1
|
Scarciglia A, Papi C, Romiti C, Leone A, Di Gregorio E, Ferrauto G. Gadolinium-Based Contrast Agents (GBCAs) for MRI: A Benefit-Risk Balance Analysis from a Chemical, Biomedical, and Environmental Point of View. GLOBAL CHALLENGES (HOBOKEN, NJ) 2025; 9:2400269. [PMID: 40071223 PMCID: PMC11891575 DOI: 10.1002/gch2.202400269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/07/2025] [Indexed: 03/14/2025]
Abstract
Gadolinium-based contrast agents (GBCAs) have revolutionized medical imaging, enhancing the accuracy and diagnostic value of magnetic resonance imaging (MRI). The increasing use of GBCAs has raised concerns about the release of gadolinium (Gd)(III) into the environment and potential risks for human health. Initially, multiple administrations of GBCAs were associated only with nephrogenic system fibrosis disease in individuals with impaired kidney function. Even if the Gd(III) retention in tissues has not yet been correlated with any specific disease, caution is required for the extensive use of GBCAs. The concerns related to the employment of GBCAs, due to the possible deposition and retention, should be extended also to healthy individuals without renal impairments. To ensure the well-being of patients, there is a need to develop even more stable and better-performing GBCAs, new MRI approaches requiring lower doses of GBCAs and, finally, innovative methods for recovering Gd(III) from both patients' urines and the environment. This can have strong advantages for human health and for environmental sustainability, also considering Gd(III) scarcity, being a rare earth element, and the shared guideline to reduce, as much as possible, the use of rare metals.
Collapse
Affiliation(s)
- Angelo Scarciglia
- Department of Molecular Biotechnologies and Health SciencesUniversity of TorinoVia Nizza 52Torino10126Italy
| | - Chiara Papi
- Department of Molecular Biotechnologies and Health SciencesUniversity of TorinoVia Nizza 52Torino10126Italy
| | - Chiara Romiti
- Department of Molecular Biotechnologies and Health SciencesUniversity of TorinoVia Nizza 52Torino10126Italy
| | - Andrea Leone
- Department of Molecular Biotechnologies and Health SciencesUniversity of TorinoVia Nizza 52Torino10126Italy
| | - Enza Di Gregorio
- Department of Molecular Biotechnologies and Health SciencesUniversity of TorinoVia Nizza 52Torino10126Italy
| | - Giuseppe Ferrauto
- Department of Molecular Biotechnologies and Health SciencesUniversity of TorinoVia Nizza 52Torino10126Italy
| |
Collapse
|
2
|
Oberdick SD, Jordanova KV, Lundstrom JT, Parigi G, Poorman ME, Zabow G, Keenan KE. Iron oxide nanoparticles as positive T 1 contrast agents for low-field magnetic resonance imaging at 64 mT. Sci Rep 2023; 13:11520. [PMID: 37460669 DOI: 10.1038/s41598-023-38222-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
We have investigated the efficacy of superparamagnetic iron oxide nanoparticles (SPIONs) as positive T1 contrast agents for low-field magnetic resonance imaging (MRI) at 64 millitesla (mT). Iron oxide-based agents, such as the FDA-approved ferumoxytol, were measured using a variety of techniques to evaluate T1 contrast at 64 mT. Additionally, we characterized monodispersed carboxylic acid-coated SPIONs with a range of diameters (4.9-15.7 nm) in order to understand size-dependent properties of T1 contrast at low-field. MRI contrast properties were measured using 64 mT MRI, magnetometry, and nuclear magnetic resonance dispersion (NMRD). We also measured MRI contrast at 3 T to provide comparison to a standard clinical field strength. SPIONs have the capacity to perform well as T1 contrast agents at 64 mT, with measured longitudinal relaxivity (r1) values of up to 67 L mmol-1 s-1, more than an order of magnitude higher than corresponding r1 values at 3 T. The particles exhibit size-dependent longitudinal relaxivities and outperform a commercial Gd-based agent (gadobenate dimeglumine) by more than eight-fold at physiological temperatures. Additionally, we characterize the ratio of transverse to longitudinal relaxivity, r2/r1 and find that it is ~ 1 for the SPION based agents at 64 mT, indicating a favorable balance of relaxivities for T1-weighted contrast imaging. We also correlate the magnetic and structural properties of the particles with models of nanoparticle relaxivity to understand generation of T1 contrast. These experiments show that SPIONs, at low fields being targeted for point-of-care low-field MRI systems, have a unique combination of magnetic and structural properties that produce large T1 relaxivities.
Collapse
Affiliation(s)
- Samuel D Oberdick
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA.
- National Institute of Standards and Technology, Boulder, CO, 80305, USA.
| | | | - John T Lundstrom
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
- National Institute of Standards and Technology, Boulder, CO, 80305, USA
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | | | - Gary Zabow
- National Institute of Standards and Technology, Boulder, CO, 80305, USA
| | - Kathryn E Keenan
- National Institute of Standards and Technology, Boulder, CO, 80305, USA
| |
Collapse
|
3
|
Bitonto V, Garello F, Scherberich A, Filippi M. Prussian Blue Staining to Visualize Iron Oxide Nanoparticles. Methods Mol Biol 2023; 2566:321-332. [PMID: 36152263 DOI: 10.1007/978-1-0716-2675-7_26] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Iron deposits in cells and tissues can be detected by ex vivo histological examination through the Prussian blue (PB) staining. This practical, inexpensive, and highly sensitive technique involves the treatment of fixed tissue sections and cells with acid solutions of ferrocyanides that combine with ferric ion forming a bright blue pigment (i.e., ferric ferrocyanide). The staining can be applied to visualize iron oxide nanoparticles (IONPs), versatile magnetic nanosystems that are used in various biomedical applications and whose localization is usually required at a higher resolution than that enabled by in vivo tracking techniques.
Collapse
Affiliation(s)
- Valeria Bitonto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Francesca Garello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Arnaud Scherberich
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland.
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland.
| | - Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Xu M, Yang L, Lin Y, Lu Y, Bi X, Jiang T, Deng W, Zhang L, Yi W, Xie Y, Li M. Emerging nanobiotechnology for precise theranostics of hepatocellular carcinoma. J Nanobiotechnology 2022; 20:427. [PMID: 36175957 PMCID: PMC9524074 DOI: 10.1186/s12951-022-01615-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Primary liver cancer has become the second most fatal cancer in the world, and its five-year survival rate is only 10%. Most patients are in the middle and advanced stages at the time of diagnosis, losing the opportunity for radical treatment. Liver cancer is not sensitive to chemotherapy or radiotherapy. At present, conventional molecularly targeted drugs for liver cancer show some problems, such as short residence time, poor drug enrichment, and drug resistance. Therefore, developing new diagnosis and treatment methods to effectively improve the diagnosis, treatment, and long-term prognosis of liver cancer is urgent. As an emerging discipline, nanobiotechnology, based on safe, stable, and efficient nanomaterials, constructs highly targeted nanocarriers according to the unique characteristics of tumors and further derives a variety of efficient diagnosis and treatment methods based on this transport system, providing a new method for the accurate diagnosis and treatment of liver cancer. This paper aims to summarize the latest progress in this field according to existing research and the latest clinical diagnosis and treatment guidelines in hepatocellular carcinoma (HCC), as well as clarify the role, application limitations, and prospects of research on nanomaterials and the development and application of nanotechnology in the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Mengjiao Xu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Liu Yang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Yanjie Lin
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Yao Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Xiaoyue Bi
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Tingting Jiang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Wen Deng
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Wei Yi
- Department of Gynecology and Obstetrics, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
| |
Collapse
|
5
|
Aime S, Longo DL, Reineri F, Geninatti Crich S. New tools to investigate tumor metabolism by NMR/MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 338:107198. [PMID: 35339957 DOI: 10.1016/j.jmr.2022.107198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Changes in metabolism is an hallmark that characterizes tumour cells from healthy ones. Their detection can be highly relevant for staging the tumor and for monitoring the response to therapeutic treatments. Herein it is shown the readout of these changes can be achieved either by assessing the pH of the extracellular space in the tumour region and by monitoring real time transformations of hyperpolarized C-13 labelled substrates. Mapping pH in a MR image is possible by measuring the CEST response of an administered contrast agent such as Iopamidol that can provide accurate measurements of the heterogeneity of tumour acidosis. Direct detection of relevant enzymatic activities have been acquired by using Pyruvate and Fumarate hyperpolarized by the incorporation of a molecule of para-H2. Finally, it has been found that the tumour transformation involves an increase in the water exchange rate between the intra- and the extra-cellular compartments. A quantitative estimation of these changes can be obtained by acquiring the longitudinal relaxation times of tissue water protons at low magnetic field strength on Fast Field Cycling Relaxometers. This finding has been exploited in an application devoted to the assessment of the presence of residual tumour tissue in the margins of the resected mass in breast conservative surgery.
Collapse
Affiliation(s)
- Silvio Aime
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy.
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, 10126 Torino, Italy
| | - Francesca Reineri
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
6
|
Ng TSC, Allen HH, Rashidian M, Miller MA. Probing immune infiltration dynamics in cancer by in vivo imaging. Curr Opin Chem Biol 2022; 67:102117. [PMID: 35219177 PMCID: PMC9118268 DOI: 10.1016/j.cbpa.2022.102117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022]
Abstract
Cancer immunotherapies typically aim to stimulate the accumulation and activity of cytotoxic T-cells or pro-inflammatory antigen-presenting cells, reduce immunosuppressive myeloid cells or regulatory T-cells, or elicit some combination of effects thereof. Notwithstanding the encouraging results, immunotherapies such as PD-1/PD-L1-targeted immune checkpoint blockade act heterogeneously across individual patients. It remains challenging to predict and monitor individual responses, especially across multiple sites of metastasis or sites of potential toxicity. To address this need, in vivo imaging of both adaptive and innate immune cell populations has emerged as a tool to quantify spatial leukocyte accumulation in tumors non-invasively. Here we review recent progress in the translational development of probes for in vivo leukocyte imaging, focusing on complementary perspectives provided by imaging of T-cells, phagocytic macrophages, and their responses to therapy.
Collapse
Affiliation(s)
- Thomas S C Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge St, Boston, MA 02114, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA 02114, United States
| | - Harris H Allen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA 02115, United States
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA 02115, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, United States
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge St, Boston, MA 02114, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA 02114, United States.
| |
Collapse
|
7
|
Ruggiero MR, Baroni S, Bitonto V, Ruiu R, Rapisarda S, Aime S, Geninatti Crich S. Intracellular Water Lifetime as a Tumor Biomarker to Monitor Doxorubicin Treatment via FFC-Relaxometry in a Breast Cancer Model. Front Oncol 2021; 11:778823. [PMID: 34926288 PMCID: PMC8678130 DOI: 10.3389/fonc.2021.778823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/18/2021] [Indexed: 01/29/2023] Open
Abstract
This study aims to explore whether the water exchange rate constants in tumor cells can act as a hallmark of pathology status and a reporter of therapeutic outcomes. It has been shown, using 4T1 cell cultures and murine allografts, that an early assessment of the therapeutic effect of doxorubicin can be detected through changes in the cellular water efflux rate constant kio. The latter has been estimated by analyzing the magnetization recovery curve in standard NMR T1 measurements when there is a marked difference in the proton relaxation rate constants (R1) between the intra- and the extra-cellular compartments. In cellular studies, T1 measurements were carried out on a relaxometer working at 0.5 T, and the required difference in R1 between the two compartments was achieved via the addition of a paramagnetic agent into the extracellular compartment. For in-vivo experiments, the large difference in the R1 values of the two-compartments was achieved when the T1 measurements were carried out at low magnetic field strengths. This task was accomplished using a Fast Field Cycling (FFC) relaxometer that was properly modified to host a mouse in its probe head. The decrease in kio upon the administration of doxorubicin is the result of the decreased activity of Na+/K+-ATPase, as shown in an independent test on the cellular uptake of Rb ions. The results reported herein suggest that kio can be considered a non-invasive, early and predictive biomarker for the identification of responsive patients immediately from the first doxorubicin treatment.
Collapse
Affiliation(s)
- Maria Rosaria Ruggiero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Simona Baroni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Valeria Bitonto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Roberto Ruiu
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Smeralda Rapisarda
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- *Correspondence: Simonetta Geninatti Crich,
| |
Collapse
|
8
|
Palagi L, Di Gregorio E, Costanzo D, Stefania R, Cavallotti C, Capozza M, Aime S, Gianolio E. Fe(deferasirox) 2: An Iron(III)-Based Magnetic Resonance Imaging T1 Contrast Agent Endowed with Remarkable Molecular and Functional Characteristics. J Am Chem Soc 2021; 143:14178-14188. [PMID: 34432442 DOI: 10.1021/jacs.1c04963] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The search for alternatives to Gd-containing magnetic resonance imaging (MRI) contrast agents addresses the field of Fe(III)-bearing species with the expectation that the use of an essential metal ion may avoid the issues raised by the exogenous Gd. Attention is currently devoted to highly stable Fe(III) complexes with hexacoordinating ligands, although they may lack any coordinated water molecule. We found that the hexacoordinated Fe(III) complex with two units of deferasirox, a largely used iron sequestering agent, owns properties that can make it a viable alternative to Gd-based agents. Fe(deferasirox)2 displays an outstanding thermodynamic stability, a high binding affinity to human serum albumin (three molecules of complex are simultaneously bound to the protein), and a good relaxivity that increases in the range 20-80 MHz. The relaxation enhancement is due to second sphere water molecules likely forming H-bonds with the coordinating phenoxide oxygens. A further enhancement was observed upon the formation of the supramolecular adduct with albumin. The binding sites of Fe(deferasirox)2 on albumin were characterized by relaxometric competitive assays. Preliminary in vivo imaging studies on a tumor-bearing mouse model indicate that, on a 3 T MRI scanner, the contrast ability of Fe(deferasirox)2 is comparable to the one shown by the commercial Gd(DTPA) agent. ICP-MS analyses on blood samples withdrawn from healthy mice administered with a dose of 0.1 mmol/kg of Fe(deferasirox)2 showed that the complex is completely removed in 24 h.
Collapse
Affiliation(s)
- Lorenzo Palagi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Enza Di Gregorio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Diana Costanzo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Rachele Stefania
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | | | - Martina Capozza
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
- IRCCS SDN, Via E. Gianturco 113, Napoli 80143, Italy
| | - Eliana Gianolio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| |
Collapse
|
9
|
Nanoparticles to Target and Treat Macrophages: The Ockham's Concept? Pharmaceutics 2021; 13:pharmaceutics13091340. [PMID: 34575416 PMCID: PMC8469871 DOI: 10.3390/pharmaceutics13091340] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Nanoparticles are nanomaterials with three external nanoscale dimensions and an average size ranging from 1 to 1000 nm. Nanoparticles have gained notoriety in technological advances due to their tunable physical, chemical, and biological characteristics. However, the administration of functionalized nanoparticles to living beings is still challenging due to the rapid detection and blood and tissue clearance by the mononuclear phagocytic system. The major exponent of this system is the macrophage. Regardless the nanomaterial composition, macrophages can detect and incorporate foreign bodies by phagocytosis. Therefore, the simplest explanation is that any injected nanoparticle will be probably taken up by macrophages. This explains, in part, the natural accumulation of most nanoparticles in the spleen, lymph nodes, and liver (the main organs of the mononuclear phagocytic system). For this reason, recent investigations are devoted to design nanoparticles for specific macrophage targeting in diseased tissues. The aim of this review is to describe current strategies for the design of nanoparticles to target macrophages and to modulate their immunological function involved in different diseases with special emphasis on chronic inflammation, tissue regeneration, and cancer.
Collapse
|
10
|
Di Gregorio E, Bitonto V, Baroni S, Stefania R, Aime S, Broche LM, Senn N, Ross PJ, Lurie DJ, Geninatti Crich S. Monitoring tissue implants by field-cycling 1H-MRI via the detection of changes in the 14N-quadrupolar-peak from imidazole moieties incorporated in a "smart" scaffold material. J Mater Chem B 2021; 9:4863-4872. [PMID: 34095943 DOI: 10.1039/d1tb00775k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study is focused on the development of innovative sensors to non-invasively monitor the tissue implant status by Fast-Field-Cycling Magnetic Resonance Imaging (FFC-MRI). These sensors are based on oligo-histidine moieties that are conjugated to PLGA polymers representing the structural matrix for cells hosting scaffolds. The presence of 14N atoms of histidine causes a quadrupolar relaxation enhancement (also called Quadrupolar Peak, QP) at 1.39 MHz. This QP falls at a frequency well distinct from the QPs generated by endogenous semisolid proteins. The relaxation enhancement is pH dependent in the range 6.5-7.5, thus it acts as a reporter of the scaffold integrity as it progressively degrades upon lowering the microenvironmental pH. The ability of this new sensors to generate contrast in an image obtained at 1.39 MHz on a FFC-MRI scanner is assessed. A good biocompatibility of the histidine-containing scaffolds is observed after its surgical implantation in healthy mice. Over time the scaffold is colonized by endogenous fibroblasts and this process is accompanied by a progressive decrease of the intensity of the relaxation peak. In respect to the clinically used contrast agents this material has the advantage of generating contrast without the use of potentially toxic paramagnetic metal ions.
Collapse
Affiliation(s)
- Enza Di Gregorio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, Torino, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Parigi G, Ravera E, Fragai M, Luchinat C. Unveiling protein dynamics in solution with field-cycling NMR relaxometry. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 124-125:85-98. [PMID: 34479712 DOI: 10.1016/j.pnmrs.2021.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
Field-cycling NMR relaxometry is a well-established technique that can give information on molecular structure and dynamics of biological systems. It provides the nuclear relaxation rates as a function of the applied magnetic field, starting from fields as low as ~ 10-4 T up to about 1-3 T. The profiles so collected, called nuclear magnetic relaxation dispersion (NMRD) profiles, can be extended to include the relaxation rates at the largest fields achievable with high resolution NMR spectrometers. By exploiting this wide range of frequencies, the NMRD profiles can provide information on motions occurring on time scales from 10-6 to 10-9 s. 1H NMRD measurements have proved very useful also for the characterization of paramagnetic proteins, because they can help characterise a number of parameters including the number, distance and residence time of water molecules coordinated to the paramagnetic center, the reorientation correlation times and the electron spin relaxation time, and the electronic structure at the metal site.
Collapse
Affiliation(s)
- Giacomo Parigi
- Magnetic Resonance Center (CERM) University of Florence, via Sacconi 6, Sesto Fiorentino, Italy; Department of Chemistry, "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, Italy.
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) University of Florence, via Sacconi 6, Sesto Fiorentino, Italy; Department of Chemistry, "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) University of Florence, via Sacconi 6, Sesto Fiorentino, Italy; Department of Chemistry, "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) University of Florence, via Sacconi 6, Sesto Fiorentino, Italy; Department of Chemistry, "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, Italy
| |
Collapse
|
12
|
Song S, Xia H, Guo M, Wang S, Zhang S, Ma P, Jin Y. Role of macrophage in nanomedicine-based disease treatment. Drug Deliv 2021; 28:752-766. [PMID: 33860719 PMCID: PMC8079019 DOI: 10.1080/10717544.2021.1909175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Macrophages are a major component of the immunoresponse. Diversity and plasticity are two of the hallmarks of macrophages, which allow them to act as proinflammatory, anti-inflammatory, and homeostatic agents. Research has found that cancer and many inflammatory or autoimmune disorders are correlated with activation and tissue infiltration of macrophages. Recent developments in macrophage nanomedicine-based disease treatment are proving to be timely owing to the increasing inadequacy of traditional treatment. Here, we review the role of macrophages in nanomedicine-based disease treatment. First, we present a brief background on macrophages and nanomedicine. Then, we delve into applications of macrophages as a target for disease treatment and delivery systems and summarize the applications of macrophage-derived extracellular vesicles. Finally, we provide an outlook on the clinical utility of macrophages in nanomedicine-based disease treatment.
Collapse
Affiliation(s)
- Siwei Song
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Xia
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengfei Guo
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujing Zhang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Ma
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Svenskaya Y, Garello F, Lengert E, Kozlova A, Verkhovskii R, Bitonto V, Ruggiero MR, German S, Gorin D, Terreno E. Biodegradable polyelectrolyte/magnetite capsules for MR imaging and magnetic targeting of tumors. Nanotheranostics 2021; 5:362-377. [PMID: 33850694 PMCID: PMC8040826 DOI: 10.7150/ntno.59458] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 01/14/2023] Open
Abstract
Rationale: The tireless research for effective drug delivery approaches is prompted by poor target tissue penetration and limited selectivity against diseased cells. To overcome these issues, various nano- and micro-carriers have been developed so far, but some of them are characterized by slow degradation time, thus hampering repeated drug administrations. The aim of this study was to pursue a selective delivery of magnetic biodegradable polyelectrolyte capsules in a mouse breast cancer model, using an external magnetic field. Methods: Four different kinds of magnetic polyelectrolyte capsules were fabricated via layer-by-layer assembly of biodegradable polymers on calcium carbonate templates. Magnetite nanoparticles were embedded either into the capsules' shell (sample S) or both into the shell and the inner volume of the capsules (samples CnS, where n is the number of nanoparticle loading cycles). Samples were first characterized in terms of their relaxometric and photosedimentometric properties. In vitro magnetic resonance imaging (MRI) experiments, carried out on RAW 264.7 cells, allowed the selection of two lead samples that proceeded for the in vivo testing on a mouse breast cancer model. In the set of in vivo experiments, an external magnet was applied for 1 hour following the intravenous injection of the capsules to improve their delivery to tumor, and MRI scans were acquired at different time points post administration. Results: All samples were considered non-cytotoxic as they provided more than 76% viability of RAW 264.7 cells upon 2 h incubation. Sample S appeared to be the most efficient in terms of T2-MRI contrast, but the less sensitive to external magnet navigation, since no difference in MRI signal with and without the magnet was observed. On the other side, sample C6S was efficiently delivered to the tumor tissue, with a three-fold T2-MRI contrast enhancement upon the external magnet application. The effective magnetic targeting of C6S capsules was also confirmed by the reduction in T2-MRI contrast in spleen if compared with the untreated with magnet mice values, and the presence of dense and clustered iron aggregates in tumor histology sections even 48 h after the magnetic targeting. Conclusion: The highlighted strategy of magnetic biodegradable polyelectrolyte capsules' design allows for the development of an efficient drug delivery system, which through an MRI-guided externally controlled navigation may lead to a significant improvement of the anticancer chemotherapy performance.
Collapse
Affiliation(s)
- Yulia Svenskaya
- Remote Controlled Systems for Theranostics laboratory, Research and Educational Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov, Russia
| | - Francesca Garello
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Ekaterina Lengert
- Remote Controlled Systems for Theranostics laboratory, Research and Educational Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov, Russia
| | - Anastasiia Kozlova
- Biomedical Photoacoustics Laboratory, Saratov State University, 410012 Saratov, Russia
| | - Roman Verkhovskii
- Biomedical Photoacoustics Laboratory, Saratov State University, 410012 Saratov, Russia
| | - Valeria Bitonto
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Maria Rosaria Ruggiero
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Sergey German
- Laboratory of Optics and Spectroscopy of Nanoobjects, Institute of Spectroscopy of the RAS, Troitsk 108840, Russia.,Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Dmitry Gorin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Enzo Terreno
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| |
Collapse
|
14
|
Song M, Liu C, Chen S, Zhang W. Nanocarrier-Based Drug Delivery for Melanoma Therapeutics. Int J Mol Sci 2021; 22:1873. [PMID: 33668591 PMCID: PMC7918190 DOI: 10.3390/ijms22041873] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Melanoma, as a tumor cell derived from melanocyte transformation, has the characteristics of malignant proliferation, high metastasis, rapid recurrence, and a low survival rate. Traditional therapy has many shortcomings, including drug side effects and poor patient compliance, and so on. Therefore, the development of an effective treatment is necessary. Currently, nanotechnologies are a promising oncology treatment strategy because of their ability to effectively deliver drugs and other bioactive molecules to targeted tissues with low toxicity, thereby improving the clinical efficacy of cancer therapy. In this review, the application of nanotechnology in the treatment of melanoma is reviewed and discussed. First, the pathogenesis and molecular targets of melanoma are elucidated, and the current clinical treatment strategies and deficiencies of melanoma are then introduced. Following this, we discuss the main features of developing efficient nanosystems and introduce the latest reports in the literature on nanoparticles for the treatment of melanoma. Subsequently, we review and discuss the application of nanoparticles in chemotherapeutic agents, immunotherapy, mRNA vaccines, and photothermal therapy, as well as the potential of nanotechnology in the early diagnosis of melanoma.
Collapse
Affiliation(s)
| | | | - Siyu Chen
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; (M.S.); (C.L.)
| | - Wenxiang Zhang
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; (M.S.); (C.L.)
| |
Collapse
|
15
|
Xu T, Xu X, Yang L, Chen X, Ju S. Noninvasive Visualization of Obesity-Boosted Inflammation in Orthotopic Pancreatic Ductal Adenocarcinoma Using an Octapod Iron Oxide Nanoparticle. ACS APPLIED BIO MATERIALS 2020; 3:6408-6418. [PMID: 35021772 DOI: 10.1021/acsabm.0c00841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment and promote the progression of tumors, including pancreatic ductal adenocarcinoma (PDAC). Obesity is a metabolic disease and a significant factor that affects tumor immunity and immunotherapy, contributing to a poorer tumor prognosis. However, TAMs as the link between obesity and poorer tumor prognosis has been less addressed and remains unclear. The current study aimed to noninvasively determine the effect of obesity on TAMs in orthotopic PDAC animal models, leptin-deficient transgenic obese (ob/ob) mice. Iron oxide nanoparticles, Octapod-30, with ultra high r2 values, were utilized for in vivo consecutive T2-weighted MR imaging. After Octapod-30 injection, the T2-weighted signal intensity of the tumor area of both lean wild-type (WT) and ob/ob mice decreased rapidly, and the signal intensity significantly decreased as early as 0.5 h after injection compared with preinjection. The signal intensity continually decreased until 2 h and sustained for 4 h. In addition, the quantified signal intensity in obese ob/ob mice bearing PDAC significantly decreased compared with that in lean WT mice. Further histopathological analysis demonstrated that CD68-marked TAMs were highly colocalized with Prussian blue-stained Octapod-30, which were significantly more infiltrated in the tumor tissue of ob/ob mice than in the WT group, in parallel with larger size of tumor, higher levels of Ki67-marked proliferation and CD31-marked angiogenesis. Our results suggested that obesity increased TAMs infiltration and Octopad-30 can rapidly noninvasively detect TAMs in vivo in orthotopic PDAC with high spatial resolution and temporal resolution. Furthermore, the application of ultra high r2 octagonal iron oxide nanoparticles with powerful clinical conversion potential could allow noninvasive and efficient quantitative analysis of TAMs in PDAC with or without obesity, providing a promising inspection approach for early detection, treatment management, and efficacy evaluation of tumors for clinical application.
Collapse
Affiliation(s)
- Tingting Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Xiaoxuan Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Lijiao Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| |
Collapse
|