1
|
Han Y, Liu X, Qu S, Duan X, Xiang Y, Jiang N, Yang S, Fang X, Xu L, Wen H, Yu Y, Huang S, Huang J, Zhu K. Tissue geometry spatiotemporally drives bacterial infections. Cell 2025:S0092-8674(25)00394-0. [PMID: 40262607 DOI: 10.1016/j.cell.2025.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/28/2025] [Accepted: 03/25/2025] [Indexed: 04/24/2025]
Abstract
Epithelial tissues serve as the first line of host against bacterial infections. The self-organization of epithelial tissues continuously adapts to the architecture and mechanics of microenvironments, thereby dynamically impacting the initial niche of infections. However, the mechanism by which tissue geometry regulates bacterial infection remains poorly understood. Here, we showed geometry-guided infection patterns of bacteria in epithelial tissues using bioengineering strategies. We discovered that cellular traction forces play a crucial role in the regulation of bacterial invasive sites and marginal infection patterns in epithelial monolayers through triggering co-localization of mechanosensitive ion channel protein Piezo1 with bacteria. Further, we developed precise mechanobiology-based strategies to potentiate the antibacterial efficacy in animal models of wound and intestinal infection. Our findings demonstrate that tissue geometry exerts a key impact on mediating spatiotemporal infections of bacteria, which has important implications for the discovery and development of alternative strategies against bacterial infections.
Collapse
Affiliation(s)
- Yiming Han
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoye Liu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, China
| | - Shaoqi Qu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China
| | - Xiaocen Duan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Yunqing Xiang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Nan Jiang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Shuyu Yang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xu Fang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Liang Xu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Hui Wen
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yue Yu
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Shuqiang Huang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Xu H, Feng Y, Du Y, Han Y, Duan X, Jiang Y, Su L, Liu X, Qin S, He K, Huang J. Bacterial-host adhesion dominated by collagen subtypes remodelled by osmotic pressure. NPJ Biofilms Microbiomes 2024; 10:124. [PMID: 39532878 PMCID: PMC11557999 DOI: 10.1038/s41522-024-00600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Environmental osmolarity plays a crucial role in regulating the functions and behaviors of both host cells and pathogens. However, it remains unclear whether and how environmental osmotic stimuli modulate bacterial‒host interfacial adhesion. Using single-cell force spectroscopy, we revealed that the interfacial adhesion force depended nonlinearly on the osmotic prestimulation of host cells but not bacteria. Quantitatively, the adhesion force increased dramatically from 25.98 nN under isotonic conditions to 112.45 or 93.10 nN after the host cells were treated with the hypotonic or hypertonic solution. There was a strong correlation between the adhesion force and the number of host cells harboring adherent/internalized bacteria. We further revealed that enhanced overexpression levels of collagen XV and II were responsible for the increases in interfacial adhesion under hypotonic and hypertonic conditions, respectively. This work provides new opportunities for developing host-directed antibacterial strategies related to interfacial adhesion from a mechanobiological perspective.
Collapse
Affiliation(s)
- Hongwei Xu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Yuting Feng
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Yongtao Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiming Han
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Xiaocen Duan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Ying Jiang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
- Nanchang Innovation Institute of Peking University, Nanchang, China
| | - Liya Su
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Inner Mongolia Key Laboratory of Medical Cell Biology, Hohhot, Inner Mongolia, China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Fifth Central Hospital of Tianjin, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People's Hospital, Huangnan Prefecture, Qinghai Province, China
| | - Siying Qin
- School of Life Sciences, Peking University, Beijing, China
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China.
| |
Collapse
|
3
|
Nissa MU, Pinto N, Ghosh B, Banerjee A, Singh U, Goswami M, Srivastava S. Proteomic insights into extracellular matrix dynamics in the intestine of Labeo rohita during Aeromonas hydrophila infection. mSystems 2024; 9:e0024724. [PMID: 39292008 PMCID: PMC11495024 DOI: 10.1128/msystems.00247-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
In the aquaculture sector, one of the challenges includes disease outbreaks such as bacterial infections, particularly from Aeromonas hydrophila (Ah), impacting both wild and farmed fish. In this study, we conducted a proteomic analysis of the intestinal tissue in Labeo rohita following Ah infection to elucidate the protein alterations and its implications for immune response. Our findings indicate significant dysregulation in extracellular matrix (ECM)-associated proteins during Ah infection, with increased abundance of elastin and collagen alpha-3(VI). Pathway and enrichment analysis of differentially expressed proteins highlights the involvement of ECM-related pathways, including focal adhesions, integrin cell surface interactions, and actin cytoskeleton organization. Focal adhesions, crucial for connecting intracellular actin bundles to the ECM, play a pivotal role in immune response during infections. Increased abundance of integrin alpha 1, integrin beta 1, and tetraspanin suggests their involvement in the host's response to Ah infection. Proteins associated with actin cytoskeleton reorganization, such as myosin, tropomyosin, and phosphoglucomutase, exhibit increased abundance, influencing changes in cell behavior. Additionally, upregulated proteins like LTBP1 and fibrillin-2 contribute to TGF-β signaling and focal adhesion, indicating their potential role in immune regulation. The study also identifies elevated levels of laminin, galectin 3, and tenascin-C, which interact with integrins and other ECM components, potentially influencing immune cell migration and function. These proteins, along with decorin and lumican, may act as immunomodulators, coordinating pro- and anti-inflammatory responses. ECM fragments released during pathogen invasion could serve as "danger signals," initiating pathogen clearance and tissue repair through Toll-like receptor signaling. IMPORTANCE The study underscores the critical role of the extracellular matrix (ECM) and its associated proteins in the immune response of aquatic organisms during bacterial infections like Aeromonas hydrophila. Understanding the intricate interplay between ECM alterations and immune response pathways provides crucial insights for developing effective disease control strategies in aquaculture. By identifying key proteins and pathways involved in host defense mechanisms, this research lays the groundwork for targeted interventions to mitigate the impact of bacterial infections on fish health and aquaculture production.
Collapse
Affiliation(s)
- Mehar Un Nissa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Nevil Pinto
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Versova, Mumbai, Maharashtra, India
| | - Biplab Ghosh
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anwesha Banerjee
- Indian Institute of Science Bangalore, Bangalore, Karnataka, India
| | - Urvi Singh
- Friedrich Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Mukunda Goswami
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Versova, Mumbai, Maharashtra, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
4
|
Liu X, Zhang W, Gu J, Wang J, Wang Y, Xu Z. Single-cell SERS imaging of dual cell membrane receptors expression influenced by extracellular matrix stiffness. J Colloid Interface Sci 2024; 668:335-342. [PMID: 38678888 DOI: 10.1016/j.jcis.2024.04.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Membrane receptors perform a diverse range of cellular functions, accounting for more than half of all drug targets. The mechanical microenvironment regulates cell behaviors and phenotype. However, conventional analysis methods of membrane receptors often ignore the effects of the extracellular matrix stiffness, failing to reveal the heterogeneity of cell membrane receptors expression. Herein, we developed an in-situ surface-enhanced Raman scattering (SERS) imaging method to visualize single-cell membrane receptors on substrates with different stiffness. Two SERS substrates, Au@4-mercaptobenzonitrile@Ag@Sgc8c and Au@4-pethynylaniline@Ag@SYL3c, were employed to specifically target protein tyrosine kinase-7 (PTK7) and epithelial cell adhesion molecule (EpCAM), respectively. The polyacrylamide (PA) gels with tunable stiffness (2.5-25 kPa) were constructed to mimic extracellular matrix. The simultaneous SERS imaging of dual membrane receptors on single cancer cells on substrates with different stiffness was achieved. Our findings reveal decreased expression of PTK7 and EpCAM on cells cultured on stiffer substrates and higher migration ability of the cells. The results elucidate the heterogeneity of membrane receptors expression of cells cultured on the substrates with different stiffness. This single-cell analysis method offers an in-situ platform for investigating the impacts of extracellular matrix stiffness on the expression of membrane receptors, providing insights into the role of cell membrane receptors in cancer metastasis.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China
| | - Wenshu Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China
| | - Jiahui Gu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China
| | - Jie Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China
| | - Yue Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China
| | - Zhangrun Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
5
|
Xia Q, Jiang H, Liu X, Yin L, Wang X. Advances in Engineered Nano-Biosensors for Bacteria Diagnosis and Multidrug Resistance Inhibition. BIOSENSORS 2024; 14:59. [PMID: 38391978 PMCID: PMC10887026 DOI: 10.3390/bios14020059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
Bacterial infections continue to pose a significant global health challenge, with the emergence of multidrug-resistant (MDR) bacteria and biofilms further complicating treatment options. The rise of pan-resistant bacteria, coupled with the slow development of new antibiotics, highlights the urgent need for new therapeutic strategies. Nanotechnology-based biosensors offer fast, specific, sensitive, and selective methods for detecting and treating bacteria; hence, it is a promising approach for the diagnosis and treatment of MDR bacteria. Through mechanisms, such as destructive bacterial cell membranes, suppression of efflux pumps, and generation of reactive oxygen species, nanotechnology effectively combats bacterial resistance and biofilms. Nano-biosensors and related technology have demonstrated their importance in bacteria diagnosis and treatment, providing innovative ideas for MDR inhibition. This review focuses on multiple nanotechnology approaches in targeting MDR bacteria and eliminating antimicrobial biofilms, highlighting nano-biosensors via photodynamics-based biosensors, eletrochemistry biosensors, acoustic-dynamics sensors, and so on. Furthermore, the major challenges, opportunities of multi-physical-field biometrics-based biosensors, and relevant nanotechnology in MDR bacterial theranostics are also discussed. Overall, this review provides insights and scientific references to harness the comprehensive and diverse capabilities of nano-biosensors for precise bacteria theranostics and MDR inhibition.
Collapse
Affiliation(s)
- Qingxiu Xia
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China;
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China (X.L.)
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China (X.L.)
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China;
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China (X.L.)
| |
Collapse
|
6
|
Feng Y, Wang S, Liu X, Han Y, Xu H, Duan X, Xie W, Tian Z, Yuan Z, Wan Z, Xu L, Qin S, He K, Huang J. Geometric constraint-triggered collagen expression mediates bacterial-host adhesion. Nat Commun 2023; 14:8165. [PMID: 38071397 PMCID: PMC10710423 DOI: 10.1038/s41467-023-43827-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Cells living in geometrically confined microenvironments are ubiquitous in various physiological processes, e.g., wound closure. However, it remains unclear whether and how spatially geometric constraints on host cells regulate bacteria-host interactions. Here, we reveal that interactions between bacteria and spatially constrained cell monolayers exhibit strong spatial heterogeneity, and that bacteria tend to adhere to these cells near the outer edges of confined monolayers. The bacterial adhesion force near the edges of the micropatterned monolayers is up to 75 nN, which is ~3 times higher than that at the centers, depending on the underlying substrate rigidities. Single-cell RNA sequencing experiments indicate that spatially heterogeneous expression of collagen IV with significant edge effects is responsible for the location-dependent bacterial adhesion. Finally, we show that collagen IV inhibitors can potentially be utilized as adjuvants to reduce bacterial adhesion and thus markedly enhance the efficacy of antibiotics, as demonstrated in animal experiments.
Collapse
Affiliation(s)
- Yuting Feng
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
| | - Shuyi Wang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
| | - Xiaoye Liu
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, 102206, Beijing, China
| | - Yiming Han
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
| | - Hongwei Xu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
| | - Xiaocen Duan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
| | - Wenyue Xie
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
| | - Zhuoling Tian
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Zuoying Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
| | - Zhuo Wan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
| | - Liang Xu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Siying Qin
- School of Life Sciences, Peking University, 100871, Beijing, China
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China.
| |
Collapse
|
7
|
Li W, Yuan W, Huang S, Zou L, Zheng K, Xie D. Research progress on the mechanism of Treponema pallidum breaking through placental barrier. Microb Pathog 2023; 185:106392. [PMID: 37852552 DOI: 10.1016/j.micpath.2023.106392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Congenital syphilis, a significant cause of fetal mortality worldwide, is a congenital infectious disease instigated by the vertical transmission of Treponema pallidum during pregnancy. Clinical manifestations include preterm delivery, stillbirth, neonatal skin lesions, skeletal abnormalities, and central nervous system aberrations. The ongoing increase in the incidence of congenital syphilis, coupled with complexities in diagnosis, necessitates a detailed understanding of its pathogenesis for the development of improved diagnostic approaches, and to interrupt the route of vertical transmission. Drawing from the broader body of research associated with vertical transmission pathogens, we aim to clarify the potential mechanisms by which Treponema pallidum breaches the placental barrier to infect the fetus.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, China
| | - Wei Yuan
- The Fourth Affiliated Hospital of Nanchang University, China
| | - Shaobin Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Lin Zou
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, China
| | - Kang Zheng
- Department of Clinical Laboratory, Hengyang Central Hospital, Hengyang, China.
| | - Dongde Xie
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, China.
| |
Collapse
|
8
|
Asp ME, Thanh MTH, Dutta S, Comstock JA, Welch RD, Patteson AE. Mechanobiology as a tool for addressing the genotype-to-phenotype problem in microbiology. BIOPHYSICS REVIEWS 2023; 4:021304. [PMID: 38504926 PMCID: PMC10903382 DOI: 10.1063/5.0142121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/03/2023] [Indexed: 03/21/2024]
Abstract
The central hypothesis of the genotype-phenotype relationship is that the phenotype of a developing organism (i.e., its set of observable attributes) depends on its genome and the environment. However, as we learn more about the genetics and biochemistry of living systems, our understanding does not fully extend to the complex multiscale nature of how cells move, interact, and organize; this gap in understanding is referred to as the genotype-to-phenotype problem. The physics of soft matter sets the background on which living organisms evolved, and the cell environment is a strong determinant of cell phenotype. This inevitably leads to challenges as the full function of many genes, and the diversity of cellular behaviors cannot be assessed without wide screens of environmental conditions. Cellular mechanobiology is an emerging field that provides methodologies to understand how cells integrate chemical and physical environmental stress and signals, and how they are transduced to control cell function. Biofilm forming bacteria represent an attractive model because they are fast growing, genetically malleable and can display sophisticated self-organizing developmental behaviors similar to those found in higher organisms. Here, we propose mechanobiology as a new area of study in prokaryotic systems and describe its potential for unveiling new links between an organism's genome and phenome.
Collapse
|
9
|
Han Y, Jiang N, Xu H, Yuan Z, Xiu J, Mao S, Liu X, Huang J. Extracellular Matrix Rigidities Regulate the Tricarboxylic Acid Cycle and Antibiotic Resistance of Three-Dimensionally Confined Bacterial Microcolonies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206153. [PMID: 36658695 PMCID: PMC10037996 DOI: 10.1002/advs.202206153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/22/2022] [Indexed: 06/06/2023]
Abstract
As a major cause of clinical chronic infection, microbial biofilms/microcolonies in host tissues essentially live in 3D-constrained microenvironments, which potentially modulate their spatial self-organization and morphodynamics. However, it still remains unclear whether and how mechanical cues of 3D confined microenvironments, for example, extracellular matrix (ECM) stiffness, exert an impact on antibiotic resistance of bacterial biofilms/microcolonies. With a high-throughput antibiotic sensitivity testing (AST) platform, it is revealed that 3D ECM rigidities greatly modulate their resistance to diverse antibiotics. The microcolonies in 3D ECM with human tissue-specific rigidities varying from 0.5 to 20 kPa show a ≈2-10 000-fold increase in minimum inhibitory concentration, depending on the types of antibiotics. The authors subsequently identified that the increase in 3D ECM rigidities leads to the downregulation of the tricarboxylic acid (TCA) cycle, which is responsible for enhanced antibiotic resistance. Further, it is shown that fumarate, as a potentiator of TCA cycle activity, can alleviate the elevated antibiotic resistance and thus remarkably improve the efficacy of antibiotics against bacterial microcolonies in 3D confined ECM, as confirmed in the chronic infection mice model. These findings suggest fumarate can be employed as an antibiotic adjuvant to effectively treat infections induced by bacterial biofilms/microcolonies in a 3D-confined environment.
Collapse
Affiliation(s)
- Yiming Han
- Department of Mechanics and Engineering Science, and Beijing Innovation Center for Engineering Science and Advanced TechnologyCollege of EngineeringPeking University100871BeijingChina
| | - Nan Jiang
- Department of Mechanics and Engineering Science, and Beijing Innovation Center for Engineering Science and Advanced TechnologyCollege of EngineeringPeking University100871BeijingChina
| | - Hongwei Xu
- Department of Mechanics and Engineering Science, and Beijing Innovation Center for Engineering Science and Advanced TechnologyCollege of EngineeringPeking University100871BeijingChina
| | - Zuoying Yuan
- Department of Mechanics and Engineering Science, and Beijing Innovation Center for Engineering Science and Advanced TechnologyCollege of EngineeringPeking University100871BeijingChina
| | - Jidong Xiu
- Department of Mechanics and Engineering Science, and Beijing Innovation Center for Engineering Science and Advanced TechnologyCollege of EngineeringPeking University100871BeijingChina
| | - Sheng Mao
- Department of Mechanics and Engineering Science, and Beijing Innovation Center for Engineering Science and Advanced TechnologyCollege of EngineeringPeking University100871BeijingChina
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature InfantsFifth Central Hospital of TianjinTianjin300450China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, and Beijing Innovation Center for Engineering Science and Advanced TechnologyCollege of EngineeringPeking University100871BeijingChina
| |
Collapse
|
10
|
Vigué A, Vautier D, Kaytoue A, Senger B, Arntz Y, Ball V, Ben Mlouka A, Gribova V, Hajjar-Garreau S, Hardouin J, Jouenne T, Lavalle P, Ploux L. Escherichia coli Biofilm Formation, Motion and Protein Patterns on Hyaluronic Acid and Polydimethylsiloxane Depend on Surface Stiffness. J Funct Biomater 2022; 13:jfb13040237. [PMID: 36412878 PMCID: PMC9680287 DOI: 10.3390/jfb13040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The surface stiffness of the microenvironment is a mechanical signal regulating biofilm growth without the risks associated with the use of bioactive agents. However, the mechanisms determining the expansion or prevention of biofilm growth on soft and stiff substrates are largely unknown. To answer this question, we used PDMS (polydimethylsiloxane, 9-574 kPa) and HA (hyaluronic acid gels, 44 Pa-2 kPa) differing in their hydration. We showed that the softest HA inhibited Escherichia coli biofilm growth, while the stiffest PDMS activated it. The bacterial mechanical environment significantly regulated the MscS mechanosensitive channel in higher abundance on the least colonized HA-44Pa, while Type-1 pili (FimA) showed regulation in higher abundance on the most colonized PDMS-9kPa. Type-1 pili regulated the free motion (the capacity of bacteria to move far from their initial position) necessary for biofilm growth independent of the substrate surface stiffness. In contrast, the total length travelled by the bacteria (diffusion coefficient) varied positively with the surface stiffness but not with the biofilm growth. The softest, hydrated HA, the least colonized surface, revealed the least diffusive and the least free-moving bacteria. Finally, this shows that customizing the surface elasticity and hydration, together, is an efficient means of affecting the bacteria's mobility and attachment to the surface and thus designing biomedical surfaces to prevent biofilm growth.
Collapse
Affiliation(s)
- Annabelle Vigué
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Dominique Vautier
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Amad Kaytoue
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Bernard Senger
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Youri Arntz
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Vincent Ball
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Amine Ben Mlouka
- PISSARO Proteomic Facility, IRIB, 76130 Mont-Saint-Aignan, France
| | - Varvara Gribova
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Samar Hajjar-Garreau
- Mulhouse Materials Science Institute, CNRS/Haute Alsace University, 68057 Mulhouse, France
| | - Julie Hardouin
- PISSARO Proteomic Facility, IRIB, 76130 Mont-Saint-Aignan, France
- Polymers, Biopolymers, Surfaces Laboratory, CNRS/UNIROUEN/INSA Rouen, Normandie University, 76821 Rouen, France
| | - Thierry Jouenne
- PISSARO Proteomic Facility, IRIB, 76130 Mont-Saint-Aignan, France
- Polymers, Biopolymers, Surfaces Laboratory, CNRS/UNIROUEN/INSA Rouen, Normandie University, 76821 Rouen, France
| | - Philippe Lavalle
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Lydie Ploux
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
- CNRS, 67037 Strasbourg, France
- Correspondence:
| |
Collapse
|
11
|
Song L, Hu X, Ren X, Liu J, Liu X. Antibacterial Modes of Herbal Flavonoids Combat Resistant Bacteria. Front Pharmacol 2022; 13:873374. [PMID: 35847042 PMCID: PMC9278433 DOI: 10.3389/fphar.2022.873374] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/17/2022] [Indexed: 12/21/2022] Open
Abstract
The increasing dissemination of multidrug resistant (MDR) bacterial infections endangers global public health. How to develop effective antibacterial agents against resistant bacteria is becoming one of the most urgent demands to solve the drug resistance crisis. Traditional Chinese medicine (TCM) with multi-target antibacterial actions are emerging as an effective way to combat the antibacterial resistance. Based on the innovative concept of organic wholeness and syndrome differentiation, TCM use in antibacterial therapies is encouraging. Herein, advances on flavonoid compounds of heat-clearing Chinese medicine exhibit their potential for the therapy of resistant bacteria. In this review, we focus on the antibacterial modes of herbal flavonoids. Additionally, we overview the targets of flavonoid compounds and divide them into direct-acting antibacterial compounds (DACs) and host-acting antibacterial compounds (HACs) based on their modes of action. We also discuss the associated functional groups of flavonoid compounds and highlight recent pharmacological activities against diverse resistant bacteria to provide the candidate drugs for the clinical infection.
Collapse
Affiliation(s)
- Lianyu Song
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
| | - Xin Hu
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
| | - Xiaomin Ren
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
| | - Jing Liu
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
| | - Xiaoye Liu
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
- *Correspondence: Xiaoye Liu,
| |
Collapse
|
12
|
Duan X, Huang J. Deep learning-based 3D cellular force reconstruction directly from volumetric images. Biophys J 2022; 121:2180-2192. [PMID: 35484854 DOI: 10.1016/j.bpj.2022.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/26/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022] Open
Abstract
The forces exerted by single cells in the three-dimensional (3D) environments play a crucial role in modulating cellular functions and behaviors closely related to physiological and pathological processes. Cellular force microscopy (CFM) provides a feasible solution for quantifying the mechanical interactions, which usually regains cellular forces from deformation information of extracellular matrices embedded with fluorescent beads. Owing to computational complexity, the traditional 3D-CFM is usually extremely time-consuming, which makes it challenging for efficient force recovery and large-scale sample analysis. With the aid of deep neural networks, this study puts forward a novel data-driven 3D-CFM to reconstruct 3D cellular force fields directly from volumetric images with random fluorescence patterns. The deep learning (DL)-based network is established through stacking deep convolutional neural network (DCNN) and specific function layers. Some necessary physical information associated with constitutive relation of extracellular matrix material is coupled to the data-driven network. The mini-batch stochastic gradient descent and back-propagation algorithms are introduced to ensure its convergence and training efficiency. The network not only have good generalization ability and robustness, but also can recover 3D cellular forces directly from the input fluorescence image pairs. Particularly, the computational efficiency of the DL-based network is at least one to two orders of magnitude higher than that of the traditional 3D-CFM. This study provides a novel scheme for developing high-performance 3D cellular force microscopy to quantitatively characterize mechanical interactions between single cells and surrounding extracellular matrices, which is of vital importance for quantitative investigations in biomechanics and mechanobiology.
Collapse
Affiliation(s)
- Xiaocen Duan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China;; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China;; Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|