1
|
Chen Y, Lin L, Xu L, Jin Q, Fu W, Bai Y, Huang T, Gao T, Wu W, Xu C, Wang J, Zhang L, Lv Q, Yang Y, Xie M, Dong X. Platelet-mimicking nanoparticles loaded with diallyl trisulfide for Mitigating Myocardial Ischemia-Reperfusion Injury in rats. Colloids Surf B Biointerfaces 2025; 248:114460. [PMID: 39709937 DOI: 10.1016/j.colsurfb.2024.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
Hydrogen sulfide (H2S) shows promise in treating myocardial ischemia-reperfusion injury (MIRI), but the challenge of controlled and sustained release hinders its clinical utility. In this study, we developed a platelet membrane-encapsulated mesoporous silica nanoparticle loaded with the H2S donor diallyl trisulfide (PM-MSN-DATS). PM-MSN-DATS demonstrated optimal encapsulation efficiency and drug-loading content. Comprehensive in vitro and in vivo assessments confirmed the biosafety of PM-MSN-DATS. In vitro, PM-MSN-DATS adhered to inflammation-activated endothelial cells and exhibited targeted accumulation in MIRI rat hearts. In vivo experiments revealed significant reductions in reactive oxygen species (ROS) and myocardial fibrosis area, improving cardiac function. Our findings highlight successfully creating a targeted H2S delivery system through platelet membrane-coated MSN nanoparticles. This well-designed drug delivery platform holds significant promise for advancing MIRI treatment strategies.
Collapse
Affiliation(s)
- Yihan Chen
- Department of Ultrasonography, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Lin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Diagnostic Ultrasound and Echocardiography, Sir Run Run Shaw Hospital, Zhejiang University School of Medical, Hangzhou, China
| | - Lingling Xu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wenpei Fu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ying Bai
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Tian Huang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wenqian Wu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chunyan Xu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jing Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, China
| | - Qing Lv
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yali Yang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, China.
| | - Xiaoqiu Dong
- Department of Ultrasonography, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Farajollahi A, Baharvand M. Advancements in photoacoustic imaging for cancer diagnosis and treatment. Int J Pharm 2024; 665:124736. [PMID: 39326479 DOI: 10.1016/j.ijpharm.2024.124736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Photoacoustic imaging provides in vivo morphological and functional information about tumors within surrounding tissue. By integrating ultrasound guidance, this technique enables precise localization and characterization of tumors. Moreover, the introduction of targeted contrast agents has further expanded the capabilities of photoacoustic imaging in the realm of in vivo molecular imaging. These contrast agents facilitate enhanced molecular and cellular characterization of cancer, enabling detailed insights into the disease. This review aims to provide a concise summary of the extensive research conducted in the field of Photoacoustic imaging for cancer management. It encompasses the development of the technology, its applications in clinical settings, and the advancements made in molecular imaging. By consolidating and synthesizing the existing knowledge, this review contributes to a better understanding of the potential of photoacoustic imaging in cancer care. In conclusion, photoacoustic imaging has emerged as a non-ionizing and noninvasive modality with the ability to visualize tissue's optical absorption properties while maintaining ultrasound's spatial resolution. Its integration with targeted contrast agents has enhanced molecular and cellular characterization of cancer. This review serves as a succinct overview of the extensive research conducted in the field, shedding light on the potential of photoacoustic imaging in the management of cancer.
Collapse
Affiliation(s)
| | - Mohammad Baharvand
- Department of Mechanical Engineering, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
MacCuaig WM, Wickizer C, Van RS, Buabeng ER, Lerner MR, Grizzle WE, Shao Y, Henary M, McNally LR. Influence of structural moieties in squaraine dyes on optoacoustic signal shape and intensity. Chem 2024; 10:713-729. [PMID: 38738169 PMCID: PMC11087056 DOI: 10.1016/j.chempr.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Optoacoustic imaging has grown in clinical relevance due to inherent advantages in sensitivity, resolution, and imaging depth, but the development of contrast agents is lacking. This study assesses the influence of structural features of squaraine dyes on optoacoustic activity through computational models, in vitro testing, and in vivo experimentation. The squaraine scaffold was decorated with halogens and side-chain extensions. Extension of side chains and heavy halogenation of squaraines both increased optoacoustic signals individually, although they had a more significant effect in tandem. Density functional theory models suggest that the origin of the increased optoacoustic signal is the increase in transition dipole moment and vibrational entropy, which manifested as increased absorbance in near-infrared region (NIR) wavelengths and decreased fluorescence quantum yield. This study provides insight into the structure-function relationships that will lead guiding principles for optimizing optoacoustic contrast agents. Further developments of squaraines and other agents will further increase the relevance of optoacoustic imaging in a clinical setting.
Collapse
Affiliation(s)
- William M. MacCuaig
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Carly Wickizer
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Richard S. Van
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | | | - Megan R. Lerner
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Maged Henary
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Lacey R. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
- Lead contact
| |
Collapse
|
4
|
Fakhoury JW, Lara JB, Manwar R, Zafar M, Xu Q, Engel R, Tsoukas MM, Daveluy S, Mehregan D, Avanaki K. Photoacoustic imaging for cutaneous melanoma assessment: a comprehensive review. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11518. [PMID: 38223680 PMCID: PMC10785699 DOI: 10.1117/1.jbo.29.s1.s11518] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
Significance Cutaneous melanoma (CM) has a high morbidity and mortality rate, but it can be cured if the primary lesion is detected and treated at an early stage. Imaging techniques such as photoacoustic (PA) imaging (PAI) have been studied and implemented to aid in the detection and diagnosis of CM. Aim Provide an overview of different PAI systems and applications for the study of CM, including the determination of tumor depth/thickness, cancer-related angiogenesis, metastases to lymph nodes, circulating tumor cells (CTCs), virtual histology, and studies using exogenous contrast agents. Approach A systematic review and classification of different PAI configurations was conducted based on their specific applications for melanoma detection. This review encompasses animal and preclinical studies, offering insights into the future potential of PAI in melanoma diagnosis in the clinic. Results PAI holds great clinical potential as a noninvasive technique for melanoma detection and disease management. PA microscopy has predominantly been used to image and study angiogenesis surrounding tumors and provide information on tumor characteristics. Additionally, PA tomography, with its increased penetration depth, has demonstrated its ability to assess melanoma thickness. Both modalities have shown promise in detecting metastases to lymph nodes and CTCs, and an all-optical implementation has been developed to perform virtual histology analyses. Animal and human studies have successfully shown the capability of PAI to detect, visualize, classify, and stage CM. Conclusions PAI is a promising technique for assessing the status of the skin without a surgical procedure. The capability of the modality to image microvasculature, visualize tumor boundaries, detect metastases in lymph nodes, perform fast and label-free histology, and identify CTCs could aid in the early diagnosis and classification of CM, including determination of metastatic status. In addition, it could be useful for monitoring treatment efficacy noninvasively.
Collapse
Affiliation(s)
- Joseph W. Fakhoury
- Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Juliana Benavides Lara
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, Chicago, Illinois, United States
| | - Rayyan Manwar
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, Chicago, Illinois, United States
| | - Mohsin Zafar
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, Chicago, Illinois, United States
| | - Qiuyun Xu
- Wayne State University, Department of Biomedical Engineering, Detroit, Michigan, United States
| | - Ricardo Engel
- Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Maria M. Tsoukas
- University of Illinois at Chicago, Department of Dermatology, Chicago, Illinois, United States
| | - Steven Daveluy
- Wayne State University School of Medicine, Department of Dermatology, Detroit, Michigan, United States
| | - Darius Mehregan
- Wayne State University School of Medicine, Department of Dermatology, Detroit, Michigan, United States
| | - Kamran Avanaki
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, Chicago, Illinois, United States
- University of Illinois at Chicago, Department of Dermatology, Chicago, Illinois, United States
| |
Collapse
|
5
|
Samykutty A, Thomas KN, McNally M, Hagood J, Chiba A, Thomas A, McWilliams L, Behkam B, Zhan Y, Council-Troche M, Claros-Sorto JC, Henson C, Garwe T, Sarwar Z, Grizzle WE, McNally LR. Simultaneous Detection of Multiple Tumor-targeted Gold Nanoparticles in HER2-Positive Breast Tumors Using Optoacoustic Imaging. Radiol Imaging Cancer 2023; 5:e220180. [PMID: 37233208 PMCID: PMC10240250 DOI: 10.1148/rycan.220180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Purpose To develop optoacoustic, spectrally distinct, actively targeted gold nanoparticle-based near-infrared probes (trastuzumab [TRA], TRA-Aurelia-1, and TRA-Aurelia-2) that can be individually identifiable at multispectral optoacoustic tomography (MSOT) of human epidermal growth factor receptor 2 (HER2)-positive breast tumors. Materials and Methods Gold nanoparticle-based near-infrared probes (Aurelia-1 and 2) that are optoacoustically active and spectrally distinct for simultaneous MSOT imaging were synthesized and conjugated to TRA to produce TRA-Aurelia-1 and 2. Freshly resected human HER2-positive (n = 6) and HER2-negative (n = 6) triple-negative breast cancer tumors were treated with TRA-Aurelia-1 and TRA-Aurelia-2 for 2 hours and imaged with MSOT. HER2-expressing DY36T2Q cells and HER2-negative MDA-MB-231 cells were implanted orthotopically into mice (n = 5). MSOT imaging was performed 6 hours following the injection, and the Friedman test was used for analysis. Results TRA-Aurelia-1 (absorption peak, 780 nm) and TRA-Aurelia-2 (absorption peak, 720 nm) were spectrally distinct. HER2-positive human breast tumors exhibited a significant increase in optoacoustic signal following TRA-Aurelia-1 (28.8-fold) or 2 (29.5-fold) (P = .002) treatment relative to HER2-negative tumors. Treatment with TRA-Aurelia-1 and 2 increased optoacoustic signals in DY36T2Q tumors relative to those in MDA-MB-231 controls (14.8-fold, P < .001; 20.8-fold, P < .001, respectively). Conclusion The study demonstrates that TRA-Aurelia 1 and 2 nanoparticles operate as a spectrally distinct HER2 breast tumor-targeted in vivo optoacoustic agent. Keywords: Molecular Imaging, Nanoparticles, Photoacoustic Imaging, Breast Cancer Supplemental material is available for this article. © RSNA, 2023.
Collapse
Affiliation(s)
- Abhilash Samykutty
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Karl N. Thomas
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Molly McNally
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Jordan Hagood
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Akiko Chiba
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Alexandra Thomas
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Libby McWilliams
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Bahareh Behkam
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Ying Zhan
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - McAlister Council-Troche
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Juan C. Claros-Sorto
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Christina Henson
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Tabitha Garwe
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Zoona Sarwar
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - William E. Grizzle
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| | - Lacey R. McNally
- From the Department of Surgery, Stephenson Comprehensive Cancer
Center, University of Oklahoma, Oklahoma City, Okla (A.S., M.M., J.H., L.M.,
J.C.C.S.); Department of Radiation Oncology, University of Oklahoma Health
Science Center, Oklahoma City, Okla (C.H.); Atrium Wake Forest Health
Comprehensive Cancer Center, Winston-Salem, NC (A.T., L.M.); Department of
Surgery, Duke University, Durham, NC (A.C.); Department of Cancer Biology, Wake
Forest School of Medicine, Winston-Salem, NC 27013 (A.S., K.N.T., M.M., L.R.M.);
Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Va
(B.B., Y.Z., M.C.T.); and Department of Epidemiology and Biostatistics (T.G.,
Z.S.) and Department of Pathology (W.E.G.), University of Alabama at Birmingham,
Birmingham, Ala
| |
Collapse
|
6
|
Zhang J, Ding H, Zhang F, Xu Y, Liang W, Huang L. New trends in diagnosing and treating ovarian cancer using nanotechnology. Front Bioeng Biotechnol 2023; 11:1160985. [PMID: 37082219 PMCID: PMC10110946 DOI: 10.3389/fbioe.2023.1160985] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Ovarian cancer stands as the fifth most prevalent cancer among women, causing more mortalities than any other disease of the female reproductive system. There are numerous histological subtypes of ovarian cancer, each of which has distinct clinical characteristics, risk factors, cell origins, molecular compositions, and therapeutic options. Typically, it is identified at a late stage, and there is no efficient screening method. Standard therapies for newly diagnosed cancer are cytoreductive surgery and platinum-based chemotherapy. The difficulties of traditional therapeutic procedures encourage researchers to search for other approaches, such as nanotechnology. Due to the unique characteristics of matter at the nanoscale, nanomedicine has emerged as a potent tool for creating novel drug carriers that are more effective and have fewer adverse effects than traditional treatments. Nanocarriers including liposomes, dendrimers, polymer nanoparticles, and polymer micelles have unique properties in surface chemistry, morphology, and mechanism of action that can distinguish between malignant and normal cells, paving the way for targeted drug delivery. In contrast to their non-functionalized counterparts, the development of functionalized nano-formulations with specific ligands permits selective targeting of ovarian cancers and ultimately increases the therapeutic potential. This review focuses on the application of various nanomaterials to the treatment and diagnosis of ovarian cancer, their advantages over conventional treatment methods, and the effective role of controlled drug delivery systems in the therapy of ovarian cancer.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Gynecology, Shaoxing Maternity and Child Healthcare Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Haigang Ding
- Department of Gynecology, Shaoxing Maternity and Child Healthcare Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Feng Zhang
- Department of Gynecology, Shaoxing Maternity and Child Healthcare Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Yan Xu
- Intensive Care Unit, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
- *Correspondence: Liping Huang, ; Wenqing Liang,
| | - Liping Huang
- Department of Medical Oncology, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
- *Correspondence: Liping Huang, ; Wenqing Liang,
| |
Collapse
|
7
|
Lorenz AS, Moses AS, Mamnoon B, Demessie AA, Park Y, Singh P, Taratula O, Taratula O. A Photoacoustic Contrast Nanoagent with a Distinct Spectral Signature for Ovarian Cancer Management. Adv Healthc Mater 2023; 12:e2202946. [PMID: 36495088 PMCID: PMC10079555 DOI: 10.1002/adhm.202202946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Indexed: 12/14/2022]
Abstract
Photoacoustic imaging (PAI) has tremendous potential for improving ovarian cancer detection. However, the lack of effective exogenous contrast agents that can improve PAI diagnosis accuracy significantly limits this application. This study presents a novel contrast nanoagent with a specific spectral signature that can be easily distinguished from endogenous chromophores in cancer tissue, allowing for high-contrast tumor visualization. Constructed as a 40 nm biocompatible polymeric nanoparticle loaded with two naphthalocyanine dyes, this agent is capable of efficient ovarian tumor accumulation after intravenous injection. The developed nanoagent displays a spectral signature with two well-separated photoacoustic peaks of comparable PA intensities in the near-infrared (NIR) region at 770 and 860 nm, which remain unaffected in cancer tissue following systemic delivery. In vivo experiments in mice with subcutaneous and intraperitoneal ovarian cancer xenografts validate that this specific spectral signature allows for accurate spectral unmixing of the nanoagent signal from endogenous contrast in cancer tissue, allowing for sensitive noninvasive cancer diagnosis. In addition, this nanoagent can selectively eradicate ovarian cancer tissue with a single dose of photothermal therapy by elevating the intratumoral temperature to ≈49 °C upon exposure to NIR light within the 700-900 nm range.
Collapse
Affiliation(s)
- Anna St Lorenz
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Abraham S. Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Babak Mamnoon
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Ananiya A. Demessie
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Youngrong Park
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Prem Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Olena Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| |
Collapse
|
8
|
Lu G, Han Z, Hu M. Optical imaging technology realizes early tumor diagnosis by detecting angiogenesis. Microsc Res Tech 2023; 86:232-241. [PMID: 36412215 DOI: 10.1002/jemt.24262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 10/25/2022] [Accepted: 11/06/2022] [Indexed: 11/23/2022]
Abstract
The occurrence and development of blood vessels play a key role in different stages of tumor growth, while current imaging techniques are difficult to detect early tumor angiogenesis because of their low sensitivity. Therefore, this article introduces high-sensitivity optical imaging technology to achieve early tumor diagnosis by detecting tumor angiogenesis. Liver and pancreatic tumor models in nude mice were respectively established to represent tumors with a rich or poor blood supply. The two optical imaging methods, in vivo confocal fluorescence imaging and photoacoustic imaging, were used to detect tumor angiogenesis at different stages. Finally, the changes in blood vessels were verified by immunostaining. Both autoluminescence imaging and pathological staining confirmed that these two tumor models were successfully established. In vivo confocal fluorescence imaging found that the early tumor blood vessel structure had obvious characteristics: disorder, tortuous deformation, thin diameter, which were significantly different from the normal tissues. Photoacoustic imaging could effectively identify blood vessels inside early tumors, which were small and disordered and might be used as one of the predictors of early tumor development. CD31 immunostaining was used to evaluate the vascular status of tumors at different stages and under different blood supply conditions. The vascular structures observed under the microscope in the two tumor models were consistent with the results observed by optical imaging methods. The optical imaging methods could monitor the characteristics of angiogenesis in the rich or poor blood supply tumors, especially the early diagnosis of tumors.
Collapse
Affiliation(s)
- Guanhua Lu
- Department of Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ziyu Han
- Department of Ultrasonic Diagnosis, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Min Hu
- Department of Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Current Update on Nanotechnology-Based Approaches in Ovarian Cancer Therapy. Reprod Sci 2023; 30:335-349. [PMID: 35585292 DOI: 10.1007/s43032-022-00968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Ovarian cancer is one of the leading causes of cancer-related deaths among women. The drawbacks of conventional therapeutic strategies encourage researchers to look for alternative strategies, including nanotechnology. Nanotechnology is one of the upcoming domains of science that is rechanneled towards targeted cancer therapy and diagnosis. Nanocarriers such as dendrimers, liposomes, polymer micelles, and polymer nanoparticles present distinct surface characteristics in morphology, surface chemistry, and mode of action that help differentiate normal and malignant cells, which paves the way for target-specific drug delivery. Similarly, nanoparticles have been strategically utilized as efficacious vehicles to deliver drugs that alter the epigenetic modifications in epigenetic therapy. Some studies suggest that the use of specialized target-modified nanoparticles in siRNA-based nanotherapy prevents internalization and improves the antitumor activity of siRNA by ensuring unrestrained entry of siRNA into the tumor vasculature and efficient intracellular delivery of siRNA. Moreover, research findings highlight the significance of utilizing nanoparticles as depots for photosensitive drugs in photodynamic therapy. The applicability of nanoparticles is further extended to medical imaging. They serve as contrast agents in combination with conventional imaging modalities such as MRI, CT, and fluorescence-based imaging to produce vivid and enhanced images of tumors. Therefore, this review aims to explore and delve deeper into the advent of various nanotechnology-based therapeutic and imaging techniques that provide non-invasive and effective means to tackle ovarian cancers.
Collapse
|
10
|
Zheng Y, Liu M, Jiang L. Progress of photoacoustic imaging combined with targeted photoacoustic contrast agents in tumor molecular imaging. Front Chem 2022; 10:1077937. [PMID: 36479441 PMCID: PMC9720136 DOI: 10.3389/fchem.2022.1077937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/11/2022] [Indexed: 11/22/2022] Open
Abstract
Molecular imaging visualizes, characterizes, and measures biological processes at the molecular and cellular level. In oncology, molecular imaging is an important technology to guide integrated and precise diagnosis and treatment. Photoacoustic imaging is mainly divided into three categories: photoacoustic microscopy, photoacoustic tomography and photoacoustic endoscopy. Different from traditional imaging technology, which uses the physical properties of tissues to detect and identify diseases, photoacoustic imaging uses the photoacoustic effect to obtain the internal information of tissues. During imaging, lasers excite either endogenous or exogenous photoacoustic contrast agents, which then send out ultrasonic waves. Currently, photoacoustic imaging in conjunction with targeted photoacoustic contrast agents is frequently employed in the research of tumor molecular imaging. In this study, we will examine the latest advancements in photoacoustic imaging technology and targeted photoacoustic contrast agents, as well as the developments in tumor molecular imaging research.
Collapse
Affiliation(s)
| | | | - Lixin Jiang
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
11
|
O’Connell C, VandenHeuvel S, Kamat A, Raghavan S, Godin B. The Proteolytic Landscape of Ovarian Cancer: Applications in Nanomedicine. Int J Mol Sci 2022; 23:9981. [PMID: 36077371 PMCID: PMC9456334 DOI: 10.3390/ijms23179981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Ovarian cancer (OvCa) is one of the leading causes of mortality globally with an overall 5-year survival of 47%. The predominant subtype of OvCa is epithelial carcinoma, which can be highly aggressive. This review launches with a summary of the clinical features of OvCa, including staging and current techniques for diagnosis and therapy. Further, the important role of proteases in OvCa progression and dissemination is described. Proteases contribute to tumor angiogenesis, remodeling of extracellular matrix, migration and invasion, major processes in OvCa pathology. Multiple proteases, such as metalloproteinases, trypsin, cathepsin and others, are overexpressed in the tumor tissue. Presence of these catabolic enzymes in OvCa tissue can be exploited for improving early diagnosis and therapeutic options in advanced cases. Nanomedicine, being on the interface of molecular and cellular scales, can be designed to be activated by proteases in the OvCa microenvironment. Various types of protease-enabled nanomedicines are described and the studies that focus on their diagnostic, therapeutic and theranostic potential are reviewed.
Collapse
Affiliation(s)
- Cailin O’Connell
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Sabrina VandenHeuvel
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Aparna Kamat
- Division of Gynecologic Oncology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Shreya Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Obstetrics and Gynecology, Houston Methodist Hospital, Houston, TX 77030, USA
- Houston Methodist Neal Cancer Center, Houston, TX 77030, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences at McGovern Medical School-UTHealth, Houston, TX 77030, USA
| |
Collapse
|
12
|
MacCuaig WM, Samykutty A, Foote J, Luo W, Filatenkov A, Li M, Houchen C, Grizzle WE, McNally LR. Toxicity Assessment of Mesoporous Silica Nanoparticles upon Intravenous Injection in Mice: Implications for Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14050969. [PMID: 35631554 PMCID: PMC9148138 DOI: 10.3390/pharmaceutics14050969] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
Nanoparticles are popular tools utilized to selectively deliver drugs and contrast agents for identification and treatment of disease. To determine the usefulness and translational potential of mesoporous silica nanoparticles (MSNs), further evaluations of toxicity are required. MSNs are among the most utilized nano-delivery systems due to ease of synthesis, pore structure, and functionalization. This study aims to elucidate toxicity as a result of intravenous injection of 25 nm MSNs coated with chitosan (C) or polyethylene glycol (PEG) in mice. Following acute and chronic injections, blood was evaluated for standard blood chemistry and complete blood count analyses. Blood chemistry results primarily indicated that no abnormalities were present following acute or chronic injections of MSNs, or C/PEG-coated MSNs. After four weekly administered treatments, vital organs showed minor exacerbation of pre-existing lesions in the 35KPEG-MSN and moderate exacerbation of pre-existing lesions in uncoated MSN and 2KPEG-MSN treatment groups. In contrast, C-MSN treatment groups had minimal changes compared to controls. This study suggests 25 nm MSNs coated with chitosan should elicit minimal toxicity when administered as either single or multiple intravenous injections, but MSNs coated with PEG, especially 2KPEG may exacerbate pre-existing vascular conditions. Further studies should evaluate varying sizes and types of nanoparticles to provide a better overall understanding on the relation between nanoparticles and in vivo toxicity.
Collapse
Affiliation(s)
- William M. MacCuaig
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (W.M.M.); (A.S.); (W.L.); (A.F.); (M.L.); (C.H.)
- Department of Biomedical Engineering, University of Oklahoma, Norman, OK 73109, USA
| | - Abhilash Samykutty
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (W.M.M.); (A.S.); (W.L.); (A.F.); (M.L.); (C.H.)
| | - Jeremy Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Wenyi Luo
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (W.M.M.); (A.S.); (W.L.); (A.F.); (M.L.); (C.H.)
- Department of Pathology, Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Alexander Filatenkov
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (W.M.M.); (A.S.); (W.L.); (A.F.); (M.L.); (C.H.)
- Department of Pathology, Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Min Li
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (W.M.M.); (A.S.); (W.L.); (A.F.); (M.L.); (C.H.)
- Department of Medicine, Oklahoma Health Science Center, Oklahoma City, OK 73049, USA
| | - Courtney Houchen
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (W.M.M.); (A.S.); (W.L.); (A.F.); (M.L.); (C.H.)
- Department of Medicine, Oklahoma Health Science Center, Oklahoma City, OK 73049, USA
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Lacey R. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (W.M.M.); (A.S.); (W.L.); (A.F.); (M.L.); (C.H.)
- Department of Surgery, Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Correspondence:
| |
Collapse
|
13
|
Nanotheranostics for Image-Guided Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14050917. [PMID: 35631503 PMCID: PMC9144228 DOI: 10.3390/pharmaceutics14050917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
Image-guided nanotheranostics have the potential to represent a new paradigm in the treatment of cancer. Recent developments in modern imaging and nanoparticle design offer an answer to many of the issues associated with conventional chemotherapy, including their indiscriminate side effects and susceptibility to drug resistance. Imaging is one of the tools best poised to enable tailoring of cancer therapies. The field of image-guided nanotheranostics has the potential to harness the precision of modern imaging techniques and use this to direct, dictate, and follow site-specific drug delivery, all of which can be used to further tailor cancer therapies on both the individual and population level. The use of image-guided drug delivery has exploded in preclinical and clinical trials although the clinical translation is incipient. This review will focus on traditional mechanisms of targeted drug delivery in cancer, including the use of molecular targeting, as well as the foundations of designing nanotheranostics, with a focus on current clinical applications of nanotheranostics in cancer. A variety of specially engineered and targeted drug carriers, along with strategies of labeling nanoparticles to endow detectability in different imaging modalities will be reviewed. It will also introduce newer concepts of image-guided drug delivery, which may circumvent many of the issues seen with other techniques. Finally, we will review the current barriers to clinical translation of image-guided nanotheranostics and how these may be overcome.
Collapse
|
14
|
Kankala RK, Han YH, Xia HY, Wang SB, Chen AZ. Nanoarchitectured prototypes of mesoporous silica nanoparticles for innovative biomedical applications. J Nanobiotechnology 2022; 20:126. [PMID: 35279150 PMCID: PMC8917689 DOI: 10.1186/s12951-022-01315-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
Despite exceptional morphological and physicochemical attributes, mesoporous silica nanoparticles (MSNs) are often employed as carriers or vectors. Moreover, these conventional MSNs often suffer from various limitations in biomedicine, such as reduced drug encapsulation efficacy, deprived compatibility, and poor degradability, resulting in poor therapeutic outcomes. To address these limitations, several modifications have been corroborated to fabricating hierarchically-engineered MSNs in terms of tuning the pore sizes, modifying the surfaces, and engineering of siliceous networks. Interestingly, the further advancements of engineered MSNs lead to the generation of highly complex and nature-mimicking structures, such as Janus-type, multi-podal, and flower-like architectures, as well as streamlined tadpole-like nanomotors. In this review, we present explicit discussions relevant to these advanced hierarchical architectures in different fields of biomedicine, including drug delivery, bioimaging, tissue engineering, and miscellaneous applications, such as photoluminescence, artificial enzymes, peptide enrichment, DNA detection, and biosensing, among others. Initially, we give a brief overview of diverse, innovative stimuli-responsive (pH, light, ultrasound, and thermos)- and targeted drug delivery strategies, along with discussions on recent advancements in cancer immune therapy and applicability of advanced MSNs in other ailments related to cardiac, vascular, and nervous systems, as well as diabetes. Then, we provide initiatives taken so far in clinical translation of various silica-based materials and their scope towards clinical translation. Finally, we summarize the review with interesting perspectives on lessons learned in exploring the biomedical applications of advanced MSNs and further requirements to be explored.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China.
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China.
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People's Republic of China.
| | - Ya-Hui Han
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
| | - Hong-Ying Xia
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People's Republic of China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People's Republic of China
| |
Collapse
|
15
|
Zhao Z, Swartchick CB, Chan J. Targeted contrast agents and activatable probes for photoacoustic imaging of cancer. Chem Soc Rev 2022; 51:829-868. [PMID: 35094040 PMCID: PMC9549347 DOI: 10.1039/d0cs00771d] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photoacoustic (PA) imaging has emerged as a powerful technique for the high resolution visualization of biological processes within deep tissue. Through the development and application of exogenous targeted contrast agents and activatable probes that can respond to a given cancer biomarker, researchers can image molecular events in vivo during cancer progression. This information can provide valuable details that can facilitate cancer diagnosis and therapy monitoring. In this tutorial review, we provide a step-by-step guide to select a cancer biomarker and subsequent approaches to design imaging agents for in vivo use. We envision this information will be a useful summary to those in the field, new members to the community, and graduate students taking advanced imaging coursework. We also highlight notable examples from the recent literature, with emphasis on the molecular designs and their in vivo PA imaging performance. To conclude, we provide our outlook and future perspective in this exciting field.
Collapse
Affiliation(s)
- Zhenxiang Zhao
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| | - Chelsea B Swartchick
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| |
Collapse
|
16
|
Farooq A, Sabah S, Dhou S, Alsawaftah N, Husseini G. Exogenous Contrast Agents in Photoacoustic Imaging: An In Vivo Review for Tumor Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:393. [PMID: 35159738 PMCID: PMC8840344 DOI: 10.3390/nano12030393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
The field of cancer theranostics has grown rapidly in the past decade and innovative 'biosmart' theranostic materials are being synthesized and studied to combat the fast growth of cancer metastases. While current state-of-the-art oncology imaging techniques have decreased mortality rates, patients still face a diminished quality of life due to treatment. Therefore, improved diagnostics are needed to define in vivo tumor growths on a molecular level to achieve image-guided therapies and tailored dosage needs. This review summarizes in vivo studies that utilize contrast agents within the field of photoacoustic imaging-a relatively new imaging modality-for tumor detection, with a special focus on imaging and transducer parameters. This paper also details the different types of contrast agents used in this novel diagnostic field, i.e., organic-based, metal/inorganic-based, and dye-based contrast agents. We conclude this review by discussing the challenges and future direction of photoacoustic imaging.
Collapse
Affiliation(s)
- Afifa Farooq
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
| | - Shafiya Sabah
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
| | - Salam Dhou
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
- Department of Computer Science and Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Nour Alsawaftah
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
| | - Ghaleb Husseini
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
- Department of Chemical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| |
Collapse
|
17
|
Henderson E, Huynh G, Wilson K, Plebanski M, Corrie S. The Development of Nanoparticles for the Detection and Imaging of Ovarian Cancers. Biomedicines 2021; 9:1554. [PMID: 34829783 PMCID: PMC8615601 DOI: 10.3390/biomedicines9111554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022] Open
Abstract
Ovarian cancer remains as one of the most lethal gynecological cancers to date, with major challenges associated with screening, diagnosis and treatment of the disease and an urgent need for new technologies that can meet these challenges. Nanomaterials provide new opportunities in diagnosis and therapeutic management of many different types of cancers. In this review, we highlight recent promising developments of nanoparticles designed specifically for the detection or imaging of ovarian cancer that have reached the preclinical stage of development. This includes contrast agents, molecular imaging agents and intraoperative aids that have been designed for integration into standard imaging procedures. While numerous nanoparticle systems have been developed for ovarian cancer detection and imaging, specific design criteria governing nanomaterial targeting, biodistribution and clearance from the peritoneal cavity remain key challenges that need to be overcome before these promising tools can accomplish significant breakthroughs into the clinical setting.
Collapse
Affiliation(s)
- Edward Henderson
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; (E.H.); (G.H.)
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (K.W.); (M.P.)
| | - Gabriel Huynh
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; (E.H.); (G.H.)
| | - Kirsty Wilson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (K.W.); (M.P.)
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (K.W.); (M.P.)
| | - Simon Corrie
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; (E.H.); (G.H.)
- ARC Training Center for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
18
|
MacCuaig WM, Fouts BL, McNally MW, Grizzle WE, Chuong P, Samykutty A, Mukherjee P, Li M, Jasinski J, Behkam B, McNally LR. Active Targeting Significantly Outperforms Nanoparticle Size in Facilitating Tumor-Specific Uptake in Orthotopic Pancreatic Cancer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49614-49630. [PMID: 34653338 PMCID: PMC9783196 DOI: 10.1021/acsami.1c09379] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nanoparticles are widely studied as theranostic vehicles for cancer; however, clinical translation has been limited due to poor tumor specificity. Features that maximize tumor uptake remain controversial, particularly when using clinically relevant models. We report a systematic study that assesses two major features for the impact on tumor specificity, i.e., active vs passive targeting and nanoparticle size, to evaluate relative influences in vivo. Active targeting via the V7 peptide is superior to passive targeting for uptake by pancreatic tumors, irrespective of nanoparticle size, observed through in vivo imaging. Size has a secondary effect on uptake for actively targeted nanoparticles in which 26 nm nanoparticles outperform larger 45 and 73 nm nanoparticles. Nanoparticle size had no significant effect on uptake for passively targeted nanoparticles. Results highlight the superiority of active targeting over nanoparticle size for tumor uptake. These findings suggest a framework for optimizing similar nonaggregate nanoparticles for theranostic treatment of recalcitrant cancers.
Collapse
Affiliation(s)
- William M. MacCuaig
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, 73104, USA
- Department of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Benjamin L. Fouts
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, 73104, USA
| | - Molly W McNally
- Department of Surgery, University of Oklahoma, Oklahoma City, OK, 73104, USA
- Department of Cancer Biology, Wake Forest University, Winston-Salem, NC 27157, USA
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Phillip Chuong
- Department of Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Abhilash Samykutty
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, 73104, USA
- Department of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
- Department of Cancer Biology, Wake Forest University, Winston-Salem, NC 27157, USA
| | | | - Min Li
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, 73104, USA
| | - Jacek Jasinski
- Conn Center Materials Characterization, University of Louisville, Louisville, KY 40202, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Lacey R. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, 73104, USA
- Department of Surgery, University of Oklahoma, Oklahoma City, OK, 73104, USA
- Department of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
- Department of Cancer Biology, Wake Forest University, Winston-Salem, NC 27157, USA
| |
Collapse
|
19
|
Lu F, Li Z, Sheng Y, Ma Y, Yang Y, Ren Y, Su Z, Yu R, Zhang S. Thermal-triggered packing of lipophilic NIR dye IR780 in hepatitis B core at critical ionic strength and cargo-host ratio for improved stability and enhanced cancer phototherapy. Biomaterials 2021; 276:121035. [PMID: 34303153 DOI: 10.1016/j.biomaterials.2021.121035] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 02/09/2023]
Abstract
Virus-like particles (VLPs) holding internal cavity with diameter from tens up to one hundred nanometers are attractive platform for drug delivery. Nevertheless, the packing of drugs in the nanocage mainly relies on complicated disassembly-reassembly process. In this study, hepatitis B core protein (HBc) VLPs which can withstand temperature up to 90 °C was employed as carrier to load a lipophilic near infrared dye IR780. It was found that an attaching-dis-atching-diffusing process was involved for the entering of IR780 in the cavity of HBc. The first two steps were associated with the electrostatic interactions between oppositely charged HBc and IR780, which was critically manipulated by ionic strength and HBc/IR780 mass ratio at which they were mixed; while the diffusion of IR780 across the shell of HBc showed a temperature-dependent manner that can be triggered by thermal induced pore-opening of the HBc capsid. At optimized condition, about 1055 IR780 molecules were encapsulated in each HBc by simply mixing them for 10 min at 60 °C. Compared with free IR780, the HBc-IR780 particles showed significantly improved aqueous and photostability, as well as enhanced photothermal and photodynamic performance for cancer therapy. This study provides a novel drug loading strategy and nanomemedicine for cancer phototherapies.
Collapse
Affiliation(s)
- Fengying Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhengjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanan Sheng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanyan Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanli Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ying Ren
- State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Rong Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
20
|
Živojević K, Mladenović M, Djisalov M, Mundzic M, Ruiz-Hernandez E, Gadjanski I, Knežević NŽ. Advanced mesoporous silica nanocarriers in cancer theranostics and gene editing applications. J Control Release 2021; 337:193-211. [PMID: 34293320 DOI: 10.1016/j.jconrel.2021.07.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022]
Abstract
Targeted nanomaterials for cancer theranostics have been the subject of an expanding volume of research studies in recent years. Mesoporous silica nanoparticles (MSNs) are particularly attractive for such applications due to possibilities to synthesize nanoparticles (NPs) of different morphologies, pore diameters and pore arrangements, large surface areas and various options for surface functionalization. Functionalization of MSNs with different organic and inorganic molecules, polymers, surface-attachment of other NPs, loading and entrapping cargo molecules with on-desire release capabilities, lead to seemingly endless prospects for designing advanced nanoconstructs exerting multiple functions, such as simultaneous cancer-targeting, imaging and therapy. Describing composition and multifunctional capabilities of these advanced nanoassemblies for targeted therapy (passive, ligand-functionalized MSNs, stimuli-responsive therapy), including one or more modalities for imaging of tumors, is the subject of this review article, along with an overview of developments within a novel and attractive research trend, comprising the use of MSNs for CRISPR/Cas9 systems delivery and gene editing in cancer. Such advanced nanconstructs exhibit high potential for applications in image-guided therapies and the development of personalized cancer treatment.
Collapse
Affiliation(s)
- Kristina Živojević
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
| | - Minja Mladenović
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
| | - Mila Djisalov
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
| | - Mirjana Mundzic
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
| | | | - Ivana Gadjanski
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
| | - Nikola Ž Knežević
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia.
| |
Collapse
|
21
|
Boztepe T, Castro GR, León IE. Lipid, polymeric, inorganic-based drug delivery applications for platinum-based anticancer drugs. Int J Pharm 2021; 605:120788. [PMID: 34116182 DOI: 10.1016/j.ijpharm.2021.120788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/13/2022]
Abstract
The three main FDA-approved platinum drugs in chemotherapy such as carboplatin, cisplatin, and oxaliplatin are extensively applied in cancer treatments. Although the clinical applications of platinum-based drugs are extremely effective, their toxicity profile restricts their extensive application. Therefore, recent studies focus on developing new platinum drug formulations, expanding the therapeutic aspect. In this sense, recent advances in the development of novel drug delivery carriers will help with the increase of drug stability and biodisponibility, concomitantly with the reduction of drug efflux and undesirable secondary toxic effects of platinum compounds. The present review describes the state of the art of platinum drugs with their biological effects, pre- and clinical studies, and novel drug delivery nanodevices based on lipids, polymers, and inorganic.
Collapse
Affiliation(s)
- Tugce Boztepe
- Laboratorio de Nanobiomateriales, CINDEFI - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET (CCT La Plata), Calle 47 y 115, B1900AJL La Plata, Argentina
| | - Guillermo R Castro
- Laboratorio de Nanobiomateriales, CINDEFI - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET (CCT La Plata), Calle 47 y 115, B1900AJL La Plata, Argentina; Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Maipú 1065, S2000 Rosario, Santa Fe, Argentina.
| | - Ignacio E León
- Centro de Química Inorgánica, CEQUINOR (CONICET-UNLP), Bv. 120 1465, La Plata, Argentina.
| |
Collapse
|
22
|
Abstract
IR780, a small molecule with a strong optical property and excellent photoconversion efficiency following near infrared (NIR) irradiation, has attracted increasing attention in the field of cancer treatment and imaging. This review is focused on different IR780-based nanoplatforms and the application of IR780-based nanomaterials for cancer bioimaging and therapy. Thus, this review summarizes the overall aspects of IR780-based nanomaterials that positively impact cancer biomedical applications.
Collapse
Affiliation(s)
- Long Wang
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China. and Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chengcheng Niu
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China. and Department of Ultrasound Diagnosis and Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
23
|
Frickenstein AN, Hagood JM, Britten CN, Abbott BS, McNally MW, Vopat CA, Patterson EG, MacCuaig WM, Jain A, Walters KB, McNally LR. Mesoporous Silica Nanoparticles: Properties and Strategies for Enhancing Clinical Effect. Pharmaceutics 2021; 13:570. [PMID: 33920503 PMCID: PMC8072651 DOI: 10.3390/pharmaceutics13040570] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/15/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Due to the theragnostic potential of mesoporous silica nanoparticles (MSNs), these were extensively investigated as a novel approach to improve clinical outcomes. Boasting an impressive array of formulations and modifications, MSNs demonstrate significant in vivo efficacy when used to identify or treat myriad malignant diseases in preclinical models. As MSNs continue transitioning into clinical trials, a thorough understanding of the characteristics of effective MSNs is necessary. This review highlights recent discoveries and advances in MSN understanding and technology. Specific focus is given to cancer theragnostic approaches using MSNs. Characteristics of MSNs such as size, shape, and surface properties are discussed in relation to effective nanomedicine practice and projected clinical efficacy. Additionally, tumor-targeting options used with MSNs are presented with extensive discussion on active-targeting molecules. Methods for decreasing MSN toxicity, improving site-specific delivery, and controlling release of loaded molecules are further explained. Challenges facing the field and translation to clinical environments are presented alongside potential avenues for continuing investigations.
Collapse
Affiliation(s)
- Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (A.N.F.); (C.A.V.); (W.M.M.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Jordan M. Hagood
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Collin N. Britten
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA; (C.N.B.); (B.S.A.); (K.B.W.)
| | - Brandon S. Abbott
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA; (C.N.B.); (B.S.A.); (K.B.W.)
| | - Molly W. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Catherine A. Vopat
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (A.N.F.); (C.A.V.); (W.M.M.)
| | - Eian G. Patterson
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA;
| | - William M. MacCuaig
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (A.N.F.); (C.A.V.); (W.M.M.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Ajay Jain
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA;
| | - Keisha B. Walters
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA; (C.N.B.); (B.S.A.); (K.B.W.)
| | - Lacey R. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA;
| |
Collapse
|
24
|
Laramie MD, Fouts BL, MacCuaig WM, Buabeng E, Jones MA, Mukherjee P, Behkam B, McNally LR, Henary M. Improved pentamethine cyanine nanosensors for optoacoustic imaging of pancreatic cancer. Sci Rep 2021; 11:4366. [PMID: 33623069 PMCID: PMC7902650 DOI: 10.1038/s41598-021-83658-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 01/08/2021] [Indexed: 01/31/2023] Open
Abstract
Optoacoustic imaging is a new biomedical imaging technology with clear benefits over traditional optical imaging and ultrasound. While the imaging technology has improved since its initial development, the creation of dedicated contrast agents for optoacoustic imaging has been stagnant. Current exploration of contrast agents has been limited to standard commercial dyes that have already been established in optical imaging applications. While some of these compounds have demonstrated utility in optoacoustic imaging, they are far from optimal and there is a need for contrast agents with tailored optoacoustic properties. The synthesis, encapsulation within tumor targeting silica nanoparticles and applications in in vivo tumor imaging of optoacoustic contrast agents are reported.
Collapse
Affiliation(s)
- Matthew D Laramie
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Benjamin L Fouts
- Department of Surgery, Oklahoma Health Science Center, Oklahoma City, 73104, USA
- Stephenson Cancer Center, Oklahoma Health Science Center, Oklahoma City, OK, 73104, USA
| | - William M MacCuaig
- Stephenson Cancer Center, Oklahoma Health Science Center, Oklahoma City, OK, 73104, USA
- Department of Biomedical Engineering, University of Oklahoma, Norman, OK, 72073, USA
| | - Emmanuel Buabeng
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Meredith A Jones
- Department of Biomedical Engineering, University of Oklahoma, Norman, OK, 72073, USA
| | - Priyabrata Mukherjee
- Department of Pathology, Oklahoma Health Science Center, Oklahoma City, OK, 73104, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech University, Blacksburg, VA, 24061, USA
| | - Lacey R McNally
- Department of Surgery, Oklahoma Health Science Center, Oklahoma City, 73104, USA.
- Stephenson Cancer Center, Oklahoma Health Science Center, Oklahoma City, OK, 73104, USA.
- Department of Biomedical Engineering, University of Oklahoma, Norman, OK, 72073, USA.
- Department of Cancer Biology, Wake Forest University, Winston-Salem, NC, 27157, USA.
| | - Maged Henary
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
25
|
Deng X, Zeng M, Wang X, Liu J, Ma Y, Wang X, Xu L. Preparation and characterization of cyclic citrullinated peptide-immobilized latex beads for measurement of anti-citrillinated protein antibody through latex particle-enhanced turbidimetric immunoassay. J Chromatogr A 2021; 1642:462000. [PMID: 33684874 DOI: 10.1016/j.chroma.2021.462000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/15/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
The anti-citrillinated protein antibody (ACPA) plays an important role in early diagnosis of rheumatoid arthritis (RA), and is usually detected by using cyclic citrullinated peptide (CCP) as antigen. The ACPA against CCP test is usually performed utilizing enzyme-linked immunosorbent assay (ELISA), but the ELISA is expensive and time-consuming. Here, latex particle-enhanced turbidimetric immunoassay (LTIA) based on CCP-immobilized latex bead was proposed for fast measurements of ACPA of RA patients. CCP-immobilized latex bead was fabricated through three methods, including direct coupling, overall coupling and layer by layer coupling. According to the optimized experiments, layer-by-layer coupling was the best method with advantages of time-saving, simple operation and good repeatability. In addition, a spacer arm of appropriate length between latex beads and CCP could avoid stereoscopic obstacles and make ACPA closer to CCP. The CCP-immobilized latex bead based on layer by layer coupling (CCP-LB-LLC) was used for assembling the homemade kit, which was applied in fast measurements of ACPA through LTIA. The homemade kit possessed a low limit of detection (0.2 U/mL) and an acceptable the batch-to-batch reproducibility. In addition, the homemade kit can be stored at 4 °C for at least one month. When used to detect 20 clinical samples, the results of homemade kit were consistent with commercial ELISA. Furthermore, LTIA based on the homemade kit was simpler and cheaper than ELISA. These results demonstrated that the homemade kit could be useful for diagnosis of RA patients.
Collapse
Affiliation(s)
- Xiyan Deng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Min Zeng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Xuan Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Jiyang Liu
- School of Pharmacy, Tianjin Medical College, Tianjin, 300222, PR China
| | - Yuanchun Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Xianhua Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China.
| | - Liang Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China; School of Pharmacy, Tianjin Medical College, Tianjin, 300222, PR China.
| |
Collapse
|
26
|
Ding Z, Wang D, Shi W, Yang X, Duan S, Mo F, Hou X, Liu A, Lu X. In vivo Targeting of Liver Cancer with Tissue- and Nuclei-Specific Mesoporous Silica Nanoparticle-Based Nanocarriers in mice. Int J Nanomedicine 2020; 15:8383-8400. [PMID: 33149582 PMCID: PMC7605659 DOI: 10.2147/ijn.s272495] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/30/2020] [Indexed: 12/23/2022] Open
Abstract
Purpose Cancer tissue-specific and nuclei-targeted drug delivery is ideal for the delivery of chemotherapy. However, it has only been achieved in in vitro studies mainly due to low efficiency in vivo. In this study, we aimed to establish an efficient dual-targeted system that targets liver cancer tissue as well as the nuclei of cancer cells in vivo. Methods We first synthesized TAT peptide (TATp)-mesoporous silica nanoparticle (MSN) complex (TATp-MSN) and generated liposomes that carried liver cancer-specific aptamer TLS11a (TLS11a-LB). We then generated the drug TLS11a-LB@TATp-MSN/doxorubicin (DOX) by mixing TLS11a-LB and DOX-loaded TATp-MSN. After physical and chemical characterization of the nanoparticles, DOX release from these formulations was evaluated at pH 5.0 and 7.4. Furthermore, we also evaluated nuclear localization and cytotoxicity of the drug in H22 cells in vitro and investigated the liver cancer targeting and antitumor activities of the nano-drug in vivo using a H22 tumor-bearing mice model. Results TLS11a-LB@TATp-MSN/DOX and its controls were confirmed as nano-drugs (<100 nm) using transmission electron microscopy (TEM). The DOX release rate of TLS11a-LB@TATp-MSN/DOX was significantly faster at pH 5.0 than at pH 7.4. TLS11a-LB@TATp-MSN/DOX effectively targeted the nuclei of H22 cells and released DOX with a higher efficiency than that of the control groups. In addition, TLS11a-LB@TATp-MSN/DOX exhibited slight cytotoxicity, but not significantly more than controls. In vivo studies showed that TLS11a-LB@TATp-MSN accumulated in subcutaneous H22 tumors in the right axilla of BALB/c mice, reaching peak levels at 48 h after intravenous injection, respectively, and demonstrated that TLS11a-LB@TATp-MSN/DOX group enhanced tumor treatment efficacy while reducing systemic side effects. Conclusion TLS11a-LB@TATp-MSN/DOX can efficiently deliver DOX to the nuclei of liver cancer cells by dual targeting liver cancer tissue and the nuclei of the cancer cells in mice. Thus, it is a promising nano-drug for the treatment of liver cancer.
Collapse
Affiliation(s)
- Ziqiang Ding
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Dujin Wang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Wei Shi
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Xiaomei Yang
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Siliang Duan
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Fengzhen Mo
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Xiaoqiong Hou
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Aiqun Liu
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Xiaoling Lu
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.,College of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| |
Collapse
|
27
|
Ding X, Yu W, Wan Y, Yang M, Hua C, Peng N, Liu Y. A pH/ROS-responsive, tumor-targeted drug delivery system based on carboxymethyl chitin gated hollow mesoporous silica nanoparticles for anti-tumor chemotherapy. Carbohydr Polym 2020; 245:116493. [DOI: 10.1016/j.carbpol.2020.116493] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/06/2020] [Accepted: 05/18/2020] [Indexed: 01/04/2023]
|
28
|
Ghaferi M, Koohi Moftakhari Esfahani M, Raza A, Al Harthi S, Ebrahimi Shahmabadi H, Alavi SE. Mesoporous silica nanoparticles: synthesis methods and their therapeutic use-recent advances. J Drug Target 2020; 29:131-154. [PMID: 32815741 DOI: 10.1080/1061186x.2020.1812614] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesoporous silica nanoparticles (MSNPs) are a particular example of innovative nanomaterials for the development of drug delivery systems. MSNPs have recently received more attention for biological and pharmaceutical applications due to their capability to deliver therapeutic agents. Due to their unique structure, they can function as an effective carrier for the delivery of therapeutic agents to mitigate diseases progress, reduce inflammatory responses and consequently improve cancer treatment. The potency of MSNPs for the diagnosis and management of various diseases has been studied. This literature review will take an in-depth look into the properties of various types of MSNPs (e.g. shape, particle and pore size, surface area, pore volume and surface functionalisation), and discuss their characteristics, in terms of cellular uptake, drug delivery and release. MSNPs will then be discussed in terms of their therapeutic applications (passive and active tumour targeting, theranostics, biosensing and immunostimulative), biocompatibility and safety issues. Also, emerging trends and expected future advancements of this carrier will be provided.
Collapse
Affiliation(s)
- Mohsen Ghaferi
- Department of Chemical Engineering, Islamic Azad University, Shahrood Branch, Shahrood, Iran
| | - Maedeh Koohi Moftakhari Esfahani
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Molecular Design and Synthesis Discipline, Queensland University of Technology, Brisbane, Australia
| | - Aun Raza
- School of Pharmacy, The University of Queensland, Woolloongabba, Australia
| | - Sitah Al Harthi
- School of Pharmacy, The University of Queensland, Woolloongabba, Australia.,Department of Pharmaceutical Science, College of Pharmacy, Shaqra University, Dawadmi, Saudi Arabia
| | - Hasan Ebrahimi Shahmabadi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | |
Collapse
|
29
|
Actively Targeted Nanodelivery of Echinomycin Induces Autophagy-Mediated Death in Chemoresistant Pancreatic Cancer In Vivo. Cancers (Basel) 2020; 12:cancers12082279. [PMID: 32823919 PMCID: PMC7464900 DOI: 10.3390/cancers12082279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer remains a recalcitrant neoplasm associated with chemoresistance and high fatality. Because it is frequently resistant to apoptosis, exploiting autophagic cell death could offer a new treatment approach. We repurpose echinomycin, an antibiotic encapsulated within a syndecan-1 actively targeted nanoparticle, for treatment of pancreatic cancer. Tumor-specific uptake, biodistribution, efficacy of nanodelivered echinomycin, and mechanism of cell death were assessed in aggressive, metastatic models of pancreatic cancer. In these autophagic-dependent pancreatic cancer models, echinomycin treatment resulted in autophagic cell death noted by high levels of LC3 among other autophagy markers, but without hallmarks of apoptosis, e.g., caspase activation and chromatin fragmentation, or necrosis, e.g., plasma membrane degradation and chromatin condensation/degrading. In vivo, biodistribution of syndecan-1-targeted nanoparticles indicated preferential S2VP10 or S2CP9 tumor uptake compared to the liver and kidney (S2VP10 p = 0.0016, p = 0.00004 and S2CP9 p = 0.0009, p = 0.0001). Actively targeted nanodelivered echinomycin resulted in significant survival increases compared to Gemzar (S2VP10 p = 0.0003, S2CP9 p = 0.0017) or echinomycin only (S2VP10 p = 0.0096, S2CP9 p = 0.0073). We demonstrate that actively targeted nanodelivery of echinomycin results in autophagic cell death in pancreatic and potentially other high-autophagy, apoptosis-resistant tumors. Collectively, these findings support syndecan-1-targeted delivery of echinomycin and dysregulation of autophagy to induce cell death in pancreatic cancer.
Collapse
|
30
|
Zhuang J, Zhou L, Tang W, Ma T, Li H, Wang X, Chen C, Wang P. Tumor targeting antibody-conjugated nanocarrier with pH/thermo dual-responsive macromolecular film layer for enhanced cancer chemotherapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111361. [PMID: 33254980 DOI: 10.1016/j.msec.2020.111361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/19/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022]
Abstract
In response to changeful tumor environment, self-targeting antibody-mediated drug nanocarrier with functionalization have been broadly developed to realize specific antitumor efficacy. In this work, an antibody-conjugated drug delivery system with pH/temperature dual-responsive property was devised and fabricated based on mesoporous silica nanoparticle (MSN). Briefly, MSN was first modified with the pH/temperature dual-responsive macromolecular copolymer P(NIPAm-co-MAA) via a precipitation polymerization method, and then grafted with the anti-human epidermal growth factor receptor 2 (HER2) single chain antibody fragment (scFv) to specifically target HER2 positive breast cancer cells. With this structure, such targeting nanoparticles eventually exhibited high drug loading capacity and good biocompatibility. Meanwhile, the cumulative in vitro drug release profile displayed a low-level early leakage at neutral pH values/low temperature while remarkably enhanced release at an acidic pH value/high temperature, indicating an apparent pH/temperature-triggered drug release pattern. Moreover, tumor-targeting assay revealed that the anti-HER2 scFv-surface decoration greatly enhanced the cellular uptake of as-prepared nanoparticle through HER2-antibody-mediated endocytosis, as well as improved the uptake selectivity between normal and cancer cells. More importantly, both the in vitro and in vivo anticancer experiments indicated that such targeting dual-responsive nanoplatform could efficiently inhibit the growth of HER2 positive breast cancer with minimal side effects. Collectively, all these results promised such specific-targeted and dual-responsive nanoparticle a smart drug delivery system, and it provided a promising perspective in efficient and controllable cancer therapeutic application.
Collapse
Affiliation(s)
- Jiafeng Zhuang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Lina Zhou
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Wen Tang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Tonghao Ma
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China.
| | - Xiaoli Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
31
|
Ning F, Yang Z, Xu L, Sun Y. Targeted tumor therapy by autophagy of nanoparticles. Future Oncol 2020; 16:793-803. [DOI: 10.2217/fon-2019-0712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Autophagy is an important biological mechanism that regulates the growth, death and energy metabolism of eukaryotic cells. It is also an active and evolutionarily conservative catabolic process to maintain homeostasis during cell stress response and cell survival. Autophagy maintains the body’s stability by degrading damaged proteins, organelles, cytoplasm and invasive microorganisms. Studies have found that autophagy also has a significant impact on the occurrence and development of tumors. Simultaneously, nanoparticles (NPs) can induce autophagy in cells, and the level of autophagy can be regulated by the synthesis design of NPs. Therefore, the study of the regulation of autophagy by NPs is of great significance for the treatment of cancer autocorrelation.
Collapse
Affiliation(s)
- Fang Ning
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, PR China
| | - Zhihong Yang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, PR China
| | - Lisa Xu
- Department of Nutrition, School of Public Health, Qingdao University, Qingdao 266021, PR China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, PR China
| |
Collapse
|
32
|
Leitão MM, de Melo‐Diogo D, Alves CG, Lima‐Sousa R, Correia IJ. Prototypic Heptamethine Cyanine Incorporating Nanomaterials for Cancer Phototheragnostic. Adv Healthc Mater 2020; 9:e1901665. [PMID: 31994354 DOI: 10.1002/adhm.201901665] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Developing technologies that allow the simultaneous diagnosis and treatment of cancer (theragnostic) has been the quest of numerous interdisciplinary research teams. In this context, nanomaterials incorporating prototypic near infrared (NIR)-light responsive heptamethine cyanines have been showing very promising results for cancer theragnostic. The precisely engineered features of these nanomaterials endow them with the ability to achieve a high tumor accumulation, enabling a tumor's visualization by NIR fluorescence and photoacoustic imaging modalities. Upon interaction with NIR light, the tumor-homed heptamethine cyanine-incorporating nanomaterials can also produce a photothermal/photodynamic effect with a high spatio-temporal resolution and minimal side effects, leading to an improved therapeutic outcome. This progress report analyses the application of nanomaterials incorporating prototypic NIR-light responsive heptamethine cyanines (IR775, IR780, IR783, IR797, IR806, IR808, IR820, IR825, IRDye 800CW, and Cypate) for cancer photothermal therapy, photodynamic therapy, and imaging. Overall, the continuous development of nanomaterials incorporating the prototypic NIR absorbing heptamethine cyanines will cement their phototheragnostic capabilities.
Collapse
Affiliation(s)
- Miguel M. Leitão
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Duarte de Melo‐Diogo
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Cátia G. Alves
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Rita Lima‐Sousa
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Ilídio J. Correia
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
- CIEPQPF‐Departamento de Engenharia QuímicaUniversidade de CoimbraRua Sílvio Lima 3030‐790 Coimbra Portugal
| |
Collapse
|
33
|
Garza-Morales R, Rendon BE, Malik MT, Garza-Cabrales JE, Aucouturier A, Bermúdez-Humarán LG, McMasters KM, McNally LR, Gomez-Gutierrez JG. Targeting Melanoma Hypoxia with the Food-Grade Lactic Acid Bacterium Lactococcus Lactis. Cancers (Basel) 2020; 12:cancers12020438. [PMID: 32069844 PMCID: PMC7072195 DOI: 10.3390/cancers12020438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Melanoma is the most aggressive form of skin cancer. Hypoxia is a feature of the tumor microenvironment that reduces efficacy of immuno- and chemotherapies, resulting in poor clinical outcomes. Lactococcus lactis is a facultative anaerobic gram-positive lactic acid bacterium (LAB) that is Generally Recognized as Safe (GRAS). Recently, the use of LAB as a delivery vehicle has emerged as an alternative strategy to deliver therapeutic molecules; therefore, we investigated whether L. lactis can target and localize within melanoma hypoxic niches. To simulate hypoxic conditions in vitro, melanoma cells A2058, A375 and MeWo were cultured in a chamber with a gas mixture of 5% CO2, 94% N2 and 1% O2. Among the cell lines tested, MeWo cells displayed greater survival rates when compared to A2058 and A375 cells. Co-cultures of L. lactis expressing GFP or mCherry and MeWo cells revealed that L. lactis efficiently express the transgenes under hypoxic conditions. Moreover, multispectral optoacoustic tomography (MSOT), and near infrared (NIR) imaging of tumor-bearing BALB/c mice revealed that the intravenous injection of either L. lactis expressing β-galactosidase (β-gal) or infrared fluorescent protein (IRFP713) results in the establishment of the recombinant bacteria within tumor hypoxic niches. Overall, our data suggest that L. lactis represents an alternative strategy to target and deliver therapeutic molecules into the tumor hypoxic microenvironment.
Collapse
Affiliation(s)
- Rodolfo Garza-Morales
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (R.G.-M.); (J.E.G.-C.); (K.M.M.)
| | - Beatriz E. Rendon
- Molecular Targets Program, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA;
| | - Mohammad Tariq Malik
- Department of Microbiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Jeannete E. Garza-Cabrales
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (R.G.-M.); (J.E.G.-C.); (K.M.M.)
| | - Anne Aucouturier
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (A.A.); (L.G.B.-H.)
| | - Luis G. Bermúdez-Humarán
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (A.A.); (L.G.B.-H.)
| | - Kelly M. McMasters
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (R.G.-M.); (J.E.G.-C.); (K.M.M.)
| | - Lacey R. McNally
- Department of Bioengineering, Stephenson Cancer Center, University of Oklahoma, Norman, OK 73019, USA;
| | - Jorge G. Gomez-Gutierrez
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (R.G.-M.); (J.E.G.-C.); (K.M.M.)
- Correspondence: ; Tel.: +1-(502)-852-5745
| |
Collapse
|
34
|
Nag OK, Delehanty JB. Active Cellular and Subcellular Targeting of Nanoparticles for Drug Delivery. Pharmaceutics 2019; 11:E543. [PMID: 31635367 PMCID: PMC6836276 DOI: 10.3390/pharmaceutics11100543] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 02/08/2023] Open
Abstract
Nanoparticle (NP)-mediated drug delivery (NMDD) for active targeting of diseases is a primary goal of nanomedicine. NPs have much to offer in overcoming the limitations of traditional drug delivery approaches, including off-target drug toxicity and the need for the administration of repetitive doses. In the last decade, one of the main foci in NMDD has been the realization of NP-mediated drug formulations for active targeted delivery to diseased tissues, with an emphasis on cellular and subcellular targeting. Advances on this front have included the intricate design of targeted NP-drug constructs to navigate through biological barriers, overcome multidrug resistance (MDR), decrease side effects, and improve overall drug efficacy. In this review, we survey advancements in NP-mediated drug targeting over the last five years, highlighting how various NP-drug constructs have been designed to achieve active targeted delivery and improved therapeutic outcomes for critical diseases including cancer, rheumatoid arthritis, and Alzheimer's disease. We conclude with a survey of the current clinical trial landscape for active targeted NP-drug delivery and how we envision this field will progress in the near future.
Collapse
Affiliation(s)
- Okhil K Nag
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Ave. SW, Washington, DC 20375, USA.
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Ave. SW, Washington, DC 20375, USA.
| |
Collapse
|
35
|
Bhutiani N, Samykutty A, McMasters KM, Egilmez NK, McNally LR. In vivo tracking of orally-administered particles within the gastrointestinal tract of murine models using multispectral optoacoustic tomography. PHOTOACOUSTICS 2019; 13:46-52. [PMID: 30555786 PMCID: PMC6280634 DOI: 10.1016/j.pacs.2018.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/16/2018] [Accepted: 11/13/2018] [Indexed: 05/05/2023]
Abstract
While particle carriers have potential to revolutionize disease treatment, using these carriers requires knowledge of spatial and temporal biodistribution. The goal of this study was to track orally administered particle uptake and trafficking through the murine gastrointestinal (GI) tract using multispectral optoacoustic tomography (MSOT). Polylactic acid (PLA) particles encapsulating AlexaFluor 680 (AF680) dye conjugated to bovine serum albumin (BSA) were orally gavaged into mice. Particle uptake and trafficking were observed using MSOT imaging with subsequent confirmation of particle uptake via fluorescent microscopy. Mice treated with PLA-AF680-BSA particles exhibited MSOT signal within the small bowel wall at 1 and 6 h, colon wall at 6, 12, and 24 h, and mesenteric lymph node 24 and 48 h. Particle localization identified using MSOT correlated with fluorescence microscopy. Despite the potential of GI tract motion artifacts, MSOT allowed for teal-time tracking of particles within the GI tract in a non-invasive and real-time manner. Future use of MSOT in conjunction with particles containing both protein-conjugated fluorophores as well as therapeutic agents could allow for non-invasive, real time tracking of particle uptake and drug delivery.
Collapse
Affiliation(s)
- Neal Bhutiani
- Department of Surgery, University of Louisville, Louisville, KY, 40202, United States
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, 40202, United States
| | - Abhilash Samykutty
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, United States
| | - Kelly M. McMasters
- Department of Surgery, University of Louisville, Louisville, KY, 40202, United States
| | - Nejat K. Egilmez
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, 40202, United States
| | - Lacey R. McNally
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27101, United States
- Corresponding author at: Associate Professor Department of Cancer Biology, Department of Bioengineering, Wake Forest School of Medicine, Winston-Salem, NC, 27157, United States.
| |
Collapse
|
36
|
Alizadeh L, Zarebkohan A, Salehi R, Ajjoolabady A, Rahmati-Yamchi M. Chitosan-based nanotherapeutics for ovarian cancer treatment. J Drug Target 2019; 27:839-852. [DOI: 10.1080/1061186x.2018.1564923] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Leila Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ajjoolabady
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati-Yamchi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Laramie MD, Smith MK, Marmarchi F, McNally LR, Henary M. Small Molecule Optoacoustic Contrast Agents: An Unexplored Avenue for Enhancing In Vivo Imaging. Molecules 2018; 23:E2766. [PMID: 30366395 PMCID: PMC6278390 DOI: 10.3390/molecules23112766] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
Almost every variety of medical imaging technique relies heavily on exogenous contrast agents to generate high-resolution images of biological structures. Organic small molecule contrast agents, in particular, are well suited for biomedical imaging applications due to their favorable biocompatibility and amenability to structural modification. PET/SPECT, MRI, and fluorescence imaging all have a large host of small molecule contrast agents developed for them, and there exists an academic understanding of how these compounds can be developed. Optoacoustic imaging is a relatively newer imaging technique and, as such, lacks well-established small molecule contrast agents; many of the contrast agents used are the same ones which have found use in fluorescence imaging applications. Many commonly-used fluorescent dyes have found successful application in optoacoustic imaging, but others generate no detectable signal. Moreover, the structural features that either enable a molecule to generate a detectable optoacoustic signal or prevent it from doing so are poorly understood, so design of new contrast agents lacks direction. This review aims to compile the small molecule optoacoustic contrast agents that have been successfully employed in the literature to bridge the information gap between molecular design and optoacoustic signal generation. The information contained within will help to provide direction for the future synthesis of optoacoustic contrast agents.
Collapse
Affiliation(s)
- Matt D Laramie
- Department of Chemistry, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
- Center for Diagnostics and Therapeutics, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
| | - Mary K Smith
- Department of Cancer Biology, 1 Medical Center Blvd, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC 27157, USA.
| | - Fahad Marmarchi
- Department of Chemistry, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
- Center for Diagnostics and Therapeutics, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
| | - Lacey R McNally
- Department of Cancer Biology, 1 Medical Center Blvd, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC 27157, USA.
| | - Maged Henary
- Department of Chemistry, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
- Center for Diagnostics and Therapeutics, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|