1
|
Wei Y, Shao J, Yi K, Li Y, Cheng J, Sun Z, Lu Z, Jing YY, Cao X, Xu X. Multichromatic Anti-Stokes Photon Upconversion through BNOSe Sensitization. J Phys Chem Lett 2025; 16:4270-4276. [PMID: 40261213 DOI: 10.1021/acs.jpclett.5c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Triplet-triplet annihilation upconversion (TTA-UC) has become an important sensing technique due to its ability to eliminate tissue autofluorescence interference. However, its quantitative application in oxygen sensing within complex systems remains fundamentally constrained. To overcome this limitation and explore synergistic anti-Stokes mechanisms, we developed a heavy-metal-free photosensitizer (BNOSe) via multiresonance architecture engineering. This innovation enables the creation of the first integrated platform capable of simultaneous TTA-UC and oxygen-resistant single-photon absorption upconversion (SPA-UC). The optimized system exhibits remarkable performance: it converts deep-red light (640 nm) into dual emissions at 617 nm (orange) and 412 nm (blue), achieving a record TTA-UC quantum yield of 19.3% with a 1.07 eV anti-Stokes shift, the largest value reported for visible-to-blue TTA-UC using metal-free sensitizers. Importantly, the oxygen-dependent TTA-UC and oxygen-resistant SPA-UC channels establish a self-calibrating sensing paradigm, showcasing multimodal capabilities in oxygen-probing bioimaging and multicolor analyte detection.
Collapse
Affiliation(s)
- Yaxiong Wei
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, P. R. China
| | - Jinsong Shao
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, P. R. China
| | - Kai Yi
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, P. R. China
| | - Ying Li
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, P. R. China
| | - Jiahui Cheng
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, P. R. China
| | - Zhongfa Sun
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, P. R. China
| | - Zhou Lu
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yan-Yun Jing
- School of Mechanical and Electrical Engineering, Hubei Three Gorges Polytechnic, Yichang 443199, P. R. China
| | - Xiaosong Cao
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xinsheng Xu
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
2
|
Wu J, Zhou X, Tsang CY, Mei Q, Zhang Y. Bioengineered nanomaterials for dynamic diagnostics in vivo. Chem Soc Rev 2025. [PMID: 40289891 DOI: 10.1039/d5cs00136f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
In vivo diagnostics obtains real-time physiological information directly from the site of interest in a patient's body, providing more accurate disease diagnosis compared with ex vivo diagnostics. Particularly, in vivo dynamic diagnostics allows the continuous monitoring of physiological signals over a period of time, offering deeper insights into disease pathogenesis and progression. However, achieving in situ dynamic diagnostics in deep tissues presents challenges related to energy and signal penetration as well as dynamic monitoring. Bioengineered nanomaterials serve as an ideal platform for in vivo dynamic diagnostics, leveraging energy conversion and biofunctionalization to enable continuous acquisition of physiological information across temporal and spatial scales. In this review, with reference to the studies from the last five years, we summarize the fundamental components that are essential for dynamic diagnosis in vivo. Firstly, an input energy source with high tissue penetration is needed, such as near-infrared (NIR) light, X-rays, magnetic field and ultrasound. Secondly, a nanomaterial class that is responsive to such an energy source to provide a readable output signal is chosen. Thirdly, bioengineered nanoprobes are designed to exhibit spatial, temporal or spatiotemporal changes in the output signal. Finally, different methods are used to analyse the output signal of nanoprobes, such as detecting changes in optical, radiation, magnetic and ultrasound signals. This review also discusses the obstacles and potential solutions for advancing these bioengineered nanomaterials toward clinical translational applications.
Collapse
Affiliation(s)
- Jizhong Wu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| | - Xinyu Zhou
- Department of Biomedical Engineering, College of Biomedicine, The City University of Hong Kong, Kowloon 999077, Hong Kong.
| | - Chung Yin Tsang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| | - Qingsong Mei
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Yong Zhang
- Department of Biomedical Engineering, College of Biomedicine, The City University of Hong Kong, Kowloon 999077, Hong Kong.
| |
Collapse
|
3
|
Zeng W, Zhang Y, Chen H, Huang H, Peng Q. A General Formalism of Excitation-Dependent Luminescence Properties in Triplet-Triplet Annihilation Systems. J Chem Theory Comput 2025; 21:3092-3100. [PMID: 40085027 DOI: 10.1021/acs.jctc.4c01712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Triplet-triplet annihilation (TTA) has promising applications in optical functional devices and technologies due to its efficient exciton utilization and up-conversion. Traditionally, the change in the slope of the dual logarithmic relationship curve between emission and excitation light intensity from 2 to 1 has been regarded as evidence of the occurrence of TTA. However, this characteristic change was not observed in many single-component organic TTA systems in recent experiments. In this work, we develop new models for TTA processes by introducing more electronic states and transitions than those considered in the traditional model and derive a general formalism of excitation-dependent luminescence intensity, Iem = N(Ckex + Akex + B - B 2 + 2 AB k e x ). This formalism can be applied not only to typical TTA systems but also to systems whose dynamics cannot be accurately described using traditional models. As kex increases, the slope of log Iem ∼ log kex changes from 1 to n and then back to 1 (where 1 < n ≤ 2) with two distinct turning points, and the corresponding luminescence quantum yield (Φem) increases monotonically until it reaches saturation, which are fully confirmed by the steady-state spectrum experiments. The characteristic change in Φem is a more suitable universal criterion for judging the occurrence of TTA. These findings provide a valuable novel tool for probing the kinetic processes in TTA systems that are challenging to model.
Collapse
Affiliation(s)
- Wenwan Zeng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yincheng Zhang
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hao Chen
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hui Huang
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | |
Collapse
|
4
|
Calori IR, Tedesco AC. How can nanoemulsions be used for photosensitizer drug delivery? Expert Opin Drug Deliv 2024; 21:1701-1703. [PMID: 39555863 DOI: 10.1080/17425247.2024.2430395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Affiliation(s)
- Italo Rodrigo Calori
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Labs, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS, USA
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
5
|
Álvarez-Gutiérrez D, Sampedro D, Jiménez MC, Pérez-Ruiz R. Asymmetric BODIPY Dyes Enabling Triplet-Triplet Annihilation Upconversion. ACS APPLIED OPTICAL MATERIALS 2024; 2:1780-1789. [PMID: 39364311 PMCID: PMC11448374 DOI: 10.1021/acsaom.4c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 10/05/2024]
Abstract
The construction of triplet-triplet annihilation upconversion (TTA-UC) systems with upconversion (UC) emission efficiency at low power densities is still under continuing exploration. From an environmental point of view, the utilization of purely organic pairs is more beneficial than the involvement of transition-metal complexes. In this context, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dyes, which can be found in a wide range of applications, have been previously used as suitable sensitizers in TTA-UC systems. The versatility of these scaffolds makes them magnificent objectives for designing and synthesizing potential entities with different target abilities. Herein, we prepared several asymmetric BODIPY dyes with excellent optical properties to be applied to a bimolecular TTA-UC system. In the presence of 2,5,8,11-tetra-tert-butylperylene (TBPe) as a suitable annihilator, a green-to-blue light conversion was clearly observed by means of detailed spectroscopic investigations. The results revealed a high UC emission efficiency (ηUC) of ∼8%, together with a low threshold intensity (I th) of ∼40-50 mW/cm2. All data indicated that these asymmetric BODIPY dyes were ideal sensitizers for TTA-UC, providing a particular design for further investigations.
Collapse
Affiliation(s)
- Daniel Álvarez-Gutiérrez
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera S/N, 46022 Valencia, Spain
| | - Diego Sampedro
- Departamento
de Química, Instituto de Investigación en Química
de la Universidad de La Rioja (IQUR), Universidad
de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | - M. Consuelo Jiménez
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera S/N, 46022 Valencia, Spain
| | - Raúl Pérez-Ruiz
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera S/N, 46022 Valencia, Spain
| |
Collapse
|
6
|
Feng HJ, Zeng L, Li JY, Lin WY, Qi F, Jiang LH, Zhang MY, Zhao Y, Huang L, Pang DW. Natural Protein Photon Upconversion Supramolecular Assemblies for Background-Free Biosensing. J Am Chem Soc 2024; 146:21791-21805. [PMID: 39069661 DOI: 10.1021/jacs.4c06012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The diagnosis of disease biomarkers is crucial for the identification, monitoring, and prognostic assessment of malignant disease. However, biological samples with autofluorescence, complex components, and heterogeneity pose major challenges to reliable biosensing. Here, we report the self-assembly of natural proteins and the triplet-triplet annihilation upconversion (TTA-UC) pair to form upconverted protein clusters (∼8.2 ± 1.1 nm), which were further assembled into photon upconversion supramolecular assemblies (PUSA). This PUSA exhibited unique features, including a small size (∼44.1 ± 4.1 nm), oxygen tolerance, superior biocompatibility, and easy storage via lyophilization, all of which are long sought after for photon upconversion materials. Further, we have revealed that the steric hindrance of the annihilator suppresses the stacking of the annihilator in PUSA, which is vital for maintaining the water dispersibility and enhancing the upconversion performance of PUSA. In conjunction with sarcosine oxidase, this near infrared (NIR)-excitable PUSA nanoprobe could perform background-free biosensing of urinary sarcosine, which is a common biomarker for prostatic carcinoma (PCa). More importantly, this nanoprobe not only allows for qualitative identification of urinary samples from PCa patients by the unaided eye under NIR-light-emitting diode (LED) illumination but also quantifies the concentration of urinary sarcosine. These remarkable findings have propelled photon upconversion materials to a new evolutionary stage and expedited the progress of upconversion biosensing in clinical diagnostics.
Collapse
Affiliation(s)
- Hong-Juan Feng
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Le Zeng
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jia-Yao Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Wen-Yue Lin
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Fang Qi
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lin-Han Jiang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ming-Yu Zhang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yang Zhao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| | - Ling Huang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
7
|
Klimezak M, Chaud J, Brion A, Bolze F, Frisch B, Heurtault B, Kichler A, Specht A. Triplet-Triplet Annihilation Upconversion-Based Photolysis: Applications in Photopharmacology. Adv Healthc Mater 2024; 13:e2400354. [PMID: 38613491 DOI: 10.1002/adhm.202400354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Indexed: 04/15/2024]
Abstract
The emerging field of photopharmacology is a promising chemobiological methodology for optical control of drug activities that could ultimately solve the off-target toxicity outside the disease location of many drugs for the treatment of a given pathology. The use of photolytic reactions looks very attractive for a light-activated drug release but requires to develop photolytic reactions sensitive to red or near-infrared light excitation for better tissue penetration. This review will present the concepts of triplet-triplet annihilation upconversion-based photolysis and their recent in vivo applications for light-induced drug delivery using photoactivatable nanoparticles.
Collapse
Affiliation(s)
- Maxime Klimezak
- Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST), Équipe Nanoparticules Intelligentes, Université de Strasbourg, CNRS, CBST UMR 7199, Illkirch Cedex, F-67401, France
| | - Juliane Chaud
- Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST), Équipe Nanoparticules Intelligentes, Université de Strasbourg, CNRS, CBST UMR 7199, Illkirch Cedex, F-67401, France
- Inserm UMR_S 1121, EMR 7003 CNRS, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France
| | - Anaïs Brion
- Inserm UMR_S 1121, EMR 7003 CNRS, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France
| | - Frédéric Bolze
- Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST), Équipe Nanoparticules Intelligentes, Université de Strasbourg, CNRS, CBST UMR 7199, Illkirch Cedex, F-67401, France
| | - Benoit Frisch
- Inserm UMR_S 1121, EMR 7003 CNRS, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France
| | - Béatrice Heurtault
- Inserm UMR_S 1121, EMR 7003 CNRS, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France
| | - Antoine Kichler
- Inserm UMR_S 1121, EMR 7003 CNRS, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France
| | - Alexandre Specht
- Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST), Équipe Nanoparticules Intelligentes, Université de Strasbourg, CNRS, CBST UMR 7199, Illkirch Cedex, F-67401, France
| |
Collapse
|
8
|
Prabhakaran A, Jha KK, Sia RCE, Arellano Reyes RA, Sarangi NK, Kogut M, Guthmuller J, Czub J, Dietzek-Ivanšić B, Keyes TE. Triplet-Triplet Annihilation Upconverting Liposomes: Mechanistic Insights into the Role of Membranes in Two-Dimensional TTA-UC. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29324-29337. [PMID: 38776974 PMCID: PMC11163426 DOI: 10.1021/acsami.4c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Triplet-triplet annihilation upconversion (TTA-UC) implemented in nanoparticle assemblies is of emerging interest in biomedical applications, including in drug delivery and imaging. As it is a bimolecular process, ensuring sufficient mobility of the sensitizer and annihilator to facilitate effective collision in the nanoparticle is key. Liposomes can provide the benefits of two-dimensional confinement and condensed concentration of the sensitizer and annihilator along with superior fluidity compared to other nanoparticle assemblies. They are also biocompatible and widely applied across drug delivery modalities. However, there are relatively few liposomal TTA-UC systems reported to date, so systematic studies of the influence of the liposomal environment on TTA-UC are currently lacking. Here, we report the first example of a BODIPY-based sensitizer TTA-UC system within liposomes and use this system to study TTA-UC generation and compare the relative intensity of the anti-Stokes signal for this system as a function of liposome composition and membrane fluidity. We report for the first time on time-resolved spectroscopic studies of TTA-UC in membranes. Nanosecond transient absorption data reveal the BODIPY-perylene dyad sensitizer has a long triplet lifetime in liposome with contributions from three triplet excited states, whose lifetimes are reduced upon coinclusion of the annihilator due to triplet-triplet energy transfer, to a greater extent than in solution. This indicates triplet energy transfer between the sensitizer and the annihilator is enhanced in the membrane system. Molecular dynamics simulations of the sensitizer and annihilator TTA collision complex are modeled in the membrane and confirm the co-orientation of the pair within the membrane structure and that the persistence time of the bound complex exceeds the TTA kinetics. Modeling also reliably predicted the diffusion coefficient for the sensitizer which matches closely with the experimental values from fluorescence correlation spectroscopy. The relative intensity of the TTA-UC output across nine liposomal systems of different lipid compositions was explored to examine the influence of membrane viscosity on upconversion (UC). UC showed the highest relative intensity for the most fluidic membranes and the weakest intensity for highly viscous membrane compositions, including a phase separation membrane. Overall, our study reveals that the co-orientation of the UC pair within the membrane is crucial for effective TTA-UC within a biomembrane and that the intensity of the TTA-UC output can be tuned in liposomal nanoparticles by modifying the phase and fluidity of the liposome. These new insights will aid in the design of liposomal TTA-UC systems for biomedical applications.
Collapse
Affiliation(s)
- Amrutha Prabhakaran
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Keshav Kumar Jha
- Research
Department Functional Interfaces, Leibniz
Institute of Photonic Technology Jena, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Rengel Cane E. Sia
- Institute
of Physics and Applied Computer Science, Faculty of Applied Physics
and Mathematics, Gdańsk University
of Technology, Narutowicza 11/12, 80233 Gdańsk, Poland
| | - Ruben Arturo Arellano Reyes
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Nirod Kumar Sarangi
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Mateusz Kogut
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza
11/12, 80233 Gdańsk, Poland
| | - Julien Guthmuller
- Institute
of Physics and Applied Computer Science, Faculty of Applied Physics
and Mathematics, Gdańsk University
of Technology, Narutowicza 11/12, 80233 Gdańsk, Poland
| | - Jacek Czub
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza
11/12, 80233 Gdańsk, Poland
| | - Benjamin Dietzek-Ivanšić
- Research
Department Functional Interfaces, Leibniz
Institute of Photonic Technology Jena, Jena 07745, Germany
| | - Tia E. Keyes
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
9
|
Collins AR, Zhang B, Bennison MJ, Evans RC. Ambient solid-state triplet-triplet annihilation upconversion in ureasil organic-inorganic hybrid hosts. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:6310-6318. [PMID: 38707254 PMCID: PMC11064974 DOI: 10.1039/d4tc00562g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
Triplet-triplet-annihilation upconversion (TTA-UC) has attracted significant attention as an approach to harvest low energy solar photons that cannot be captured by conventional photovoltaic devices. However, device integration requires the design of solid-state TTA-UC materials that combine high upconversion efficiency with long term stability. Herein, we report an efficient solid-state TTA-UC system based on organic-inorganic hybrid polymers known as ureasils as hosts for the archetypal sensitiser/emitter pair of palladium(ii) octaethylporphyrin and diphenylanthracene. The role of the ureasil structure on the TTA-UC performance was probed by varying the branching and molecular weight of the organic precursor to tune the structural, mechanical, and thermal properties. Solid-state green-to-blue UC quantum yields of up to 1.86% were observed under ambient conditions. Notably, depending on the ureasil structure, UC emission could be retained for >70 days without any special treatment, including deoxygenation. Detailed analysis of the structure-function trends revealed that while a low glass transition temperature is required to promote TTA-UC molecular collisions, a higher inorganic content is the primary factor that determines the UC efficiency and stability, due to the inherent oxygen barrier provided by the silica nanodomains.
Collapse
Affiliation(s)
- Abigail R Collins
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Bolong Zhang
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Michael J Bennison
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Rachel C Evans
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| |
Collapse
|
10
|
Zhang Q, Luo G, Hu R, Yang G, Chen J, Yu T, Zeng Y, Li Y. Crystalline hydrogen-bonded organic framework for air-tolerant triplet-triplet annihilation upconversion. Chem Commun (Camb) 2024; 60:4475-4478. [PMID: 38563956 DOI: 10.1039/d4cc00742e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A hydrogen-bonded organic framework (HOF) consisting of a 9,10-diphenylanthracene carboxylic derivative, DPACOOH, was developed for solid state triplet-triplet annihilation upconversion (TTA-UC). The HOF sample shows a 70% increase in upconversion quantum yield and a lower threshold value of 126.0 mW cm-2 compared to those of the disordered powder sample, due to a 43% longer triplet diffusion length in HOF than that in the powder sample.
Collapse
Affiliation(s)
- Qiaoyu Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guiwen Luo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Hu
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guoqiang Yang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinping Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Tianjun Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Huang L, Han G. Triplet-triplet annihilation photon upconversion-mediated photochemical reactions. Nat Rev Chem 2024; 8:238-255. [PMID: 38514833 DOI: 10.1038/s41570-024-00585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
Photon upconversion is a method for harnessing high-energy excited states from low-energy photons. Such photons, particularly in the red and near-infrared wavelength ranges, can penetrate tissue deeply and undergo less competitive absorption in coloured reaction media, enhancing the efficiency of large-scale reactions and in vivo phototherapy. Among various upconversion methodologies, the organic-based triplet-triplet annihilation upconversion (TTA-UC) stands out - demonstrating high upconversion efficiencies, requiring low excitation power densities and featuring tunable absorption and emission wavelengths. These factors contribute to improved photochemical reactions for fields such as photoredox catalysis, photoactivation, 3D printing and immunotherapy. In this Review, we explore concepts and design principles of organic TTA-UC-mediated photochemical reactions, highlighting notable advancements in the field, as well as identify challenges and propose potential solutions. This Review sheds light on the potential of organic TTA-UC to advance beyond the traditional photochemical reactions and paves the way for research in various fields and clinical applications.
Collapse
Affiliation(s)
- Ling Huang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, China
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Gang Han
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
12
|
Okamoto T, Izawa S, Hiramoto M, Kobori Y. Efficient Spin Interconversion by Molecular Conformation Dynamics of a Triplet Pair for Photon Up-Conversion in an Amorphous Solid. J Phys Chem Lett 2024; 15:2966-2975. [PMID: 38479407 PMCID: PMC10961844 DOI: 10.1021/acs.jpclett.3c03602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Solid-state materials with improved light-to-energy conversions in organic photovoltaics and in optoelectronics are expected to be developed by realizing efficient triplet-triplet annihilation (TTA) by manipulating the spin conversion processes to the singlet state. In this study, we elucidate the spin conversion mechanism for delayed fluorescence by TTA from a microscopic view of the molecular conformations. We examine the time evolution of the electron spin polarization of the triplet-pair state (TT state) in an amorphous solid-state system exhibiting highly efficient up-conversion emission by using time-resolved electron paramagnetic resonance. We clarified that the spin-state population of the singlet TT increased through the spin interconversion from triplet and quintet TT states during exciton diffusion with random orientation dynamics between the two triplets for the modulation of the exchange interaction, achieving a high quantum yield of up-conversion emission. This understanding provides us with a guide for the development of efficient light-to-energy conversion devices utilizing TTA.
Collapse
Affiliation(s)
- Tsubasa Okamoto
- Molecular
Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657−8501, Japan
| | - Seiichiro Izawa
- Laboratory
for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Precursory
Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Institute
for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Masahiro Hiramoto
- Institute
for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Yasuhiro Kobori
- Molecular
Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657−8501, Japan
- CREST,
JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
13
|
Qi F, Feng HJ, Peng Y, Jiang LH, Zeng L, Huang L. New Type Annihilator of π-Expanded Diketopyrrolopyrrole for Robust Photostable NIR-Excitable Triplet-Triplet Annihilation Upconversion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7512-7521. [PMID: 38318769 DOI: 10.1021/acsami.3c17679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Near-infrared light excitable triplet-triplet annihilation upconversion (NIR TTA-UC) materials have attracted interest in a variety of emerging applications such as photoredox catalysis, optogenetics, and stereoscopic 3D printing. Currently, the practical application of NIR TTA-UC materials requires substantial improvement in photostability. Here, we found that the new annihilator of π-expanded diketopyrrolopyrrole (π-DPP) cannot activate oxygen to generate superoxide anion via photoinduced electron transfer, and its electron-deficient characteristics prevent the singlet oxygen-mediated [2 + 2] cycloaddition reaction; thus, π-DPP exhibited superior resistance to photobleaching. In conjunction with the NIR photosensitizer PdTNP, the upconversion efficiency of π-DPP is as high as 8.9%, which is eight times of the previously reported PdPc/Furan-DPP. Importantly, after polystyrene film encapsulation, less than 10% photobleaching was observed for this PdTNP/π-DPP-based NIR TTA-UC material after four hours of intensive NIR light exposure. These findings provide a type of annihilator with extraordinary photostability, facilitating the development of NIR TTA-UC materials for practical photonics.
Collapse
Affiliation(s)
- Fang Qi
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hong-Juan Feng
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yi Peng
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lin-Han Jiang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Le Zeng
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ling Huang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
14
|
Song X, Liu H, Liu S, Li T, Lv L, Cui B, Wang T, Chen W, Chen Y, Li X. Enhancing Triplet-Triplet Annihilation Upconversion of Pyrene Derivatives for Photoredox Catalysis via Molecular Engineering. Chemistry 2024; 30:e202302520. [PMID: 37877456 DOI: 10.1002/chem.202302520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/26/2023]
Abstract
Triplet-triplet annihilation upconversion (TTA-UC) has the potential to enhance photoredox catalysis yield. It includes a sensitizer and an annihilator. Efficient and stable annihilators are essential for photoredox catalysis, yet only a few examples are reported. Herein, we designed four novel pyrene annihilators (1, 2, 3 and 4) via introducing aryl-alkynyl groups onto pyrene to systematically modulate their singlet and triplet energies. Coupled with platinum octaethylporphyrin (PtOEP), the TTA-UC efficiency is enhanced gradually as the number of aryl-alkynyl group increases. When combining 4 with palladium tetraphenyl-tetrabenzoporphyrin (PdTPTBP), we achieved the highest red-to-green upconversion efficiency (22.4±0.3 %) (out of a 50 % maximum) so far. Then, this pair was used to activate photooxidation of aryl boronic acid under red light (630 nm), which achieved a great improved reaction yield compared to that activated by green light directly. The results not only provide a design strategy for efficient annihilators, but also show the advantage of applying TTA-UC into improving the photoredox catalysis yield.
Collapse
Affiliation(s)
- Xiaojuan Song
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| | - Heyuan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| | - Shanshan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
- Institute for Smart Materials & Engineering, University of Jinan, 250022, Jinan, China
| | - Tianyu Li
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| | - Liping Lv
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| | - Boce Cui
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| | - Tianying Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| | - Wenmiao Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
- Department of Science, Texas A&M University at Qatar, Education City, P.O. Box 23874, 77842, Doha, Qatar
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| | - Xiyou Li
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| |
Collapse
|
15
|
Long K, Lv W, Wang Z, Zhang Y, Chen K, Fan N, Li F, Zhang Y, Wang W. Near-infrared light-triggered prodrug photolysis by one-step energy transfer. Nat Commun 2023; 14:8112. [PMID: 38062051 PMCID: PMC10703928 DOI: 10.1038/s41467-023-43805-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Prodrug photolysis enables spatiotemporal control of drug release at the desired lesions. For photoactivated therapy, near-infrared (NIR) light is preferable due to its deep tissue penetration and low phototoxicity. However, most of the photocleavable groups cannot be directly activated by NIR light. Here, we report a upconversion-like process via only one step of energy transfer for NIR light-triggered prodrug photolysis. We utilize a photosensitizer (PS) that can be activated via singlet-triplet (S-T) absorption and achieve photolysis of boron-dipyrromethene (BODIPY)-based prodrugs via triplet-triplet energy transfer. Using the strategy, NIR light can achieve green light-responsive photolysis with a single-photon process. A wide range of drugs and bioactive molecules are designed and demonstrated to be released under low-irradiance NIR light (100 mW/cm2, 5 min) with high yields (up to 87%). Moreover, a micellar nanosystem encapsulating both PS and prodrug is developed to demonstrate the practicality of our strategy in normoxia aqueous environment for cancer therapy. This study may advance the development of photocleavable prodrugs and photoresponsive drug delivery systems for photo-activated therapy.
Collapse
Affiliation(s)
- Kaiqi Long
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wen Lv
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Zihan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yaming Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ni Fan
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Feiyang Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yichi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
16
|
Zhang B, Richards KD, Jones BE, Collins AR, Sanders R, Needham SR, Qian P, Mahadevegowda A, Ducati C, Botchway SW, Evans RC. Ultra-Small Air-Stable Triplet-Triplet Annihilation Upconversion Nanoparticles for Anti-Stokes Time-Resolved Imaging. Angew Chem Int Ed Engl 2023; 62:e202308602. [PMID: 37647167 PMCID: PMC10952532 DOI: 10.1002/anie.202308602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
Image contrast is often limited by background autofluorescence in steady-state bioimaging microscopy. Upconversion bioimaging can overcome this by shifting the emission lifetime and wavelength beyond the autofluorescence window. Here we demonstrate the first example of triplet-triplet annihilation upconversion (TTA-UC) based lifetime imaging microscopy. A new class of ultra-small nanoparticle (NP) probes based on TTA-UC chromophores encapsulated in an organic-inorganic host has been synthesised. The NPs exhibit bright UC emission (400-500 nm) in aerated aqueous media with a UC lifetime of ≈1 μs, excellent colloidal stability and little cytotoxicity. Proof-of-concept demonstration of TTA-UC lifetime imaging using these NPs shows that the long-lived anti-Stokes emission is easily discriminable from typical autofluorescence. Moreover, fluctuations in the UC lifetime can be used to map local oxygen diffusion across the subcellular structure. Our TTA-UC NPs are highly promising stains for lifetime imaging microscopy, affording excellent image contrast and potential for oxygen mapping that is ripe for further exploitation.
Collapse
Affiliation(s)
- Bolong Zhang
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Kieran D. Richards
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
| | - Beatrice E. Jones
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
- Diamond Light SourceDidcotOxfordshireOX11 0QXUK
| | - Abigail R. Collins
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
| | - Rosie Sanders
- Central Laser FacilityScience and Technology Facilities CouncilRutherford Appleton LaboratoryHarwell Science and Innovation CampusOxfordshireOX11 0QXUK
| | - Sarah R. Needham
- Central Laser FacilityScience and Technology Facilities CouncilRutherford Appleton LaboratoryHarwell Science and Innovation CampusOxfordshireOX11 0QXUK
| | - Pu Qian
- Materials and Structural AnalysisThermo Fisher ScientificAchtseweg Noord 55651 GGEindhovenThe Netherlands
| | - Amoghavarsha Mahadevegowda
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
- The Faraday InstitutionQuad OneHarwell Science and Innovation CampusDidcotUK
| | - Caterina Ducati
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
- The Faraday InstitutionQuad OneHarwell Science and Innovation CampusDidcotUK
| | - Stanley W. Botchway
- Central Laser FacilityScience and Technology Facilities CouncilRutherford Appleton LaboratoryHarwell Science and Innovation CampusOxfordshireOX11 0QXUK
| | - Rachel C. Evans
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
| |
Collapse
|
17
|
Zhou Q, Wirtz BM, Schloemer TH, Burroughs MC, Hu M, Narayanan P, Lyu J, Gallegos AO, Layton C, Mai DJ, Congreve DN. Spatially Controlled UV Light Generation at Depth using Upconversion Micelles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301563. [PMID: 37548335 DOI: 10.1002/adma.202301563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/26/2023] [Indexed: 08/08/2023]
Abstract
UV light can trigger a plethora of useful photochemical reactions for diverse applications, including photocatalysis, photopolymerization, and drug delivery. These applications typically require penetration of high-energy photons deep into materials, yet delivering these photons beyond the surface is extremely challenging due to absorption and scattering effects. Triplet-triplet annihilation upconversion (TTA-UC) shows great promise to circumvent this issue by generating high-energy photons from incident lower-energy photons. However, molecules that facilitate TTA-UC usually have poor water solubility, limiting their deployment in aqueous environments. To address this challenge, a nanoencapsulation method is leveraged to fabricate water-compatible UC micelles, enabling on-demand UV photon generation deep into materials. Two iridium-based complexes are presented for use as TTA-UC sensitizers with increased solubilities that facilitate the formation of highly emissive UV-upconverting micelles. Furthermore, this encapsulation method is shown to be generalizable to nineteen UV-emitting UC systems, accessing a range of upconverted UV emission profiles with wavelengths as low as 350 nm. As a proof-of-principle demonstration of precision photochemistry at depth, UV-emitting UC micelles are used to photolyze a fluorophore at a focal point nearly a centimeter beyond the surface, revealing opportunities for spatially controlled manipulation deep into UV-responsive materials.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Electrical Engineering, Stanford University, Stanford, 94305, CA, USA
| | - Brendan M Wirtz
- Department of Chemical Engineering, Stanford University, Stanford, 94305, CA, USA
| | - Tracy H Schloemer
- Department of Electrical Engineering, Stanford University, Stanford, 94305, CA, USA
| | - Michael C Burroughs
- Department of Chemical Engineering, Stanford University, Stanford, 94305, CA, USA
| | - Manchen Hu
- Department of Electrical Engineering, Stanford University, Stanford, 94305, CA, USA
| | - Pournima Narayanan
- Department of Electrical Engineering, Stanford University, Stanford, 94305, CA, USA
- Department of Chemistry, Stanford University, Stanford, 94305, CA, USA
| | - Junrui Lyu
- Department of Electrical Engineering, Stanford University, Stanford, 94305, CA, USA
| | - Arynn O Gallegos
- Department of Electrical Engineering, Stanford University, Stanford, 94305, CA, USA
| | - Colette Layton
- Department of Electrical Engineering, Stanford University, Stanford, 94305, CA, USA
| | - Danielle J Mai
- Department of Chemical Engineering, Stanford University, Stanford, 94305, CA, USA
| | - Daniel N Congreve
- Department of Electrical Engineering, Stanford University, Stanford, 94305, CA, USA
| |
Collapse
|
18
|
Sun G, Xie Y, Wang Y, Zhang H, Sun L. Upconversion Luminescence in Mononuclear Yb/Sm Co-crystal Assemblies at Room Temperature. Angew Chem Int Ed Engl 2023; 62:e202312308. [PMID: 37698110 DOI: 10.1002/anie.202312308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
Metal-based upconversion luminescence transforming high-energy photons into low-energy photons is an attractive anti-Stokes shift process for fundamental research and promising applications. In this work, we developed the upconversion luminescence in co-crystal assemblies consisting of discrete mononuclear Yb and Sm complexes. The characteristic visible emissions of Sm3+ were observed under the excitation of absorption band of Yb3+ at 980 nm. A series of co-crystal assemblies were investigated based on mononuclear Yb and Sm complexes, and the strongest luminescence was obtained when the molar concentration between Yb3+ and Sm3+ is equivalent. The crystal structure was fully characterized by the single crystal X-ray diffraction and upconverting energy transfer mechanisms were verified as cooperative sensitization upconversion and energy transfer upconversion. This is the first example of Sm3+ -based upconverting luminescence in discrete lanthanide complexes which present as co-crystal assemblies at room temperature.
Collapse
Affiliation(s)
- Guotao Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Yao Xie
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuxin Wang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Lining Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
19
|
Gao M, Zeng L, Jiang L, Zhang M, Chen Y, Huang L. Bodipy Dimer for Enhancing Triplet-Triplet Annihilation Upconversion Performance. Molecules 2023; 28:5474. [PMID: 37513346 PMCID: PMC10384713 DOI: 10.3390/molecules28145474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Triplet-triplet annihilation upconversion (TTA-UC) has considerable potential for emerging applications in bioimaging, optogenetics, photoredox catalysis, solar energy harvesting, etc. Fluoroboron dipyrrole (Bodipy) dyes are an essential type of annihilator in TTA-UC. However, conventional Bodipy dyes generally have large molar extinction coefficients and small Stokes shifts (<20 nm), subjecting them to severe internal filtration effects at high concentrations, and resulting in low upconversion quantum efficiency of TTA-UC systems using Bodipy dyes as annihilators. In this study, a Bodipy dimer (B-2) with large Stokes shifts was synthesized using the strategy of dimerization of an already reported Bodipy annihilator (B-1). Photophysical characterization and theoretical chemical analysis showed that both B-1 and B-2 can couple with the red light-activated photosensitizer PdTPBP to fulfill TTA-UC; however, the higher fluorescence quantum yield of B-2 resulted in a higher upconversion efficiency (ηUC) for PdTPBP/B-2 (10.7%) than for PdTPBP/B-1 (4.0%). This study proposes a new strategy to expand Bodipy Stokes shifts and improve TTA-UC performance, which can facilitate the application of TTA-UC in photonics and biophotonics.
Collapse
Affiliation(s)
- Min Gao
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Le Zeng
- Research Center for Analytical Sciences and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300192, China
| | - Linhan Jiang
- Research Center for Analytical Sciences and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300192, China
| | - Mingyu Zhang
- Research Center for Analytical Sciences and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300192, China
| | - Yong Chen
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Ling Huang
- Research Center for Analytical Sciences and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300192, China
| |
Collapse
|
20
|
Schloemer T, Narayanan P, Zhou Q, Belliveau E, Seitz M, Congreve DN. Nanoengineering Triplet-Triplet Annihilation Upconversion: From Materials to Real-World Applications. ACS NANO 2023; 17:3259-3288. [PMID: 36800310 DOI: 10.1021/acsnano.3c00543] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Using light to control matter has captured the imagination of scientists for generations, as there is an abundance of photons at our disposal. Yet delivering photons beyond the surface to many photoresponsive systems has proven challenging, particularly at scale, due to light attenuation via absorption and scattering losses. Triplet-triplet annihilation upconversion (TTA-UC), a process which allows for low energy photons to be converted to high energy photons, is poised to overcome these challenges by allowing for precise spatial generation of high energy photons due to its nonlinear nature. With a wide range of sensitizer and annihilator motifs available for TTA-UC, many researchers seek to integrate these materials in solution or solid-state applications. In this Review, we discuss nanoengineering deployment strategies and highlight their uses in recent state-of-the-art examples of TTA-UC integrated in both solution and solid-state applications. Considering both implementation tactics and application-specific requirements, we identify critical needs to push TTA-UC-based applications from an academic curiosity to a scalable technology.
Collapse
Affiliation(s)
- Tracy Schloemer
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Pournima Narayanan
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Qi Zhou
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Emma Belliveau
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Michael Seitz
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Daniel N Congreve
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
21
|
Zhang J, Ruiz-Molina D, Novio F, Roscini C. Water-Stable Upconverting Coordination Polymer Nanoparticles for Transparent Films and Anticounterfeiting Patterns with Air-Stable Upconversion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8377-8386. [PMID: 36722461 PMCID: PMC9940112 DOI: 10.1021/acsami.2c16354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Photon upconversion (UC) based on triplet-triplet annihilation is a very promising phenomenon with potential application in several areas, though, due to the intrinsic mechanism, the achievement of diffusion-limited solid materials with air-stable UC is still a challenge. Herein, we report UC coordination polymer nanoparticles (CPNs) combining sensitizer and emitter molecules especially designed with alkyl spacers that promote the amorphous character. Beyond the characteristic constraints of crystalline MOFs, amorphous CPNs facilitate high dye density and flexible ratio tunability. To show the universality of the approach, two types of UC-CPNs are reported, exhibiting highly photostable UC in two different visible spectral regions. Given their nanoscale, narrow size distribution, and good chemical/colloidal stability in water, the CPNs were also successfully printed as anticounterfeiting patterns and used to make highly transparent and photostable films for luminescent solar concentrators, both showing air-stable UC.
Collapse
Affiliation(s)
- Junda Zhang
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST Campus UAB, Bellaterra 08193, Barcelona, Spain
- Departament
de Química, Universitat Autònoma
de Barcelona (UAB), Campus
UAB, 08193 Cerdanyola
del Vallès, Spain
| | - Daniel Ruiz-Molina
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - Fernando Novio
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST Campus UAB, Bellaterra 08193, Barcelona, Spain
- Departament
de Química, Universitat Autònoma
de Barcelona (UAB), Campus
UAB, 08193 Cerdanyola
del Vallès, Spain
| | - Claudio Roscini
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST Campus UAB, Bellaterra 08193, Barcelona, Spain
| |
Collapse
|
22
|
Luo Z, Wang D, Li K, Zhong D, Xue L, Gan Z, Xie C. Three-Dimensional Nanolithography with Visible Continuous Wave Laser through Triplet Up-Conversion. J Phys Chem Lett 2023; 14:709-715. [PMID: 36646640 DOI: 10.1021/acs.jpclett.2c03601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Direct laser writing (DLW) technology usually fabricates micronanostructures based on the principle of two-photon polymerization. However, two-photon polymerization requires high laser intensity which can be achieved by expensive femtosecond lasers. To address the issue, a direct laser writing method has been proposed in this work; it is based on triplet up-conversion which is characterized by its low cost, high precision, multidimensional property, and rapid processing. The feasibility of this method is jointly verified by applying both dynamic modeling and experiments. Based on the obtained results, the low laser intensity fabrication of multidimensional nanostructures is achieved. The minimum line width (∼50 nm) of micronanostructures is reached when the laser intensity is set at 2.5 × 105 W/cm2 along with a processing speed of 150 μm/s. As a result, the direct laser writing method, based on triplet up-conversion, offers a new route to achieve low-intensity and high-precision micronanostructure fabrication.
Collapse
Affiliation(s)
- Zhijun Luo
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
- Key Laboratory of Education Ministry for Information Storage Systems, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Duan Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
- Key Laboratory of Education Ministry for Information Storage Systems, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Kai Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
- Key Laboratory of Education Ministry for Information Storage Systems, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Dong Zhong
- School of Electronic and Information Engineering, Hubei University of Science and Technology, Xianning437100, China
| | - Li Xue
- School of Electronic and Information Engineering, Hubei University of Science and Technology, Xianning437100, China
| | - Zongsong Gan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
- Key Laboratory of Education Ministry for Information Storage Systems, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Changsheng Xie
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
- Key Laboratory of Education Ministry for Information Storage Systems, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| |
Collapse
|
23
|
Panjwani NA, Behrends J. Framing fusion and fission. NATURE MATERIALS 2022; 21:1221-1222. [PMID: 36284237 DOI: 10.1038/s41563-022-01387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Naitik A Panjwani
- Berlin Joint EPR Lab, Fachbereich Physik, Freie Universität Berlin, Berlin, Germany
| | - Jan Behrends
- Berlin Joint EPR Lab, Fachbereich Physik, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
24
|
Ha DG, Wan R, Kim CA, Lin TA, Yang L, Van Voorhis T, Baldo MA, Dincă M. Exchange controlled triplet fusion in metal-organic frameworks. NATURE MATERIALS 2022; 21:1275-1281. [PMID: 36202994 PMCID: PMC9622415 DOI: 10.1038/s41563-022-01368-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 08/16/2022] [Indexed: 05/28/2023]
Abstract
Triplet-fusion-based photon upconversion holds promise for a wide range of applications, from photovoltaics to bioimaging. The efficiency of triplet fusion, however, is fundamentally limited in conventional molecular and polymeric systems by its spin dependence. Here, we show that the inherent tailorability of metal-organic frameworks (MOFs), combined with their highly porous but ordered structure, minimizes intertriplet exchange coupling and engineers effective spin mixing between singlet and quintet triplet-triplet pair states. We demonstrate singlet-quintet coupling in a pyrene-based MOF, NU-1000. An anomalous magnetic field effect is observed from NU-1000 corresponding to an induced resonance between singlet and quintet states that yields an increased fusion rate at room temperature under a relatively low applied magnetic field of 0.14 T. Our results suggest that MOFs offer particular promise for engineering the spin dynamics of multiexcitonic processes and improving their upconversion performance.
Collapse
Affiliation(s)
- Dong-Gwang Ha
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ruomeng Wan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Changhae Andrew Kim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ting-An Lin
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luming Yang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marc A Baldo
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
25
|
Nakadai Y, Tsuchiya S, Uehara M, Umezawa S, Motoki R, Umezawa H, Ikoma T, Yui T. Photon Upconversion with a Low Threshold Excitation Intensity in Plain Water. J Phys Chem B 2022; 126:8245-8250. [PMID: 36215413 DOI: 10.1021/acs.jpcb.2c04109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A triplet-triplet annihilation-based photon upconversion (TTA-UC) system with a low threshold excitation intensity (Ith) in plain water was developed. Water-soluble anionic porphyrin (PdTPPS4-) and diphenylanthracene (DCDPA2-) derivatives were used as light absorbers and emitter molecules, respectively, and no additives such as surfactants were required. The phosphorescence emission from PdTPPS4- under an excitation wavelength of 528 nm was quenched by DCDPA2-, resulting in triplet energy transfer, whereas fluorescence from DCDPA2- was observed in a short wavelength region (400-500 nm). Three independent emission studies utilizing different excitation light sources validated the TTA-UC process in a simple aqueous solution. TTA occurred after the triplet energy transfer, according to the time profiles of phosphorescence and fluorescence detected following pulse laser excitation. The Ith for TTA-UC was estimated to be lower than 6 mW cm-2, although it could not be exactly determined due to the sensitivity limit of the experimental setup. The upper limit of Ith for the aqueous solution of DCDPA2- and PdTPPS4- is the smallest value obtained to date for aqueous systems and comparable to that of high-performance TTA-UC systems in organic solutions.
Collapse
Affiliation(s)
- Yuki Nakadai
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata950-2181, Japan
| | - Shuta Tsuchiya
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Niigata950-2181, Japan
| | - Masumi Uehara
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata950-2181, Japan
| | - Sena Umezawa
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata950-2181, Japan
| | - Reina Motoki
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata950-2181, Japan
| | - Hibiki Umezawa
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata950-2181, Japan
| | - Tadaaki Ikoma
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Niigata950-2181, Japan
| | - Tatsuto Yui
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata950-2181, Japan
| |
Collapse
|
26
|
Zeng L, Huang L, Han G. Dye Doped Metal-Organic Frameworks for Enhanced Phototherapy. Adv Drug Deliv Rev 2022; 189:114479. [PMID: 35932906 DOI: 10.1016/j.addr.2022.114479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 01/24/2023]
Abstract
Phototherapy is a noninvasive cancer treatment that relies on the interaction between light and photoactive agents. These photoactive agents are typically organic dyes, but their hydrophobic nature and self-aggregation tendency in biological media greatly restricts the development of highly effective phototherapeutic systems. In the past decade, functional dye-doped metal-organic framework (MOF)-based phototherapy has attracted enormous interest because organic dyes can be encapsulated and isolated within the MOF structure to show superior treatment efficacy. In addition to incorporating the reported phototherapeutic dyes into MOF as the ligand or the guest in the pores, the construction of an MOF-based phototherapy agent can also be extended to these dye units that are previously inactive for phototherapy. Thus, this review focuses on the emerging development of phototherapeutic MOFs that exhibited better performance than the involving dye units due to the controlled dye aggregation within the MOF. The related mechanisms and some emerging future directions of dye-doped MOF-based phototherapy are also discussed and summarized.
Collapse
Affiliation(s)
- Le Zeng
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Ling Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, United States; Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, PR China.
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, United States.
| |
Collapse
|
27
|
Zeng L, Huang L, Han J, Han G. Enhancing Triplet-Triplet Annihilation Upconversion: From Molecular Design to Present Applications. Acc Chem Res 2022; 55:2604-2615. [PMID: 36074952 DOI: 10.1021/acs.accounts.2c00307] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Photon upconversion, the process of converting low-energy photons into high-energy ones, has been widely applied for solar energy conversion, photoredox catalysis, and various biological applications such as background-free bioimaging, cancer therapy, and optogenetics. Upconversion materials that are based on triplet-triplet annihilation (TTA) are of particular interest due to their low excitation power requirements (e.g., ambient sunlight) and easily tunable excitation and emission wavelengths. Despite advances that have been made with respect to TTA upconversion (TTA-UC) in the past decade, several challenges remain for near-infrared light-activatable triplet-triplet annihilation upconversion (NIR TTA-UC). These challenges include low upconversion quantum yield, small anti-Stokes shift, and incompatibility with oxygen, the latter of which seriously limits the practical applications of NIR TTA-UC.This Account will summarize the recent research endeavors to address the above-mentioned challenges and the recent new applications. The first part of this Account highlights recent strategies of molecular design to modulate the excited states of photosensitizers and annihilators, two key factors to determine TTA-UC performance. Novel molecular engineering strategies such as the resonance energy transfer method, dimerization of dye units, and the helix twist molecular structure have been proposed to tune the excited states of photosensitizers. The obtained photosensitizers exhibited enhanced absorption of deep tissue penetrable near-infrared (NIR) light, produced a triplet excited state with elevated energy level and prolonged lifetime, and promoted intersystem crossing, leading to an upgraded TTA-UC system with significantly expanded anti-Stokes shift. With respect to the annihilator, the perylene derivatives were systematically explored, and their attached aromatic groups were found to be the key to adjusting the energy levels of both the triplet and singlet excited states. The resultant optimal TTA-UC system exhibits the highest recorded efficiency among NIR TTA-UC systems.Moreover, to resolve the oxygen-induced TTA-UC quenching, enzymatic reactions were recently introduced. More specifically, the glucose oxidase-catalyzed glucose oxidation reaction showed the ability to rapidly consume oxygen to turn on the TTA-UC luminescence in an aqueous solution. The resultant TTA-UC nanoparticle was able to detect glucose and an enzyme related to glucose metabolism in a highly specific, sensitive, and background-free manner. Further, the upconverted singlet excited state of the annihilator was directly utilized as the catalyst or the excited substrate. For example, the modification of annihilators and drug molecules with photolabile linkages can realize the long wavelength light-induced photolysis. Compared to direct short-wavelength-driven photolysis, this sensitized TTA photolysis (TTAP) exhibits superior reaction yield and lower photodamage, which are important in the release of drugs for tumor treatment in vivo. Moreover, the improved upconversion efficiency can enable the successful coupling of NIR TTA-UC with a visible light absorbing photocatalyst for NIR-driven photoredox catalysis. Compared to direct visible-light photocatalysis, TTA-UC mediated NIR photoredox catalysis showed superior product yield especially in large scale reaction systems owing to the deep penetration power of NIR light. More interestingly, among a few promising technology applications, three-dimensional (3D) printing based on photopolymerization can operate with faster speed and energy-input several orders of magnitude lower when the two-photon polymerization is replaced with TTA-UC mediated polymerization. We believe this Account will spur interest in the further development and application of TTA-UC in the areas of energy, chemistry, material science, and biology.
Collapse
Affiliation(s)
- Le Zeng
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Ling Huang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States.,Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Jinfeng Han
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Gang Han
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
28
|
Upconversion Nanostructures Applied in Theranostic Systems. Int J Mol Sci 2022; 23:ijms23169003. [PMID: 36012269 PMCID: PMC9409402 DOI: 10.3390/ijms23169003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Upconversion (UC) nanostructures, which can upconvert near-infrared (NIR) light with low energy to visible or UV light with higher energy, are investigated for theranostic applications. The surface of lanthanide (Ln)-doped UC nanostructures can be modified with different functional groups and bioconjugated with biomolecules for therapeutic systems. On the other hand, organic molecular-based UC nanostructures, by using the triplet-triplet annihilation (TTA) UC mechanism, have high UC quantum yields and do not require high excitation power. In this review, the major UC mechanisms in different nanostructures have been introduced, including the Ln-doped UC mechanism and the TTA UC mechanism. The design and fabrication of Ln-doped UC nanostructures and TTA UC-based UC nanostructures for theranostic applications have been reviewed and discussed. In addition, the current progress in the application of UC nanostructures for diagnosis and therapy has been summarized, including tumor-targeted bioimaging and chemotherapy, image-guided diagnosis and phototherapy, NIR-triggered controlled drug releasing and bioimaging. We also provide insight into the development of emerging UC nanostructures in the field of theranostics.
Collapse
|
29
|
Recent Advances in the Photoreactions Triggered by Porphyrin-Based Triplet–Triplet Annihilation Upconversion Systems: Molecular Innovations and Nanoarchitectonics. Int J Mol Sci 2022; 23:ijms23148041. [PMID: 35887385 PMCID: PMC9323209 DOI: 10.3390/ijms23148041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Triplet–triplet annihilation upconversion (TTA-UC) is a very promising technology that could be used to convert low-energy photons to high-energy ones and has been proven to be of great value in various areas. Porphyrins have the characteristics of high molar absorbance, can form a complex with different metal ions and a high proportion of triplet states as well as tunable structures, and thus they are important sensitizers for TTA-UC. Porphyrin-based TTA-UC plays a pivotal role in the TTA-UC systems and has been widely used in many fields such as solar cells, sensing and circularly polarized luminescence. In recent years, applications of porphyrin-based TTA-UC systems for photoinduced reactions have emerged, but have been paid little attention. As a consequence, this review paid close attention to the recent advances in the photoreactions triggered by porphyrin-based TTA-UC systems. First of all, the photochemistry of porphyrin-based TTA-UC for chemical transformations, such as photoisomerization, photocatalytic synthesis, photopolymerization, photodegradation and photochemical/photoelectrochemical water splitting, was discussed in detail, which revealed the different mechanisms of TTA-UC and methods with which to carry out reasonable molecular innovations and nanoarchitectonics to solve the existing problems in practical application. Subsequently, photoreactions driven by porphyrin-based TTA-UC for biomedical applications were demonstrated. Finally, the future developments of porphyrin-based TTA-UC systems for photoreactions were briefly discussed.
Collapse
|
30
|
Upconversion nanomaterials and delivery systems for smart photonic medicines and healthcare devices. Adv Drug Deliv Rev 2022; 188:114419. [PMID: 35810884 DOI: 10.1016/j.addr.2022.114419] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/24/2022] [Accepted: 07/03/2022] [Indexed: 12/27/2022]
Abstract
In the past decade, upconversion (UC) nanomaterials have been extensively investigated for the applications to photomedicines with their unique features including biocompatibility, near-infrared (NIR) to visible conversion, photostability, controllable emission bands, and facile multi-functionality. These characteristics of UC nanomaterials enable versatile light delivery for deep tissue biophotonic applications. Among various stimuli-responsive delivery systems, the light-responsive delivery process has been greatly advantageous to develop spatiotemporally controllable on-demand "smart" photonic medicines. UC nanomaterials are classified largely to two groups depending on the photon UC pathway and compositions: inorganic lanthanide-doped UC nanoparticles and organic triplet-triplet annihilation UC (TTA-UC) nanomaterials. Here, we review the current-state-of-art inorganic and organic UC nanomaterials for photo-medicinal applications including photothermal therapy (PTT), photodynamic therapy (PDT), photo-triggered chemo and gene therapy, multimodal immunotherapy, NIR mediated neuromodulations, and photochemical tissue bonding (PTB). We also discuss the future research direction of this field and the challenges for further clinical development.
Collapse
|
31
|
Chen H, Ding B, Ma P, Lin J. Recent progress in upconversion nanomaterials for emerging optical biological applications. Adv Drug Deliv Rev 2022; 188:114414. [PMID: 35809867 DOI: 10.1016/j.addr.2022.114414] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/19/2022] [Accepted: 06/26/2022] [Indexed: 02/08/2023]
Abstract
The recent advances of upconversion nanoparticles (UCNPs) have made them the ideal "partner" for a variety of biological applications. In this review, we describe the emerging biological optical applications of UCNPs, focus on their potential therapeutic advantages. Firstly, we briefly review the development and mechanisms of upconversion luminescence, including organic and inorganic UCNPs. Next, in the section on UCNPs for imaging and detection, we list the development of UCNPs in visualization, temperature sensing, and detection. In the section on therapy, recent results are described concerning optogenetics and neurotherapy. Tumor therapy is another major part of this section, including the synergistic application of phototherapy such as photoimmunotherapy. In a special section, we briefly cover the integration of UCNPs in therapeutics. Finally, we present our understanding of the limitations and prospects of applications of UCNPs in biological fields, hoping to provide a more comprehensive understanding of UCNPs and attract more attention.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
32
|
Zhang C, Li L, Xu L, Ye C, Han P, Wang M, Liu R, Chen S, Wang X, Song Y. Micellar Ratiometric Fluorescent Blood pH Probe Based on Triplet-Sensitized Upconversion and Energy-Transfer Behaviors. J Phys Chem Lett 2022; 13:5758-5765. [PMID: 35715231 DOI: 10.1021/acs.jpclett.2c00874] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The measurement of pH is greatly significant in monitoring physiological and biochemical states. In this work, a novel micellar ratiometric fluorescent probe featuring sophisticated energy-transfer (ET) behaviors with p-nitrophenol (PNP) as the energy acceptor and a triplet-triplet annihilation upconversion (TTA-UC) system as the energy donor was designed. The pH-induced molecular configuration of PNP determined the process for the transfer of energy from TTA-UC to PNP. The introduction of the TTA-UC system enabled probe excitation under a long wavelength and afforded a ratiometric signal for pH detection with excellent reliability over diverse interfering factors. This TTA-UC/ET pH probe demonstrated a high sensitivity to hydronium below nanomolar concentrations and an excellent anti-interference ability in serum samples, which provided a novel significant strategy for rapid and accurate detection of blood pH in vitro.
Collapse
Affiliation(s)
- Chun Zhang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Lin Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Lei Xu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Changqing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Pengju Han
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Meng Wang
- Clinical Pharmacology Laboratory, Second Affiliated Hospital of Soochow University, Suzhou 215009, P. R. China
| | - Renjie Liu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Shuoran Chen
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Xiaomei Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
33
|
Jiménez J, Prieto-Montero R, Serrano S, Stachelek P, Rebollar E, Maroto BL, Moreno F, Martinez-Martinez V, Pal R, García-Moreno I, de la Moya S. BINOL blocks as accessible triplet state modulators in BODIPY dyes. Chem Commun (Camb) 2022; 58:6385-6388. [PMID: 35543210 DOI: 10.1039/d2cc00991a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BINOL moieties of different electronic demand are useful blocks for enabling the photo-production and modulation of triplet excited states in readily-accesible BINOL-based O-BODIPY dyes from standard F-BODIPY precursors. The rapid and rational development of smarter triplet-enabling BODIPY dyes on the basis of this strategy (e.g., TADF biomarker 4a or room temperature phosphor 4g) paves the way for advancing photonic applications based on organic triplet photosensitizers.
Collapse
Affiliation(s)
- Josué Jiménez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Ruth Prieto-Montero
- Departamento de Química Física, Universidad del País Vasco-EHU, Apartado 644, 48080, Bilbao, Spain
| | - Sergio Serrano
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Patrycja Stachelek
- Department of Chemistry, Durham University, Road, Durham DH1 3LE, Durham, UK
| | - Esther Rebollar
- Departamento de Sistemas de Baja Dimensionalidad, Superficies y Materia Condensada, Instituto de Química Física "Rocasolano", C.S.I.C., Serrano 119, 28006 Madrid, Spain.
| | - Beatriz L Maroto
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Florencio Moreno
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | | | - Robert Pal
- Department of Chemistry, Durham University, Road, Durham DH1 3LE, Durham, UK
| | - Inmaculada García-Moreno
- Departamento de Sistemas de Baja Dimensionalidad, Superficies y Materia Condensada, Instituto de Química Física "Rocasolano", C.S.I.C., Serrano 119, 28006 Madrid, Spain.
| | - Santiago de la Moya
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| |
Collapse
|
34
|
Vepris O, Eich C, Feng Y, Fuentes G, Zhang H, Kaijzel EL, Cruz LJ. Optically Coupled PtOEP and DPA Molecules Encapsulated into PLGA-Nanoparticles for Cancer Bioimaging. Biomedicines 2022; 10:biomedicines10051070. [PMID: 35625807 PMCID: PMC9138547 DOI: 10.3390/biomedicines10051070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 01/10/2023] Open
Abstract
Triplet-triplet annihilation upconversion (TTA-UC) nanoparticles (NPs) have emerged as imaging probes and therapeutic probes in recent years due to their excellent optical properties. In contrast to lanthanide ion-doped inorganic materials, highly efficient TTA-UC can be generated by low excitation power density, which makes it suitable for clinical applications. In the present study, we used biodegradable poly(lactic-co-glycolic acid) (PLGA)-NPs as a delivery vehicle for TTA-UC based on the heavy metal porphyrin Platinum(II) octaethylporphyrin (PtOEP) and the polycyclic aromatic hydrocarbon 9,10-diphenylanthracene (DPA) as a photosensitizer/emitter pair. TTA-UC-PLGA-NPs were successfully synthesized according to an oil-in-water emulsion and solvent evaporation method. After physicochemical characterization, UC-efficacy of TTA-UC-PLGA-NPs was assessed in vitro and ex vivo. TTA-UC could be detected in the tumour area 96 h after in vivo administration of TTA-UC-PLGA-NPs, confirming the integrity and suitability of PLGA-NPs as a TTA-UC in vivo delivery system. Thus, this study provides proof-of-concept that the advantageous properties of PLGA can be combined with the unique optical properties of TTA-UC for the development of advanced nanocarriers for simultaneous in vivo molecular imaging and drug delivery.
Collapse
Affiliation(s)
- Olena Vepris
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, C2-S-Room 187, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (O.V.); (C.E.); (G.F.); (E.L.K.)
| | - Christina Eich
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, C2-S-Room 187, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (O.V.); (C.E.); (G.F.); (E.L.K.)
| | - Yansong Feng
- Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Y.F.); (H.Z.)
| | - Gastón Fuentes
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, C2-S-Room 187, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (O.V.); (C.E.); (G.F.); (E.L.K.)
- Department of Ceramic and Metallic Biomaterials, Biomaterials Center, University of Havana, Ave Universidad e/G y Ronda, Vedado, Plaza, La Habana 10400, Cuba
| | - Hong Zhang
- Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Y.F.); (H.Z.)
| | - Eric L. Kaijzel
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, C2-S-Room 187, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (O.V.); (C.E.); (G.F.); (E.L.K.)
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, C2-S-Room 187, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (O.V.); (C.E.); (G.F.); (E.L.K.)
- Correspondence:
| |
Collapse
|
35
|
Zhang H, Liu Y, Jin R, Han S, Su Q. Intensifying upconverted ultraviolet emission towards efficient reactive oxygen species generation. Chem Asian J 2022; 17:e202200309. [PMID: 35485415 DOI: 10.1002/asia.202200309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Indexed: 11/10/2022]
Abstract
Multiphoton upconversion that can convert near-infrared irradiation into ultraviolet emission offers many unique opportunities for photocatalysis and phototherapy. However, the high-lying excited states of lanthanide emitters are often quenched by the interior lattice defects and deleterious interactions among different lanthanides, resulting in weak ultraviolet emission. Here, we describe a novel excitation energy lock-in approach to boost ultraviolet upconversion emission in a new class of multilayer core-shell nanoparticles with a gadolinium-rich core domain. Remarkably, we observe more than 70-fold enhancements in Gd 3+ emission from the designed nanoparticles compared with the conventional nanoparticles. Our mechanistic investigation reveals that the combination of energy migration over the core domain and optically inert NaYF 4 interlayer can effectively confine the excitation energy and thus lead to intense multiphoton ultraviolet emission in upconversion nanostructures. We further achieve a 35.6% increase in photocatalytic reactivity and 26.5% in reactive oxygen species production yield in ZnO-coated upconversion nanocomposites under 808-nm excitation. This study provides a new insight to energy transfer mechanism in lanthanide-doped nanoparticles, and offers an exciting avenue for exploring novel near-infrared photocatalysts.
Collapse
Affiliation(s)
- Haoran Zhang
- Shanghai University, Institute of Nanochemistry and Nanobiology, CHINA
| | - Yachong Liu
- Shanghai University, Institute of Nanochemistry and Nanobiology, CHINA
| | - Rong Jin
- Shanghai University, Institute of Nanochemistry and Nanobiology, CHINA
| | - Sanyang Han
- Tsinghua University, Institute of Biopharmaceutical and Health Engineering, CHINA
| | - Qianqian Su
- Shanghai University, Institute of Nanochemistry and Nanobiology, #59, No. 99, Shangda Road,, Baoshan District, 200444, Shanghai, CHINA
| |
Collapse
|
36
|
Ansari AA, Parchur AK, Chen G. Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214423] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Isokuortti J, Kiiski I, Sikanen T, Durandin N, Laaksonen T. Microfluidic oxygen tolerability screening of nanocarriers for triplet fusion photon upconversion. JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:4871-4877. [PMID: 35433006 PMCID: PMC8944590 DOI: 10.1039/d2tc00156j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/06/2022] [Indexed: 05/13/2023]
Abstract
The full potential of triplet fusion photon upconversion (TF-UC) of providing high-energy photons locally with low-energy excitation is limited in biomedicine and life sciences by its oxygen sensitivity. This hampers the applicability of TF-UC systems in sensors, imaging, optogenetics and drug release. Despite the advances in improving the oxygen tolerability of TF-UC systems, the evaluation of oxygen tolerability is based on comparing the performance at completely deoxygenated (0% oxygen) and ambient (20-21%) conditions, leaving the physiological oxygen levels (0.3-13.5%) neglected. This oversight is not deliberate and is only the result of the lack of simple and predictable methods to obtain and maintain these physiological oxygen levels in an optical setup. Herein, we demonstrate the use of microfluidic chips made of oxygen depleting materials to study the oxygen tolerability of four different micellar nanocarriers made of FDA-approved materials with various oxygen scavenging capabilities by screening their TF-UC performance over physiological oxygen levels. All nanocarriers were capable of efficient TF-UC even in ambient conditions. However, utilizing oxygen scavengers in the oil phase of the nanocarrier improves the oxygen tolerability considerably. For example, at the mean tumour oxygen level (1.4%), nanocarriers made of surfactants and oil phase both capable of oxygen scavenging retained remarkably 80% of their TF-UC emission. This microfluidic concept enables faster, simpler and more realistic evaluation of, not only TF-UC, but any micro or nanoscale oxygen-sensitive system and facilitates their development and implementation in biomedical and life science applications.
Collapse
Affiliation(s)
- Jussi Isokuortti
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
| | - Iiro Kiiski
- Faculty of Pharmacy, Drug Research Program, University of Helsinki Helsinki Finland
| | - Tiina Sikanen
- Faculty of Pharmacy, Drug Research Program, University of Helsinki Helsinki Finland
| | - Nikita Durandin
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
| | - Timo Laaksonen
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
- Faculty of Pharmacy, Drug Research Program, University of Helsinki Helsinki Finland
| |
Collapse
|
38
|
Dimitriev OP. Dynamics of Excitons in Conjugated Molecules and Organic Semiconductor Systems. Chem Rev 2022; 122:8487-8593. [PMID: 35298145 DOI: 10.1021/acs.chemrev.1c00648] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The exciton, an excited electron-hole pair bound by Coulomb attraction, plays a key role in photophysics of organic molecules and drives practically important phenomena such as photoinduced mechanical motions of a molecule, photochemical conversions, energy transfer, generation of free charge carriers, etc. Its behavior in extended π-conjugated molecules and disordered organic films is very different and very rich compared with exciton behavior in inorganic semiconductor crystals. Due to the high degree of variability of organic systems themselves, the exciton not only exerts changes on molecules that carry it but undergoes its own changes during all phases of its lifetime, that is, birth, conversion and transport, and decay. The goal of this review is to give a systematic and comprehensive view on exciton behavior in π-conjugated molecules and molecular assemblies at all phases of exciton evolution with emphasis on rates typical for this dynamic picture and various consequences of the above dynamics. To uncover the rich variety of exciton behavior, details of exciton formation, exciton transport, exciton energy conversion, direct and reverse intersystem crossing, and radiative and nonradiative decay are considered in different systems, where these processes lead to or are influenced by static and dynamic disorder, charge distribution symmetry breaking, photoinduced reactions, electron and proton transfer, structural rearrangements, exciton coupling with vibrations and intermediate particles, and exciton dissociation and annihilation as well.
Collapse
Affiliation(s)
- Oleg P Dimitriev
- V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, pr. Nauki 41, Kyiv 03028, Ukraine
| |
Collapse
|
39
|
Li Y, Jiang C, Chen X, Jiang Y, Yao C. Yb 3+-Doped Two-Dimensional Upconverting Tb-MOF Nanosheets with Luminescence Sensing Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8343-8352. [PMID: 35104398 DOI: 10.1021/acsami.2c00160] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this article, we synthesized a Yb3+-doped two-dimensional (2-D) upconverting Tb metal-organic framework (Tb-MOF) (hereinafter referred to as Tb-UCMOF) by a one-step solvothermal method. The synthesized Tb-UCMOF is composed of stacks of 2-D nanosheets with an average width distributed between 250 and 300 nm, and these nanosheets can be exfoliated by a simple liquid ultrasound method. The structural characteristics of this flaky particle accumulation are confirmed by the type IV adsorption-desorption isotherm with a H3-type adsorption hysteresis loop, and the Brunauer-Emmett-Teller surface of Tb-UCMOF is 143.9257 m2·g-1. Tb-UCMOF has characteristic emissions of Tb3+ which are located at 490, 545, 585, and 621 nm under 980 nm excitation. The upconverting luminescence mechanism is attributed to that Yb3+ absorbs multiple photons and transfers the energy to Tb3+, causing its 4f electrons to jump to the excited state, and then the upconverting emissions are obtained when electrons return to the ground state. Since the Tb-UCMOF nanosheets have high dispersibility and an obvious upconverting luminescent signal, we explored their luminescence sensing properties. The luminescence intensity is found to gradually decrease with the addition of Cu2+, the linear range of Cu2+ sensing is 0-1.4 μM, and the detection limit is 0.16 μM. This rapid, highly selective, and sensitive Cu2+ sensing indicates that 2-D upconverting MOF nanosheets have great application prospects in luminescence sensing and also promote the research of 2-D upconverting MOFs with specific recognition for the application of biological and environmental luminescent sensors.
Collapse
Affiliation(s)
- Yingxue Li
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Chen Jiang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xiong Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yuanhang Jiang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Cheng Yao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
40
|
Lee H, Lee MS, Uji M, Harada N, Park JM, Lee J, Seo SE, Park CS, Kim J, Park SJ, Bhang SH, Yanai N, Kimizuka N, Kwon OS, Kim JH. Nanoencapsulated Phase-Change Materials: Versatile and Air-Tolerant Platforms for Triplet-Triplet Annihilation Upconversion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4132-4143. [PMID: 35019270 DOI: 10.1021/acsami.1c21080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Efficient and long-term stable triplet-triplet annihilation upconversion (TTA-UC) can be achieved by effectively protecting the excited organic triplet ensembles from photoinduced oxygen quenching, and discovery of a new material platform that promotes TTA-UC in ambient conditions is of paramount importance for practical applications. In this study, we present the first demonstration of an organic nonparaffin phase-change material (PCM) as an air-tolerant medium for TTA-UC with a unique solid-liquid phase transition in response to temperature variation. For the proposed concept, 2,4-hexadien-1-ol is used and extensively characterized with several key features, including good solvation capacity, mild melting point (30.5 °C), and exclusive antioxidant property, enabling a high-efficiency, low-threshold, and photostable TTA-UC system without energy-intensive degassing processes. In-depth characterization reveals that the triplet diffusion among the transient species, i.e., 3sensitizer* and 3acceptor*, is efficient and well protected from oxygen quenching in both aerated liquid- and solid-phase 2,4-hexadien-1-ol. We also propose a new strategy for the nanoencapsulation of PCM by employing hollow mesoporous silica nanoparticles as vehicles. This scheme is applicable to both aqueous- and solid-phase TTA-UC systems as well as suitable for various applications, such as thermal energy storage and smart drug delivery.
Collapse
Affiliation(s)
- Haklae Lee
- Department of Chemical and Environmental Engineering, Pusan National University, Busan 46241, South Korea
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Myung-Soo Lee
- Department of Chemical and Environmental Engineering, Pusan National University, Busan 46241, South Korea
| | - Masanori Uji
- Department of Applied Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Naoyuki Harada
- Department of Applied Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jeong-Min Park
- Department of Chemical and Environmental Engineering, Pusan National University, Busan 46241, South Korea
| | - Jiyeon Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Sung Eun Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Chul Soon Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Jinyeong Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Seon Joo Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Nobuhiro Yanai
- Department of Applied Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- PRESTO, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Oh Seok Kwon
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, South Korea
- Nanobiotechnology and Bioinformatics (Major), University of Science & Technology (UST), Daejeon 34141, South Korea
| | - Jae-Hyuk Kim
- Department of Chemical and Environmental Engineering, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
41
|
Bossanyi DG, Sasaki Y, Wang S, Chekulaev D, Kimizuka N, Yanai N, Clark J. Spin Statistics for Triplet-Triplet Annihilation Upconversion: Exchange Coupling, Intermolecular Orientation, and Reverse Intersystem Crossing. JACS AU 2021; 1:2188-2201. [PMID: 34977890 PMCID: PMC8715495 DOI: 10.1021/jacsau.1c00322] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 06/14/2023]
Abstract
Triplet-triplet annihilation upconversion (TTA-UC) has great potential to significantly improve the light harvesting capabilities of photovoltaic cells and is also sought after for biomedical applications. Many factors combine to influence the overall efficiency of TTA-UC, the most fundamental of which is the spin statistical factor, η, that gives the probability that a bright singlet state is formed from a pair of annihilating triplet states. The value of η is also critical in determining the contribution of TTA to the overall efficiency of organic light-emitting diodes. Using solid rubrene as a model system, we reiterate why experimentally measured magnetic field effects prove that annihilating triplets first form weakly exchange-coupled triplet-pair states. This is contrary to conventional discussions of TTA-UC that implicitly assume strong exchange coupling, and we show that it has profound implications for the spin statistical factor η. For example, variations in intermolecular orientation tune η from to through spin mixing of the triplet-pair wave functions. Because the fate of spin-1 triplet-pair states is particularly crucial in determining η, we investigate it in rubrene using pump-push-probe spectroscopy and find additional evidence for the recently reported high-level reverse intersystem crossing channel. We incorporate all of these factors into an updated model framework with which to understand the spin statistics of TTA-UC and use it to rationalize the differences in reported values of η among different common annihilator systems. We suggest that harnessing high-level reverse intersystem crossing channels in new annihilator molecules may be a highly promising strategy to exceed any spin statistical limit.
Collapse
Affiliation(s)
- David G. Bossanyi
- Department
of Physics and Astronomy, The University
of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Yoichi Sasaki
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Center
for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shuangqing Wang
- Department
of Physics and Astronomy, The University
of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Dimitri Chekulaev
- Department
of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - Nobuo Kimizuka
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Center
for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuhiro Yanai
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Center
for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jenny Clark
- Department
of Physics and Astronomy, The University
of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, U.K.
| |
Collapse
|
42
|
|
43
|
Gao C, Wong WWH, Qin Z, Lo SC, Namdas EB, Dong H, Hu W. Application of Triplet-Triplet Annihilation Upconversion in Organic Optoelectronic Devices: Advances and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100704. [PMID: 34596295 DOI: 10.1002/adma.202100704] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Organic semiconductor materials have been widely used in various optoelectronic devices due to their rich optical and/or electrical properties, which are highly related to their excited states. Therefore, how to manage and utilize the excited states in organic semiconductors is essential for the realization of high-performance optoelectronic devices. Triplet-triplet annihilation (TTA) upconversion is a unique process of converting two non-emissive triplet excitons to one singlet exciton with higher energy. Efficient optical-to-electrical devices can be realized by harvesting sub-bandgap photons through TTA-based upconversion. In electrical-to-optical devices, triplets generated after the combination of electrons and holes also can be efficiently utilized via TTA, which resulted in a high internal conversion efficiency of 62.5%. Currently, many interesting explorations and significant advances have been demonstrated in these fields. In this review, a comprehensive summary of these intriguing advances on developing efficient TTA upconversion materials and their application in optoelectronic devices is systematically given along with some discussions. Finally, the key challenges and perspectives of TTA upconversion systems for further improvement for optoelectronic devices and other related research directions are provided. This review hopes to provide valuable guidelines for future related research and advancement in organic optoelectronics.
Collapse
Affiliation(s)
- Can Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wallace W H Wong
- ARC Centre of Excellence in Exciton Science, School of Chemistry, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Zhengsheng Qin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shih-Chun Lo
- Centre for Organic Photonics and Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ebinazar B Namdas
- Centre for Organic Photonics & Electronics, School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
44
|
Luo G, Chen Y, Zeng Y, Yu T, Chen J, Hu R, Yang G, Li Y. Funneling and Enhancing Upconversion Emission by Light-Harvesting Molecular Wires. J Phys Chem Lett 2021; 12:9525-9530. [PMID: 34559971 DOI: 10.1021/acs.jpclett.1c02717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Triplet-triplet annihilation (TTA) upconversion has shown promising potentials in the augmentation of solar energy conversion. However, challenging issues exist in improving TTA upconversion efficiencies in solid-states, one of which is the back energy transfer from upconverted singlet annihilators to sensitizers, resulting in decreasing upconversion emission. Here we present a light-harvesting molecular wire consisting of dendrons with 9,10-diphenylanthracene derivatives (DPAEH) at the periphery and p-phenylene ethynylene oligomers (PPE) as the wire core. The peripheral DPAEH antenna funnels singlet excitonic energy to the wire on a 12 ps time scale. Incorporating the molecular wire into the TTA upconversion solid consisting of the DPAEH annihilator and the porphyrin sensitizer evidently improves the upconversion quantum yield from 1.5% to 2.7% upon 532 nm excitation by suppressing the back energy transfer from the singlet annihilator to the sensitizer. This finding offers a potential route to use a singlet energy light-harvesting architecture for enhancing TTA upconversion.
Collapse
Affiliation(s)
- Guiwen Luo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yeqin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianjun Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinping Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Rui Hu
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoqiang Yang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
Du X, Han J, He Z, Han C, Wang X, Wang J, Jiang Y, Tao S. Efficient Organic Upconversion Devices for Low Energy Consumption and High-Quality Noninvasive Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102812. [PMID: 34402548 DOI: 10.1002/adma.202102812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Infrared upconversion devices (UCDs) enable low-cost visualization of infrared optical signals without utilizing a readout circuit, which is of great significance for biological recognition and noninvasive dynamic monitoring. However, UCDs suffer from inferior photon to photon (p-p) efficiency and high turn-on voltage (Von ) for upconversion operation, hindering a further expansion in highly resolved infrared imaging. Herein, an efficient organic UCD integrating an interfacial exciplex emitter and a well-designed near-infrared (NIR) detector reveals a high efficiency up to 12.92% and a low Von down to 1.56 V. The low Von gives the capacity for detecting weak NIR light down to 3.2 µW cm-2 , significantly expanding the detection power scale of UCDs. Thus, the imaging linear dynamic range (I-LDR) is highly bias-tunable, ranging from 13.23 to 84.4 dB. The high I-LDR enables highly resolved and strong-penetration bioimaging especially for thick biological sections, indicating great potential in noninvasive defect and pathological detection.
Collapse
Affiliation(s)
- Xiaoyang Du
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jiayue Han
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zeyu He
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chao Han
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xiaomu Wang
- School of Electronic Science and Technology, Nanjing University, Nanjing, 210093, China
| | - Jun Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yadong Jiang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Silu Tao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
46
|
Wright AI, Kariuki BM, Wu Y. Triplet‐Forming Thionated Donor‐Acceptor Chromophores for Electrochemically Amphoteric Photosensitization. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anna I. Wright
- School of Chemistry Cardiff University Main Building Park Place Cardiff CF10 3AT United Kingdom
| | - Benson M. Kariuki
- School of Chemistry Cardiff University Main Building Park Place Cardiff CF10 3AT United Kingdom
| | - Yi‐Lin Wu
- School of Chemistry Cardiff University Main Building Park Place Cardiff CF10 3AT United Kingdom
| |
Collapse
|
47
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
48
|
Ahmad W, Wang J, Li H, Ouyang Q, Wu W, Chen Q. Strategies for combining triplet–triplet annihilation upconversion sensitizers and acceptors in a host matrix. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Progress in the study of D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) reversing multidrug resistance. Colloids Surf B Biointerfaces 2021; 205:111914. [PMID: 34130211 DOI: 10.1016/j.colsurfb.2021.111914] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/28/2021] [Accepted: 06/06/2021] [Indexed: 12/13/2022]
Abstract
Currently, multidrug resistance (MDR) is one of the major reasons for failure in clinical cancer chemotherapy. Overexpression of the ATP binding cassette (ABC) transporter P-glycoprotein (P-gp), which significantly increases the efflux of anticancer drugs from tumor cells, enhances MDR. In the past few decades, four generations of P-gp inhibitors have appeared. However, they are limited in clinical application due to their severe toxic side effects. As a P-gp inhibitor and carrier for loading chemotherapy agents, TPGS has received increasing attention due to its advantages and unique properties of reversing MDR. TPGS is an amphipathic agent that increases the solubility of most chemotherapy drugs and decreases severe side effects. In addition, TPGS is an excellent carrier with P-gp-inhibiting ability. In this review, we summarize the latest articles on TPGS-based nanodelivery systems to prevent MDR.
Collapse
|
50
|
|