1
|
Liu J, Song Q, Yin W, Li C, An N, Le Y, Wang Q, Feng Y, Hu Y, Wang Y. Bioactive scaffolds for tissue engineering: A review of decellularized extracellular matrix applications and innovations. EXPLORATION (BEIJING, CHINA) 2025; 5:20230078. [PMID: 40040827 PMCID: PMC11875452 DOI: 10.1002/exp.20230078] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 03/06/2025]
Abstract
Decellularized extracellular matrix (dECM) offers a three-dimensional, non-immunogenic scaffold, enriched with bioactive components, making it a suitable candidate for tissue regeneration. Although dECM-based scaffolds have been successfully implemented in preclinical and clinical settings within tissue engineering and regenerative medicine, the mechanisms of tissue remodeling and functional restoration are not fully understood. This review critically assesses the state-of-the-art in dECM scaffolds, including decellularization techniques for various tissues, quality control and cross-linking. It highlights the functional properties of dECM components and their latest applications in multiorgan tissue engineering and biomedicine. Additionally, the review addresses current challenges and limitations of decellularized scaffolds and offers perspectives on future directions in the field.
Collapse
Affiliation(s)
- Juan Liu
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
- Key Laboratory of Digital Intelligence HepatologyMinistry of EducationSchool of Clinical MedicineTsinghua UniversityBeijingChina
| | - Qingru Song
- Clinical Translational Science CenterBeijing Tsinghua Changgung HospitalTsinghua UniversityBeijingChina
| | - Wenzhen Yin
- Clinical Translational Science CenterBeijing Tsinghua Changgung HospitalTsinghua UniversityBeijingChina
| | - Chen Li
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
- College of Chemistry and Life SciencesBeijing University of TechnologyBeijingChina
| | - Ni An
- Clinical Translational Science CenterBeijing Tsinghua Changgung HospitalTsinghua UniversityBeijingChina
| | - Yinpeng Le
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
- Institute of Smart Biomedical MaterialsSchool of Materials Science and EngineeringZhejiang Sci‐Tech UniversityHangzhouPeople's Republic of China
| | - Qi Wang
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
- Department of Hepatobiliary and Pancreatic SurgeryThe First Hospital of Jilin UniversityJilin UniversityChangchunChina
| | - Yutian Feng
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
| | - Yuelei Hu
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
- Department of Hepatobiliary and Pancreatic SurgeryThe First Hospital of Jilin UniversityJilin UniversityChangchunChina
| | - Yunfang Wang
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
- Key Laboratory of Digital Intelligence HepatologyMinistry of EducationSchool of Clinical MedicineTsinghua UniversityBeijingChina
- Clinical Translational Science CenterBeijing Tsinghua Changgung HospitalTsinghua UniversityBeijingChina
| |
Collapse
|
2
|
Liu Y, Zhu M, Ou J, Li K, Ju X, Tian Y, Niu Z. Multi-responsive sodium hyaluronate/tannic acid hydrogels with ROS scavenging ability promote the healing of diabetic wounds. Int J Biol Macromol 2024; 278:134896. [PMID: 39168206 DOI: 10.1016/j.ijbiomac.2024.134896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Oxidative stress caused by excessive reactive oxygen species (ROS) accumulation significantly hinders wound healing in patients with diabetes. Scavenging ROS and reducing inflammation are crucial for rapid healing. In this work, a multi-responsive sodium hyaluronate (HA)/tannic acid (TA) hydrogel was developed based on boronate ester bonds. Sodium hyaluronate with 3-aminophenyl boronic acid modification (HA-APBA) was mixed and crosslinked with TA to form HA-APBA/TA hydrogels. These hydrogels are injectable, self-healing, and biocompatible. The HA-APBA/TA hydrogels could release free TA through the collapse of the structure at low pH, high H2O2 concentration, and high glucose concentration, thus possessing good ROS scavenging ability. In full-thickness skin wounds of db/db mice, the HA-APBA/TA hydrogels promoted wound healing, collagen deposition, and significant angiogenesis. Furthermore, they have been shown to effectively reduce the levels of inflammatory factors in wounds and lower the expression of CD86, a pro-inflammatory macrophage surface marker. This resulted in a more effective transition of wound healing from the inflammatory phase to the proliferative phase. This study provides an optional strategy for alleviating oxidative stress and controlling excessive inflammation, thereby promoting diabetic wound healing.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Zhu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinzhao Ou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - KeJia Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Ju
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ye Tian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhongwei Niu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Singh S, Sharma K, Sharma H. Green Extracts with Metal-based Nanoparticles for Treating Inflammatory Diseases: A Review. Curr Drug Deliv 2024; 21:544-570. [PMID: 37278036 DOI: 10.2174/1567201820666230602164325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
Globally, high death rates and poor quality of life are caused mainly by inflammatory diseases. Corticosteroids, which may have systemic side effects and would enhance the risk of infection, are the common forms of therapy. The field of nanomedicine has created composite nanoparticles that carry a pharmacological carrier and target ligands for distribution to sites of inflammation with less systemic toxicity. However, their relatively large size often causes systemic clearance. An interesting approach is metal-based nanoparticles that naturally reduce inflammation. They are made not only to be small enough to pass through biological barriers but also to allow label-free monitoring of their interactions with cells. The following literature review discusses the mechanistic analysis of the anti-inflammatory properties of several metal-based nanoparticles, including gold, silver, titanium dioxide, selenium, and zinc oxide. Current research focuses on the mechanisms by which nanoparticles infiltrate cells and the anti-inflammatory techniques using herbal extracts-based nanoparticles. Additionally, it provides a brief overview of the literature on many environmentally friendly sources employed in nanoparticle production and the mechanisms of action of various nanoparticles.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh-281406, India
| | - Khushi Sharma
- Institute of Pharmaceutical Research GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh-281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh-281406, India
| |
Collapse
|
4
|
Li M, Li X, Gao Y, Yang Y, Yi C, Huang W, Shen B, Qi D, Mao Z, Wu J. Composite nanofibrous dressing loaded with Prussian blue and heparin for anti-inflammation therapy and diabetic wound healing. Int J Biol Macromol 2023:125144. [PMID: 37268080 DOI: 10.1016/j.ijbiomac.2023.125144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/21/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
Diabetic ulcer is a severe complication of diabetes that can lead to amputation due to the overproduction of pro-inflammatory factors and reactive oxygen species (ROS). In this study, a composite nanofibrous dressing was developed by combining Prussian blue nanocrystals (PBNCs) and heparin sodium (Hep) through electrospinning, electrospraying, and chemical deposition. The nanofibrous dressing (PPBDH) was designed to take advantage of the excellent pro-inflammatory factor-adsorbing capability of Hep and the ROS-scavenging capabilities of PBNCs, resulting in synergistic treatment. It is worth noting that the nanozymes were firmly anchored to the fiber surfaces through slight polymer swelling caused by the solvent during electrospinning, thereby guaranteeing the preservation of the enzyme-like activity levels of PBNCs. The PPBDH dressing was found to be effective in reducing intracellular ROS levels, protecting cells from ROS-induced apoptosis, and capturing excessive pro-inflammatory factors, including chemoattractant protein-1 (MCP-1) and interleukin-1β (IL-1β). Furthermore, a chronic wound healing evaluation conducted in vivo demonstrated that the PPBDH dressing was able to effectively alleviate the inflammatory response and accelerate wound healing. This research presents an innovative approach to fabricate nanozyme hybrid nanofibrous dressings, which have great potential in accelerating the healing of chronic and refractory wounds with uncontrolled inflammation.
Collapse
Affiliation(s)
- Mengmeng Li
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; Hangzhou Singclean Medical Products Co., Ltd., Hangzhou 310018, China
| | - Xilan Li
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yujie Gao
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yang Yang
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chenggang Yi
- Department of Plastic Surgery, The Second Affiliated Hospital, Medical School, Zhejiang University, 88 Jie Fang Road, Hangzhou 310009, China.
| | - Wei Huang
- Hangzhou Singclean Medical Products Co., Ltd., Hangzhou 310018, China
| | - Bingbing Shen
- Department of Nephrology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400014, China.
| | - Dongming Qi
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China.
| | - Jindan Wu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
5
|
Dixit K, Bora H, Lakshmi Parimi J, Mukherjee G, Dhara S. Biomaterial mediated immunomodulation: An interplay of material environment interaction for ameliorating wound regeneration. J Biomater Appl 2023; 37:1509-1528. [PMID: 37069479 DOI: 10.1177/08853282231156484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Chronic wounds are the outcome of an imbalanced inflammatory response caused by sustenance of immune microenvironment. In this context, tissue engineered graft played great role in healing wounds but faced difficulty in scar remodelling, immune rejection and poor vascularization. All the limitations faced are somewhere linked with the immune cells involved in healing. In this consideration, immunomodulatory biomaterials bridge a large gap with the delivery of modulating factors for triggering key inflammatory cells responsible towards interplay in the wound micro-environment. Inherent physico-chemical properties of biomaterials substantially determine the nature of cell-materials interaction thereby facilitating differential cytokine gradient involved in activation or suppression of inflammatory signalling pathways, and followed by surface marker expression. This review aims to systematically describe the interplay of immune cells involved in different phases in the wound microenvironment and biomaterials. Additionally, it also focuses on modulating innate immune cell responses in the context of triggering the halted phase of the wound healing, i.e., inflammatory phase. The various strategies are highlighted for modulation of wound microenvironment towards wound regeneration including stem cells, cytokines, growth factors, vitamins, and anti-inflammatory agents to induce interactive ability of biomaterials with immune cells. The last section focuses on prospective approaches and current potential strategies for wound regeneration. This includes the development of different models to bridge the gap between mouse models and human patients. Emerging new tools to study inflammatory response owing to biomaterials and novel strategies for modulation of monocyte and macrophage behaviour in the wound environment are also discussed.
Collapse
Affiliation(s)
- Krishna Dixit
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
- Immunology and Inflammation Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Hema Bora
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Jhansi Lakshmi Parimi
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Gayatri Mukherjee
- Immunology and Inflammation Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
6
|
Wang RM, Mesfin JM, Hunter J, Cattaneo P, Guimarães-Camboa N, Braden RL, Luo C, Hill RC, Dzieciatkowska M, Hansen KC, Evans S, Christman KL. Myocardial matrix hydrogel acts as a reactive oxygen species scavenger and supports a proliferative microenvironment for cardiomyocytes. Acta Biomater 2022; 152:47-59. [PMID: 36041648 DOI: 10.1016/j.actbio.2022.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
Abstract
As the native regenerative potential of adult cardiac tissue is limited post-injury, stimulating endogenous repair mechanisms in the mammalian myocardium is a potential goal of regenerative medicine therapeutics. Injection of myocardial matrix hydrogels into the heart post-myocardial infarction (MI) has demonstrated increased cardiac muscle and promotion of pathways associated with cardiac development, suggesting potential promotion of cardiomyocyte turnover. In this study, the myocardial matrix hydrogel was shown to have native capability as an effective reactive oxygen species scavenger and protect against oxidative stress induced cell cycle inhibition in vitro. Encapsulation of cardiomyocytes demonstrated an enhanced turnover in in vitro studies, and in vivo assessments of myocardial matrix hydrogel treatment post-MI showed increased thymidine analog uptake in cardiomyocyte nuclei compared to saline controls. Overall, this study provides evidence that properties of the myocardial matrix material provide a microenvironment mitigating oxidative damage and supportive of cardiomyocytes undergoing DNA synthesis, toward possible DNA repair or cell cycle activation. STATEMENT OF SIGNIFICANCE: Loss of adult mammalian cardiomyocyte turnover is influenced by shifts in oxidative damage, which represents a potential mechanism for improving restoration of cardiac muscle after myocardial infarction (MI). Injection of a myocardial matrix hydrogel into the heart post-MI previously demonstrated increased cardiac muscle and promotion of pathways associated with cardiac development, suggesting potential in promoting proliferation of cardiomyocytes. In this study, the myocardial matrix hydrogel was shown to protect cells from oxidative stress and increase proliferation in vitro. In a rat MI model, greater presence of tissue free thiol content spared from oxidative damage, lesser mitochondrial superoxide content, and increased thymidine analog uptake in cardiomyocytes was found in matrix injected animals compared to saline controls. Overall, this study provides evidence that properties of the myocardial matrix material provide a microenvironment supportive of cardiomyocytes undergoing DNA synthesis, toward possible DNA repair or cell cycle activation.
Collapse
Affiliation(s)
- Raymond M Wang
- Department of Bioengineering and Sanford Consortium of Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | - Joshua M Mesfin
- Department of Bioengineering and Sanford Consortium of Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | - Jervaughn Hunter
- Department of Bioengineering and Sanford Consortium of Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | - Paola Cattaneo
- Department of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; Institute of Genetics and Biomedical Research (Milan Unit), National Research Council of Italy, 20189 Rozzano, MI, Italy
| | - Nuno Guimarães-Camboa
- Department of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; Institute of Cardiovascular Regeneration, Goethe University, Frankfurt 60590, Germany
| | - Rebecca L Braden
- Department of Bioengineering and Sanford Consortium of Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | - Colin Luo
- Department of Bioengineering and Sanford Consortium of Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | - Ryan C Hill
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, Colorado, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, Colorado, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, Colorado, USA
| | - Sylvia Evans
- Department of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Karen L Christman
- Department of Bioengineering and Sanford Consortium of Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA..
| |
Collapse
|
7
|
Hyaluronic acid-guided assembly of ceria nanozymes as plaque-targeting ROS scavengers for anti-atherosclerotic therapy. Carbohydr Polym 2022; 296:119940. [DOI: 10.1016/j.carbpol.2022.119940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/27/2022]
|
8
|
Self-therapeutic metal-based nanoparticles for treating inflammatory diseases. Acta Pharm Sin B 2022; 13:1847-1865. [DOI: 10.1016/j.apsb.2022.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 02/07/2023] Open
|
9
|
Wang B, Zhou L, Guo Y, Guo H, Zhong Y, Huang X, Ge Y, Wang Q, Chu X, Jin Y, Lan K, Yang M, Qu J. Cyanobacteria-based self-oxygenated photodynamic therapy for anaerobic infection treatment and tissue repair. Bioact Mater 2022; 12:314-326. [PMID: 35128179 PMCID: PMC8783102 DOI: 10.1016/j.bioactmat.2021.10.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 11/24/2022] Open
Abstract
Photodynamic therapy (PDT) is an important technique to deal with drug-resistant bacterial infections in the post-antibiotic era. However, the hypoxic environment in intractable infections such as refractory keratitis and periodontitis, makes PDT more difficult. In this work, spontaneous oxygen-producing cyanobacteria were used as the carrier of photosensitizer (Ce6), and ultrasmall Cu5.4O nanoparticles (Cu5.4O USNPs) with catalase activity for infection and inflammation elimination and rapid tissue repair (CeCycn-Cu5.4O). The loading of Ce6 and Cu5.4O USNPs onto cyanobacteria surface were confirmed by transmission electron microscopy, nano particle size analyzer, scanning electron microscopy. In vitro sterilization and biofilm removal experiments demonstrated that the restriction of hypoxic environment to PDT was significantly alleviated due to the oxygen production of cyanobacteria. Under laser irradiation, the close transfer of energy photons to oxygen produced by cyanobacteria reduced more than 90% of Ce6 dosages (660 nm, 200 mW/cm2, 2 min). It is worth mentioning that both rapid sterilization through PDT and long-term oxidized free radicals elimination were achieved by adjusting the ratio of Ce6 and Cu5.4O USNPs. Both periodontitis and refractory keratitis animal models proved the excellent self-oxygenation enhanced antibacterial property and promotion of tissue repair.
Collapse
Affiliation(s)
- Bailiang Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, PR China
- Research Group of Advanced Ophthalmology Bionic Interface Materials, Oujiang Laboratory, Wenzhou, 325000, PR China
| | - Liyang Zhou
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, PR China
- Research Group of Advanced Ophthalmology Bionic Interface Materials, Oujiang Laboratory, Wenzhou, 325000, PR China
| | - Yishun Guo
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, PR China
- Research Group of Advanced Ophthalmology Bionic Interface Materials, Oujiang Laboratory, Wenzhou, 325000, PR China
| | - Hanwen Guo
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, PR China
- Research Group of Advanced Ophthalmology Bionic Interface Materials, Oujiang Laboratory, Wenzhou, 325000, PR China
| | - Yiming Zhong
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, PR China
- Research Group of Advanced Ophthalmology Bionic Interface Materials, Oujiang Laboratory, Wenzhou, 325000, PR China
| | - Xiaomin Huang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, PR China
- Research Group of Advanced Ophthalmology Bionic Interface Materials, Oujiang Laboratory, Wenzhou, 325000, PR China
| | - Yifan Ge
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, PR China
- Research Group of Advanced Ophthalmology Bionic Interface Materials, Oujiang Laboratory, Wenzhou, 325000, PR China
| | - Qingying Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, PR China
- Research Group of Advanced Ophthalmology Bionic Interface Materials, Oujiang Laboratory, Wenzhou, 325000, PR China
| | - Xiaoying Chu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, PR China
- Research Group of Advanced Ophthalmology Bionic Interface Materials, Oujiang Laboratory, Wenzhou, 325000, PR China
| | - Yingying Jin
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, PR China
- Research Group of Advanced Ophthalmology Bionic Interface Materials, Oujiang Laboratory, Wenzhou, 325000, PR China
| | - Kaiyue Lan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, PR China
- Research Group of Advanced Ophthalmology Bionic Interface Materials, Oujiang Laboratory, Wenzhou, 325000, PR China
| | - Mei Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, PR China
- Research Group of Advanced Ophthalmology Bionic Interface Materials, Oujiang Laboratory, Wenzhou, 325000, PR China
| | - Jia Qu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, PR China
- Research Group of Advanced Ophthalmology Bionic Interface Materials, Oujiang Laboratory, Wenzhou, 325000, PR China
| |
Collapse
|
10
|
Liu K, Zhao M, Li Y, Luo L, Hu D. VEGF loaded porcine decellularized adipose tissue derived hydrogel could enhance angiogenesis in vitro and in vivo. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:569-589. [PMID: 34779715 DOI: 10.1080/09205063.2021.2002235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Decellularized adipose tissue (DAT) has been widely applied in soft tissue regeneration, however, DAT may play a promising role in accelerating wound healing because of suitable physical characteristics and biological properties. In this research, we fabricated the DAT hydrogel and the VEGF loaded heparinized-DAT hydrogel (VEGF hydrogel) and evaluated their efficiency in full-thickness skin wound model. We designed one method to encapsulate VEGF to hep-DAT hydrogel in order to control VEGF release rate. Result showed that the VEGF release could last up to 3 day, and 1 ml hep-DAT hydrogel (5 mg/ml) could bind up to (64.521 ± 11.550) ng VEGF which was 4.2 times to that of DAT hydrogels. Moreover, the VEGF released in 3 days still preserved biological activities that the released VEGF could enhance tube formation of HUVECs in vitro. Otherwise, the VEGF hydrogel could significantly accelerate wound healing compared with DAT hydrogel and VEGF injection, collagen deposition and newly formed vessels in the VEGF hydrogel groups were also higher than those of other groups. We believed that the VEGF hydrogel could be one attractive biomaterial for potential clinical applications.
Collapse
Affiliation(s)
- Kaituo Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China.,Department of Burns and Plastic Surgery, The 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, China
| | - Ming Zhao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Liang Luo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
11
|
Peng Y, He D, Ge X, Lu Y, Chai Y, Zhang Y, Mao Z, Luo G, Deng J, Zhang Y. Construction of heparin-based hydrogel incorporated with Cu5.4O ultrasmall nanozymes for wound healing and inflammation inhibition. Bioact Mater 2021; 6:3109-3124. [PMID: 33778192 PMCID: PMC7960791 DOI: 10.1016/j.bioactmat.2021.02.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Excessive production of inflammatory chemokines and reactive oxygen species (ROS) can cause a feedback cycle of inflammation response that has a negative effect on cutaneous wound healing. The use of wound-dressing materials that simultaneously absorb chemokines and scavenge ROS constitutes a novel 'weeding and uprooting' treatment strategy for inflammatory conditions. In the present study, a composite hydrogel comprising an amine-functionalized star-shaped polyethylene glycol (starPEG) and heparin for chemokine sequestration as well as Cu5.4O ultrasmall nanozymes for ROS scavenging (Cu5.4O@Hep-PEG) was developed. The material effectively adsorbs the inflammatory chemokines monocyte chemoattractant protein-1 and interleukin-8, decreasing the migratory activity of macrophages and neutrophils. Furthermore, it scavenges the ROS in wound fluids to mitigate oxidative stress, and the sustained release of Cu5.4O promotes angiogenesis. In acute wounds and impaired-healing wounds (diabetic wounds), Cu5.4O@Hep-PEG hydrogels outperform the standard-of-care product Promogram® in terms of inflammation reduction, increased epidermis regeneration, vascularization, and wound closure.
Collapse
Affiliation(s)
- Yuan Peng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Danfeng He
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xin Ge
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yifei Lu
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanhao Chai
- McKelvey School of Engineering, Washington University in Saint Louis, One Brookings Drive Saint Louis, MO, 63130, USA
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| |
Collapse
|
12
|
Tan J, Zhang QY, Huang LP, Huang K, Xie HQ. Decellularized scaffold and its elicited immune response towards the host: the underlying mechanism and means of immunomodulatory modification. Biomater Sci 2021; 9:4803-4820. [PMID: 34018503 DOI: 10.1039/d1bm00470k] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The immune response of the host towards a decellularized scaffold is complex. Not only can a number of immune cells influence this process, but also the characteristics, preparation and modification of the decellularized scaffold can significantly impact this reaction. Such factors can, together or alone, trigger immune cells to polarize towards either a pro-healing or pro-inflammatory direction. In this article, we have comprehensively reviewed factors which may influence the immune response of the host towards a decellularized scaffold, including the source of the biomaterial, biophysical properties or modifications of the scaffolds with bioactive peptides, drugs and cytokines. Furthermore, the underlying mechanism has also been recapitulated.
Collapse
Affiliation(s)
- Jie Tan
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| | - Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| | - Li-Ping Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| | - Kai Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| |
Collapse
|
13
|
Feng X, Chen W, Ni X, Little PJ, Xu S, Tang L, Weng J. Metformin, Macrophage Dysfunction and Atherosclerosis. Front Immunol 2021; 12:682853. [PMID: 34163481 PMCID: PMC8215340 DOI: 10.3389/fimmu.2021.682853] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
Metformin is one of the most widely prescribed hypoglycemic drugs and has the potential to treat many diseases. More and more evidence shows that metformin can regulate the function of macrophages in atherosclerosis, including reducing the differentiation of monocytes and inhibiting the inflammation, oxidative stress, polarization, foam cell formation and apoptosis of macrophages. The mechanisms by which metformin regulates the function of macrophages include AMPK, AMPK independent targets, NF-κB, ABCG5/8, Sirt1, FOXO1/FABP4 and HMGB1. On the basis of summarizing these studies, we further discussed the future research directions of metformin: single-cell RNA sequencing, neutrophil extracellular traps (NETs), epigenetic modification, and metformin-based combination drugs. In short, macrophages play an important role in a variety of diseases, and improving macrophage dysfunction may be an important mechanism for metformin to expand its pleiotropic pharmacological profile. In addition, the combination of metformin with other drugs that improve the function of macrophages (such as SGLT2 inhibitors, statins and IL-1β inhibitors/monoclonal antibodies) may further enhance the pleiotropic therapeutic potential of metformin in conditions such as atherosclerosis, obesity, cancer, dementia and aging.
Collapse
Affiliation(s)
- Xiaojun Feng
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Wenxu Chen
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Xiayun Ni
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Peter J. Little
- Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, Australia
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China( USTC), Hefei, China
| | - Liqin Tang
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China( USTC), Hefei, China
| |
Collapse
|
14
|
Cicuéndez M, Casarrubios L, Feito MJ, Madarieta I, Garcia-Urkia N, Murua O, Olalde B, Briz N, Diez-Orejas R, Portolés MT. Effects of Human and Porcine Adipose Extracellular Matrices Decellularized by Enzymatic or Chemical Methods on Macrophage Polarization and Immunocompetence. Int J Mol Sci 2021; 22:ijms22083847. [PMID: 33917732 PMCID: PMC8068109 DOI: 10.3390/ijms22083847] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/05/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
The decellularized extracellular matrix (ECM) obtained from human and porcine adipose tissue (AT) is currently used to prepare regenerative medicine bio-scaffolds. However, the influence of these natural biomaterials on host immune response is not yet deeply understood. Since macrophages play a key role in the inflammation/healing processes due to their high functional plasticity between M1 and M2 phenotypes, the evaluation of their response to decellularized ECM is mandatory. It is also necessary to analyze the immunocompetence of macrophages after contact with decellularized ECM materials to assess their functional role in a possible infection scenario. In this work, we studied the effect of four decellularized adipose matrices (DAMs) obtained from human and porcine AT by enzymatic or chemical methods on macrophage phenotypes and fungal phagocytosis. First, a thorough biochemical characterization of these biomaterials by quantification of remnant DNA, lipids, and proteins was performed, thus indicating the efficiency and reliability of both methods. The proteomic analysis evidenced that some proteins are differentially preserved depending on both the AT origin and the decellularization method employed. After exposure to the four DAMs, specific markers of M1 proinflammatory and M2 anti-inflammatory macrophages were analyzed. Porcine DAMs favor the M2 phenotype, independently of the decellularization method employed. Finally, a sensitive fungal phagocytosis assay allowed us to relate the macrophage phagocytosis capability with specific proteins differentially preserved in certain DAMs. The results obtained in this study highlight the close relationship between the ECM biochemical composition and the macrophage’s functional role.
Collapse
Affiliation(s)
- Mónica Cicuéndez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (M.C.); (L.C.); (M.J.F.)
| | - Laura Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (M.C.); (L.C.); (M.J.F.)
| | - María José Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (M.C.); (L.C.); (M.J.F.)
| | - Iratxe Madarieta
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain; (I.M.); (N.G.-U.); (O.M.); (N.B.)
| | - Nerea Garcia-Urkia
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain; (I.M.); (N.G.-U.); (O.M.); (N.B.)
| | - Olatz Murua
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain; (I.M.); (N.G.-U.); (O.M.); (N.B.)
| | - Beatriz Olalde
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain; (I.M.); (N.G.-U.); (O.M.); (N.B.)
- Correspondence: (B.O.); (R.D.-O.); (M.T.P.)
| | - Nerea Briz
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009 Donostia-San Sebastian, Spain; (I.M.); (N.G.-U.); (O.M.); (N.B.)
| | - Rosalía Diez-Orejas
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (B.O.); (R.D.-O.); (M.T.P.)
| | - María Teresa Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (M.C.); (L.C.); (M.J.F.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
- Correspondence: (B.O.); (R.D.-O.); (M.T.P.)
| |
Collapse
|
15
|
Phosphorylation of Microglial IRF5 and IRF4 by IRAK4 Regulates Inflammatory Responses to Ischemia. Cells 2021; 10:cells10020276. [PMID: 33573200 PMCID: PMC7912637 DOI: 10.3390/cells10020276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Interferon Regulatory Factor (IRF) 5 and 4 play a determinant role in regulating microglial pro- and anti-inflammatory responses to cerebral ischemia. How microglial IRF5 and IRF4 signaling are activated has been elusive. We hypothesized that interleukin-1 receptor associated kinase 4 (IRAK4) phosphorylates and activates IRF5 and IRF4 in ischemic microglia. We aimed to explore the upstream signals of the two IRFs, and to determine how the IRAK4-IRF signaling regulates the expression of inflammatory mediators, and impacts neuropathology. Methods: Spontaneously Immortalized Murine (SIM)-A9 microglial cell line, primary microglia and neurons from C57BL/6 WT mice were cultured and exposed to oxygen-glucose deprivation (OGD), followed by stimulation with LPS or IL-4. An IRAK4 inhibitor (ND2158) was used to examine IRAK4′s effects on the phosphorylation of IRF5/IRF4 and the impacts on neuronal morphology by co-immunoprecipitation (Co-IP)/Western blot, ELISA, and immunofluorescence assays. Results: We confirmed that IRAK4 formed a Myddosome with MyD88/IRF5/IRF4, and phosphorylated both IRFs, which subsequently translocated into the nucleus. Inhibition of IRAK4 phosphorylation quenched microglial pro-inflammatory response primarily, and increased neuronal viability and neurite lengths after ischemia. Conclusions: IRAK4 signaling is critical for microglial inflammatory responses and a potential therapeutic target for neuroinflammatory diseases including cerebral ischemia.
Collapse
|
16
|
Feng L, Wei J, Liang S, Sun Z, Duan J. miR-205/IRAK2 signaling pathway is associated with urban airborne PM 2.5-induced myocardial toxicity. Nanotoxicology 2020; 14:1198-1212. [PMID: 32880505 DOI: 10.1080/17435390.2020.1813824] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Exposure to fine particulate matter (PM2.5) is closely linked with cardiovascular diseases. However, the underlying mechanism of PM2.5 on cardiac function remains unknown. This study was aimed to investigate the role of microRNA-205 (miR-205) on PM2.5-induced myocardial inflammation and cardiac dysfunction. PM2.5 increased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), following by decreased cell viability and antioxidant enzymes, resulting in apoptosis of cardiomyocytes (AC16). The histopathological and ultrastructural analysis demonstrated that PM2.5 caused myocardial damage via interstitial edema, inflammatory cell infiltration, and myocardial fiber destruction. PM2.5 enhanced the release of inflammatory factors in AC16 cells and heart tissue. Microarray analysis and dual-luciferase reporter gene assays demonstrated that PM2.5-induced down-regulation of miR-205 regulated interleukin 1 receptor-associated kinase 2 (IRAK2), which further activated the TNF receptor-associated factor 6 (TRAF6)/nuclear transcription factor-κB (NF-κB) signaling pathway in vivo. Moreover, the chemical mimics of miR-205 markedly inhibited the IRAK2/TRAF6/NF-κB signaling pathway, whereas the chemical inhibitors of miR-205 amplified PM2.5-induced activation of the IRAK2 signaling pathway in vitro. In summary, our results found that PM2.5 could trigger myocardial toxicity via miR-205 negative regulating the IRAK2/TRAF6/NF-κB signaling pathway. Our study suggests that miR-205 could be a promising target molecule for mitigating the hazardous effects of PM2.5 on the cardiovascular system.
Collapse
Affiliation(s)
- Lin Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, P.R. China
| | - Jialiu Wei
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, P.R. China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, P.R. China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
17
|
Zhang K, Lin Q, Zhang T, Guo D, Cao L. Contemporary Prevalence and risk factors of carotid artery stenosis in asymptomatic low-income Chinese individuals: a population-based study. Postgrad Med 2020; 132:650-656. [PMID: 32590917 DOI: 10.1080/00325481.2020.1788319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Carotid artery stenosis (CAS) is an established risk factor for cerebrovascular disease. However, the contemporary prevalence and risk factors of CAS in asymptomatic rural Chinese individuals, especially low-income populations, remains unclear. Therefore, we aimed to explore the present prevalence and risk factors of CAS in a low-income Chinese population. METHODS A total of 3126 people aged ≥ 45 years without history of stroke or cardiovascular disease were recruited for this study. B-mode ultrasonography was performed to evaluate the presence of CAS. We used multivariate analysis to determine potential risk factors for CAS. RESULTS The overall prevalence of CAS in this population was 6.7%, with a prevalence of 8.8% for men and 5.0% for women. The risk of CAS increased with older age and a higher level of low-density lipoprotein cholesterol (LDL-C), systolic blood pressure (SBP), and fasting blood glucose (FBG) (all P < 0.05). Each 1-mmHg increase in SBP increased the risk of CAS by 0.011 times, each 1-mmol/L increase in LDL-C increased the risk of CAS by 0.192 times, and each 1-mmol/L increase in FBG increased the risk of CAS by 0.067 times. In addition, the risk of CAS increased 52.9% in men compared to that in women, increased 100.2% in current drinkers compared to that in never drinkers, and increased 38.9% in patients with diabetes compared to those without diabetes (all P < 0.05). CONCLUSIONS These findings suggest that the prevalence of CAS remains high in low-income individuals. Male sex, older age, current drinking, diabetes, and high levels of LDL-C, SBP, and FBG increase the risk of CAS. Thus, to prevent cerebrovascular disease and reduce the severe disease-associated burden for low-income individuals, there is a definitive need to control the risk factors of CAS.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital , Tianjin, China
| | - Qiuxing Lin
- Department of Neurology, Tianjin Medical University General Hospital , Tianjin, China.,Laboratory of Epidemiology, Tianjin Neurological Institute , Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City , Tianjin, China
| | - Tianyu Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital , Tianjin, China
| | - Dandan Guo
- Centre of Ultrasound, Tianjin Medical University General Hospital , Tianjin, China
| | - Li Cao
- Department of Geriatrics, Tianjin Medical University General Hospital , Tianjin, China
| |
Collapse
|
18
|
Protective Mechanism and Treatment of Neurogenesis in Cerebral Ischemia. Neurochem Res 2020; 45:2258-2277. [PMID: 32794152 DOI: 10.1007/s11064-020-03092-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Stroke is the fifth leading cause of death worldwide and is a main cause of disability in adults. Neither currently marketed drugs nor commonly used treatments can promote nerve repair and neurogenesis after stroke, and the repair of neurons damaged by ischemia has become a research focus. This article reviews several possible mechanisms of stroke and neurogenesis and introduces novel neurogenic agents (fibroblast growth factors, brain-derived neurotrophic factor, purine nucleosides, resveratrol, S-nitrosoglutathione, osteopontin, etc.) as well as other treatments that have shown neuroprotective or neurogenesis-promoting effects.
Collapse
|