1
|
Shetty R, Jose J, Maliyakkal N, D S S, Johnson RP, Bandiwadekar A, Gopan G, Ugare SR, Preman NK. Micelle nanogel-based drug delivery system for lutein in ocular administration. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03919-0. [PMID: 40019526 DOI: 10.1007/s00210-025-03919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/11/2025] [Indexed: 03/01/2025]
Abstract
Recent studies have demonstrated that antioxidants like lutein considerably lower the prevalence of age-related macular degeneration (AMD), which has been connected to blindness in numerous older adults. By halting oxidation, antioxidants reduce the damage that free radicals do. However, the short residence time, low stability, and poor solubility of lutein limit their ocular bioavailability following topical application. This study aimed to develop and characterize a micelle nanogel formulation for the ocular delivery of lutein. The micelle nanogel delivery system suggests a novel therapeutic strategy for administering ocular drugs due to its longer retention on the ocular surface, improved corneal permeability, and lowering the need for frequent administration. We developed a nanosized lutein micelle and incorporated it into a gel base to increase the solubility and ocular permeability. The micelle nanoformulation underwent evaluations like mean particle size, entrapment efficiency (EE), zeta potential, in vitro release investigations, ex vivo permeation tests, cell line studies, and Hen's egg test chorioallantoic membrane (HET-CAM). This nanoformulation exhibited favorable particle size (205.2 ± 15.36 nm), PDI (0.3 ± 0.20), and zeta potential (- 14.2 to + 11.3 mV) with 84.5 ± 1.75% entrapment efficiency. Fourier transform infrared spectroscopy confirmed compatibility, while TEM showed nanoscale spherical structures. F4 demonstrated effective corneal penetration, enhanced fibroblast viability, antioxidant activity (IC50: 55.11 µg/mL), and mild ocular irritancy and better wound healing properties. Based on the results, the formulations were proven safe and efficient for drug delivery to the eyes.
Collapse
Affiliation(s)
- Reeshma Shetty
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to Be University), Mangalore, 575018, Karnataka, India.
| | - Naseer Maliyakkal
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushait, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Sandeep D S
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Renjith P Johnson
- Polymer Nanobiomaterial Research Laboratory, Smart Materials and Device Division, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, India
| | - Akshay Bandiwadekar
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Gopika Gopan
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Sanjay R Ugare
- Department of Pharmacology, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Namitha K Preman
- Polymer Nanobiomaterial Research Laboratory, Smart Materials and Device Division, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, India
| |
Collapse
|
2
|
Crastin A, Martin CS, Suresh S, Davies SP, Kearns D, Parlak A, Adcock H, Filer A, Jones SW, Raza K, Moakes RJA, Grover LM, Hardy RS. Structured Polymers Enable the Sustained Delivery of Glucocorticoids within the Intra-Articular Space. Adv Healthc Mater 2025; 14:e2403000. [PMID: 39713898 PMCID: PMC11804841 DOI: 10.1002/adhm.202403000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/06/2024] [Indexed: 12/24/2024]
Abstract
Intra-articular glucocorticoid injections are effective in controlling inflammation and pain in arthritides but restricted by short duration of action and risk of joint degeneration. Controlled drug release using biocompatible hydrogels offers a unique solution, but limitations of in situ gelation restrict their application. Gellan sheared hydrogels (GSHs) retain the advantages of hydrogels, however their unique microstructures lend themselves to intra-articular application - capable of shear thinning under force but restructuring at rest to enhance residence. This study examined GSHs for extended intra-articular glucocorticoid delivery of prednisolone (10 mg mL-1); demonstrating links between material mechanics, steroid release, and preclinical assessment of efficacy in synoviocyte culture and transgenic(TNF)197Gkl (TNFtg) murine model of arthritis. GSHs demonstrated sustained release, with typical Fickian profiles over 18 days. Moreover, systems showed good stability under extended culture, with inherent cell-compatibility and suppression of inflammatory synoviocyte activation. In TNFtg animals, GSHs suppressed synovitis (70.08%, p < 0.05), pannus formation (45.01%, p < 0.05), and increased articular cartilage (82.23%, p < 0.05) relative to vehicle controls. The extended profile of steroid release from injectable GSH formulations holds promise in the treatment and management of inflammatory arthritides such as rheumatoid and osteoarthritis, representing a step-change in intra-articular drug delivery to suppress long-term joint inflammation.
Collapse
Affiliation(s)
- Ana Crastin
- Dept of Biomedical Sciences. Institute of Clinical SciencesUniversity of BirminghamBirminghamUK
| | - Claire S. Martin
- Dept of Metabolism and Systems ScienceUniversity of BirminghamBirminghamUK
| | - Sai Suresh
- Dept of Biomedical Sciences. Institute of Clinical SciencesUniversity of BirminghamBirminghamUK
| | - Scott P. Davies
- Centre for Liver and Gastrointestinal ResearchInstitute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Daniel Kearns
- Centre for Liver and Gastrointestinal ResearchInstitute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
- Liver Services UnitQueen Elizabeth Hospital BirminghamUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUK
| | - Ahsen Parlak
- Dept of Biomedical Sciences. Institute of Clinical SciencesUniversity of BirminghamBirminghamUK
| | - Holly Adcock
- School of ChemistryUniversity of BirminghamBirminghamUK
| | - Andrew Filer
- Dept of Inflammation and AgingUniversity of BirminghamBirminghamUK
| | - Simon W. Jones
- MRC Arthritis Research UK Centre for Musculoskeletal Ageing ResearchUniversity of BirminghamBirminghamUK
| | - Karim Raza
- Dept of Inflammation and AgingUniversity of BirminghamBirminghamUK
| | - Richard JA Moakes
- Healthcare Technologies InstituteSchool of Chemical EngineeringUniversity of BirminghamBirminghamUK
| | - Liam M. Grover
- Healthcare Technologies InstituteSchool of Chemical EngineeringUniversity of BirminghamBirminghamUK
| | - Rowan S. Hardy
- Dept of Biomedical Sciences. Institute of Clinical SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
3
|
Trujillo Cubillo L, Gurdal M, Zeugolis DI. Corneal fibrosis: From in vitro models to current and upcoming drug and gene medicines. Adv Drug Deliv Rev 2024; 209:115317. [PMID: 38642593 DOI: 10.1016/j.addr.2024.115317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Fibrotic diseases are characterised by myofibroblast differentiation, uncontrolled pathological extracellular matrix accumulation, tissue contraction, scar formation and, ultimately tissue / organ dysfunction. The cornea, the transparent tissue located on the anterior chamber of the eye, is extremely susceptible to fibrotic diseases, which cause loss of corneal transparency and are often associated with blindness. Although topical corticosteroids and antimetabolites are extensively used in the management of corneal fibrosis, they are associated with glaucoma, cataract formation, corneoscleral melting and infection, imposing the need of far more effective therapies. Herein, we summarise and discuss shortfalls and recent advances in in vitro models (e.g. transforming growth factor-β (TGF-β) / ascorbic acid / interleukin (IL) induced) and drug (e.g. TGF-β inhibitors, epigenetic modulators) and gene (e.g. gene editing, gene silencing) therapeutic strategies in the corneal fibrosis context. Emerging therapeutical agents (e.g. neutralising antibodies, ligand traps, receptor kinase inhibitors, antisense oligonucleotides) that have shown promise in clinical setting but have not yet assessed in corneal fibrosis context are also discussed.
Collapse
Affiliation(s)
- Laura Trujillo Cubillo
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Mehmet Gurdal
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
4
|
Sun R, Zhang J, Chen X, Deng Y, Gou J, Yin T, He H, Tang X, Ni X, Yang L, Zhang Y. An adaptive drug-releasing contact lens for personalized treatment of ocular infections and injuries. J Control Release 2024; 369:114-127. [PMID: 38521167 DOI: 10.1016/j.jconrel.2024.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/04/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
This research introduces an innovative solution to address the challenges of bacterial keratitis and alkali burns. Current treatments for bacterial keratitis and alkali burns rely on the frequent use of antibiotics and anti-inflammatory eye drops. However, these approaches suffer from poor bioavailability and fluctuating concentrations, leading to limited efficacy and potential drug resistance. Our approach presents an adaptive drug-releasing contact lens responsive to reactive oxygen species (ROS) at ocular inflammation sites, synchronously releasing Levofloxacin and Diclofenac. During storage, minimal drug release occurred, but over 7 days of wear, the lens maintained a continuous, customizable drug release rate based on disease severity. This contact lens had strong antibacterial activity and biofilm prevention, effectively treating bacterial keratitis. When combined with autologous serum, this hydrophilic, flexible lens aids corneal epithelial regeneration, reducing irritation and promoting healing. In summary, this ROS-responsive drug-releasing contact lens combines antibacterial and anti-inflammatory effects, offering a promising solution for bacterial keratitis and alkali burns.
Collapse
Affiliation(s)
- Rong Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Jie Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Xi Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Yaxin Deng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Xianpu Ni
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| | - Li Yang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
5
|
Taylor L. Self-healing hydrogels for enhancing chemotherapy drug efficacy: Advancements in anti-sarcoma and carcinoma therapies and clinical trial feasibility. CANCER PATHOGENESIS AND THERAPY 2024; 2:132-134. [PMID: 38601480 PMCID: PMC11002744 DOI: 10.1016/j.cpt.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 04/12/2024]
Abstract
•Site-specific administration is key for optimizing anticancer drug administration; self-healing hydrogels may allow this at reasonable costs and reproducibility.•Self-healing hydrogels have several real-world therapeutic applications, including drug administration.•Self-healing hydrogels are yet to be utilized for chemotherapy drug administration in clinical trials.•Clinical research on using self-healing hydrogels in anticancer therapeutics is feasible and valid compared to other advances in anticancer drug administration.
Collapse
Affiliation(s)
- Luc Taylor
- Cerebrovascular Health, Exercise, and Environmental Research Sciences (CHEERS) Laboratory, Department of Exercise Science, Physical and Health Education, Faculty of Education, University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
6
|
Latham SG, Williams RL, Grover LM, Rauz S. Achieving net-zero in the dry eye disease care pathway. Eye (Lond) 2024; 38:829-840. [PMID: 37957294 PMCID: PMC10965955 DOI: 10.1038/s41433-023-02814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Climate change is a threat to human health and wellbeing across the world. In recent years, there has been a surge in awareness of this crisis, leading to many countries and organisations setting "net-zero" targets. This entails minimising carbon emissions and neutralising remaining emissions by removing carbon from the atmosphere. At the 2022 United Nations Climate Change Conference (COP27), commitments to transition away from fossil fuels and augment climate targets were underwhelming. It is therefore imperative for public and private sector organisations to demonstrate successful implementation of net-zero and set a precedent for the global political consensus. As a top 10 world employer, the United Kingdom National Health Service (NHS) has pledged to reach net-zero by 2045. The NHS has already taken positive steps forward, but its scale and complexity as a health system means stakeholders in each of its services must highlight the specifications for further progress. Dry eye disease is a chronic illness with an estimated global prevalence of 29.5% and an environmentally damaging care pathway. Moreover, environmental damage is a known aggravator of dry eye disease. Worldwide management of this illness generates copious amounts of non-recyclable waste, utilises inefficient supply chains and involves recurrent follow-up appointments and prescriptions. By mapping the dry eye disease care pathway to environmental impact, in this review we will highlight seven key areas in which reduced emissions and pollution could be targeted. Examining these approaches for improved environmental sustainability is critical in driving the transformation needed to preserve our health and wellbeing.
Collapse
Affiliation(s)
- Samuel G Latham
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham NHS Trust, Birmingham, UK
| | - Richard L Williams
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
- Healthcare Technologies Institute, University of Birmingham, Birmingham, UK
| | - Liam M Grover
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
- Healthcare Technologies Institute, University of Birmingham, Birmingham, UK
| | - Saaeha Rauz
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham NHS Trust, Birmingham, UK.
| |
Collapse
|
7
|
Datta N, Jinan T, Wong SY, Chakravarty S, Li X, Anwar I, Arafat MT. Self-assembled sodium alginate polymannuronate nanoparticles for synergistic treatment of ophthalmic infection and inflammation: Preparation optimization and in vitro/vivo evaluation. Int J Biol Macromol 2024; 262:130038. [PMID: 38336323 DOI: 10.1016/j.ijbiomac.2024.130038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Frequent administrations are often needed during the treatment of ocular diseases due to the low bioavailability of the existing eye drops owing to inadequate corneal penetration and rapid drug washout. Herein, sodium alginate polymannuronate (SA) nanocarriers were developed using ionic gelation method that can provide better bioavailability through mucoadhesivity and sustained drug release by binding to the ocular mucus layer. This study disproves the common belief that only the G block of SA participates in the crosslinking reaction during ionic gelation. Self-assembly capability due to the linear flexible structure of the M block, better biocompatibility than G block along with the feasibility of controlling physicochemical characteristics postulate a high potential for designing efficient ocular drug delivery systems. Initially, four crosslinkers of varied concentrations were investigated. Taguchi design of experiment revealed the statistically significant effect of the crosslinker type and concentration on the particle size and stability. The best combination was detected by analyzing the particle size and zeta potential values that showed the desired microstructural properties for ocular barrier penetration. The desired combination was SA-Ca-1 that had particle size within the optimal corneal penetration range, that is 10-200 nm (135 nm). The drug carriers demonstrated excellent entrapment efficiency (∼89 % for Ciprofloxacin and ∼96 % for Dexamethasone) along with a sustained and simultaneous release of dual drug for at least 2 days. The nanoparticles also showed biocompatibility (4 ± 0.6 % hemolysis) and high mucoadhesivity (73 ± 2 % for 0.25 g) which was validated by molecular docking analysis. The prepared formulation was able to reduce the scleral inflammation of the rabbit uveitis models significantly within 3 days. Thus, the eye drop showed remarkable potential for efficient drug delivery leading to faster recovery.
Collapse
Affiliation(s)
- Nondita Datta
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Tohfatul Jinan
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Siew Yee Wong
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Saumitra Chakravarty
- Department of Pathology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Shahbag, Dhaka 1000, Bangladesh
| | - Xu Li
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore; Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | | | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh.
| |
Collapse
|
8
|
Li L, Yu Y, Zhuang Z, Wu Q, Lin S, Hu J. Dopamine Receptor 1 Treatment Promotes Epithelial Repair of Corneal Injury by Inhibiting NOD-Like Receptor Protein 3-Associated Inflammation. Invest Ophthalmol Vis Sci 2024; 65:49. [PMID: 38294802 PMCID: PMC10839817 DOI: 10.1167/iovs.65.1.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024] Open
Abstract
Purpose To elucidate the influence of dopamine receptor 1 (DRD1) on the proliferation of mouse corneal epithelial cells (MCECs) under inflammatory conditions. Methods In vitro, immortalized MCECs (iMCECs) were treated with IL-1β, with and without pcDNA3.1_DRD1. Primary MCECs (pMCECs) were exposed to IL-1β, with and without DRD1 agonist (A68930). Cell proliferation was quantified using the Cell Counting Kit-8 (CCK-8) assay and immunofluorescence staining for Ki-67 and p63. Expression levels of NOD-like receptor protein 3 (NLRP3), IL-1β, and IL-6 were assessed. To establish a corneal injury model in mice, a 2-mm superficial keratectomy was performed. Either 0.1% A68930 or PBS was topically administered three times daily to the injured eyes for up to 5 days post-injury. Immunofluorescence analysis was employed to evaluate the expression of Ki-67, p63, and CD45 in mouse corneas. Western blotting and real-time quantitative PCR were utilized for quantitative analysis of DRD1, NLRP3, IL-1β, and IL-6 in mouse corneas. Corneal epithelial regeneration was monitored through fluorescein sodium staining for a duration of up to 5 days following the injury. Results Overexpression of DRD1 and A68930 promoted MCEC proliferation and suppressed the expression of NLRP3, IL-1β, and IL-6 in vitro. Topical application of the 0.1% A68930 following mechanical corneal injury in mice led to increased Ki-67 and p63 expression compared to PBS treatment. Furthermore, topical administration of the 0.1% A68930 reduced the expression of CD45, NLRP3, IL-1β, and IL-6. Analysis with fluorescein sodium indicated accelerated corneal epithelial regeneration in the 0.1% A68930 treatment group. Conclusions DRD1 treatment counteracts NLRP3-associated inflammation and facilitates epithelial repair of corneal injury.
Collapse
Affiliation(s)
- Licheng Li
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, Fujian Province, China
| | - Yang Yu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, Fujian Province, China
| | - Zihao Zhuang
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, Fujian Province, China
| | - Qi Wu
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, Australia
| | - Shu Lin
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, Australia
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jianmin Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, Fujian Province, China
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
9
|
Gesteira TF, Verma S, Coulson-Thomas VJ. Small leucine rich proteoglycans: Biology, function and their therapeutic potential in the ocular surface. Ocul Surf 2023; 29:521-536. [PMID: 37355022 PMCID: PMC11092928 DOI: 10.1016/j.jtos.2023.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Small leucine rich proteoglycans (SLRPs) are the largest family of proteoglycans, with 18 members that are subdivided into five classes. SLRPs are small in size and can be present in tissues as glycosylated and non-glycosylated proteins, and the most studied SLRPs include decorin, biglycan, lumican, keratocan and fibromodulin. SLRPs specifically bind to collagen fibrils, regulating collagen fibrillogenesis and the biomechanical properties of tissues, and are expressed at particularly high levels in fibrous tissues, such as the cornea. However, SLRPs are also very active components of the ECM, interacting with numerous growth factors, cytokines and cell surface receptors. Therefore, SLRPs regulate major cellular processes and have a central role in major fundamental biological processes, such as maintaining corneal homeostasis and transparency and regulating corneal wound healing. Over the years, mutations and/or altered expression of SLRPs have been associated with various corneal diseases, such as congenital stromal corneal dystrophy and cornea plana. Recently, there has been great interest in harnessing the various functions of SLRPs for therapeutic purposes. In this comprehensive review, we describe the structural features and the related functions of SLRPs, and how these affect the therapeutic potential of SLRPs, with special emphasis on the use of SLRPs for treating ocular surface pathologies.
Collapse
Affiliation(s)
| | - Sudhir Verma
- College of Optometry, University of Houston, USA; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | | |
Collapse
|
10
|
Ung L, Chodosh J. Urgent unmet needs in the care of bacterial keratitis: An evidence-based synthesis. Ocul Surf 2023; 28:378-400. [PMID: 34461290 PMCID: PMC10721114 DOI: 10.1016/j.jtos.2021.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/21/2022]
Abstract
Bacterial corneal infections, or bacterial keratitis (BK), are ophthalmic emergencies that frequently lead to irreversible visual impairment. Though increasingly recognized as a major cause of global blindness, modern paradigms of evidence-based care in BK have remained at a diagnostic and therapeutic impasse for over half a century. Current standards of management - based on the collection of corneal cultures and the application of broad-spectrum topical antibiotics - are beset by important yet widely underrecognized limitations, including approximately 30% of all patients who will develop moderate to severe vision loss in the affected eye. Though recent advances have involved a more clearly defined role for adjunctive topical corticosteroids, and novel therapies such as corneal crosslinking, overall progress to improve patient and population-based outcomes remains incommensurate to the chronic morbidity caused by this disease. Recognizing that the care of BK is guided by the clinical axiom, "time equals vision", this chapter offers an evidence-based synthesis for the clinical management of these infections, underscoring critical unmet needs in disease prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Lawson Ung
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Wang JJ, Liu XX, Zhu CC, Wang TZ, Wang SY, Liu Y, Pan XY, Liu MH, Chen D, Li LL, Zhou ZM, Nan KH. Improving ocular bioavailability of hydrophilic drugs through dynamic covalent complexation. J Control Release 2023; 355:395-405. [PMID: 36739907 DOI: 10.1016/j.jconrel.2023.01.081] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Abstract
The clinical benefits of diquafosol tetrasodium (DQS), a hydrophilic P2Y2 receptor agonist for dry eye, have been hindered by a demanding dosing regimen. Nevertheless, it is challenging to achieve sustained release of DQS with conventional drug delivery vehicles which are mainly designed for hydrophobic small molecule drugs. To address this, we developed an affinity hydrogel for DQS by taking advantage of borate-mediated dynamic covalent complexation between DQS and hydroxypropyl guar. The resultant formulation (3% DQS Gel) was characterized by sustained release, low corneal permeation, and extended ocular retention, which were desirable attributes for ocular surface drug delivery. Both in vitro and in vivo studies had been carried out to verify the biocompatibility of 3% DQS Gel. Using corneal fluorescein staining, the Schirmer's test, PAS staining, quantitative PCR and immunohistological analyses as outcome measures, the superior therapeutic effects of 3% DQS Gel over PBS, the hydrogel vehicle and free DQS were demonstrated in a mouse dry eye model. Our DQS delivery strategy reported herein is readily applicable to other hydrophilic small molecule drugs with cis-diol moieties, thus providing a general solution to improve clinical outcomes of numerous diseases.
Collapse
Affiliation(s)
- Jing-Jie Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China.
| | - Xin-Xin Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Chen-Chen Zhu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Tian-Zuo Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Si-Yu Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Yan Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Xin-Yang Pan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Min-Hua Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Ding Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Ling-Li Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Zhi-Min Zhou
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Kai-Hui Nan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
12
|
Wang C, Pang Y. Nano-based eye drop: Topical and noninvasive therapy for ocular diseases. Adv Drug Deliv Rev 2023; 194:114721. [PMID: 36773886 DOI: 10.1016/j.addr.2023.114721] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
Eye drops are the most accessible therapy for ocular diseases, while inevitably suffering from their lower bioavailability which highly restricts the treatment efficacy. The introduction of nanotechnology has attracted considerable interest as it has advantages over conventional ones such as prolonged ocular surface retention time and enhanced ocular barrier penetrating properties, and achieving higher bioavailability and improved treatment efficacy. This review describes various ocular diseases treated with eye drops as well as the physiological and anatomical ocular barriers faced with through drug administration. It also summarizes the recent advances regarding the utilization of nanotechnology in developing eye drops, and how to optimize the nanocarrier-based ocular drug delivery systems. The prospective future research directions for nano-based eye drops are also discussed here.
Collapse
Affiliation(s)
- Chuhan Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yan Pang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
13
|
Yang GN, Roberts PK, Gardner-Russell J, Shah MH, Couper TA, Zhu Z, Pollock GA, Dusting GJ, Daniell M. From bench to clinic: Emerging therapies for corneal scarring. Pharmacol Ther 2023; 242:108349. [PMID: 36682466 DOI: 10.1016/j.pharmthera.2023.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Corneal diseases are one of the leading causes of moderate-to-severe visual impairment and blindness worldwide, after glaucoma, cataract, and retinal disease in overall importance. Given its tendency to affect people at a younger age than other blinding conditions such as cataract and glaucoma, corneal scarring poses a huge burden both on the individuals and society. Furthermore, corneal scarring and fibrosis disproportionately affects people in poorer and remote areas, making it a significant ophthalmic public health problem. Traditional medical strategies, such as topical corticosteroids, are not effective in preventing fibrosis or scars. Corneal transplantation, the only effective sight-restoring treatment for corneal scars, is curbed by challenges including a severe shortage of tissue, graft rejection, secondary conditions, cultural barriers, the lack of well-trained surgeons, operating rooms, and well-equipped infrastructures. Thanks to tremendous research efforts, emerging therapeutic options including gene therapy, protein therapy, cell therapy and novel molecules are in development to prevent the progression of corneal scarring and compliment the surgical options currently available for treating established corneal scars in clinics. In this article, we summarise the most relevant preclinical and clinical studies on emerging therapies for corneal scarring in recent years, showing how these approaches may prevent scarring in its early development.
Collapse
Affiliation(s)
- Gink N Yang
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia.
| | - Philippe Ke Roberts
- Department of Ophthalmology, Medical University Vienna, 18-20 Währinger Gürtel, Vienna 1090, Austria
| | - Jesse Gardner-Russell
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| | - Manisha H Shah
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| | - Terry A Couper
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia; Lions Eye Donation Service, level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia
| | - Zhuoting Zhu
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| | - Graeme A Pollock
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia; Lions Eye Donation Service, level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| | - Mark Daniell
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia; Lions Eye Donation Service, level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia
| |
Collapse
|
14
|
Zhu W, Zhang J, Wei Z, Zhang B, Weng X. Advances and Progress in Self-Healing Hydrogel and Its Application in Regenerative Medicine. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16031215. [PMID: 36770226 PMCID: PMC9920416 DOI: 10.3390/ma16031215] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 06/02/2023]
Abstract
A hydrogel is a three-dimensional structure that holds plenty of water, but brittleness largely limits its application. Self-healing hydrogels, a new type of hydrogel that can be repaired by itself after external damage, have exhibited better fatigue resistance, reusability, hydrophilicity, and responsiveness to environmental stimuli. The past decade has seen rapid progress in self-healing hydrogels. Self-healing hydrogels can automatically self-repair after external damage. Different strategies have been proposed, including dynamic covalent bonds and reversible noncovalent interactions. Compared to traditional hydrogels, self-healing gels have better durability, responsiveness, and plasticity. These features allow the hydrogel to survive in harsh environments or even to be injected as a drug carrier. Here, we summarize the common strategies for designing self-healing hydrogels and their potential applications in clinical practice.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jinyi Zhang
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhanqi Wei
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Baozhong Zhang
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xisheng Weng
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
15
|
Kim H, Jang JH, Han W, Hwang HJ, Jang J, Kim JY, Cho DW. Extracellular matrix-based sticky sealants for scar-free corneal tissue reconstruction. Biomaterials 2023; 292:121941. [PMID: 36495802 DOI: 10.1016/j.biomaterials.2022.121941] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/05/2022]
Abstract
Regenerative medicine requires both tissue restoration and ease of compliance for clinical application. Considering this, sticky tissue sealants have been shown to have great potentials over surgical suturing and wound treatment. However, tissue sealants currently used pose challenges such as uncontrollable adhesion formation, mechanical mismatch, and lack of tissue restoration. A new sticky sealant based on gelatinized cornea-derived extracellular matrix (GelCodE) with a visible light-activating system is firstly being introduced in this study. De novo tissue regeneration relies on the matrisome in charge of tissue-organization and development within GelCodE while visible light-based photopolymerization with ruthenium/sodium persulfate rapidly induces covalent bonds with the adjacent tissues. The ease of not only in vivo application, biocompatibility, and biointegration, but also exceptional de novo tissue formation is demonstrated in this study. Interestingly, newly regenerated tissues were shown to have normal tissue-like matrices with little scar formation. Hence, this work presents a promising strategy to meet clinical demands for scar-free tissue recovery with superior ease of clinical application.
Collapse
Affiliation(s)
- Hyeonji Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, 37673, Pohang, Kyungbuk, Republic of Korea
| | - Je-Hwan Jang
- Department of Veterinary Ophthalmology, College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, 05029, Seoul, Republic of Korea
| | - Wonil Han
- Division of Integrative Bioscience and Biotechnology, POSTECH, 77 Cheongam-ro, Nam-gu, 37673, Pohang, Kyungbuk, Republic of Korea
| | - Hyun-Jeong Hwang
- Department of Clinical Pathology, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, 37673, Pohang, Kyungbuk, Republic of Korea; Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, 03722, Seoul, Republic of Korea; Department of Convergence IT Engineering, 77 Cheongam-ro, Nam-gu, POSTECH, 37673, Pohang, Kyungbuk, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, 77 Cheongam-ro, Nam-gu, POSTECH, 37673, Pohang, Kyungbuk, Republic of Korea.
| | - Joon Young Kim
- Department of Veterinary Ophthalmology, College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, 05029, Seoul, Republic of Korea; KU Center for Animal Blood Medical Science, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, 05029, Seoul, Republic of Korea.
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, 37673, Pohang, Kyungbuk, Republic of Korea; Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, 03722, Seoul, Republic of Korea.
| |
Collapse
|
16
|
He W, Wu Y, Luo Z, Yang G, Ye W, Chen X, Ren J, Liang T, Liao Z, Jiang S, Wang K. Injectable Decorin/Gellan Gum Hydrogel Encapsulating Adipose-Derived Stem Cells Enhances Anti-Inflammatory Effect in Cartilage Injury via Autophagy Signaling. Cell Transplant 2023; 32:9636897231196493. [PMID: 37688441 PMCID: PMC10493051 DOI: 10.1177/09636897231196493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) are employed as a promising alternative in treating cartilage injury. Regulating the inflammatory "fingerprint" of ADSCs to improve their anti-inflammatory properties could enhance therapy efficiency. Herein, a novel injectable decorin/gellan gum hydrogel combined with ADSCs encapsulation for arthritis cartilage treatment is proposed. Decorin/gellan gum hydrogel was prepared according to the previous manufacturing protocol. The liquid-solid form transition of gellan gum hydrogel is perfectly suitable for intra-articular injection. Decorin-enriched matrix showing an immunomodulatory ability to enhance ADSCs anti-inflammatory phenotype under inflammation microenvironment by regulating autophagy signaling. This decorin/gellan gum/ADSCs hydrogel efficiently reverses interleukin-1β-induced cellular injury in chondrocytes. Through a mono-iodoacetate-induced arthritis mice model, the synergistic therapeutic effect of this ADSCs-loaded hydrogel, including inflammation attenuation and cartilage protection, is demonstrated. These results make the decorin/gellan gum hydrogel laden with ADSCs an ideal candidate for treating inflammatory joint disorders.
Collapse
Affiliation(s)
- Weiping He
- Department of Orthopedic Surgery, Dongguan Hospital of Integrated Traditional Chinese and Western Medicine, Dongguan, China
| | - Yu Wu
- Department of Plastic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhihong Luo
- Department of Orthopedic Surgery, Dongguan Hospital of Integrated Traditional Chinese and Western Medicine, Dongguan, China
| | - Genghua Yang
- Department of Orthopedic Surgery, Dongguan Hospital of Integrated Traditional Chinese and Western Medicine, Dongguan, China
| | - Woquan Ye
- Department of Orthopedic Surgery, Dongguan Hospital of Integrated Traditional Chinese and Western Medicine, Dongguan, China
| | - Xi Chen
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jianhua Ren
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tangzhao Liang
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhiqiang Liao
- Department of Orthopedic Surgery, Dongguan Hospital of Integrated Traditional Chinese and Western Medicine, Dongguan, China
| | - Shihai Jiang
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Kun Wang
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
17
|
Self-Healing Hydrogels: Development, Biomedical Applications, and Challenges. Polymers (Basel) 2022; 14:polym14214539. [PMID: 36365532 PMCID: PMC9654449 DOI: 10.3390/polym14214539] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/22/2022] Open
Abstract
Polymeric hydrogels have drawn considerable attention as a biomedical material for their unique mechanical and chemical properties, which are very similar to natural tissues. Among the conventional hydrogel materials, self-healing hydrogels (SHH) are showing their promise in biomedical applications in tissue engineering, wound healing, and drug delivery. Additionally, their responses can be controlled via external stimuli (e.g., pH, temperature, pressure, or radiation). Identifying a suitable combination of viscous and elastic materials, lipophilicity and biocompatibility are crucial challenges in the development of SHH. Furthermore, the trade-off relation between the healing performance and the mechanical toughness also limits their real-time applications. Additionally, short-term and long-term effects of many SHH in the in vivo model are yet to be reported. This review will discuss the mechanism of various SHH, their recent advancements, and their challenges in tissue engineering, wound healing, and drug delivery.
Collapse
|
18
|
Recent Advancements in Molecular Therapeutics for Corneal Scar Treatment. Cells 2022; 11:cells11203310. [PMID: 36291182 PMCID: PMC9600986 DOI: 10.3390/cells11203310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
The process of corneal wound healing is complex and induces scar formation. Corneal scarring is a leading cause of blindness worldwide. The fibrotic healing of a major ocular wound disrupts the highly organized fibrillar collagen arrangement of the corneal stroma, rendering it opaque. The process of regaining this organized extracellular matrix (ECM) arrangement of the stromal layer to restore corneal transparency is complicated. The surface retention capacity of ocular drugs is poor, and there is a large gap between suitable corneal donors and clinical requirements. Therefore, a more efficient way of treating corneal scarring is needed. The eight major classes of interventions targeted as therapeutic tools for healing scarred corneas include those based on exosomes, targeted gene therapy, microRNAs, recombinant viral vectors, histone deacetylase inhibitors, bioactive molecules, growth factors, and nanotechnology. This review highlights the recent advancements in molecular therapeutics to restore a cornea without scarring. It also provides a scope to overcome the limitations of present studies and perform robust clinical research using these strategies.
Collapse
|
19
|
Vijayan AN, Solaimuthu A, Murali P, Gopi J, Y MT, R AP, Korrapati PS. Decorin mediated biomimetic PCL-gelatin nano-framework to impede scarring. Int J Biol Macromol 2022; 219:907-918. [PMID: 35952816 DOI: 10.1016/j.ijbiomac.2022.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/05/2022]
Abstract
Scars occur as a result of fibrosis after tissue damage or surgery and reports suggest that excessive Transforming growth factor-β (TGF-β) activity during the process of wound healing leads to progressive fibrosis. Decorin is an extracellular matrix (ECM) protein which regulates collagen fibrillogenesis. However, targeted delivery and effective protein therapy remains a challenge owing to degradation byproteases. Hence, we aimed to deliver Decorin in a sustainable mode for the reduction of TGF-β levels and subsequent scar formation. Herein, we have fabricated PCL-Gelatin bio-mimetic scaffolds to optimize the bio-activity and provide localized delivery of recombinant Decorin. The degradation and drug release patterns reveals that this biomaterial is biodegradable and offers sustained release of the recombinant Decorin. Decorin loaded nanofiber displayed lower adhesion and proliferation rates in in-vitro conditions. Moreover, Decorin loaded scaffolds demonstrated morphological changes in cells, specifically targeting the myofibroblast. The expression of TGF-β was also scrutinized to understand the effect of Decorin loaded nanofibers. Besides, in the in-vitro fibrotic model, Decorin loaded nanofibers efficiently reduced the expression of ECM related proteins. Therefore, we report the sustained delivery of the recombinant Decorin from nanofiber dressing to potentially obstruct scar formation during the process of wound healing.
Collapse
Affiliation(s)
- Ane Nishitha Vijayan
- Biological Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anbuthiruselvan Solaimuthu
- Biological Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Padmaja Murali
- Biological Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Janani Gopi
- Biological Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, Tamil Nadu, India
| | - Madhan Teja Y
- Biological Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, Tamil Nadu, India
| | - Akshaya Priya R
- Biological Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, Tamil Nadu, India
| | - Purna Sai Korrapati
- Biological Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
20
|
Pardeshi S, Damiri F, Zehravi M, Joshi R, Kapare H, Prajapati MK, Munot N, Berrada M, Giram PS, Rojekar S, Ali F, Rahman MH, Barai HR. Functional Thermoresponsive Hydrogel Molecule to Material Design for Biomedical Applications. Polymers (Basel) 2022; 14:polym14153126. [PMID: 35956641 PMCID: PMC9371082 DOI: 10.3390/polym14153126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/18/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Temperature-induced, rapid changes in the viscosity and reproducible 3-D structure formation makes thermos-sensitive hydrogels an ideal delivery system to act as a cell scaffold or a drug reservoir. Moreover, the hydrogels’ minimum invasiveness, high biocompatibility, and facile elimination from the body have gathered a lot of attention from researchers. This review article attempts to present a complete picture of the exhaustive arena, including the synthesis, mechanism, and biomedical applications of thermosensitive hydrogels. A special section on intellectual property and marketed products tries to shed some light on the commercial potential of thermosensitive hydrogels.
Collapse
Affiliation(s)
- Sagar Pardeshi
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon 425001, Maharashtra, India;
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University Alkharj, Al-Kharj 11942, Saudi Arabia;
| | - Rohit Joshi
- Precision Nanosystems Inc., Vancouver, BC V6P 6T7, Canada;
| | - Harshad Kapare
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 41118, Maharashtra, India;
| | - Mahendra Kumar Prajapati
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM’s NMIMS, Shirpur 425405, Maharashtra, India;
| | - Neha Munot
- Department of Pharmaceutics, School of Pharmacy, Vishwakarma University, Pune 411048, Maharashtra, India;
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Prabhanjan S. Giram
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 41118, Maharashtra, India;
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
- Correspondence: (P.S.G.); (S.R.); (H.R.B.)
| | - Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (P.S.G.); (S.R.); (H.R.B.)
| | - Faraat Ali
- Laboratory Services, Department of Licensing and Enforcement, Botswana Medicines Regulatory Authority (BoMRA), Gaborone 999106, Botswana;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (P.S.G.); (S.R.); (H.R.B.)
| |
Collapse
|
21
|
M Grover L, Moakes R, Rauz S. Innovations in fluid-gel eye drops for treating disease of the eye: prospects for enhancing drug retention and reducing corneal scarring. EXPERT REVIEW OF OPHTHALMOLOGY 2022. [DOI: 10.1080/17469899.2022.2101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Liam M Grover
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Richard Moakes
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Saaeha Rauz
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Birmingham and Midland Eye Centre, SWBH NHS Trust, Birmingham, UK
| |
Collapse
|
22
|
Sustained Release Biocompatible Ocular Insert Using Hot Melt Extrusion Technology: Fabrication and in-vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Terukina T, Uchiyama Y, Kikuma F, Fukumitsu S, Iwata N, Kanazawa T, Kondo H. A New Approach for Characterizing the Thixotropic Properties of Gel Formulations as Sprayable Agents Based on Rheological Analysis. AAPS PharmSciTech 2022; 23:119. [PMID: 35449239 DOI: 10.1208/s12249-022-02276-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/08/2022] [Indexed: 01/01/2023] Open
Abstract
The present study evaluated the rheological properties of gel formulations composed of the thixotropic peptide amphiphile, palmitoyl-glycine-histidine (Pal-GH), and the thickener, propylene glycol alginate (PGA), to propose a proper approach to design sprayable gel formulations with good spray performance and high retention of a therapeutic agent. The hysteresis loop area (HLA), a conventional index of thixotropy, was determined from the relationship between the shear stress and shear rate of various formulations with different amounts of Pal-GH and PGA. In addition, a new assessment method for characterizing the thixotropy using the initial structure recovery speed was determined based on the time course of the complex modulus (G*) after structural breakdown of the gel formulations. The G* values increased with the increase in the amount of Pal-GH and PGA, indicating that the formulations were not deformable. Additionally, high HLA and high initial structure recovery speed are preferable when selecting a formulation with good spray performance and high retention. As suitable combinations of Pal-GH and PGA could exhibit both high HLA and high initial structure recovery speed, they are promising components for gel formulations to be used as sprayable agents with good spray performance and high retention. The results also suggested that the initial structure recovery speed would reflect the thixotropy for the formulation more appropriately than HLA. Thus, the initial structure recovery speed could be a useful scale for the preparation of sprayable gel formulations.
Collapse
Affiliation(s)
- Takayuki Terukina
- Department of Pharmaceutical Engineering and Drug Delivery Sciences, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Sizuoka-shi, Shizuoka, 422-8526, Japan
| | - Yoshiki Uchiyama
- Department of Pharmaceutical Engineering and Drug Delivery Sciences, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Sizuoka-shi, Shizuoka, 422-8526, Japan
| | - Fumiya Kikuma
- Department of Pharmaceutical Engineering and Drug Delivery Sciences, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Sizuoka-shi, Shizuoka, 422-8526, Japan
| | - Saki Fukumitsu
- Department of Pharmaceutical Engineering and Drug Delivery Sciences, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Sizuoka-shi, Shizuoka, 422-8526, Japan
| | - Nana Iwata
- Department of Pharmaceutical Engineering and Drug Delivery Sciences, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Sizuoka-shi, Shizuoka, 422-8526, Japan
| | - Takanori Kanazawa
- Department of Pharmaceutical Engineering and Drug Delivery Sciences, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Sizuoka-shi, Shizuoka, 422-8526, Japan
| | - Hiromu Kondo
- Department of Pharmaceutical Engineering and Drug Delivery Sciences, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Sizuoka-shi, Shizuoka, 422-8526, Japan.
| |
Collapse
|
24
|
Wang R, Chen B, Wei H, Yan W, Wu Y, Wang C, Zhang B, Liu F, Tian H, Chen X, Tian W. Collecting and deactivating TGF-β1 hydrogel for anti-scarring therapy in post-glaucoma filtration surgery. Mater Today Bio 2022; 14:100260. [PMID: 35514434 PMCID: PMC9061788 DOI: 10.1016/j.mtbio.2022.100260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 11/26/2022] Open
Abstract
Scar formation can lead to glaucoma filtration surgery (GFS) failure, wherein transforming growth factor (TGF)-β is the core regulator. To reducing scar formation, this paper presents our study on the design of hydrogels to deactivate TGF-β1. We hypothesized that excess TGF-β1 can be removed from aqueous humor through the addition of oxidized hyaluronic acid (O-HA) hydrogels that are seeded with decorin (O-HA + D). Immunohistochemistry and enzyme-linked immunosorbent assay (ELISA) were performed to demonstrate the adsorption properties of O-HA + D hydrogel, thus reducing the TGF-β1 concentration in aqueous humor. In the light that collagen contraction in human Tenon's capsule fibroblasts (HTFs) and the angiogenesis of human umbilical vein endothelial cells (HUVECs) can be activated by TGF-β1 and β2, we performed the quantitative analysis of polymerase chain reaction to determine the effect of O-HA + D on the type I collagen, fibronectin, and angiogenesis. Our results illustrate that O-HA + D can inhibit the increase of α-SMA expression in HTF induced by TGF-β1 and that O-HA + D can inhibit the production of collagen I and fibronectin in HTF treated with TGF-β1. Furthermore, we performed in vivo studies by employing a rabbit model, where rabbits were treated with hydrogels post GFS. Our results demonstrate that, as compared with other groups, the rabbits treated with O-HA + D had the greatest reduction in inflammatory cells with reduced level of collagen in wounds. Taken together, the present study paves the way toward the treatment of post-glaucoma fibrosis following surgery.
Collapse
Affiliation(s)
- Ruiqi Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, Heilongjiang Province, People's Republic of China
| | - Boyang Chen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, Heilongjiang Province, People's Republic of China
| | - Haiying Wei
- The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China
| | - Wei Yan
- The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China
| | - Yuping Wu
- Chiping People's Hospital, Liaocheng, 252100, PR China
| | - Cao Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, Heilongjiang Province, People's Republic of China
| | - Bosong Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, Heilongjiang Province, People's Republic of China
| | - Fengzhen Liu
- Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, 252000, PR China
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng, 252000, PR China
| | - Hui Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, Heilongjiang Province, People's Republic of China
| | - Xiongbiao Chen
- Department of Mechanical Engineering, University of Saskatchewan, SK, S7N5A9, Canada
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, Heilongjiang Province, People's Republic of China
| |
Collapse
|
25
|
Ding Q, Wei Q, Sheng G, Wang S, Jing S, Ma T, Zhang R, Wang T, Li W, Tang X, Wu H, Liu C. The Preventive Effect of Decorin on Epidural Fibrosis and Epidural Adhesions After Laminectomy. Front Pharmacol 2022; 12:774316. [PMID: 34975478 PMCID: PMC8716848 DOI: 10.3389/fphar.2021.774316] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/15/2021] [Indexed: 01/21/2023] Open
Abstract
Laminectomy is commonly performed to treat degenerative spinal diseases by reducing compression on the spinal cord and nerve roots. The postoperative epidural fibrosis and epidural adhesions may result in failed back surgery syndrome, which is characterized by the symptoms of lower back pain or leg pain. There is currently no satisfactory treatment for this complication. The pathological processes of epidural fibrosis and epidural adhesions are relevant to the proliferation of fibroblasts, transdifferentiation of fibroblasts into myofibroblasts, and the excessive deposition of extracellular matrix (ECM) protein. According to reports, transforming growth factor-β1 (TGF-β1) played a vital role in the development of fibrosis by promoting aforementioned processes. Decorin, an endogenous proteoglycan and natural inhibitor of TGF-β1, has exhibited prominent anti-fibrosis activity in various scar formation and fibrosis models of many organs. However, the preventive effect of decorin on epidural fibrosis and epidural adhesions requires further investigation. Here, we investigated the therapeutic effects and potential mechanisms of decorin on epidural fibrosis and epidural adhesions. Our results indicated that decorin could significantly suppress the TGF-β1-induced proliferation, transdifferentiation, and extracellular matrix production in primary fibroblasts. Furthermore, Smad2/3 signaling pathway had been demonstrated to be involved in the preventive effect of decorin. Moreover, administration of decorin in vivo could notably inhibit epidural fibrosis and epidural adhesions after laminectomy. To date, there is no approved therapy to target TGF-β1 for the treatment of epidural fibrosis and epidural adhesions after laminectomy. Our research proved the anti-fibrosis effect of decorin, which may provide an effective and promising treatment for epidural fibrosis and epidural adhesions.
Collapse
Affiliation(s)
- Qing Ding
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Wei
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanxi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoze Jing
- Department of Orthopedics, Shanxi Bethune Hospital, Taiyuan, China
| | - Tian Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhuo Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianqi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenkai Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoxu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Fluid gels: A systematic review towards their application in pharmaceutical dosage forms and drug delivery systems. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Li K, Li R, Zou P, Li L, Wang H, Kong D, Zheng G, Li LL. Glycopeptide-nanotransforrs eyedrops with enhanced permeability and retention for preventing fundus neovascularization. Biomaterials 2022; 281:121361. [PMID: 34991034 DOI: 10.1016/j.biomaterials.2021.121361] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/19/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023]
Abstract
Efficient and non-invasive drug delivery to the fundus has always been a medical difficulty. Here, a co-assembled glycopeptide nanotransforrs (GPNTs) named MRP@DOX as a drug delivery system is reported. The MRP@DOX co-assemble nanoparticles consisting of glycopeptide, cationic peptide, and doxorubicin (DOX). The nanoparticles are positively charged with the nano-size, which can be induced transformation by legumain cleavage. Once administrate to the eyes, MRP@DOX has a high penetration through the ocular surface to specifically targets M2 macrophages in the fundus. Then, the mannose receptor mediates phagocytosis and intracellular highly expressed legumain induces its nanofibrous transformation, which contributes to a 44.7% DOX retention in cells at 24 h than that of the non-transformed controls (MAP@DOX: 5.1%). The nanofiber transformation provides an inhibition of exocytosis, which explains the higher retention of the delivered drug. In the mouse OIR model, MRP@DOX completely restores the physiological angiogenesis and reduces pathological neovascularization. Pathological neovascularization branches and cell nuclei that break through the inner limiting membrane are reduced by 55% and 72%, respectively, which are 25% and 20% less than those in the non-transformed controls. In addition, MRP@DOX also has good histocompatibility, which provides a possible strategy for non-invasive treatment of fundus diseases in the future.
Collapse
Affiliation(s)
- Ke Li
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Hennan, 450052, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Hennan, 450052, China
| | - Ruxiang Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Pengfei Zou
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Li Li
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Hennan, 450052, China
| | - Huajun Wang
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Hennan, 450052, China
| | - Deqian Kong
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Hennan, 450052, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Hennan, 450052, China
| | - Guangying Zheng
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Hennan, 450052, China.
| | - Li-Li Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing, 100190, China.
| |
Collapse
|
28
|
Singh RB, Das S, Chodosh J, Sharma N, Zegans ME, Kowalski RP, Jhanji V. Paradox of complex diversity: Challenges in the diagnosis and management of bacterial keratitis. Prog Retin Eye Res 2021; 88:101028. [PMID: 34813978 DOI: 10.1016/j.preteyeres.2021.101028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022]
Abstract
Bacterial keratitis continues to be one of the leading causes of corneal blindness in the developed as well as the developing world, despite swift progress since the dawn of the "anti-biotic era". Although, we are expeditiously developing our understanding about the different causative organisms and associated pathology leading to keratitis, extensive gaps in knowledge continue to dampen the efforts for early and accurate diagnosis, and management in these patients, resulting in poor clinical outcomes. The ability of the causative bacteria to subdue the therapeutic challenge stems from their large genome encoding complex regulatory networks, variety of unique virulence factors, and rapid secretion of tissue damaging proteases and toxins. In this review article, we have provided an overview of the established classical diagnostic techniques and therapeutics for keratitis caused by various bacteria. We have extensively reported our recent in-roads through novel tools for accurate diagnosis of mono- and poly-bacterial corneal infections. Furthermore, we outlined the recent progress by our group and others in understanding the sub-cellular genomic changes that lead to antibiotic resistance in these organisms. Finally, we discussed in detail, the novel therapies and drug delivery systems in development for the efficacious management of bacterial keratitis.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Leiden University Medical Center, 2333, ZA Leiden, the Netherlands
| | - Sujata Das
- Cornea and Anterior Segment Services, LV Prasad Eye Institute, Bhubaneshwar, India
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Namrata Sharma
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Michael E Zegans
- Department of Ophthalmology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Regis P Kowalski
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; The Charles T Campbell Ophthalmic Microbiology Laboratory, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; The Charles T Campbell Ophthalmic Microbiology Laboratory, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Mohan RR, Balne PK, Muayad MS, Tripathi R, Sinha NR, Gupta S, An JA, Sinha PR, Hesemann NP. Six-Month In Vivo Safety Profiling of Topical Ocular AVV5-Decorin Gene Transfer. Transl Vis Sci Technol 2021; 10:5. [PMID: 34383877 PMCID: PMC8362634 DOI: 10.1167/tvst.10.10.5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose A significant remission of corneal fibrosis and neovascularization in rabbit eye in vivo was observed from a tissue-selective localized adeno-associated virus (AAV)5–Decorin (Dcn) gene therapy. This study sought to investigate 6-month toxicity profiling of this gene therapy for the eye in vivo using a rabbit model. Methods A small epithelial scrape followed by corneal drying was performed unilaterally in 12 rabbit eyes and either AAV5–Dcn (n = 6) or naked vector (n = 6) was delivered topically using a cloning cylinder technique. Contralateral eyes served as naïve control (n = 6). Safety and tolerability measurements in live rabbits were performed periodically until month 6 using multimodel clinical ophthalmic imaging tools—a slit lamp, stereomicroscope, and HRT3-RCM in vivo confocal microscope. Thereafter, corneas were excised and subjected to hematoxylin and eosin staining, Mason trichome staining, propidium iodide nuclear staining, and quantitative real-time polymerase chain reaction analyses. Results Clinical eye examinations based on the modified Hackett–McDonald ocular scoring system, and in vivo confocal imaging of the cornea showed no signs of ocular toxicity in rabbit eyes given AAV5–Dcn gene transfer vs control eyes (P > 0.05) through 6 months after treatment. The histologic and molecular analyses showed no significant differences in AAV5–Dcn vs AAV naked or naïve control groups (P > 0.05) and were in accordance with the masked clinical ophthalmic observations showing no abnormalities. Conclusions Topical tissue-targeted localized AAV5–Dcn gene therapy seems to be safe and nontoxic to the rabbit eye in vivo. Translational Relevance AAV5–Dcn gene therapy has the potential to treat corneal fibrosis and neovascularization in vivo safely without significant ocular toxicity.
Collapse
Affiliation(s)
- Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Praveen K Balne
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Maryam S Muayad
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Ratnakar Tripathi
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Suneel Gupta
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Jella A An
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Prashant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Nathan P Hesemann
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
30
|
Ung L, Chodosh J. Foundational concepts in the biology of bacterial keratitis. Exp Eye Res 2021; 209:108647. [PMID: 34097906 PMCID: PMC8595513 DOI: 10.1016/j.exer.2021.108647] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Bacterial infections of the cornea, or bacterial keratitis (BK), are notorious for causing rapidly fulminant disease and permanent vision loss, even among treated patients. In the last sixty years, dramatic upward trajectories in the frequency of BK have been observed internationally, driven in large part by the commercialization of hydrogel contact lenses in the late 1960s. Despite this worsening burden of disease, current evidence-based therapies for BK - including broad-spectrum topical antibiotics and, if indicated, topical corticosteroids - fail to salvage vision in a substantial proportion of affected patients. Amid growing concerns of rapidly diminishing antibiotic utility, there has been renewed interest in urgently needed novel treatments that may improve clinical outcomes on an individual and public health level. Bridging the translational gap in the care of BK requires the identification of new therapeutic targets and rational treatment design, but neither of these aims can be achieved without understanding the complex biological processes that determine how bacterial corneal infections arise, progress, and resolve. In this chapter, we synthesize the current wealth of human and animal experimental data that now inform our understanding of basic BK pathophysiology, in context with modern concepts in ocular immunology and microbiology. By identifying the key molecular determinants of clinical disease, we explore how novel treatments can be developed and translated into routine patient care.
Collapse
Affiliation(s)
- Lawson Ung
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Foster NC, Allen P, El Haj AJ, Grover LM, Moakes RJA. Tailoring Therapeutic Responses via Engineering Microenvironments with a Novel Synthetic Fluid Gel. Adv Healthc Mater 2021; 10:e2100622. [PMID: 34160135 PMCID: PMC11468753 DOI: 10.1002/adhm.202100622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/31/2021] [Indexed: 12/28/2022]
Abstract
This study reports the first fully synthetic fluid gel (SyMGels) using a simple poly(ethylene glycol) polymer. Fluid gels are an interesting class of materials: structured during gelation via shear-confinement to form microparticulate suspensions, through a bottom-up approach. Structuring in this way, when compared to first forming a gel and subsequently breaking it down, results in the formation of a particulate dispersion with particles "grown" in the shear flow. Resultantly, systems form a complex microstructure, where gelled particles concentrate remaining non-gelled polymer within the continuous phase, creating an amorphous-like interstitial phase. As such, these materials demonstrate mechanical characteristics typical of colloidal glasses, presenting solid-like behaviors at rest with defined yielding; likely through intrinsic particle-particle and particle-polymer interactions. To date, fluid gels have been fabricated using polysaccharides with relatively complex chemistries, making further modifications challenging. SyMGels are easily functionalised, using simple click-chemistry. This chemical flexibility, allows the creation of microenvironments with discrete biological decoration. Cellular control is demonstrated using MSC (mesenchymal stem cells)/chondrocytes and enables the regulation of key biomarkers such as aggrecan and SOX9. These potential therapeutic platforms demonstrate an important advancement in the biomaterial field, underpinning the mechanisms which drive their mechanical properties, and providing a versatile delivery system for advanced therapeutics.
Collapse
Affiliation(s)
- Nicola C. Foster
- Healthcare Technologies InstituteUniversity of BirminghamBirminghamB15 2TTUK
| | - Piers Allen
- Healthcare Technologies InstituteUniversity of BirminghamBirminghamB15 2TTUK
| | - Alicia J. El Haj
- Healthcare Technologies InstituteUniversity of BirminghamBirminghamB15 2TTUK
| | - Liam M. Grover
- Healthcare Technologies InstituteUniversity of BirminghamBirminghamB15 2TTUK
| | | |
Collapse
|
32
|
Zhang Y, Li C, Zhu Q, Liang R, Xie C, Zhang S, Hong Y, Ouyang H. A long-term retaining molecular coating for corneal regeneration. Bioact Mater 2021; 6:4447-4454. [PMID: 33997518 PMCID: PMC8114076 DOI: 10.1016/j.bioactmat.2021.04.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/26/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023] Open
Abstract
Corneal injuries will cause corneal surface diseases that may lead to blindness in millions of people worldwide. There is a tremendous need for biomaterials that can promote corneal regeneration with practical feasibility. Here we demonstrate a strategy of a protein coating for corneal injury regeneration. We synthesize an o-nitrosobenzaldehyde group (NB)-modified gelatin (GelNB), which could adhere directly to the corneal surface with covalent bonding to form a thin molecular coating. The molecular coating could avoid rapid clearance and provide a favorable environment for cell migration, thereby effectively accelerating corneal repair and regeneration. The histological structure of the regenerated cornea is more similar to the native cornea. This molecular coating can be used conveniently as an eye drop solution, which makes it a promising strategy for corneal regeneration. A convenient molecular coating strategy is applied for corneal tissue engineering. The new hydrogel shows controllable integration, short gelling time, and a clear gelling mechanism. Gelatin modified with o-nitrosobenzaldehyde groups could exist on the ocular surface and avoid rapid removal. The hydrogel provides a suitable microenvironment for cell migration and corneal regeneration.
Collapse
Affiliation(s)
- Yi Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenglin Li
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiuwen Zhu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Renjie Liang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Chang Xie
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Shufang Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Yi Hong
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
33
|
Hill LJ, Botfield HF, Begum G, Qureshi O, Vigneswara V, Masood I, Barnes NM, Bruce L, Logan A. ILB ® resolves inflammatory scarring and promotes functional tissue repair. NPJ Regen Med 2021; 6:3. [PMID: 33414477 PMCID: PMC7791102 DOI: 10.1038/s41536-020-00110-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 11/13/2020] [Indexed: 11/09/2022] Open
Abstract
Fibrotic disease is a major cause of mortality worldwide, with fibrosis arising from prolonged inflammation and aberrant extracellular matrix dynamics. Compromised cellular and tissue repair processes following injury, infection, metabolic dysfunction, autoimmune conditions and vascular diseases leave tissues susceptible to unresolved inflammation, fibrogenesis, loss of function and scarring. There has been limited clinical success with therapies for inflammatory and fibrotic diseases such that there remains a large unmet therapeutic need to restore normal tissue homoeostasis without detrimental side effects. We investigated the effects of a newly formulated low molecular weight dextran sulfate (LMW-DS), termed ILB®, to resolve inflammation and activate matrix remodelling in rodent and human disease models. We demonstrated modulation of the expression of multiple pro-inflammatory cytokines and chemokines in vitro together with scar resolution and improved matrix remodelling in vivo. Of particular relevance, we demonstrated that ILB® acts, in part, by downregulating transforming growth factor (TGF)β signalling genes and by altering gene expression relating to extracellular matrix dynamics, leading to tissue remodelling, reduced fibrosis and functional tissue regeneration. These observations indicate the potential of ILB® to alleviate fibrotic diseases.
Collapse
Affiliation(s)
- Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Hannah F Botfield
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ghazala Begum
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Omar Qureshi
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Vasanthy Vigneswara
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Imran Masood
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nicholas M Barnes
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lars Bruce
- TikoMed AB, P.O. Box 81, 263 03, Viken, Sweden
| | - Ann Logan
- Axolotl Consulting Ltd., Droitwich, Worcestershire, WR9 0JS, UK. .,Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
34
|
Rahić O, Tucak A, Omerović N, Sirbubalo M, Hindija L, Hadžiabdić J, Vranić E. Novel Drug Delivery Systems Fighting Glaucoma: Formulation Obstacles and Solutions. Pharmaceutics 2020; 13:E28. [PMID: 33375224 PMCID: PMC7824381 DOI: 10.3390/pharmaceutics13010028] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is considered to be one of the biggest health problems in the world. It is the main cause of preventable blindness due to its asymptomatic nature in the early stages on the one hand and patients' non-adherence on the other. There are several approaches in glaucoma treatment, whereby this has to be individually designed for each patient. The first-line treatment is medication therapy. However, taking into account numerous disadvantages of conventional ophthalmic dosage forms, intensive work has been carried out on the development of novel drug delivery systems for glaucoma. This review aims to provide an overview of formulation solutions and strategies in the development of in situ gel systems, nanosystems, ocular inserts, contact lenses, collagen corneal shields, ocular implants, microneedles, and iontophoretic devices. The results of studies confirming the effectiveness of the aforementioned drug delivery systems were also briefly presented.
Collapse
Affiliation(s)
- Ognjenka Rahić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Amina Tucak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Naida Omerović
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Merima Sirbubalo
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Lamija Hindija
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Jasmina Hadžiabdić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Edina Vranić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| |
Collapse
|
35
|
Boumil EF, Castro N, Phillips AT, Chatterton JE, McCauley SM, Wolfson AD, Shmushkovich T, Ridilla M, Bernstein AM. USP10 Targeted Self-Deliverable siRNA to Prevent Scarring in the Cornea. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:1029-1043. [PMID: 32829179 PMCID: PMC7452140 DOI: 10.1016/j.omtn.2020.07.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/17/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
Ocular scarring after surgery, trauma, or infection leads to vision loss. The transparent cornea is an excellent model system to test anti-scarring therapies. Cholesterol-conjugated fully modified asymmetric small interfering RNAs (siRNAs) (self-deliverable siRNAs [sdRNAs]) are a novel modality for in vivo gene knockdown, transfecting cells and tissues without any additional formulations. Myofibroblasts are a main contributor to scarring and fibrosis. αv integrins play a central role in myofibroblast pathological adhesion, overcontraction, and transforming growth factor β (TGF-β) activation. Previously, we demonstrated that αv integrins are protected from intracellular degradation after wounding by upregulation of the deubiquitinase (DUB) ubiquitin-specific protease 10 (USP10), leading to integrin cell surface accumulation. In this study, we tested whether knockdown of USP10 with a USP10-targeting sdRNA (termed US09) will reduce scarring after wounding a rabbit cornea in vivo. The wounded corneal stroma was treated once with US09 or non-targeting control (NTC) sdRNA. At 6 weeks US09 treatment resulted in faster wound closure, limited scarring, and suppression of fibrotic markers and immune response. Specifically, fibronectin-extra domain A (EDA), collagen III, and a-smooth muscle actin (p < 0.05), CD45+ cell infiltration (p < 0.01), and apoptosis at 24 (p < 0.01) and 48 h (p < 0.05) were reduced post-wounding. Corneal thickness and cell proliferation were restored to unwounded parameters. Targeting the DUB, USP10 is a novel strategy to reduce scarring. This study indicates that ubiquitin-mediated pathways should be considered in the pathogenesis of fibrotic healing.
Collapse
Affiliation(s)
- Edward F Boumil
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Nileyma Castro
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Andrew T Phillips
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | | | | | | | | - Marc Ridilla
- Repair Biotechnologies, 841 East Fayette Street, Syracuse, NY 13210, USA
| | - Audrey M Bernstein
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
36
|
Decellularized porcine cornea-derived hydrogels for the regeneration of epithelium and stroma in focal corneal defects. Ocul Surf 2020; 18:748-760. [PMID: 32841745 DOI: 10.1016/j.jtos.2020.07.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 01/15/2023]
Abstract
PURPOSE Hydrogels derived from decellularized tissues provide superior biocompatibility, tenability and tissue-specific extracellular matrix (ECM) components. Based on the preparation of decellularized porcine cornea (DPC), here we developed an injectable and transparent hydrogel for the regeneration of epithelium and stroma in focal corneal defects. METHODS The DPC-derived hydrogel was prepared with N-cyclohexyl-N'-(2-morpholinethyl) carbodiimide metho-p-toluenesulfonate/N-hydroxysuccinimide (CMC/NHS) as cross-linkers. The characteristics of the hydrogel were analyzed and its cytocompatibility was assessed by Live/Dead and Cell Counting Kit (CCK)-8 assays. Immunofluorescence staining, quantitative PCR and Western blot analyses were performed to assess the relative protein and gene expression in corneal fibroblasts on hydrogel. The safety and efficiency of the hydrogel for repairing focal corneal defects in rabbit were measured by slit-lamp, anterior segment optical coherence tomography (AS-OCT), confocal microscopy and histological analyses. RESULTS The DPC-derived hydrogel cross-linked with CMC/NHS assumed favorable transparency, exhibited distinct mechanical properties and preserved the ECM components of native porcine cornea (NPC). In vitro experiments showed that the hydrogel maintained the phenotype, supported the proliferation and promoted the ECM synthesis of corneal fibroblasts. When injected onto rabbit corneas, the hydrogel rapidly covered, solidified and formed a smooth surface on the focal defect. Corneal epithelium was fully regenerated within 3 days. The thickness of the corneal epithelium and stroma was restored at 12 weeks after surgery without significant inflammation or scar formation. Notably, the hydrogel showed no harmful effects on the resident stroma and endothelium. CONCLUSIONS The DPC-derived hydrogel may represent a promising biomaterial for corneal epithelial and stromal regeneration.
Collapse
|
37
|
Fan L, Ge X, Qian Y, Wei M, Zhang Z, Yuan WE, Ouyang Y. Advances in Synthesis and Applications of Self-Healing Hydrogels. Front Bioeng Biotechnol 2020; 8:654. [PMID: 32793562 PMCID: PMC7385058 DOI: 10.3389/fbioe.2020.00654] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/27/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Hydrogels, a type of three-dimensional (3-D) crosslinked network of polymers containing a high water concentration, have been receiving increasing attention in recent years. Self-healing hydrogels, which can return to their original structure and function after physical damage, are especially attractive. Some self-healable hydrogels have several kinds of properties such as injectability, adhesiveness, and conductivity, which enable them to be used in the manufacturing of drug/cell delivery vehicles, glues, electronic devices, and so on. MAIN BODY This review will focus on the synthesis and applications of self-healing hydrogels. Their repair mechanisms and potential applications in pharmaceutical, biomedical, and other areas will be introduced. CONCLUSION Self-healing hydrogels are used in various fields because of their ability to recover. The prospect of self-healing hydrogels is promising, and they may be further developed for various applications.
Collapse
Affiliation(s)
- Leqi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xuemei Ge
- School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Yebin Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Minyan Wei
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zirui Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
38
|
Physicochemical Investigations of Chitosan-Based Hydrogels Containing Aloe Vera Designed for Biomedical Use. MATERIALS 2020; 13:ma13143073. [PMID: 32660077 PMCID: PMC7412484 DOI: 10.3390/ma13143073] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
In this work, synthesis and investigations on chitosan-based hydrogels modified with Aloe vera juice are presented. These materials were synthesized by UV radiation. Investigations involved analysis of chemical structure by FTIR spectroscopy, sorption properties in physiological liquids, strength properties by texture analyzer, surface topography by Atomic Force Microscopy (AFM technique), and in vitro cytotoxicity by MTT test using L929 murine fibroblasts. Particular attention was focused both on determining the impact of the amount and the molecular weight of the crosslinker used for the synthesis as well as on the introduced additive on the properties of hydrogels. It was proven that modified hydrogels exhibited higher swelling ability. Introduced additive affected the tensile strength of hydrogels—modified materials showed 23% higher elongation. The greater amount of the crosslinker used in the synthesis, the more compact the structure, leading to the lower elasticity and lower sorption of hydrogels was reported. Above 95%, murine fibroblasts remained viable after 24 h incubation with hydrogels. It indicates that tested materials did not exhibit cytotoxicity toward these lines. Additionally, materials with Aloe vera juice were characterized by lower surface roughness. Conducted investigations allowed us to state that such modified hydrogels may be considered as useful for biomedical purposes.
Collapse
|
39
|
Wu M, Downie LE, Grover LM, Moakes RJA, Rauz S, Logan A, Jiao H, Hill LJ, Chinnery HR. The neuroregenerative effects of topical decorin on the injured mouse cornea. J Neuroinflammation 2020; 17:142. [PMID: 32366307 PMCID: PMC7199348 DOI: 10.1186/s12974-020-01812-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/13/2020] [Indexed: 02/08/2023] Open
Abstract
Background The cornea is innervated with a rich supply of sensory nerves that play important roles in ocular surface health. Any injury or pathology of the corneal nerves increases the risk of dry eye disease and infection. This study aims to evaluate the therapeutic potential of topical decorin to improve corneal nerve regeneration in a mouse model of sterile epithelial abrasion injury. Methods Bilateral central corneal epithelial abrasions (2-mm, Alger Brush) were performed on young C57BL/6 J mice to remove the corneal sensory nerves. Decorin, or vehicle, was applied topically, three times per day for 1 week or every 2 h for 6 h. Spectral-domain optical coherence tomography was performed to measure the abrasion area and corneal thickness. Wholemount immunofluorescence staining was used to assess sensory nerve regeneration (β-tubulin III) and immune cell density (CD45, Iba1, CD11c). To investigate the specific role of dendritic cells (DCs), Cx3cr1gfp/gfp mice, which spontaneously lack resident corneal epithelial DCs, were also investigated. The effect of prophylactic topical administration of recombinant human decorin (applied prior to the abrasion) was also investigated. Nerve tracing (NeuronJ software) was performed to compare recovery of basal nerve axons and superficial nerve terminals in the central and peripheral cornea. Results At 6 h after injury, topical decorin application was associated with greater intraepithelial DC recruitment but no change in re-epithelialisation or corneal thickness, compared to the vehicle control. One week after injury, sub-basal nerve plexus and superficial nerve terminal density were significantly higher in the central cornea in the decorin-treated eyes. The density of corneal stromal macrophages in the decorin-treated eyes and their contralateral eyes was significantly lower compared to saline-treated corneas. No significant improvement in corneal nerve regeneration was observed in Cx3cr1gfp/gfp mice treated with decorin. Conclusions Decorin promotes corneal epithelial nerve regeneration after injury. The neuroregenerative effect of topical decorin was associated with a higher corneal DC density during the acute phase, and fewer macrophages at the study endpoint. The corneal neuroregenerative effects of decorin were absent in mice lacking intraepithelial DCs. Together, these findings support a role for decorin in DC-mediated neuroregeneration following corneal abrasion injury.
Collapse
Affiliation(s)
- Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, 3053, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, 3053, Australia
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Richard J A Moakes
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Saaeha Rauz
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, Birmingham and Midland Eye Centre, Birmingham, UK.,Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ann Logan
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Haihan Jiao
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, 3053, Australia
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, 3053, Australia.
| |
Collapse
|
40
|
Ultra-small nanocomplexes based on polyvinylpyrrolidone K-17PF: A potential nanoplatform for the ocular delivery of kaempferol. Eur J Pharm Sci 2020; 147:105289. [DOI: 10.1016/j.ejps.2020.105289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/07/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023]
|
41
|
Grimaudo MA, Amato G, Carbone C, Diaz-Rodriguez P, Musumeci T, Concheiro A, Alvarez-Lorenzo C, Puglisi G. Micelle-nanogel platform for ferulic acid ocular delivery. Int J Pharm 2019; 576:118986. [PMID: 31870956 DOI: 10.1016/j.ijpharm.2019.118986] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022]
Abstract
Corneal wound healing after a trauma or a chemical injury has been shown to correlate with antioxidant levels at the ocular surface. However, ocular bioavailability of efficient antioxidants (e.g. ferulic acid) after topical administration is limited by their poor solubility, low stability and short residence time. The aim of this work was to formulate ferulic acid in a nanocomposite platform composed of nanogels and micelles for efficient delivery to cornea. Solubility enhancement factor of ferulic acid was found to be equal to 1.9 ± 0.3 and 3.4 ± 0.3 for 50 and 100 mg/ml Pluronic® F68 micellar solutions. Hyaluronan was added to blank and ferulic acid loaded micelles, and then cross-linked with ε-polylysine. Hyaluronan nanogels showed dimensions of ~300 nm with positive zeta potential values. The formulations were characterized in terms of rheological behavior, biocompatibility, wound healing properties, ferulic acid release pattern and penetration into excised bovine corneas. In comparison to Pluronic® micelles that released ferulic acid rapidly, micelle-nanogel composites sustained the release up to 2 days. Furthermore, the micelle-nanogel formulation favored in vitro wound closure promoting fibroblasts growth and ex vivo accumulation of ferulic acid into both healthy and damaged corneas (>100 µg/cm2).
Collapse
Affiliation(s)
- Maria Aurora Grimaudo
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, Catania, Italy; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Giovanni Amato
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, Catania, Italy.
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, Catania, Italy
| | - Patricia Diaz-Rodriguez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, Catania, Italy
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Giovanni Puglisi
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, Catania, Italy
| |
Collapse
|