gained a great deal of interest in recent years owing to its exceptional physical and chemical properties, among other nanoscale fillers. However, a few numbers of publications have elaborated on the scientific development of black phosphorus hybrid hydrogels extensively. In this review, this review thus summarized the benefits of black phosphorus hybrid hydrogels and highlighted the most recent biological uses of black phosphorus hybrid hydrogels. Finally, the difficulties and future possibilities of the development of black phosphorus hybrid hydrogels are reviewed in an effort to serve as a guide for the application and manufacture of black phosphorus -based hydrogels. Recent applications of black phosphorus hybrid hydrogels in biomedicine.
Collapse
Affiliation(s)
- Hao-xuan Li
- grid.415954.80000 0004 1771 3349Department of Spine Surgery, China-Japan Union Hospital of Jilin University, N.126 Xiantai Street, Changchun, 130033 Jilin People’s Republic of China
| | - Kun-chi Zhao
- grid.415954.80000 0004 1771 3349Department of Spine Surgery, China-Japan Union Hospital of Jilin University, N.126 Xiantai Street, Changchun, 130033 Jilin People’s Republic of China
| | - Jia-jia Jiang
- grid.415954.80000 0004 1771 3349Department of Spine Surgery, China-Japan Union Hospital of Jilin University, N.126 Xiantai Street, Changchun, 130033 Jilin People’s Republic of China
| | - Qing-san Zhu
- grid.415954.80000 0004 1771 3349Department of Spine Surgery, China-Japan Union Hospital of Jilin University, N.126 Xiantai Street, Changchun, 130033 Jilin People’s Republic of China
| |
Collapse
|
36
|
Chitosan based photothermal scaffold fighting against bone tumor-related complications: Recurrence, infection, and defects. Carbohydr Polym 2023; 300:120264. [DOI: 10.1016/j.carbpol.2022.120264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/30/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022]
|
37
|
Cho E, Qiao Y, Chen C, Xu J, Cai J, Li Y, Zhao J. Injectable FHE+BP composites hydrogel with enhanced regenerative capacity of tendon-bone interface for anterior cruciate ligament reconstruction. Front Bioeng Biotechnol 2023; 11:1117090. [PMID: 36911205 PMCID: PMC9996450 DOI: 10.3389/fbioe.2023.1117090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Features of black phosphorous (BP) nano sheets such as enhancing mineralization and reducing cytotoxicity in bone regeneration field have been reported. Thermo-responsive FHE hydrogel (mainly composed of oxidized hyaluronic acid (OHA), poly-ε-L-lysine (ε-EPL) and F127) also showed a desired outcome in skin regeneration due to its stability and antibacterial benefits. This study investigated the application of BP-FHE hydrogel in anterior cruciate ligament reconstruction (ACLR) both in in vitro and in vivo, and addressed its effects on tendon and bone healing. This BP-FHE hydrogel is expected to bring the benefits of both components (thermo-sensitivity, induced osteogenesis and easy delivery) to optimize the clinical application of ACLR and enhance the recovery. Our in vitro results confirmed the potential role of BP-FHE via significantly increased rBMSC attachment, proliferation and osteogenic differentiation with ARS and PCR analysis. Moreover, In vivo results indicated that BP-FHE hydrogels can successfully optimize the recovery of ACLR through enhancing osteogenesis and improving the integration of tendon and bone interface. Further results of Biomechanical testing and Micro-CT analysis [bone tunnel area (mm2) and bone volume/total volume (%)] demonstrated that BP can indeed accelerate bone ingrowth. Additionally, histological staining (H&E, Masson and Safranin O/fast green) and immunohistochemical analysis (COL I, COL III and BMP-2) strongly supported the ability of BP to promote tendon-bone healing after ACLR in murine animal models.
Collapse
Affiliation(s)
- Eunshinae Cho
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Yi Qiao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Changan Chen
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Junjie Xu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Jiangyu Cai
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Yamin Li
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| |
Collapse
|
38
|
Idumah CI. Phosphorene polymeric nanocomposites for biomedical applications: a review. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2158333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
39
|
Zhang X, You Y, Sun Y, Guo X, Han Lin, Zong M, Shi J. Catalytic anti-oxidative stress for osteoarthritis treatment by few-layered phosphorene. Mater Today Bio 2022; 17:100462. [PMID: 36325424 PMCID: PMC9619373 DOI: 10.1016/j.mtbio.2022.100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
As one of the most common representations of articular cartilage damage, osteoarthritis (OA) is characterized by the apoptosis and dysfunction of chondrocytes as well as the progressive degradation of extracellular matrix, of which the main components are glycosaminoglycan and type Ⅱ collagen. Few-layered phosphorene (FLP) has been attracting great attentions in biomedical fields owing to the excellent capability of in-situ catalysis for scavenging oxidate-associated molecules, especially the reactive oxygen species (ROS) and reactive nitrogen species (RNS). Herein, FLP has been fabricated and employed for articular cartilage protection by means of deleting oxidate-associated molecules. The in vitro results show that as low as 200 μg/mL FLP is capable of diminishing oxidative damages on the osteoarthritic chondrocytes through the efficient elimination of ROS, H2O2 and NO. Meanwhile, the cartilage matrix protection has also been achieved at 200 μg/mL FLP by the uniform restoration of glycosaminoglycan and type Ⅱ collagen. FLP enables the nanocatalytic treatment for the overloaded oxidative stress in the injured articular cartilage and represents a promising alternative for osteoarthritis therapy.
Collapse
Affiliation(s)
- Xingyu Zhang
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Yanling You
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Xiang Guo
- Department of Orthopedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, PR China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Ming Zong
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai, 200050, PR China
| |
Collapse
|
40
|
Huang J, Santos AC, Tan Q, Bai H, Hu X, Mamidi N, Wu Z. Black phosphorous-based biomaterials for bone defect regeneration: a systematic review and meta-analysis. J Nanobiotechnology 2022; 20:522. [PMID: 36496422 PMCID: PMC9741806 DOI: 10.1186/s12951-022-01735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Critical-sized bone defects are always difficult to treat, and they are associated with a significant burden of disease in clinical practice. In recent decades, due to the fast development of biomaterials and tissue engineering, many bioinspired materials have been developed to treat large bone defects. Due to the excellent osteoblastic ability of black phosphorous (BP), many BP-based biomaterials have been developed to treat bone defects. Therefore, there are abundant studies as well as a tremendous amount of research data. It is urgent to conduct evidence-based research to translate these research data and results into validated scientific evidence. Therefore, in our present study, a qualitative systematic review and a quantitative meta-analysis were performed. Eighteen studies were included in a systematic review, while twelve studies were included in the meta-analysis. Our results showed that the overall quality of experimental methods and reports of biomaterials studies was still low, which needs to be improved in future studies. Besides, we also proved the excellent osteoblastic ability of BP-based biomaterials. But we did not find a significant effect of near-infrared (NIR) laser in BP-based biomaterials for treating bone defects. However, the quality of the evidence presented by included studies was very low. Therefore, to accelerate the clinical translation of BP-based biomaterials, it is urgent to improve the quality of the study method and reporting in future animal studies. More evidence-based studies should be conducted to enhance the quality and clinical translation of BP-based biomaterials.
Collapse
Affiliation(s)
- Jinfeng Huang
- grid.233520.50000 0004 1761 4404Department of Orthopaedics, Xijing Hospital, The Air Force Medical University, Xi’an, 710032 Shaanxi People’s Republic of China
| | - Ana Cláudia Santos
- grid.8051.c0000 0000 9511 4342Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Quanchang Tan
- grid.233520.50000 0004 1761 4404Department of Orthopaedics, Xijing Hospital, The Air Force Medical University, Xi’an, 710032 Shaanxi People’s Republic of China
| | - Hao Bai
- grid.233520.50000 0004 1761 4404Department of Orthopaedics, Xijing Hospital, The Air Force Medical University, Xi’an, 710032 Shaanxi People’s Republic of China
| | - Xiaofan Hu
- grid.233520.50000 0004 1761 4404Department of Orthopaedics, Xijing Hospital, The Air Force Medical University, Xi’an, 710032 Shaanxi People’s Republic of China
| | - Narsimha Mamidi
- grid.419886.a0000 0001 2203 4701Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnologico de Monterrey, 64849 Monterrey, NL Mexico
| | - Zixiang Wu
- grid.233520.50000 0004 1761 4404Department of Orthopaedics, Xijing Hospital, The Air Force Medical University, Xi’an, 710032 Shaanxi People’s Republic of China
| |
Collapse
|
41
|
Jing X, Xiong Z, Lin Z, Sun T. The Application of Black Phosphorus Nanomaterials in Bone Tissue Engineering. Pharmaceutics 2022; 14:pharmaceutics14122634. [PMID: 36559127 PMCID: PMC9787998 DOI: 10.3390/pharmaceutics14122634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Recently, research on and the application of nanomaterials such as graphene, carbon nanotubes, and metal-organic frameworks has become increasingly popular in tissue engineering. In 2014, a two-dimensional sheet of black phosphorus (BP) was isolated from massive BP crystals. Since then, BP has attracted significant attention as an emerging nanomaterial. BP possesses many advantages such as light responsiveness, electrical conductivity, degradability, and good biocompatibility. Thus, it has broad prospects in biomedical applications. Moreover, BP is composed of phosphorus, which is a key bone tissue component with good biocompatibility and osteogenic repair ability. Thereby, BP exhibits excellent advantages for application in bone tissue engineering. In this review, the structure and the physical and chemical properties of BP are described. In addition, the current applications of BP in bone tissue engineering are reviewed to aid the future research and application of BP.
Collapse
Affiliation(s)
- Xirui Jing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zekang Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zian Lin
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tingfang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence:
| |
Collapse
|
42
|
Zhao Y, Peng X, Wang D, Zhang H, Xin Q, Wu M, Xu X, Sun F, Xing Z, Wang L, Yu P, Xie J, Li J, Tan H, Ding C, Li J. Chloroplast-inspired Scaffold for Infected Bone Defect Therapy: Towards Stable Photothermal Properties and Self-Defensive Functionality. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204535. [PMID: 36109177 PMCID: PMC9631053 DOI: 10.1002/advs.202204535] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 06/02/2023]
Abstract
Bone implant-associated infections induced by bacteria frequently result in repair failure and threaten the health of patients. Although black phosphorus (BP) material with superior photothermal conversion ability is booming in the treatment of bone disease, the development of BP-based bone scaffolds with excellent photothermal stability and antibacterial properties simultaneously remains a challenge. In nature, chloroplasts cannot only convert light into chemical energy, but also hold a protective and defensive envelope membrane. Inspired by this, a self-defensive bone scaffold with stable photothermal property is developed for infected bone defect therapy. Similar to thylakoid and stroma lamella in chloroplasts, BP is integrated with chitosan and polycaprolactone fiber networks. The mussel-inspired polydopamine multifunctional "envelope membrane" wrapped above not only strengthens the photothermal stability of BP-based scaffolds, but also realizes the in situ anchoring of silver nanoparticles. Bacteria-triggered infection of femur defects in vivo can be commendably inhibited at the early stage via these chloroplast-inspired implants, which then effectively promotes endogenous repair of the defect area under mild hyperthermia induced by near-infrared irradiation. This chloroplast-inspired strategy shows outstanding performance for infected bone defect therapy and provides a reference for the functionality of other biomedical materials.
Collapse
Affiliation(s)
- Yao Zhao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Xu Peng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- Experimental and Research Animal InstituteSichuan UniversityChengdu610065China
| | - Dingqian Wang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Hongbo Zhang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Qiangwei Xin
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Mingzhen Wu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Xiaoyang Xu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Fan Sun
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Zeyuan Xing
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Luning Wang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Peng Yu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Jing Xie
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Jiehua Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Hong Tan
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Chunmei Ding
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Jianshu Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| |
Collapse
|
43
|
Tian H, Wu R, Feng N, Zhang J, Zuo J. Recent advances in hydrogels-based osteosarcoma therapy. Front Bioeng Biotechnol 2022; 10:1042625. [PMID: 36312544 PMCID: PMC9597306 DOI: 10.3389/fbioe.2022.1042625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma (OS), as a typical kind of bone tumors, has a high incidence among adolescents. Traditional tumor eradication avenues for OS such as chemotherapy, surgical therapy and radiation therapy usually have their own drawbacks including recurrence and metastasis. In addition, another serious issue in the treatment of OS is bone repair because the bone after tumor invasion usually has difficulty in repairing itself. Hydrogels, as a synthetic or natural platform with a porous three-dimensional structure, can be applied as desirable platforms for OS treatment. They can not only be used as carriers for tumor therapeutic drugs but mimic the extracellular matrix for the growth and differentiation of mesenchymal stem cells (MSCs), thus providing tumor treatment and enhancing bone regeneration at the same time. This review focuses the application of hydrogels in OS suppression and bone regeneration, and give some suggests on future development.
Collapse
Affiliation(s)
- Hao Tian
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ronghui Wu
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Na Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinrui Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan, China
- *Correspondence: Jinrui Zhang, ; Jianlin Zuo,
| | - Jianlin Zuo
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Jinrui Zhang, ; Jianlin Zuo,
| |
Collapse
|
44
|
Khan HM, Liao X, Sheikh BA, Wang Y, Su Z, Guo C, Li Z, Zhou C, Cen Y, Kong Q. Smart biomaterials and their potential applications in tissue engineering. J Mater Chem B 2022; 10:6859-6895. [PMID: 36069198 DOI: 10.1039/d2tb01106a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smart biomaterials have been rapidly advancing ever since the concept of tissue engineering was proposed. Interacting with human cells, smart biomaterials can play a key role in novel tissue morphogenesis. Various aspects of biomaterials utilized in or being sought for the goal of encouraging bone regeneration, skin graft engineering, and nerve conduits are discussed in this review. Beginning with bone, this study summarizes all the available bioceramics and materials along with their properties used singly or in conjunction with each other to create scaffolds for bone tissue engineering. A quick overview of the skin-based nanocomposite biomaterials possessing antibacterial properties for wound healing is outlined along with skin regeneration therapies using infrared radiation, electrospinning, and piezoelectricity, which aid in wound healing. Furthermore, a brief overview of bioengineered artificial skin grafts made of various natural and synthetic polymers has been presented. Finally, by examining the interactions between natural and synthetic-based biomaterials and the biological environment, their strengths and drawbacks for constructing peripheral nerve conduits are highlighted. The description of the preclinical outcome of nerve regeneration in injury healed with various natural-based conduits receives special attention. The organic and synthetic worlds collide at the interface of nanomaterials and biological systems, producing a new scientific field including nanomaterial design for tissue engineering.
Collapse
Affiliation(s)
- Haider Mohammed Khan
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Xiaoxia Liao
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Bilal Ahmed Sheikh
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Yixi Wang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhixuan Su
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Chuan Guo
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Changchun Zhou
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Qingquan Kong
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
45
|
Li L, Zhang X, Zhou J, Zhang L, Xue J, Tao W. Non-Invasive Thermal Therapy for Tissue Engineering and Regenerative Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107705. [PMID: 35475541 DOI: 10.1002/smll.202107705] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Owing to the development of nanotechnology and noninvasive treatment, thermal therapy in combination with external stimuli has been applied for tissue engineering and regenerative medicine (TERM), which has attracted more and more attention in recent years. In this review, the recent progress of applying a variety of non-invasive thermal therapeutic modalities for TERM, including photothermal therapy, magnetic thermotherapy, and ultrasound thermotherapy, as well as other thermal therapeutics are discussed. The parameters and conditions that need to be considered and regulated to realize a well-controlled thermal therapy for tissue regeneration are also discussed. Afterwards, the current concerns and challenges of putting thermal therapy into clinical applications are pointed out. At last, perspectives are provided for the future development directions, aiming to providing opportunities and a novel pathway for TERM.
Collapse
Affiliation(s)
- Longfei Li
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaodi Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Liqun Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jiajia Xue
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| |
Collapse
|
46
|
Sultana A, Zare M, Thomas V, Kumar TS, Ramakrishna S. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
47
|
Shrestha KR, Lee DH, Chung W, Lee SW, Lee BY, Yoo SY. Biomimetic virus-based soft niche for ischemic diseases. Biomaterials 2022; 288:121747. [PMID: 36041939 DOI: 10.1016/j.biomaterials.2022.121747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/26/2022] [Accepted: 08/15/2022] [Indexed: 11/02/2022]
Abstract
The essential therapeutic cues provided by a nanofibrous arginine-glycine-aspartic acid-engineered M13 phage were exploited as extracellular matrix (ECM)-mimicking niches, contributing to de novo soft tissue niche engineering. The interplay of biomimetic phage cues with surrounding organ tissues was identified, and cells were implanted between tissues to achieve an appropriate soft tissue niche that enables the proper functioning of the implanted stem cells at the injured site. With the polyacrylamide (PA) hydrogel mimicking the soft tissue organ stiffness ranges, it was found that biochemical and topological cues in conjunction with the ∼1-2 kPa elastic and mechanical cues of engineered phage nanofibers in soft tissues efficiently enhance the desired response of implanted stem cells. This phage cue with angiogenic and antioxidant functions overcomes the pathological environment to support implanted cells and surrounding soft tissues at the ischemic site, thereby successfully decreasing myogenic degeneration, minimizing fibrosis, and enhancing blood vessel regeneration with M2 macrophage polarization by improving the survival of the implanted endothelial progenitor cells (EPC) in an ischemic mouse model. These biomimetic phage nanofiber cues are considerably supportive of cell therapy, as they establish promising therapeutic extracellular de novo soft tissue niches for curing ischemic diseases.
Collapse
Affiliation(s)
- Kshitiz Raj Shrestha
- BIO-IT Foundry Technology Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Do Hoon Lee
- Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woojae Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seung-Wuk Lee
- Bioengineering, University of California, Berkeley, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States
| | - Byung Yang Lee
- Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
48
|
Hou Y, Fei Y, Liu Z, Liu Y, Li M, Luo Z. Black phosphorous nanomaterials as a new paradigm for postoperative tumor treatment regimens. J Nanobiotechnology 2022; 20:366. [PMID: 35953821 PMCID: PMC9367102 DOI: 10.1186/s12951-022-01579-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/24/2022] [Indexed: 12/02/2022] Open
Abstract
Surgery is currently a mainstream treatment modality for various solid tumor indications. However, aggressive resection of tumor tissues frequently causes postoperative complications, which severely undermine the well-being of patients. Moreover, the residue tumor cells may substantially increase the risk of local and distant tumor relapse. The recent development in black phosphorus (BP)-based nanomaterials offers a promising opportunity to address these clinical challenges. BP is an emerging nanomaterial with excellent biocompatibility and versatile functionality, which has already demonstrated great potential for a variety of biomedical applications including tumor therapy and tissue engineering. In this review, the recent advances in BP-based nanobiomaterials for the post-surgery treatment of solid tumor have been summarized, while specific emphasis was placed on their capability to continuously inhibit residue tumor growth at the surgery site as well as stimulating various healing mechanisms, aiming to preventing tumor relapse while promoting the healing of surgery-induced traumatic soft/hard tissue injuries. It is anticipated that the nanoengineered BP-based materials may open new avenues to tackle those clinical challenges in surgical treatment of solid tumors.
Collapse
Affiliation(s)
- Yanhua Hou
- Chongqing Engineering Research Center of Pharmaceutical Science, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Yang Fei
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Zehong Liu
- Chongqing Engineering Research Center of Pharmaceutical Science, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Yingqi Liu
- School of Life Science, Chongqing University, Chongqing, 400044, China.
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, China. .,111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
49
|
Huang R, Zhou X, Chen G, Su L, Liu Z, Zhou P, Weng J, Min Y. Advances of functional nanomaterials for magnetic resonance imaging and biomedical engineering applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1800. [PMID: 35445588 DOI: 10.1002/wnan.1800] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 11/12/2022]
Abstract
Functional nanomaterials have been widely used in biomedical fields due to their good biocompatibility, excellent physicochemical properties, easy surface modification, and easy regulation of size and morphology. Functional nanomaterials for magnetic resonance imaging (MRI) can target specific sites in vivo and more easily detect disease-related specific biomarkers at the molecular and cellular levels than traditional contrast agents, achieving a broad application prospect in MRI. This review focuses on the basic principles of MRI, the classification, synthesis and surface modification methods of contrast agents, and their clinical applications to provide guidance for designing novel contrast agents and optimizing the contrast effect. Furthermore, the latest biomedical advances of functional nanomaterials in medical diagnosis and disease detection, disease treatment, the combination of diagnosis and treatment (theranostics), multi-model imaging and nanozyme are also summarized and discussed. Finally, the bright application prospects of functional nanomaterials in biomedicine are emphasized and the urgent need to achieve significant breakthroughs in the industrial transformation and the clinical translation is proposed. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Ruijie Huang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Xingyu Zhou
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Guiyuan Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Lanhong Su
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Zhaoji Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Peijie Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuanzeng Min
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Chemistry, University of Science and Technology of China, Hefei, China
| |
Collapse
|
50
|
Xu D, Gan K, Wang Y, Wu Z, Wang Y, Zhang S, Peng Y, Fang X, Wei H, Zhang Y, Ma W, Chen J. A Composite Deferoxamine/Black Phosphorus Nanosheet/Gelatin Hydrogel Scaffold for Ischemic Tibial Bone Repair. Int J Nanomedicine 2022; 17:1015-1030. [PMID: 35299865 PMCID: PMC8923703 DOI: 10.2147/ijn.s351814] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Bone delay union is mostly caused by lack of blood supply. Although autografts, allografts and artificial bone have been widely used to treat bone delay union, the bone regeneration fails in the ischemic site accompanied by the bone donor site complications and disease transmission. Recently, there is a growing recognition of the importance of hydrogel scaffolds which are regarded as an eligible engineer tissue for bone repair. However, hydrogel is still limited in improving neovascularization. Methods In this work, black phosphorus nanosheet and deferoxamine (BPN-DFO) were loaded in the gelatin hydrogel to overcome the high risk of bone delay union and systemically investigated the regeneration capability of BPN-DFO hydrogel in vitro and vivo. Results The resulting BPN-DFO hydrogel scaffold showed superior swollen, degradation and release rate, as well as satisfied biocompatibility. BPN-DFO hydrogel shown the significant up-expression of mRNA related to bone regeneration and cell proliferation. In vivo, the proposed BPN-DFO hydrogel significantly improved osteogenesis and neovascularization in the ischemic tibial bone site of SD rats with acute femoral artery occlusion. Both macroscopic and histological evaluation of new regenerated bone showed newly formed blood vessel and collagen using BPN-DFO hydrogel. The immunohistochemistry and RT-PCR revealed that the bone regeneration could be improved via BMP/Runx2 pathway. Conclusion The BPN-DFO hydrogel possesses potential tissue engineer material for ischemic bone defect treatment. However, furthermore studies are needed to testify the safety and efficacy of BPN-DFO hydrogel.
Collapse
Affiliation(s)
- Dingli Xu
- The Affiliated Hospital of Ningbo University Medical School, Ningbo, 315000, People’s Republic of China
- Ningbo No.6 Hospital, Ningbo, 315000, People’s Republic of China
| | - Kaifeng Gan
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 31500, People’s Republic of China
| | - Yang Wang
- The Affiliated Hospital of Ningbo University Medical School, Ningbo, 315000, People’s Republic of China
| | - Zeting Wu
- The Affiliated Hospital of Ningbo University Medical School, Ningbo, 315000, People’s Republic of China
| | - Yulong Wang
- The Affiliated Hospital of Ningbo University Medical School, Ningbo, 315000, People’s Republic of China
| | - Song Zhang
- The Affiliated Hospital of Ningbo University Medical School, Ningbo, 315000, People’s Republic of China
| | - Yujie Peng
- Ningbo No.6 Hospital, Ningbo, 315000, People’s Republic of China
| | - Xuguang Fang
- The First Affiliated Hospital of Xi ‘an Medical University, Xi’an, 710082, People’s Republic of China
| | - Hua Wei
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, People’s Republic of China
| | - Yansheng Zhang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, People’s Republic of China
| | - Weihu Ma
- Ningbo No.6 Hospital, Ningbo, 315000, People’s Republic of China
- Correspondence: Weihu Ma; Jing Chen, Email ;
| | - Jing Chen
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, People’s Republic of China
| |
Collapse
|