1
|
Liu X, Zhang Z, Cao Z, Yuan H, Xing C. Near-Infrared Light-Controlled Dynamic Hydrogel for Modulating Mechanosensitive Ion Channels in 3-Dimensional Environment. Biomater Res 2025; 29:0182. [PMID: 40207256 PMCID: PMC11979339 DOI: 10.34133/bmr.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/26/2025] [Accepted: 03/15/2025] [Indexed: 04/11/2025] Open
Abstract
The extracellular matrix (ECM) creates a dynamic mechanical environment for cellular functions, continuously influencing cellular activities via the mechanotransduction pathway. Mechanosensitive ion channels, recently identified as key mechanotransducers, convert mechanical stimuli into electrical or chemical signals when they detect membrane deformation. This process facilitates extracellular Ca2+ influx, cytoskeletal reorganization, and transcriptional regulation, all of which are essential for cellular physiological functions. In this study, we developed a fibrous hydrogel composite (PIC/OEG-NPs) with near-infrared (NIR) light-controlled dynamic mechanical properties to modulate mechanosensitive ion channels in cells, by using oligo-ethylene glycol (OEG)-assembled polyisocyanide (PIC) polymer and OEG-grafted conjugated polymer nanoparticles (OEG-NPs). PIC and OEG-NPs assemble into PIC/OEG-NPs composites through OEG-mediated hydrophobic interactions when heated. Under NIR stimulation, the PIC/OEG-NPs composites exhibit increased mechanical tension and form tighter fibrous networks due to their thermoresponsive behavior. These changes are reversible and allow for the dynamic regulation of mechanosensitive ion channels, including Piezo1 in transfected HEK-293T cells and the endogenous TRPV4 in human umbilical vein endothelial cells (HUVECs), by switching NIR on and off. Furthermore, this process enhances the angiogenic potential of HUVECs. In summary, we present a simple and effective platform for in situ modulation of mechanosensitive ion channels in 3 dimensions.
Collapse
Affiliation(s)
- Xiaoning Liu
- School of Materials Science and Engineering,
Hebei University of Technology, Tianjin 300401, China
| | - Zimeng Zhang
- Key Laboratory of Molecular Biophysics of Hebei Province, School of Health Sciences and Biomedical Engineering,
Hebei University of Technology, Tianjin 300401, China
| | - Zhanshuo Cao
- School of Chemical Engineering,
Hebei University of Technology, Tianjin 300401, China.
| | - Hongbo Yuan
- Key Laboratory of Molecular Biophysics of Hebei Province, School of Health Sciences and Biomedical Engineering,
Hebei University of Technology, Tianjin 300401, China
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, 3001 Heverlee, Belgium
| | - Chengfen Xing
- School of Materials Science and Engineering,
Hebei University of Technology, Tianjin 300401, China
- Key Laboratory of Molecular Biophysics of Hebei Province, School of Health Sciences and Biomedical Engineering,
Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
2
|
Peng Q, Qian Y, Xiao X, Gao F, Ren G, Pennisi CP. Advancing Chronic Wound Healing through Electrical Stimulation and Adipose-Derived Stem Cells. Adv Healthc Mater 2025; 14:e2403777. [PMID: 40025921 PMCID: PMC12004429 DOI: 10.1002/adhm.202403777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/24/2025] [Indexed: 03/04/2025]
Abstract
Chronic cutaneous wounds are a major clinical challenge worldwide due to delayed healing, recurrent infections, and resistance to conventional therapies. Adipose-derived stem cells (ASCs) have shown promise as a cell-based therapy, but their therapeutic efficacy is often compromised by the harsh microenvironment of chronic wounds. Recent advances in bioengineering, particularly the application of electrical stimulation (ES), offer an innovative approach to enhancing the regenerative properties of ASCs. By restoring the natural electrical current in the wound, ES provides a strong stimulus to the cells involved in healing, thereby accelerating the overall wound-healing process. Recent studies show that ASCs can be significantly activated by ES, which increases their viability, proliferation, migration, and secretory capacity, all of which are crucial for the proper healing of chronic wounds. This review examines the synergistic effects of ES and ASCs on wound healing, focusing on the biological mechanisms involved. The review also highlights novel self-powered systems and other emerging technologies such as advanced conductive materials and devices that promise to improve the clinical translation of ES-based treatments. By summarizing the current state of knowledge, this review aims to provide a framework for future research and clinical application of ES and ASCs in wound care.
Collapse
Affiliation(s)
- Qiuyue Peng
- Department of Health Science and TechnologyAalborg UniversityGistrup9260Denmark
| | - Yu Qian
- Department of Health Science and TechnologyAalborg UniversityGistrup9260Denmark
| | - Xinxin Xiao
- Department of Chemistry and BioscienceAalborg UniversityGistrup9260Denmark
| | - Fengdi Gao
- Department of Health Science and TechnologyAalborg UniversityGistrup9260Denmark
| | - Guoqiang Ren
- The Affiliated Lihuili Hospital of Ningbo University, Department of DermatologyNingbo315046China
| | | |
Collapse
|
3
|
Karunasagara S, Bayarkhangai B, Shim HW, Bae HJ, Lee H, Taghizadeh A, Ji Y, Mandakhbayar N, Kim HS, Hyun J, Kim TJ, Lee JH, Kim HW. Electrically-stimulated cellular and tissue events are coordinated through ion channel-mediated calcium influx and chromatin modifications across the cytosol-nucleus space. Biomaterials 2025; 314:122854. [PMID: 39405824 DOI: 10.1016/j.biomaterials.2024.122854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 11/10/2024]
Abstract
Electrical stimulation (ES) through biomaterials and devices has been implicated in activating diverse cell behaviors while facilitating tissue healing process. Despite its significance in modulating biological events, the mechanisms governing ES-activated cellular phenomena remain largely elusive. Here, we demonstrated that millisecond-pulsed temporal ES profoundly impacted a spectrum of cellular events across the membrane-cytosol-nuclear space. These include activated ion channels, intracellular calcium influx, actomyosin contractility, cell migration and proliferation, and secretome release. Such events were coordinated mainly through ES-activated ion channels and calcium oscillation dynamics. Notably, ES increased the chromatin accessibility of genes, particularly those associated with the ES-activated cellular events, underscoring the significance of epigenetic changes in ES-induced behavioral outcomes. We identified histone acetylation (mediated by histone acetyltransferases), among other chromatin modifications, is key in reshaping the chromatin landscape upon ES. These observations were further validated through experiments involving ex vivo skin tissue samples, including activated ion channels and calcium influx, increased cell proliferation and actomyosin contractility, elevated secretome profile, and more accessible chromatin structure following ES. This work provides novel insights into the mechanisms underlying ES-activated cell and tissue events, ultimately guiding design principles for the development of electrical devices and materials effective for tissue repair and wound healing.
Collapse
Affiliation(s)
- Shanika Karunasagara
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Buuvee Bayarkhangai
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hye-Won Shim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Han-Jin Bae
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hwalim Lee
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ali Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Yunseong Ji
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, Pusan National University Pusan, 46241, Republic of Korea; Department of Biological Sciences, Pusan National University Pusan, 46241, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
4
|
Zhang C, Song W, Guo X, Li Z, Kong Y, Du J, Hou L, Feng Y, Wang Y, Zhang M, Liang L, Huang Y, Li J, Zhu D, Liu Q, Tan Y, Zhao Z, Zhao Y, Fu X, Huang S. Piezoelectric nanocomposite electrospun dressings: Tailoring mechanics for scar-free wound recovery. BIOMATERIALS ADVANCES 2025; 167:214119. [PMID: 39556886 DOI: 10.1016/j.bioadv.2024.214119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
Rational wound management and enhancing healing quality are critical in clinical practice. Electrical stimulation therapy (EST) has emerged as a valuable adjunctive treatment due to its safety and cost-effectiveness. Integrating piezoelectric materials into dressings offers a way to miniaturize and personalize electrotherapy, enhancing convenience. To address the impact of physical factors of dressings on wound healing, a nanocomposite piezoelectric electrospun dressing using poly(L-lactic acid) (PLLA) and barium titanate (BaTiO3) was developed. We intentionally exaggerated design flaws to mimic the characteristics of scar extracellular matrix (ECM), including the oriented thick fibers and high Young's modulus. Initially, these dressings promoted fibrosis and hindered functional regeneration. However, when the piezoelectric effect was triggered by ultrasound, the fibrotic phenotype was reversed, leading to scar-free healing with well-regenerated functional structures. This study highlights the significant therapeutic potential of piezoelectric dressings in skin wound treatment and underscores the importance of carefully designing the static physical properties of dressings for optimal efficacy.
Collapse
Affiliation(s)
- Chao Zhang
- School of Medicine, Nankai University, Tianjin 300071, China; Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Wei Song
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Xu Guo
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China; College of Graduate, Tianjin Medical University, Tianjin 300203, China
| | - Zhao Li
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Yi Kong
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Jinpeng Du
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Linhao Hou
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Yu Feng
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Yuzhen Wang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Mengde Zhang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Liting Liang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Yuyan Huang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Jianjun Li
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Dongzhen Zhu
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Qinghua Liu
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Yaxin Tan
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Ziteng Zhao
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yantao Zhao
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Xiaobing Fu
- School of Medicine, Nankai University, Tianjin 300071, China; Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China; College of Graduate, Tianjin Medical University, Tianjin 300203, China.
| | - Sha Huang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China.
| |
Collapse
|
5
|
Ma X, Zhou Y, Xin M, Yuan H, Chao D, Liu F, Jia X, Sun P, Wang C, Lu G, Wallace G. A Mg Battery-Integrated Bioelectronic Patch Provides Efficient Electrochemical Stimulations for Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410205. [PMID: 39361260 DOI: 10.1002/adma.202410205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Indexed: 11/29/2024]
Abstract
Bioelectronic patches hold promise for patient-comfort wound healing providing simplified clinical operation. Currently, they face paramount challenges in establishing long-term effective electronic interfaces with targeted cells and tissues due to the inconsistent energy output and high bio interface impedance. Here a new electrochemical stimulation technology is reported, using a simple wound patch, which integrates the efficient generation and delivery of stimulation. This is realized by employing a hydrogel bioelectronic interface as an active component in an integrated power source (i.e., Mg battery). The Mg battery enhances fibroblast functions (proliferation, migration, and growth factor secretion) and regulates macrophage phenotype (promoting regenerative polarization and down-regulating pro-inflammatory cytokines), by providing an electric field and the ability to control the cellular microenvironment through chemical release. This bioelectronic patch shows an effective and accelerated wound closure by guiding epithelial migration, mediating immune response, and promoting vasculogenesis. This new electrochemical-mediated therapy may provide a new avenue for user-friendly wound management as well as a platform for fundamental insights into cell stimulation.
Collapse
Affiliation(s)
- Xuenan Ma
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yan Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Meiying Xin
- Jilin Provincial Key Laboratory of Pediatric Neurology, Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hongming Yuan
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Danming Chao
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Fangmeng Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
- International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Peng Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
- International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Caiyun Wang
- Intelligent Polymer Research Institute, Faculty of Engineering and Information Sciences, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
- International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Gordon Wallace
- Intelligent Polymer Research Institute, Faculty of Engineering and Information Sciences, University of Wollongong, North Wollongong, NSW, 2500, Australia
| |
Collapse
|
6
|
Wang Y, Liu M, Zhang W, Liu H, Jin F, Mao S, Han C, Wang X. Mechanical strategies to promote vascularization for tissue engineering and regenerative medicine. BURNS & TRAUMA 2024; 12:tkae039. [PMID: 39350780 PMCID: PMC11441985 DOI: 10.1093/burnst/tkae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 10/04/2024]
Abstract
Vascularization is a major challenge in the field of tissue engineering and regenerative medicine. Mechanical factors have been demonstrated to play a fundamental role in vasculogenesis and angiogenesis and can affect the architecture of the generated vascular network. Through the regulation of mechanical factors in engineered tissues, various mechanical strategies can be used to optimize the preformed vascular network and promote its rapid integration with host vessels. Optimization of the mechanical properties of scaffolds, including controlling scaffold stiffness, increasing surface roughness and anisotropic structure, and designing interconnected, hierarchical pore structures, is beneficial for the in vitro formation of vascular networks and the ingrowth of host blood vessels. The incorporation of hollow channels into scaffolds promotes the formation of patterned vascular networks. Dynamic stretching and perfusion can facilitate the formation and maturation of preformed vascular networks in vitro. Several indirect mechanical strategies provide sustained mechanical stimulation to engineered tissues in vivo, which further promotes the vascularization of implants within the body. Additionally, stiffness gradients, anisotropic substrates and hollow channels in scaffolds, as well as external cyclic stretch, boundary constraints and dynamic flow culture, can effectively regulate the alignment of vascular networks, thereby promoting better integration of prevascularized engineered tissues with host blood vessels. This review summarizes the influence and contribution of both scaffold-based and external stimulus-based mechanical strategies for vascularization in tissue engineering and elucidates the underlying mechanisms involved.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Meixuan Liu
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Wei Zhang
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Huan Liu
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Fang Jin
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Shulei Mao
- Department of Burns and Plastic Surgery, Quhua Hospital of Zhejiang, 62 Wenchang Road, Quhua, Quzhou 324004, China
| | - Chunmao Han
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Xingang Wang
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| |
Collapse
|
7
|
Zhang D, Zhu M, Xu P, Wen X, Liang G, Zheng W, Zeng Y, Sun T, Fan R, Lu Y, Tan X, Gong M, Wang T, Chen J, Guan J. Mechanistic Interrogation on Wound Healing and Scar Removing by the Mo 4/3B 2-x Nanoscaffold Revealed Regulated Amino Acid and Purine Metabolism. ACS NANO 2024; 18:23428-23444. [PMID: 39150010 DOI: 10.1021/acsnano.4c06796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Wound rehabilitation is invariably time-consuming, scar formation further weakens therapeutic efficacy, and detailed mechanisms at the molecular level remain unclear. In this work, a Mo4/3B2-x nanoscaffold was fabricated and utilized for wound healing and scar removing in a mice model, while metabolomics was used to study the metabolic reprogramming of metabolome during therapy at the molecular level. The results showed that transition metal borides, called Mo4/3B2-x nanoscaffolds, could mimic superoxide dismutase and glutathione peroxidase to eliminate excess reactive oxygen species (ROS) in the wound microenvironment. During the therapeutic process, the Mo4/3B2-x nanoscaffold could facilitate the regeneration of wounds and removal of scars by regulating the biosynthesis of collagen, fibers, and blood vessels at the pathological, imaging, and molecular levels. Subsequent metabolomics study revealed that the Mo4/3B2-x nanoscaffold effectively ameliorated metabolic disorders in both wound and scar microenvironments through regulating ROS-related pathways including the amino acid metabolic process (including glycine and serine metabolism and glutamate metabolism) and the purine metabolic process. This study is anticipated to illuminate the potential clinical application of the Mo4/3B2-x nanoscaffold as an effective therapeutic agent in traumatic diseases and provide insights into the development of analytical methodology for interrogating wound healing and scar removal-related metabolic mechanisms.
Collapse
Affiliation(s)
- Dingkun Zhang
- Department of Neurosurgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Man Zhu
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610050, P. R. China
| | - Pei Xu
- Department of Pathology, Deyang People's Hospital, Deyang 618000, P. R. China
| | - Xue Wen
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Ge Liang
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Wen Zheng
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yu Zeng
- Department of Neurosurgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Tong Sun
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Rong Fan
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, P. R. China
- Chengdu Research Institute, City University of Hong Kong, Chengdu 610200, P. R. China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, P. R. China
- Chengdu Research Institute, City University of Hong Kong, Chengdu 610200, P. R. China
| | - Xueqin Tan
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Meng Gong
- Department of Neurosurgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Tingting Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Junjie Chen
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Junwen Guan
- Department of Neurosurgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
8
|
Qiao Z, Ding J, Yang M, Wang Y, Zhou T, Tian Y, Zeng M, Wu C, Wei D, Sun J, Fan H. Red-light-excited TiO 2/Bi 2S 3 heterojunction nanotubes and photoelectric hydrogels mediate epidermal-neural network reconstruction in deep burns. Acta Biomater 2024; 184:114-126. [PMID: 38942188 DOI: 10.1016/j.actbio.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Inspired by the strong light absorption of carbon nanotubes, we propose a fabrication approach involving one-dimensional TiO2/Bi2S3 QDs nanotubes (TBNTs) with visible red-light excitable photoelectric properties. By integrating the construction of heterojunctions, quantum confinement effects, and morphological modifications, the photocurrent reached 9.22 µA/cm2 which is 66 times greater than that of TiO2 nanotubes (TNTs). Then, a red light-responsive photoelectroactive hydrogel dressing (TBCHA) was developed by embedding TBNTs into a collagen/hyaluronic acid-based biomimetic extracellular matrix hydrogel with good biocompatibility, aiming to promote wound healing and skin function restoration. This approach is primarily grounded in the recognized significance of electrical stimulation in modulating nerve function and immune responses. Severe burns are often accompanied by extensive damage to epithelial-neural networks, leading to a loss of excitatory function and difficulty in spontaneous healing, while conventional dressings inadequately address the critical need for nerve reinnervation. Furthermore, we highlight the remarkable ability of the TBCHA photoelectric hydrogel to promote the reinnervation of nerve endings, facilitate the repair of skin substructures, and modulate immune responses in a deep burn model. This hydrogel not only underpins wound closure and collagen synthesis but also advances vascular reformation, immune modulation, and neural restoration. This photoelectric-based therapy offers a robust solution for the comprehensive repair of deep burns and functional tissue regeneration. STATEMENT OF SIGNIFICANCE: We explore the fabrication of 1D TiO2/Bi2S3 nanotubes with visible red-light excitability and high photoelectric conversion properties. By integrating heterojunctions, quantum absorption effects, and morphological modifications, the photocurrent of TiO2/Bi2S3 nanotubes could reach 9.22 µA/cm², which is 66 times greater than that of TiO2 nanotubes under 625 nm illumination. The efficient red-light excitability solves the problem of poor biosafety and low tissue penetration caused by shortwave excitation. Furthermore, we highlight the remarkable ability of the TiO2/Bi2S3 nanotubes integrated photoelectric hydrogel in promoting the reinnervation of nerve endings and modulating immune responses. This work proposes an emerging therapeutic strategy of remote, passive electrical stimulation, offering a robust boost for repairing deep burn wounds.
Collapse
Affiliation(s)
- Zi Qiao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jie Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Mei Yang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yuchen Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Ting Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yuan Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Mingze Zeng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China; Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, Sichuan, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
9
|
Tian Y, Jiang F, Xie H, Chi Z, Liu C. Conductive Hyaluronic Acid/Deep Eutectic Solvent Composite Hydrogel as a Wound Dressing for Promoting Skin Burn Healing Under Electrical Stimulation. Adv Healthc Mater 2024; 13:e2304117. [PMID: 38567543 DOI: 10.1002/adhm.202304117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Burns can cause severe damage to the skin due to bacterial infection and severe inflammation. Although conductive hydrogels as electroactive burn-wound dressings achieve remarkable effects on accelerating wound healing, issues such as imbalance between their high conductivity and mechanical properties, easy dehydration, and low transparency must be addressed. Herein, a double-network conductive eutectogel is fabricated by integrating polymerizable deep eutectic solvents (PDESs)including acrylamide/choline chloride/glycerol (acrylamide-polymerization crosslink) and thiolated hyaluronic acid (disulfide-bonding crosslink). The introduction of PDESs provides the eutectogel with a conductivity (up to 0.25 S·m-1) and mechanical strength (tensile strain of 59-77%) simulating those of natural human skin, as well as satisfactory tissue adhesiveness, self-healing ability, and antibacterial properties. When combined with exogenous electrical stimulation, the conductive eutectogel exhibits the ability to reduce inflammation, stimulate cell proliferation and migration, promote collagen deposition and angiogenesis, and facilitate skin tissue remodeling. This conductive eutectogel shows great potential as a dressing for healing major burn wounds.
Collapse
Affiliation(s)
- Yu Tian
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Fei Jiang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou, 310003, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| |
Collapse
|
10
|
Zhou Y, Ma X, Yu C, Tian Y, Liang Q, Xin M, Sun P, Liu F, Chao D, Jia X, Wang C, Lu G. A Wearable Self-Charging Electroceutical Device for Bacteria-Infected Wound Healing. ACS NANO 2024; 18:15681-15694. [PMID: 38848285 DOI: 10.1021/acsnano.4c01818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The prolonged wound-healing process caused by pathogen infection remains a major public health challenge. The developed electrical antibiotic administration typically requires metal electrodes wired to a continuous power supply, restricting their use beyond clinical environments. To obviate the necessity for antibiotics and an external power source, we have developed a wearable synergistic electroceutical device composed of an air self-charging Zn battery. This battery integrates sustained tissue regeneration and antibacterial modalities while maintaining more than half of the initial capacity after ten cycles of chemical charging. In vitro bacterial/cell coculture with the self-charging battery demonstrates inhibited bacterial activity and enhanced cell function by simulating the endogenous electric field and dynamically engineering the microenvironment with released chemicals. This electroceutical device provides accelerated healing of a bacteria-infected wound by stimulating angiogenesis and modulating inflammation, while effectively inhibiting bacterial growth at the wound site. Considering the simple structure and easy operation for long-term treatment, this self-charging electroceutical device offers great potential for personalized wound care.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xuenan Ma
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Changchun Yu
- School of Ophthalmology and Optometry, School of Biomedical Engineering, State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Wenzhou Medical University, Wenzhou 325027, China
| | - Yaping Tian
- Department of Dermatology and Venerology of the First Hospital, Jilin University, Changchun 130021, China
| | - Qin Liang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Meiying Xin
- Jilin Provincial Key Laboratory of Pediatric Neurology, Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Peng Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Fangmeng Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Danming Chao
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Caiyun Wang
- Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
11
|
Li YY, Ji SF, Fu XB, Jiang YF, Sun XY. Biomaterial-based mechanical regulation facilitates scarless wound healing with functional skin appendage regeneration. Mil Med Res 2024; 11:13. [PMID: 38369464 PMCID: PMC10874556 DOI: 10.1186/s40779-024-00519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages, ultimately impairing its normal physiological function. Accumulating evidence underscores the potential of targeted modulation of mechanical cues to enhance skin regeneration, promoting scarless repair by influencing the extracellular microenvironment and driving the phenotypic transitions. The field of skin repair and skin appendage regeneration has witnessed remarkable advancements in the utilization of biomaterials with distinct physical properties. However, a comprehensive understanding of the underlying mechanisms remains somewhat elusive, limiting the broader application of these innovations. In this review, we present two promising biomaterial-based mechanical approaches aimed at bolstering the regenerative capacity of compromised skin. The first approach involves leveraging biomaterials with specific biophysical properties to create an optimal scarless environment that supports cellular activities essential for regeneration. The second approach centers on harnessing mechanical forces exerted by biomaterials to enhance cellular plasticity, facilitating efficient cellular reprogramming and, consequently, promoting the regeneration of skin appendages. In summary, the manipulation of mechanical cues using biomaterial-based strategies holds significant promise as a supplementary approach for achieving scarless wound healing, coupled with the restoration of multiple skin appendage functions.
Collapse
Affiliation(s)
- Ying-Ying Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Shuai-Fei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Xiao-Bing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| | - Yu-Feng Jiang
- Department of Tissue Regeneration and Wound Repair, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xiao-Yan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| |
Collapse
|
12
|
Li Y, Li H, Yu Z, Liu J, Lin Y, Xu J, Zhang C, Chen Q, Han X, Peng Q. Drug-free and multifunctional sodium bicarbonate/hyaluronic acid hybrid dressing for synergistic healing of infected wounds. Int J Biol Macromol 2024; 259:129254. [PMID: 38191113 DOI: 10.1016/j.ijbiomac.2024.129254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Skin wounds are susceptible to microbial infections which commonly lead to the delayed wound healing. Rapid clearance of pathogens from the wound is of great significance and importance for efficient healing of the infected wounds. Herein, we report a multifunctional hybrid dressing, which simply combines sodium bicarbonate (NaHCO3) and hyaluronic acid (HA) for the synergistic wound healing. Addition of NaHCO3 allows the hybrid dressing to have the great antibacterial and antioxidant activity, while maintaining the intrinsic skin repair function of HA. As a result, NaHCO3/HA hybrid dressing showed the great antibacterial activity against both Gram-positive (S. aureus) and Gram-negative (E. coli) pathogens, the ability to improve the fibroblasts proliferation and migration, the cell-protection capacity under H2O2-induced oxidative stress, and most importantly, the great healing efficacy for the mice wound infected by S. aureus. We further found that the epidermal regeneration, the collagen deposition and the angiogenesis were enhanced by NaHCO3/HA hybrid dressing. All these effects were NaHCO3 concentration-dependent. Since the NaHCO3/HA hybrid dressing is drug-free, easily fabricated, biocompatible, and efficient for wound healing, it may have great potentials for clinical management of infected wounds.
Collapse
Affiliation(s)
- Yuanhong Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Houze Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhuohang Yu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jianhong Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jingchen Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chaoliang Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
13
|
Yuan Q, Yin J, Li L, Bao B, Zhang X, Li M, Tang Y. Conjugated Polymer Composite Nanoparticles Augmenting Photosynthesis-Based Light-Triggered Hydrogel Promotes Chronic Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304048. [PMID: 38030563 PMCID: PMC10797435 DOI: 10.1002/advs.202304048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/29/2023] [Indexed: 12/01/2023]
Abstract
Diabetic chronic wounds are characterized by local hypoxia, impaired angiogenesis, and bacterial infection. In situ, self-supply of dissolved oxygen combined with the elimination of bacteria is urgent and challenging for chronic nonhealing wound treatment. Herein, an oxygen-generating system named HA-L-NB/PFE@cp involving biological photosynthetic chloroplasts (cp)/conjugated polymer composite nanoparticles (PFE-1-NPs@cp) and light-triggered hyaluronic acid-based (HA-L-NB) hydrogel for promoting diabetic wound healing is introduced. Briefly, conjugated polymer nanoparticles (PFE-1-NPs) possess unique light harvesting ability, which accelerates the electron transport rates in photosystem II (PS II) by energy transfer, elevating photosynthesis beyond natural chloroplasts. The enhanced release of oxygen can greatly relieve hypoxia, promote cell migration, and favor antibacterial photodynamic therapy. Additionally, the injectable hydrogel precursors are employed as a carrier to deliver PFE-1-NPs@cp into the wound. Under light irradiation, they quickly form a gel by S-nitrosylation coupling reaction and in situ anchor on tissues through amine-aldehyde condensation. Both in vitro and in vivo assays demonstrate that the oxygen-generating system can simultaneously relieve wound hypoxia, eliminate bacteria, and promote cell migration, leading to the acceleration of wound healing. This study provides a facile approach to develop an enhanced oxygen self-sufficient system for promoting hypoxic tissue, especially diabetic wound healing.
Collapse
Affiliation(s)
- Qiong Yuan
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationKey Laboratory of Analytical Chemistry for Life Science of Shaanxi ProvinceSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119P. R. China
| | - Jia Yin
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationKey Laboratory of Analytical Chemistry for Life Science of Shaanxi ProvinceSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119P. R. China
| | - Ling Li
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationKey Laboratory of Analytical Chemistry for Life Science of Shaanxi ProvinceSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119P. R. China
| | - Benkai Bao
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationKey Laboratory of Analytical Chemistry for Life Science of Shaanxi ProvinceSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119P. R. China
| | - Xinyi Zhang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationKey Laboratory of Analytical Chemistry for Life Science of Shaanxi ProvinceSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119P. R. China
| | - Meiqi Li
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationKey Laboratory of Analytical Chemistry for Life Science of Shaanxi ProvinceSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119P. R. China
| | - Yanli Tang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationKey Laboratory of Analytical Chemistry for Life Science of Shaanxi ProvinceSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119P. R. China
| |
Collapse
|
14
|
Zhang X, Ma Y, Chen Z, Jiang H, Fan Z. Implantable Nerve Conduit Made of a Self-Powered Microneedle Patch for Sciatic Nerve Repair. Adv Healthc Mater 2023; 12:e2301729. [PMID: 37531233 DOI: 10.1002/adhm.202301729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/11/2023] [Indexed: 08/04/2023]
Abstract
Peripheral nerve defects, particularly those of a larger size, pose a significant challenge in clinical practice due to their limited regenerative capacity. To tackle this challenge, an advanced self-powered enzyme-linked microneedle (MN) nerve conduit is designed and fabricated. This innovative conduit is composed of anodic and cathodic MN arrays, which contain glucose oxidase (GOx) and horseradish peroxidase (HRP) encapsulated in ZIF-8 nanoparticles, respectively. Through an enzymatic cascade reaction, this MN nerve conduit generates microcurrents that stimulate the regeneration of muscles, blood vessels, and nerve fibers innervated by the sciatic nerve, eventually accelerating the repair of sciatic nerve injury. It is clear that this self-powered MN nerve conduit will revolutionize traditional treatment methods for sciatic nerve injury and find widespread application in the field of nerve tissue repair.
Collapse
Affiliation(s)
- Xiangli Zhang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Gansu Province, Lanzhou, 730000, P. R. China
| | - Yuanya Ma
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Gansu Province, Lanzhou, 730000, P. R. China
| | - Ziyan Chen
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Gansu Province, Lanzhou, 730000, P. R. China
| | - Hong Jiang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Gansu Province, Lanzhou, 730000, P. R. China
| | - Zengjie Fan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Gansu Province, Lanzhou, 730000, P. R. China
| |
Collapse
|
15
|
Zhu H, He W, Ye P, Chen J, Wu X, Mu X, Wu Y, Pang H, Han F, Nie X. Piezo1 in skin wound healing and related diseases: Mechanotransduction and therapeutic implications. Int Immunopharmacol 2023; 123:110779. [PMID: 37582313 DOI: 10.1016/j.intimp.2023.110779] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023]
Abstract
Skin wound healing is a multifaceted and intricate process involving inflammation, tissue proliferation, and scar formation, all of which are accompanied by the continuous application of mechanical forces. Mechanotransduction is the mechanism by which the skin receives and reacts to physical signals from the internal and external environment, converting them into intracellular biochemical signals. This intricate process relies on specialized proteins known as mechanotransducers, with Piezo1 being a critical mechanosensitive ion channel that plays a central role in this process. This article provides an overview of the structural characteristics of Piezo1 and summarizes its effects on corresponding cells or tissues at different stages of skin trauma, including how it regulates skin sensation and skin-related diseases. The aim is to reveal the potential diagnostic and therapeutic value of Piezo1 in skin trauma and skin-related diseases. Piezo1 has been reported to be a vital mediator of mechanosensation and transduction in various organs and tissues. Given its high expression in the skin, Piezo1, as a significant cell membrane ion channel, is essential in activating intracellular signaling cascades that trigger several cellular physiological functions, including cell migration and muscle contraction. These functions contribute to the regulation and improvement of wound healing.
Collapse
Affiliation(s)
- Huan Zhu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Wenjie He
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Penghui Ye
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Jitao Chen
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Xingqian Wu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Xingrui Mu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Youzhi Wu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia.
| | - Huiwen Pang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia.
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; School Medical Office, Zunyi Medical University, Zunyi 563006, China; Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia; School of Biomedical Sciences, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia.
| |
Collapse
|
16
|
Gao Y, Cai L, Li D, Li L, Wu Y, Ren W, Song Y, Zhu L, Wu Y, Xu H, Luo C, Wang T, Lei Z, Tao L. Extended characterization of IL-33/ST2 as a predictor for wound age determination in skin wound tissue samples of humans and mice. Int J Legal Med 2023:10.1007/s00414-023-03025-x. [PMID: 37246991 DOI: 10.1007/s00414-023-03025-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
Interleukin (IL)-33, an important inflammatory cytokine, is highly expressed in skin wound tissue and serum of humans and mice, and plays an essential role in the process of skin wound healing (SWH) dependent on the IL-33/suppression of tumorigenicity 2 (ST2) pathway. However, whether IL-33 and ST2 themselves, as well as their interaction, can be applied for skin wound age determination in forensic practice remains incompletely characterized. Human skin samples with injured intervals of a few minutes to 24 hours (hs) and mouse skin samples with injured intervals of 1 h to 14 days (ds) were collected. Herein, the results demonstrated that IL-33 and ST2 are increased in the human skin wounds, and that in mice skin wounds, there is an increase over time, with IL-33 expression peaking at 24 hs and 10 ds, and ST2 expression peaking at 12 hs and 7 ds. Notably, the relative quantity of IL-33 and ST2 proteins < 0.35 suggested a wound age of 3 hs; their relative quantity > 1.0 suggested a wound age of 24 hs post-mouse skin wounds. In addition, immunofluorescent staining results showed that IL-33 and ST2 were consistently expressed in the cytoplasm of F4/80-positive macrophages and CD31-positive vascular endothelial cells with or without skin wounds, whereas nuclear localization of IL-33 was absent in α-SMA-positive myofibroblasts with skin wounds. Interestingly, IL-33 administration facilitated the wound area closure by increasing the proliferation of cytokeratin (K) 14 -positive keratinocytes and vimentin-positive fibroblasts. In contrast, treating with its antagonist (i.e., anti-IL-33) or receptor antagonist (e.g., anti-ST2) exacerbated the aforementioned pathological changes. Moreover, treatment with IL-33 combined with anti-IL-33 or anti-ST2 reversed the effect of IL-33 on facilitating skin wound closure, suggesting that IL-33 administration facilitated skin wound closure through the IL-33/ST2 signaling pathway. Collectively, these findings indicate that the detection of IL-33/ST2 might be a reliable biomarker for the determination of skin wound age in forensic practice.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Luwei Cai
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Dongya Li
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Lili Li
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, 215021, Jiangsu, China
| | - Yulu Wu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Wenjing Ren
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Yirui Song
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Luwen Zhu
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Youzhuang Wu
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Heng Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Tao Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Ziguang Lei
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Luyang Tao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
17
|
Liang Y, Qiao L, Qiao B, Guo B. Conductive hydrogels for tissue repair. Chem Sci 2023; 14:3091-3116. [PMID: 36970088 PMCID: PMC10034154 DOI: 10.1039/d3sc00145h] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023] Open
Abstract
Conductive hydrogels (CHs) combine the biomimetic properties of hydrogels with the physiological and electrochemical properties of conductive materials, and have attracted extensive attention in the past few years. In addition, CHs have high conductivity and electrochemical redox properties and can be used to detect electrical signals generated in biological systems and conduct electrical stimulation to regulate the activities and functions of cells including cell migration, cell proliferation, and cell differentiation. These properties give CHs unique advantages in tissue repair. However, the current review of CHs is mostly focused on their applications as biosensors. Therefore, this article reviewed the new progress of CHs in tissue repair including nerve tissue regeneration, muscle tissue regeneration, skin tissue regeneration and bone tissue regeneration in the past five years. We first introduced the design and synthesis of different types of CHs such as carbon-based CHs, conductive polymer-based CHs, metal-based CHs, ionic CHs, and composite CHs, and the types and mechanisms of tissue repair promoted by CHs including anti-bacterial, antioxidant and anti-inflammatory properties, stimulus response and intelligent delivery, real-time monitoring, and promoted cell proliferation and tissue repair related pathway activation, which provides a useful reference for further preparation of bio-safer and more efficient CHs used in tissue regeneration.
Collapse
Affiliation(s)
- Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an 710049 China +86-29-83395131 +86-29-83395340
| | - Lipeng Qiao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an 710049 China +86-29-83395131 +86-29-83395340
| | - Bowen Qiao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an 710049 China +86-29-83395131 +86-29-83395340
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an 710049 China +86-29-83395131 +86-29-83395340
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University Xi'an 710049 China
| |
Collapse
|
18
|
Silver doped-silica nanoparticles reinforced poly (ethylene glycol) diacrylate/hyaluronic acid hydrogel dressings for synergistically accelerating bacterial-infected wound healing. Carbohydr Polym 2023; 304:120450. [PMID: 36641182 DOI: 10.1016/j.carbpol.2022.120450] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Various cutaneous wounds are easily infected with external bacteria, which might result in a chronic wound and ongoing consequences. However, the appropriate development of biomaterials for the controllable delivery of antibacterial silver (Ag) and the simultaneous enhancement of mechanical adhesiveness remains an urgent challenge. Herein, we proposed a double network (DN) hydrogel dressings based on a covalent network of polyethylene glycol diacrylate (PEGDA) and a coordination network between catechol-modified hyaluronic acid (C-HA) and Ag-doped mesoporous silica nanoparticle (AMSN) for promoting the bacterial-infected full-thickness skin wound regeneration. This distinctive dual cross-linked structure of PEGDA/C-HA-AMSN significantly improved physicochemical properties, including gelation time, mechanical performance, and tissue adhesion strength. Importantly, PEGDA/C-HA-AMSN served as a hydrogel dressing that can respond to the acidic environment of bacterial-infected wounds leading to the controllable and optimized delivery of Ag, enabling the durable antibacterial activity accompanied by favorable cytocompatibility and angiogenesis capability. Further in vivo studies validated the higher efficacy of hydrogel dressings in treating wound healing by the synergistic antibacterial, anti-inflammatory, and pro-vascular strategies, meaning the prominent potential of the prepared dressings for overcoming the concerns of wound theranostics.
Collapse
|
19
|
Shutova MS, Boehncke WH. Mechanotransduction in Skin Inflammation. Cells 2022; 11:2026. [PMID: 35805110 PMCID: PMC9265324 DOI: 10.3390/cells11132026] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
In the process of mechanotransduction, the cells in the body perceive and interpret mechanical stimuli to maintain tissue homeostasis and respond to the environmental changes. Increasing evidence points towards dysregulated mechanotransduction as a pathologically relevant factor in human diseases, including inflammatory conditions. Skin is the organ that constantly undergoes considerable mechanical stresses, and the ability of mechanical factors to provoke inflammatory processes in the skin has long been known, with the Koebner phenomenon being an example. However, the molecular mechanisms and key factors linking mechanotransduction and cutaneous inflammation remain understudied. In this review, we outline the key players in the tissue's mechanical homeostasis, the available data, and the gaps in our current understanding of their aberrant regulation in chronic cutaneous inflammation. We mainly focus on psoriasis as one of the most studied skin inflammatory diseases; we also discuss mechanotransduction in the context of skin fibrosis as a result of chronic inflammation. Even though the role of mechanotransduction in inflammation of the simple epithelia of internal organs is being actively studied, we conclude that the mechanoregulation in the stratified epidermis of the skin requires more attention in future translational research.
Collapse
Affiliation(s)
- Maria S. Shutova
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland;
- Department of Dermatology, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland;
- Department of Dermatology, Geneva University Hospitals, 1211 Geneva, Switzerland
| |
Collapse
|
20
|
Eid ES, Kurban MS. A Piez-O the Jigsaw: Piezo1 Channel in Skin Biology. Clin Exp Dermatol 2022; 47:1036-1047. [PMID: 35181897 DOI: 10.1111/ced.15138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 11/28/2022]
Abstract
The skin is the largest organ covering the entirety of the body. Its role as a physical barrier to the outside world as well as its endocrinologic and immunologic functions subject it to continuous internal and external mechanical forces. Thus, mechanotransduction is of the utmost importance for the skin in order to process and leverage mechanical input for its various functions. Piezo1 is a mechanosensitive ion channel that is a primary mediator of mechanotransduction and is highly expressed in the skin. The Nobel prize winning discovery of Piezo1 has had a profound impact on our understanding of physiology and pathology including paramount contributions in cutaneous biology. This review provides insight into the roles of Piezo1 in the development, physiology, and pathology of the skin with a special emphasis on the molecular pathways through which it instigates these various roles. In epidermal homeostasis, Piezo1 mediates cell extrusion and division in the face of overcrowding and low cellular density conditions, respectively. Piezo1 also aids in orchestrating mechanosensation, DNA protection from mechanical stress, and the various components of wound healing. Conversely, Piezo1 is pathologically implicated in melanoma progression, wound healing delay, cutaneous scarring, and hair loss. By shedding light on these functions, we aim to unravel the potential diagnostic and therapeutic value Piezo1 might hold in the field of Dermatology.
Collapse
Affiliation(s)
- Edward S Eid
- Department of Dermatology, American University of Beirut Medical Centre, Beirut, Lebanon
| | - Mazen S Kurban
- Department of Dermatology, American University of Beirut Medical Centre, Beirut, Lebanon.,Department of Biochemistry and Molecular Genetics; American University of Beirut.,Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
21
|
Liu H, Hu J, Zheng Q, Feng X, Zhan F, Wang X, Xu G, Hua F. Piezo1 Channels as Force Sensors in Mechanical Force-Related Chronic Inflammation. Front Immunol 2022; 13:816149. [PMID: 35154133 PMCID: PMC8826255 DOI: 10.3389/fimmu.2022.816149] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Mechanical damage is one of the predisposing factors of inflammation, and it runs through the entire inflammatory pathological process. Repeated or persistent damaging mechanical irritation leads to chronic inflammatory diseases. The mechanism of how mechanical forces induce inflammation is not fully understood. Piezo1 is a newly discovered mechanically sensitive ion channel. The Piezo1 channel opens in response to mechanical stimuli, transducing mechanical signals into an inflammatory cascade in the cell leading to tissue inflammation. A large amount of evidence shows that Piezo1 plays a vital role in the occurrence and progression of chronic inflammatory diseases. This mini-review briefly presents new evidence that Piezo1 responds to different mechanical stresses to trigger inflammation in various tissues. The discovery of Piezo1 provides new insights for the treatment of chronic inflammatory diseases related to mechanical stress. Inhibiting the transduction of damaging mechanical signals into inflammatory signals can inhibit inflammation and improve the outcome of inflammation at an early stage. The pharmacology of Piezo1 has shown bright prospects. The development of tissue-specific Piezo1 drugs for clinical use may be a new target for treating chronic inflammation.
Collapse
Affiliation(s)
- Hailin Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingcui Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaojin Feng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xifeng Wang
- Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|