1
|
Hu H, Fan Y, Wang J, Zhang J, Lyu Y, Hou X, Cui J, Zhang Y, Gao J, Zhang T, Nan K. Single-cell technology for cell-based drug delivery and pharmaceutical research. J Control Release 2025; 381:113587. [PMID: 40032008 DOI: 10.1016/j.jconrel.2025.113587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Leveraging the capacity to precisely manipulate and analyze individual cells, single-cell technology has rapidly become an indispensable tool in the advancement of cell-based drug delivery systems and innovative cell therapies. This technology offers powerful means to address cellular heterogeneity and significantly enhance therapeutic efficacy. Recent breakthroughs in techniques such as single-cell electroporation, mechanical perforation, and encapsulation, particularly when integrated with microfluidics and bioelectronics, have led to remarkable improvements in drug delivery efficiency, reductions in cytotoxicity, and more precise targeting of therapeutic effects. Moreover, single-cell analyses, including advanced sequencing and high-resolution sensing, offer profound insights into complex disease mechanisms, the development of drug resistance, and the intricate processes of stem cell differentiation. This review summarizes the most significant applications of these single-cell technologies, highlighting their impact on the landscape of modern biomedicine. Furthermore, it provides a forward-looking perspective on future research directions aimed at further optimizing drug delivery strategies and enhancing therapeutic outcomes in the treatment of various diseases.
Collapse
Affiliation(s)
- Huihui Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Yunlong Fan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China; MicroTech Medical (Hangzhou) Co., Hangzhou 311100, China
| | - Jiawen Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Jialu Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Yidan Lyu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Xiaoqi Hou
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jizhai Cui
- Department of Materials Science, Fudan University, Shanghai 200438, China; International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
| | - Yamin Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China.
| | - Kewang Nan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
2
|
Mehdizadeh S, Mamaghani M, Hassanikia S, Pilehvar Y, Ertas YN. Exosome-powered neuropharmaceutics: unlocking the blood-brain barrier for next-gen therapies. J Nanobiotechnology 2025; 23:329. [PMID: 40319325 PMCID: PMC12049023 DOI: 10.1186/s12951-025-03352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/24/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND The blood-brain barrier (BBB) presents a formidable challenge in neuropharmacology, limiting the delivery of therapeutic agents to the brain. Exosomes, nature's nanocarriers, have emerged as a promising solution due to their biocompatibility, low immunogenicity, and innate ability to traverse the BBB. A thorough examination of BBB anatomy and physiology reveals the complexities of neurological drug delivery and underscores the limitations of conventional methods. MAIN BODY This review explores the potential of exosome-powered neuropharmaceutics, highlighting their structural and functional properties, biogenesis, and mechanisms of release. Their intrinsic advantages in drug delivery, including enhanced stability and efficient cellular uptake, are discussed in detail. Exosomes naturally overcome BBB barriers through specific translocation mechanisms, making them a compelling vehicle for targeted brain therapies. Advances in engineering strategies, such as genetic and biochemical modifications, drug loading techniques, and specificity enhancement, further bolster their therapeutic potential. Exosome-based approaches hold immense promise for treating a spectrum of neurological disorders, including Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), brain tumors, stroke, and psychiatric conditions. CONCLUSION By leveraging their innate properties and engineering innovations, exosomes offer a versatile platform for precision neurotherapeutics. Despite their promise, challenges remain in clinical translation, including large-scale production, standardization, and regulatory considerations. Future research directions in exosome nanobiotechnology aim to refine these therapeutic strategies, unlocking new avenues for treating neurological diseases. This review underscores the transformative impact of exosome-based drug delivery, paving the way for next-generation therapies that can effectively penetrate the BBB and revolutionize neuropharmacology.
Collapse
Affiliation(s)
- Sepehr Mehdizadeh
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mobin Mamaghani
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Younes Pilehvar
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Türkiye.
| |
Collapse
|
3
|
Zhao Q, Han Y, Gong W, Cao Z, Chang H, Gong S, Li Q, Li M, Ma C, He L, Zhou H. Membrane-Anchoring and Oxygen-Generating Mediated Nanosonosensitizer for Optimizing Cancer Immunotherapy. Adv Healthc Mater 2025; 14:e2404849. [PMID: 40129017 DOI: 10.1002/adhm.202404849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/10/2025] [Indexed: 03/26/2025]
Abstract
Despite its antitumor promise, sonodynamic therapy (SDT)'s efficacy in immune activation requires enhancement, primarily due to the hypoxic tumor microenvironment (TME) and insufficient targeting of sonosensitizers to specific subcellular regions. Herein, we developed macrophage membrane (MM)-intermingled membrane fusogenic liposomes (MFL) to optimize sonoimmunotherapy that encapsulate catalase (CAT) within the core and incorporate the sonosensitizer chlorin e6 (Ce6) in the outer shell (CAT@MM-MFL-Ce6). The MM confers immune evasion properties and promotes nanoparticles' targeted accumulation in tumor tissue. The membrane fusion effect enables Ce6 to anchor onto cancer cell membrane and facilitates the direct delivery of CAT into the cytoplasm, bypassing endosomal degradation. Upon ultrasound stimulation, generated reactive oxygen species directly damage the plasma membrane, initiating the Caspase 3/Gasdermin E-mediated pyroptosis pathway. Concurrently, the encapsulated CAT efficiently decompose H₂O₂ in the cytoplasm, thus enhancing local oxygen levels in hypoxic tumors. Contributed by these effects, the combination of nanosonosensitizer-augmented SDT and immune checkpoint agent successfully reverse the immunosuppressive TME, driving a potent immune response that inhibits primary tumor growth, distant metastasis, and lung metastases in an orthotopic triple-negative breast cancer model. This study demonstrates the potential of a novel SDT-based combinatorial approach to modulate immune-cold TMEs, advancing proof-of-concept tumor therapeutics.
Collapse
Affiliation(s)
- Qing Zhao
- Ultrasound Department of Obstetrics and Gynecology, Second Affiliated Hospital of Harbin Medical University, Surgeons' Hall, No.246. XuefuRoad, Nangang District, Harbin, Heilongjiang Province, 150086, P. R. China
| | - Ye Han
- In-Patient Ultrasound Department, Second Affiliated Hospital of Harbin Medical University, Surgeons' Hall, No.246. XuefuRoad, Nangang District, Harbin, Heilongjiang Province, 150086, P. R. China
| | - Wushuang Gong
- In-Patient Ultrasound Department, Second Affiliated Hospital of Harbin Medical University, Surgeons' Hall, No.246. XuefuRoad, Nangang District, Harbin, Heilongjiang Province, 150086, P. R. China
| | - Zhiyue Cao
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Harbin, 150001, P. R. China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450046, P. R. China
| | - Haonan Chang
- In-Patient Ultrasound Department, Second Affiliated Hospital of Harbin Medical University, Surgeons' Hall, No.246. XuefuRoad, Nangang District, Harbin, Heilongjiang Province, 150086, P. R. China
| | - Shaofan Gong
- In-Patient Ultrasound Department, Second Affiliated Hospital of Harbin Medical University, Surgeons' Hall, No.246. XuefuRoad, Nangang District, Harbin, Heilongjiang Province, 150086, P. R. China
| | - Qunying Li
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Mengmeng Li
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Harbin, 150001, P. R. China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450046, P. R. China
| | - Chao Ma
- In-Patient Ultrasound Department, Second Affiliated Hospital of Harbin Medical University, Surgeons' Hall, No.246. XuefuRoad, Nangang District, Harbin, Heilongjiang Province, 150086, P. R. China
| | - Liangcan He
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Harbin, 150001, P. R. China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450046, P. R. China
| | - Hang Zhou
- In-Patient Ultrasound Department, Second Affiliated Hospital of Harbin Medical University, Surgeons' Hall, No.246. XuefuRoad, Nangang District, Harbin, Heilongjiang Province, 150086, P. R. China
| |
Collapse
|
4
|
Wang H, Wang Z, Li B, Sui Y, Wu M, Guo Z, Ding C, Wang Y, Fu R, Li H, Xie H, Zhang S, Lu Y. Direct Cytosolic Delivery of Nanovesicles via Gigahertz Acoustic Streaming. ACS NANO 2025; 19:16032-16042. [PMID: 40239088 DOI: 10.1021/acsnano.5c02632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The development of advanced intracellular delivery systems is essential for biopharmaceutical progress, particularly in drug delivery systems, genetic engineering, and cellular therapeutics. While nanovesicles show significant therapeutic potential, challenges remain due to cell membrane barriers and the limitations of endocytosis-mediated pathways. In this study, we introduce an efficient acoustofluidic delivery system that utilizes a gigahertz (GHz)-range bulk acoustic wave (BAW) resonator to generate spatiotemporally controlled acoustic streaming vortices. This system enables rapid (within 10 min) and highly efficient direct cytosolic delivery of nanovesicles by bypassing conventional endosomal entrapment pathways. It effectively delivers both synthetic drug carriers (doxorubicin-loaded small unilamellar vesicles, Dox-SUVs) and biologically active exosomes through GHz-driven hydrodynamic shear forces that induce transient membrane permeability while maintaining cellular viability (>91.5% at 300 mW). Key performances demonstrate 86.5% drug delivery efficiency for Dox-SUVs with near-complete nuclear accumulation, while exosome-mediated delivery exhibits 2.4-fold accelerated migration and 3-fold proliferation enhancement within 24 h. The system's capacity to modulate fluidic shear stresses via BAW power tuning (100-500 mW) allows precise control over membrane permeabilization kinetics and cargo flux. By overcoming endolysosomal sequestration through a noninvasive, physics-driven mechanism, this acoustofluidic approach expands opportunities for next-generation therapeutics, including macromolecular biologic delivery, genome editing, and exosome-mediated intercellular communication.
Collapse
Affiliation(s)
- Haopu Wang
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Zhen Wang
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Bingxuan Li
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Yutong Sui
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Meng Wu
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Zongliang Guo
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Chong Ding
- Center Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yixiang Wang
- Center Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Rongxin Fu
- Chongqing Institute of Microelectronics and Microsystems, Beijing Institute of Technology, Chongqing 400030, China
- Engineering Research Center of Integrated Acoustic-optoelectronic Microsystems (Ministry of Education of China), Beijing 100081, China
- Zhengzhou Research Institute, Beijing Institute of Technology, Zhengzhou 450000, China
| | - Hang Li
- Chongqing Institute of Microelectronics and Microsystems, Beijing Institute of Technology, Chongqing 400030, China
- Engineering Research Center of Integrated Acoustic-optoelectronic Microsystems (Ministry of Education of China), Beijing 100081, China
- Zhengzhou Research Institute, Beijing Institute of Technology, Zhengzhou 450000, China
| | - Huikai Xie
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
- Chongqing Institute of Microelectronics and Microsystems, Beijing Institute of Technology, Chongqing 400030, China
- Engineering Research Center of Integrated Acoustic-optoelectronic Microsystems (Ministry of Education of China), Beijing 100081, China
| | - Shuailong Zhang
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
- Chongqing Institute of Microelectronics and Microsystems, Beijing Institute of Technology, Chongqing 400030, China
- Engineering Research Center of Integrated Acoustic-optoelectronic Microsystems (Ministry of Education of China), Beijing 100081, China
- Zhengzhou Research Institute, Beijing Institute of Technology, Zhengzhou 450000, China
| | - Yao Lu
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
- Chongqing Institute of Microelectronics and Microsystems, Beijing Institute of Technology, Chongqing 400030, China
- Engineering Research Center of Integrated Acoustic-optoelectronic Microsystems (Ministry of Education of China), Beijing 100081, China
| |
Collapse
|
5
|
Zhang W, Liu H, Zhu B, Li W, Han X, Fu J, Luo R, Wang H, Wang J. Advances in Cytosolic Delivery of Proteins: Approaches, Challenges, and Emerging Technologies. Chem Biodivers 2025:e202401713. [PMID: 39921680 DOI: 10.1002/cbdv.202401713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
Abstract
Although therapeutic proteins have achieved recognized clinical success, they are inherently membrane impermeable, which limits them to acting only on extracellular or membrane-associated targets. Developing an efficient protein delivery method will provide a unique opportunity for intracellular target-related therapeutic proteins. In this review article, we summarize the different pathways by which cells take up proteins. These pathways fall into two main categories: One in which proteins are transported directly across the cell membrane and the other through endocytosis. At the same time, important features to ensure successful delivery through these pathways are highlighted. We then provide a comprehensive overview of the latest developments in the transduction of covalent protein modifications, such as coupling cell-penetrating motifs and supercharging, as well as the use of nanocarriers to mediate protein transport, such as liposomes, polymers, and inorganic nanoparticles. Finally, we emphasize the existing challenges of cytoplasmic protein delivery and provide an outlook for future progress.
Collapse
Affiliation(s)
- Wenyan Zhang
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Huiling Liu
- Gansu Provincial Hospital, Lanzhou, Gansu, China
| | | | - Wen Li
- Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xue Han
- Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Jiaojiao Fu
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Renjie Luo
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Haiyan Wang
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jinxia Wang
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Ghosh A, Sharma M, Zhao Y. Intracellular Delivery of Proteins by Protein-Recognizing Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3026-3037. [PMID: 39761120 DOI: 10.1021/acsami.4c18186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Intracellular delivery of proteins can directly impact dysregulated and dysfunctional proteins and is a key step in the fast growing field of protein therapeutics. The vast majority of protein-delivery systems enter cells through endocytic pathways, but endosomal escape is a difficult and inefficient process, demanding fundamentally different methods of delivery. We report ultrasmall cationic molecularly imprinted nanoparticles that bind protein targets with high specificity through their uniquely distributed surface lysine groups. The nanoparticle-protein complexes enter cells even when energy-dependent endocytic pathways are inhibited. The micromolar binding affinities of the nanoparticle for the proteins are strong enough for the cargos to be bound during loading and transportation but weak enough to be released into cytosol for them to interact with the desired cellular targets. The nanoparticles display low cytotoxicity to cells and can be functionalized with fluorescent labels through click chemistry for easy tracking. Both the molecular imprinting and delivery work well for proteins with a range of molecular weights and isoelectric points, affording a convenient method to manipulate cellular functions and intracellular reactions through delivered proteins.
Collapse
Affiliation(s)
- Avijit Ghosh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Mansi Sharma
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
7
|
Li ZA, Wen KC, Liu JH, Zhang C, Zhang F, Li FQ. Strategies for intravesical drug delivery: From bladder physiological barriers and potential transport mechanisms. Acta Pharm Sin B 2024; 14:4738-4755. [PMID: 39664414 PMCID: PMC11628814 DOI: 10.1016/j.apsb.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 12/13/2024] Open
Abstract
Intravesical drug delivery (IDD), as a noninvasive, local pathway of administration, has great clinical significance for bladder diseases, especially bladder cancer. Despite the many advantages of IDD such as enhanced focal drug exposure and avoidance of systemic adverse drug reactions, the effectiveness of drug delivery is greatly challenged by the physiological barriers of the bladder. In this review, the routes and barriers encountered in IDD are first discussed, and attention is paid to the potential internal/mucosal retention and absorption-transport mechanisms of drugs. On this basis, the avoidance, overcoming and utilization of the "three barriers" is further emphasized, and current design and fabrication strategies for intravesical drug delivery systems (IDDSs) are described mainly from the perspectives of constructing drug reservoirs, enhancing permeability and targeting, with the hope of providing systematic understanding and inspirations for the research of novel IDDSs and their treatment of bladder diseases.
Collapse
Affiliation(s)
- Zheng-an Li
- School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Urology/Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Kai-chao Wen
- School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Urology/Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Ji-heng Liu
- Department of Urology/Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Chuan Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Feng Zhang
- Department of Urology/Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Feng-qian Li
- School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Urology/Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| |
Collapse
|
8
|
Li Y, Li XM, Wei LS, Ye JF. Advancements in mitochondrial-targeted nanotherapeutics: overcoming biological obstacles and optimizing drug delivery. Front Immunol 2024; 15:1451989. [PMID: 39483479 PMCID: PMC11524880 DOI: 10.3389/fimmu.2024.1451989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/19/2024] [Indexed: 11/03/2024] Open
Abstract
In recent decades, nanotechnology has significantly advanced drug delivery systems, particularly in targeting subcellular organelles, thus opening new avenues for disease treatment. Mitochondria, critical for cellular energy and health, when dysfunctional, contribute to cancer, neurodegenerative diseases, and metabolic disorders. This has propelled the development of nanomedicines aimed at precise mitochondrial targeting to modulate their function, marking a research hotspot. This review delves into the recent advancements in mitochondrial-targeted nanotherapeutics, with a comprehensive focus on targeting strategies, nanocarrier designs, and their therapeutic applications. It emphasizes nanotechnology's role in enhancing drug delivery by overcoming biological barriers and optimizing drug design for specific mitochondrial targeting. Strategies exploiting mitochondrial membrane potential differences and specific targeting ligands improve the delivery and mitochondrial accumulation of nanomedicines. The use of diverse nanocarriers, including liposomes, polymer nanoparticles, and inorganic nanoparticles, tailored for effective mitochondrial targeting, shows promise in anti-tumor and neurodegenerative treatments. The review addresses the challenges and future directions in mitochondrial targeting nanotherapy, highlighting the need for precision, reduced toxicity, and clinical validation. Mitochondrial targeting nanotherapy stands at the forefront of therapeutic strategies, offering innovative treatment perspectives. Ongoing innovation and research are crucial for developing more precise and effective treatment modalities.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Xiao-meng Li
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Li-si Wei
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Song S, Ivanov T, Yuan D, Wang J, da Silva LC, Xie J, Cao S. Peptide-Based Biomimetic Condensates via Liquid-Liquid Phase Separation as Biomedical Delivery Vehicles. Biomacromolecules 2024; 25:5468-5488. [PMID: 39178343 DOI: 10.1021/acs.biomac.4c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Biomolecular condensates are dynamic liquid droplets through intracellular liquid-liquid phase separation that function as membraneless organelles, which are highly involved in various complex cellular processes and functions. Artificial analogs formed via similar pathways that can be integrated with biological complexity and advanced functions have received tremendous research interest in the field of synthetic biology. The coacervate droplet-based compartments can partition and concentrate a wide range of solutes, which are regarded as attractive candidates for mimicking phase-separation behaviors and biophysical features of biomolecular condensates. The use of peptide-based materials as phase-separating components has advantages such as the diversity of amino acid residues and customized sequence design, which allows for programming their phase-separation behaviors and the physicochemical properties of the resulting compartments. In this Perspective, we highlight the recent advancements in the design and construction of biomimicry condensates from synthetic peptides relevant to intracellular phase-separating protein, with specific reference to their molecular design, self-assembly via phase separation, and biorelated applications, to envisage the use of peptide-based droplets as emerging biomedical delivery vehicles.
Collapse
Affiliation(s)
- Siyu Song
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz 55128, Germany
| | | | - Dandan Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianqiang Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | | | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shoupeng Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Mai LD, Wimberley SC, Champion JA. Intracellular delivery strategies using membrane-interacting peptides and proteins. NANOSCALE 2024; 16:15465-15480. [PMID: 39091235 PMCID: PMC11340348 DOI: 10.1039/d4nr02093f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
While the cellular cytosol and organelles contain attractive targets for disease treatments, it remains a challenge to deliver therapeutic biomacromolecules to these sites. This is due to the selective permeability of the plasma and endosomal membranes, especially for large and hydrophilic therapeutic cargos such as proteins and nucleic acids. In response, many different delivery systems and molecules have been devised to help therapeutics cross these barriers to reach cytosolic targets. Among them are peptide and protein-based systems, which have several advantages over other natural and synthetic materials including their ability to interact with cell membranes. In this review, we will describe recent advances and current challenges of peptide and protein strategies that leverage cell membrane association and modulation to enable cytosolic delivery of biomacromolecule cargo. The approaches covered here include peptides and proteins derived from or inspired by natural sequences as well as those designed de novo for delivery function.
Collapse
Affiliation(s)
- Linh D Mai
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, GA, 30332-2000, USA.
| | - Sydney C Wimberley
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, GA, 30332-2000, USA.
- BioEngineering Program, Georgia Institute of Technology, USA
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, GA, 30332-2000, USA.
- BioEngineering Program, Georgia Institute of Technology, USA
| |
Collapse
|
11
|
Qutub SS, Bhat IA, Maatouk BI, Moosa B, Fakim A, Nawaz K, Diaz-Galicia E, Lin W, Grünberg R, Arold ST, Khashab NM. An Amphiphilic Cell-Penetrating Macrocycle for Efficient Cytosolic Delivery of Proteins, DNA, and CRISPR Cas9. Angew Chem Int Ed Engl 2024; 63:e202403647. [PMID: 38752721 DOI: 10.1002/anie.202403647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Indexed: 07/02/2024]
Abstract
The discovery of safe platforms that can circumvent the endocytic pathway is of great significance for biological therapeutics that are usually degraded during endocytosis. Here we show that a self-assembled and dynamic macrocycle can passively diffuse through the cell membrane and deliver a broad range of biologics, including proteins, CRISPR Cas9, and ssDNA, directly to the cytosol while retaining their bioactivity. Cell-penetrating macrocycle CPM can be easily prepared from the room temperature condensation of diketopyrrolopyrrole lactams with diamines. We attribute the high cellular permeability of CPM to its amphiphilic nature and chameleonic properties. It adopts conformations that partially bury polar groups and expose hydrophobic side chains, thus self-assembling into micellar-like structures. Its superior fluorescence makes CPM trackable inside cells where it follows the endomembrane system. CPM outperformed commercial reagents for biologics delivery and showed high RNA knockdown efficiency of CRISPR Cas9. We envisage that this macrocycle will be an ideal starting point to design and synthesize biomimetic macrocyclic tags that can readily facilitate the interaction and uptake of biomolecules and overcome endosomal digestion.
Collapse
Affiliation(s)
- Somayah S Qutub
- Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Imtiyaz Ahmad Bhat
- Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Current Address: Department of Chemistry, Islamic University of Science and Technology, Awantipora, 192122, Jammu and Kashmir, India
| | - Batoul I Maatouk
- Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Basem Moosa
- Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Aliyah Fakim
- Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Kashif Nawaz
- The Coral Symbiomics Lab, Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Escarlet Diaz-Galicia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Weibin Lin
- Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Raik Grünberg
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Stefan T Arold
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
12
|
Sarikhani E, Meganathan DP, Larsen AKK, Rahmani K, Tsai CT, Lu CH, Marquez-Serrano A, Sadr L, Li X, Dong M, Santoro F, Cui B, Klausen LH, Jahed Z. Engineering the Cellular Microenvironment: Integrating Three-Dimensional Nontopographical and Two-Dimensional Biochemical Cues for Precise Control of Cellular Behavior. ACS NANO 2024; 18:19064-19076. [PMID: 38978500 PMCID: PMC11271182 DOI: 10.1021/acsnano.4c03743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024]
Abstract
The development of biomaterials capable of regulating cellular processes and guiding cell fate decisions has broad implications in tissue engineering, regenerative medicine, and cell-based assays for drug development and disease modeling. Recent studies have shown that three-dimensional (3D) nanoscale physical cues such as nanotopography can modulate various cellular processes like adhesion and endocytosis by inducing nanoscale curvature on the plasma and nuclear membranes. Two-dimensional (2D) biochemical cues such as protein micropatterns can also regulate cell function and fate by controlling cellular geometries. Development of biomaterials with precise control over nanoscale physical and biochemical cues can significantly influence programming cell function and fate. In this study, we utilized a laser-assisted micropatterning technique to manipulate the 2D architectures of cells on 3D nanopillar platforms. We performed a comprehensive analysis of cellular and nuclear morphology and deformation on both nanopillar and flat substrates. Our findings demonstrate the precise engineering of single cell architectures through 2D micropatterning on nanopillar platforms. We show that the coupling between the nuclear and cell shape is disrupted on nanopillar surfaces compared to flat surfaces. Furthermore, our results suggest that cell elongation on nanopillars enhances nanopillar-induced endocytosis. We believe our platform serves as a versatile tool for further explorations into programming cell function and fate through combined physical cues that create nanoscale curvature on cell membranes and biochemical cues that control the geometry of the cell.
Collapse
Affiliation(s)
- Einollah Sarikhani
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
| | - Dhivya Pushpa Meganathan
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
| | | | - Keivan Rahmani
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
| | - Ching-Ting Tsai
- Department
of Chemistry, Stanford University, Stanford ,California 94305, United States
| | - Chih-Hao Lu
- Department
of Chemistry, Stanford University, Stanford ,California 94305, United States
| | - Abel Marquez-Serrano
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
| | - Leah Sadr
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
| | - Xiao Li
- Department
of Chemistry, Stanford University, Stanford ,California 94305, United States
| | - Mingdong Dong
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Aarhus C 8000, Denmark
| | - Francesca Santoro
- Center
for Advanced Biomaterials for Healthcare, Tissue Electronics, Instituto Italiano di Tecnologia, Naples 80125, Italy
- Faculty
of Electrical Engineering and IT, RWTH, Aachen 52074, Germany
- Institute
for Biological Information Processing-Bioelectronics, Forschungszentrum
Juelich, Julich 52428, Germany
| | - Bianxiao Cui
- Department
of Chemistry, Stanford University, Stanford ,California 94305, United States
| | | | - Zeinab Jahed
- Department
of NanoEngineering, University of California
San Diego, La Jolla ,California 92093, United States
- Department
of Bioengineering, University of California
San Diego, La Jolla ,California 92093, United States
| |
Collapse
|
13
|
Wang L, Wang D, Lei W, Sun T, Gu B, Dong H, Taniguchi Y, Liu Y, Ling Y. Trigonometric Bundling Disulfide Unit Starship Synergizes More Effectively to Promote Cellular Uptake. Int J Mol Sci 2024; 25:7518. [PMID: 39062760 PMCID: PMC11277142 DOI: 10.3390/ijms25147518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
A small molecule disulfide unit technology platform based on dynamic thiol exchange chemistry at the cell membrane has the potential for drug delivery. However, the alteration of the CSSC dihedral angle of the disulfide unit caused by diverse substituents directly affects the effectiveness of this technology platform as well as its own chemical stability. The highly stable open-loop relaxed type disulfide unit plays a limited role in drug delivery due to its low dihedral angle. Here, we have built a novel disulfide unit starship based on the 3,4,5-trihydroxyphenyl skeleton through trigonometric bundling. The intracellular delivery results showed that the trigonometric bundling of the disulfide unit starship effectively promoted cellular uptake without any toxicity, which is far more than 100 times more active than that of equipment with a single disulfide unit in particular. Then, the significant reduction in cell uptake capacity (73-93%) using thiol erasers proves that the trigonometric bundling of the disulfide starship is an endocytosis-independent internalization mechanism via a dynamic covalent disulfide exchange mediated by thiols on the cell surface. Furthermore, analysis of the molecular dynamics simulations demonstrated that trigonometric bundling of the disulfide starship can significantly change the membrane curvature while pushing lipid molecules in multiple directions, resulting in a significant distortion in the membrane structure and excellent membrane permeation performance. In conclusion, the starship system we built fully compensates for the inefficiency deficiencies induced by poor dihedral angles.
Collapse
Affiliation(s)
- Lei Wang
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China; (D.W.); (W.L.); (T.S.); (B.G.); (H.D.); (Y.L.)
| | - Dezhi Wang
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China; (D.W.); (W.L.); (T.S.); (B.G.); (H.D.); (Y.L.)
| | - Wenzhuo Lei
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China; (D.W.); (W.L.); (T.S.); (B.G.); (H.D.); (Y.L.)
| | - Tiantian Sun
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China; (D.W.); (W.L.); (T.S.); (B.G.); (H.D.); (Y.L.)
| | - Bei Gu
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China; (D.W.); (W.L.); (T.S.); (B.G.); (H.D.); (Y.L.)
| | - Han Dong
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China; (D.W.); (W.L.); (T.S.); (B.G.); (H.D.); (Y.L.)
| | - Yosuke Taniguchi
- School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Yichang Liu
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China; (D.W.); (W.L.); (T.S.); (B.G.); (H.D.); (Y.L.)
| | - Yong Ling
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China; (D.W.); (W.L.); (T.S.); (B.G.); (H.D.); (Y.L.)
| |
Collapse
|
14
|
Zhu X, Shi Z, Mao Y, Lächelt U, Huang R. Cell Membrane Perforation: Patterns, Mechanisms and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310605. [PMID: 38344881 DOI: 10.1002/smll.202310605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Indexed: 02/21/2024]
Abstract
Cell membrane is crucial for the cellular activities, and any disruption to it may affect the cells. It is demonstrated that cell membrane perforation is associated with some biological processes like programmed cell death (PCD) and infection of pathogens. Specific developments make it a promising technique to perforate the cell membrane controllably and precisely. The pores on the cell membrane provide direct pathways for the entry and exit of substances, and can also cause cell death, which means reasonable utilization of cell membrane perforation is able to assist intracellular delivery, eliminate diseased or cancerous cells, and bring about other benefits. This review classifies the patterns of cell membrane perforation based on the mechanisms into 1) physical patterns, 2) biological patterns, and 3) chemical patterns, introduces the characterization methods and then summarizes the functions according to the characteristics of reversible and irreversible pores, with the aim of providing a comprehensive summary of the knowledge related to cell membrane perforation and enlightening broad applications in biomedical science.
Collapse
Affiliation(s)
- Xinran Zhu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Ulrich Lächelt
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, 1090, Austria
| | - Rongqin Huang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
15
|
Saidjalolov S, Coelho F, Mercier V, Moreau D, Matile S. Inclusive Pattern Generation Protocols to Decode Thiol-Mediated Uptake. ACS CENTRAL SCIENCE 2024; 10:1033-1043. [PMID: 38799667 PMCID: PMC11117725 DOI: 10.1021/acscentsci.3c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 05/29/2024]
Abstract
Thiol-mediated uptake (TMU) is an intriguing enigma in current chemistry and biology. While the appearance of cell-penetrating activity upon attachment of cascade exchangers (CAXs) has been observed by many and is increasingly being used in practice, the molecular basis of TMU is essentially unknown. The objective of this study was to develop a general protocol to decode the dynamic covalent networks that presumably account for TMU. Uptake inhibition patterns obtained from the removal of exchange partners by either protein knockdown or alternative inhibitors are aligned with original patterns generated by CAX transporters and inhibitors and patterns from alternative functions (here cell motility). These inclusive TMU patterns reveal that the four most significant CAXs known today enter cells along three almost orthogonal pathways. Epidithiodiketopiperazines (ETP) exchange preferably with integrins and protein disulfide isomerases (PDIs), benzopolysulfanes (BPS) with different PDIs, presumably PDIA3, and asparagusic acid (AspA), and antisense oligonucleotide phosphorothioates (OPS) exchange with the transferrin receptor and can be activated by the removal of PDIs with their respective inhibitors. These findings provide a solid basis to understand and use TMU to enable and prevent entry into cells.
Collapse
Affiliation(s)
| | - Filipe Coelho
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Vincent Mercier
- Department
of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Dimitri Moreau
- Department
of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Stefan Matile
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
16
|
Wu J, Jones N, Hohenwarter L, Zhao F, Chan V, Tan Z, Carlaw T, Morin T, Li J, Kaur T, Andrew LJ, Ross CJD, Hedtrich S, Li SD. Systemic delivery of proteins using novel peptides via the sublingual route. J Control Release 2024; 368:290-302. [PMID: 38423473 DOI: 10.1016/j.jconrel.2024.02.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Therapeutic proteins often require needle-based injections, which compromise medication adherence especially for those with chronic diseases. Sublingual administration provides a simple and non-invasive alternative. Herein, two novel peptides (lipid-conjugated protamine and a protamine dimer) were synthesized to enable sublingual delivery of proteins through simple physical mixing with the payloads. It was found that the novel peptides promoted intracellular delivery of proteins via increased pore formation on the cell surface. Results from in vitro models of cell spheroids and human sublingual tissue substitute indicated that the novel peptides enhanced protein penetration through multiple cell layers compared to protamine. The novel peptides were mixed with insulin or semaglutide and sublingually delivered to mice for blood glucose (BG) control. The effects of these sublingual formulations were comparable to the subcutaneous preparations and superior to protamine. In addition to peptide drugs, the novel peptides were shown to enable sublingual absorption of larger proteins with molecular weights from 22 to 150 kDa in mice, including human recombinant growth hormone (rhGH), bovine serum albumin (BSA) and Immunoglobulin G (IgG). The novel peptides given sublingually did not induce any measurable toxicities in mice.
Collapse
Affiliation(s)
- Jiamin Wu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie Jones
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lukas Hohenwarter
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Feng Zhao
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Vanessa Chan
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zheng Tan
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Tiffany Carlaw
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Tessa Morin
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jing Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Tejinder Kaur
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lucas J Andrew
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Colin J D Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Sarah Hedtrich
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada..
| |
Collapse
|
17
|
Munir A, Ali M, Qari SH, Munawar N, Saleem MS, Ahmad A. CRISPR workflow solutions: Cargos and versatile delivery platforms in genome editing. CRISPRIZED HORTICULTURE CROPS 2024:67-90. [DOI: 10.1016/b978-0-443-13229-2.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Liu X, Zhao Z, Li W, Li Y, Yang Q, Liu N, Chen Y, Yin L. Engineering Nucleotidoproteins for Base-Pairing-Assisted Cytosolic Delivery and Genome Editing. Angew Chem Int Ed Engl 2023; 62:e202307664. [PMID: 37718311 DOI: 10.1002/anie.202307664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Protein therapeutics targeting intracellular machineries hold profound potential for disease treatment, and hence robust cytosolic protein delivery technologies are imperatively demanded. Inspired by the super-negatively charged, nucleotide-enriched structure of nucleic acids, adenylated pro-proteins (A-proteins) with dramatically enhanced negative surface charges have been engineered for the first time via facile green synthesis. Then, thymidine-modified polyethyleneimine is developed, which exhibits strong electrostatic attraction, complementary base pairing, and hydrophobic interaction with A-proteins to form salt-resistant nanocomplexes with robust cytosolic delivery efficiencies. The acidic endolysosomal environment enables traceless restoration of the A-proteins and consequently promotes the intracellular release of the native proteins. This strategy shows high efficiency and universality for a variety of proteins with different molecular weights and isoelectric points in mammalian cells. Moreover, it enables highly efficient delivery of CRISPR-Cas9 ribonucleoproteins targeting fusion oncogene EWSR1-FLI1, leading to pronounced anti-tumor efficacy against Ewing sarcoma. This study provides a potent and versatile platform for cytosolic protein delivery and gene editing, and may benefit the development of protein pharmaceuticals.
Collapse
Affiliation(s)
- Xun Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
- Department of Thoracic Cancer, The Second Affiliated Hospital of Soochow University, 215123, Suzhou, Jiangsu, China
| | - Ziyin Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Wei Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Yajie Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Qiang Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Ningyu Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Yongbing Chen
- Department of Thoracic Cancer, The Second Affiliated Hospital of Soochow University, 215123, Suzhou, Jiangsu, China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| |
Collapse
|
19
|
Omura M, Morimoto K, Araki Y, Hirose H, Kawaguchi Y, Kitayama Y, Goto Y, Harada A, Fujii I, Takatani-Nakase T, Futaki S, Nakase I. Inkjet-Based Intracellular Delivery System that Effectively Utilizes Cell-Penetrating Peptides for Cytosolic Introduction of Biomacromolecules through the Cell Membrane. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47855-47865. [PMID: 37792057 PMCID: PMC10592309 DOI: 10.1021/acsami.3c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/24/2023] [Indexed: 10/05/2023]
Abstract
In the drug delivery system, the cytosolic delivery of biofunctional molecules such as enzymes and genes must achieve sophisticated activities in cells, and microinjection and electroporation systems are typically used as experimental techniques. These methods are highly reliable, and they have high intracellular transduction efficacy. However, a high degree of proficiency is necessary, and induced cytotoxicity is considered as a technical problem. In this research, a new intracellular introduction technology was developed through the cell membrane using an inkjet device and cell-penetrating peptides (CPPs). Using the inkjet system, the droplet volume, droplet velocity, and dropping position can be accurately controlled, and minute samples (up to 30 pL/shot) can be carried out by direct administration. In addition, CPPs, which have excellent cell membrane penetration functions, can deliver high-molecular-weight drugs and nanoparticles that are difficult to penetrate through the cell membrane. By using the inkjet system, the CPPs with biofunctional cargo, including peptides, proteins such as antibodies, and exosomes, could be accurately delivered to cells, and efficient cytosolic transduction was confirmed.
Collapse
Affiliation(s)
- Mika Omura
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Kenta Morimoto
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Yurina Araki
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Department
of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Hisaaki Hirose
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshimasa Kawaguchi
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yukiya Kitayama
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Yuto Goto
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Atsushi Harada
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Ikuo Fujii
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Department
of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Tomoka Takatani-Nakase
- Department
of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, 11-68, Koshien Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
- Institute
for Bioscience, Mukogawa Women’s
University, 11-68, Koshien
Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
| | - Shiroh Futaki
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Ikuhiko Nakase
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Department
of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| |
Collapse
|
20
|
Graceffa V. Intracellular protein delivery: New insights into the therapeutic applications and emerging technologies. Biochimie 2023; 213:82-99. [PMID: 37209808 DOI: 10.1016/j.biochi.2023.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
The inability to cross the plasma membranes traditionally limited the therapeutic use of recombinant proteins. However, in the last two decades, novel technologies made delivering proteins inside the cells possible. This allowed researchers to unlock intracellular targets, once considered 'undruggable', bringing a new research area to emerge. Protein transfection systems display a large potential in a plethora of applications. However, their modality of action is often unclear, and cytotoxic effects are elevated, whereas experimental conditions to increase transfection efficacy and cell viability still need to be identified. Furthermore, technical complexity often limits in vivo experimentation, while challenging industrial and clinical translation. This review highlights the applications of protein transfection technologies, and then critically discuss the current methodologies and their limitations. Physical membrane perforation systems are compared to systems exploiting cellular endocytosis. Research evidence of the existence of either extracellular vesicles (EVs) or cell-penetrating peptides (CPPs)- based systems, that circumvent the endosomal systems is critically analysed. Commercial systems, novel solid-phase reverse protein transfection systems, and engineered living intracellular bacteria-based mechanisms are finally described. This review ultimately aims at finding new methodologies and possible applications of protein transfection systems, while helping the development of an evidence-based research approach.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University (ATU), Sligo, Ireland.
| |
Collapse
|
21
|
Wang C, Wang S, Kang DD, Dong Y. Biomaterials for in situ cell therapy. BMEMAT 2023; 1:e12039. [PMID: 39574564 PMCID: PMC11581612 DOI: 10.1002/bmm2.12039] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 11/24/2024]
Abstract
Cell therapy has revolutionized the treatment of various diseases, such as cancers, genetic disorders, and autoimmune diseases. Currently, most cell therapy products rely on ex vivo cell engineering, which requires sophisticated manufacturing processes and poses safety concerns. The implementation of in situ cell therapy holds the potential to overcome the current limitations of cell therapy and provides a broad range of applications and clinical feasibility in the future. A variety of biomaterials have been developed to improve the function and target delivery to specific cell types due to their excellent biocompatibility, tunable properties, and other functionalities, which provide a reliable method to achieve in vivo modulation of cell reprogramming. In this article, we summarize recent advances in biomaterials for in situ cell therapy including T cells, macrophages, dendritic cells, and stem cells reprogramming leveraging lipid nanoparticles, polymers, inorganic materials, and other biomaterials. Finally, we discuss the current challenges and future perspectives of biomaterials for in situ cell therapy.
Collapse
Affiliation(s)
- Chang Wang
- Department of Oncological Sciences, Icahn Genomics Institute, Precision Immunology Institute, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Siyu Wang
- Department of Oncological Sciences, Icahn Genomics Institute, Precision Immunology Institute, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Diana D. Kang
- Department of Oncological Sciences, Icahn Genomics Institute, Precision Immunology Institute, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Yizhou Dong
- Department of Oncological Sciences, Icahn Genomics Institute, Precision Immunology Institute, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
22
|
Wen Z, Liu C, Teng Z, Jin Q, Liao Z, Zhu X, Huo S. Ultrasound meets the cell membrane: for enhanced endocytosis and drug delivery. NANOSCALE 2023; 15:13532-13545. [PMID: 37548587 DOI: 10.1039/d3nr02562d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Endocytosis plays a crucial role in drug delivery for precision therapy. As a non-invasive and spatiotemporal-controllable stimulus, ultrasound (US) has been utilized for improving drug delivery efficiency due to its ability to enhance cell membrane permeability. When US meets the cell membrane, the well-known cavitation effect generated by US can cause various biophysical effects, facilitating the delivery of various cargoes, especially nanocarriers. The comprehension of recent progress in the biophysical mechanism governing the interaction between ultrasound and cell membranes holds significant implications for the broader scientific community, particularly in drug delivery and nanomedicine. This review will summarize the latest research results on the biological effects and mechanisms of US-enhanced cellular endocytosis. Moreover, the latest achievements in US-related biomedical applications will be discussed. Finally, challenges and opportunities of US-enhanced endocytosis for biomedical applications will be provided.
Collapse
Affiliation(s)
- Zihao Wen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zihao Teng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Quanyi Jin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zhihuan Liao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
23
|
Fu Y, Jang MS, Liu C, Li Y, Lee JH, Yang HY. Oxygen-Generating Organic/Inorganic Self-Assembled Nanocolloids for Tumor-Activated Dual-Model Imaging-Guided Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37478563 DOI: 10.1021/acsami.3c07008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Tumor phototheranostics is usually compromised by the hypoxic tumor microenvironment and poor theranostic efficiency. The interplay between organic polymers and inorganic nanoparticles in novel nanocomposites has proven to be advantageous, overcoming previous limitations and harnessing their full potential through activation via the tumor microenvironment. This study successfully fabricated hypoxia-activated nanocolloids called HOISNDs through a process of self-assembly involving superparamagnetic iron oxide nanoparticles (SPIONs) and an organic polymer ligand called tetrakis(4-carboxyphenyl) porphyrin (TCPP)-engineered organic polymer ligand [methoxy poly(ethyleneglycol)-block-poly(dopamine-ethylenediamine-conjugated-4-nitrobenzyl chloroformate)-l-glutamate, mPEG-b-P(Dopa-EDA-co-NBCF)LG-TCPP)]. The SPIONs act as an oxygen generator to overcome the challenges posed by hypoxic tumors and enable the use of hypoxic-activatable MR/fluorescence dual-modal imaging-guided photodynamic therapy (PDT). The colloid stability of these HOISNDs proved to be exceptional in diverse biomimetic environments. Furthermore, they not only augment T2-weighted contrast capability as an MRI contrast agent but also function as an oxygen-producing device to amplify the generation and release of reactive oxygen species (ROS). The HOISNDs can significantly target to tumor sites through the enhanced permeability and retention (EPR) effect with prolonged blood circulation time and subsequently are effectively endocytosed into a hypoxic intracellular environment that "turn on" the imaging function and photodynamic activity. Moreover, HOISNDs possess the ability to effectively decompose naturally occurring H2O2 into oxygen (O2) within the tumor utilizing the Fenton reaction. This method can mitigate the impact of hypoxia on oxygen-dependent PDT. The outcomes of in vivo diagnostic and therapeutic evaluations indicated that HOISNDs are a highly promising tool for dual-model imaging-guided cancer theranosis by ameliorating hypoxic conditions and augmenting PDT efficiency.
Collapse
Affiliation(s)
- Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University, School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, The Republic of Korea
| | - Changling Liu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Yi Li
- College of Materials and Textile Engineering & Nanotechnology Research Institute (NRI), Jiaxing University, Jiaxing City 314001, Zhejiang Province, PR China
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University, School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, The Republic of Korea
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| |
Collapse
|
24
|
He X, Qu Y, Xiong S, Jiang Z, Tang Y, Yan F, Deng Y, Sun Y. Functional L-Arginine Derivative as an Efficient Vector for Intracellular Protein Delivery for Potential Cancer Therapy. J Funct Biomater 2023; 14:301. [PMID: 37367265 DOI: 10.3390/jfb14060301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
The utilization of cytosolic protein delivery is a promising approach for treating various diseases by replacing dysfunctional proteins. Despite the development of various nanoparticle-based intracellular protein delivery methods, the complicated chemical synthesis of the vector, loading efficiency and endosomal escape efficiency of proteins remain a great challenge. Recently, 9-fluorenylmethyloxycarbonyl (Fmoc)-modified amino acid derivatives have been used to self-assemble into supramolecular nanomaterials for drug delivery. However, the instability of the Fmoc group in aqueous medium restricts its application. To address this issue, the Fmoc ligand neighboring arginine was substituted for dibenzocyclooctyne (DBCO) with a similar structure to Fmoc to obtain stable DBCO-functionalized L-arginine derivative (DR). Azide-modified triethylamine (crosslinker C) was combined with DR to construct self-assembled DRC via a click chemical reaction for delivering various proteins, such as BSA and saporin (SA), into the cytosol of cells. The hyaluronic-acid-coated DRC/SA was able to not only shield the cationic toxicity, but also enhance the intracellular delivery efficiency of proteins by targeting CD44 overexpression on the cell membrane. The DRC/SA/HA exhibited higher growth inhibition efficiency and lower IC50 compared to DRC/SA toward various cancer cell lines. In conclusion, DBCO-functionalized L-arginine derivative represents an excellent potential vector for protein-based cancer therapy.
Collapse
Affiliation(s)
- Xiao He
- Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yannv Qu
- Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Su Xiong
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Zhiru Jiang
- Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yaqin Tang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanfei Deng
- Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yansun Sun
- Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
25
|
Porello I, Cellesi F. Intracellular delivery of therapeutic proteins. New advancements and future directions. Front Bioeng Biotechnol 2023; 11:1211798. [PMID: 37304137 PMCID: PMC10247999 DOI: 10.3389/fbioe.2023.1211798] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Achieving the full potential of therapeutic proteins to access and target intracellular receptors will have enormous benefits in advancing human health and fighting disease. Existing strategies for intracellular protein delivery, such as chemical modification and nanocarrier-based protein delivery approaches, have shown promise but with limited efficiency and safety concerns. The development of more effective and versatile delivery tools is crucial for the safe and effective use of protein drugs. Nanosystems that can trigger endocytosis and endosomal disruption, or directly deliver proteins into the cytosol, are essential for successful therapeutic effects. This article aims to provide a brief overview of the current methods for intracellular protein delivery to mammalian cells, highlighting current challenges, new developments, and future research opportunities.
Collapse
|
26
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
27
|
Ding R, Zhao Z, He J, Tao Y, Zhang H, Yuan R, Sun K, Shi Y. Preparation, Drug Distribution, and In Vivo Evaluation of the Safety of Protein Corona Liposomes for Liraglutide Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13030540. [PMID: 36770503 PMCID: PMC9920406 DOI: 10.3390/nano13030540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 05/13/2023]
Abstract
The development of oral drug delivery systems is challenging, and issues related to the mucus layer and low intestinal epithelial permeability have not yet been surmounted. The purpose of this study was to develop a promising formulation that is more adapted to in vivo absorption and to facilitate the administration of oral liraglutide. Cationic liposomes (CLs) linked to AT-1002 were prepared using a double-emulsion method, and BSA was adsorbed on the surface of the AT-CLs, resulting in protein corona cationic liposomes with AT-1002 (Pc-AT-CLs). The preparation method was determined by investigating various process parameters. The particle size, potential, and encapsulation efficiency (EE%) of the Pc-AT-CLs were 202.9 ± 12.4 nm, 1.76 ± 4.87 mV, and 84.63 ± 5.05%, respectively. The transmission electron microscopy (TEM) imaging revealed a nearly spherical structure of the Pc-AT-CLs, with a recognizable coating. The circular dichroism experiments confirmed that the complex preparation process did not affect the secondary structure of liraglutide. With the addition of BSA and AT-1002, the mucosal accumulation of the Pc-AT-CLs was nearly two times lower than that of the AT-CLs, and the degree of enteric metaplasia was 1.35 times higher than that of the PcCLs. The duration of the intestinal absorption of the Pc-AT-CLs was longer, offering remarkable biological safety.
Collapse
Affiliation(s)
- Ruihuan Ding
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 261400, China
| | - Zhenyu Zhao
- School of Life Science, Yantai University, Yantai 261400, China
| | - Jibiao He
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 261400, China
| | - Yuping Tao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 261400, China
| | - Houqian Zhang
- School of Life Science, Yantai University, Yantai 261400, China
| | - Ranran Yuan
- School of Life Science, Yantai University, Yantai 261400, China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 261400, China
- Correspondence: (K.S.); (Y.S.)
| | - Yanan Shi
- School of Life Science, Yantai University, Yantai 261400, China
- Correspondence: (K.S.); (Y.S.)
| |
Collapse
|
28
|
Zhang T, Zhou M, Xiao D, Liu Z, Jiang Y, Feng M, Lin Y, Cai X. Myelosuppression Alleviation and Hematopoietic Regeneration by Tetrahedral-Framework Nucleic-Acid Nanostructures Functionalized with Osteogenic Growth Peptide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202058. [PMID: 35882625 PMCID: PMC9507378 DOI: 10.1002/advs.202202058] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/12/2022] [Indexed: 02/06/2023]
Abstract
As major complications of chemoradiotherapy, myelosuppression and hematopoietic-system damage severely affect immunologic function and can delay or even terminate treatment for cancer patients. Although several specific cytokines have been used for hematopoiesis recovery, their effect is limited, and they may increase the risk of tumor recurrence. In this study, osteogenic growth peptide functionalized tetrahedral framework nucleic-acid nanostructures (OGP-tFNAs) are prepared; they combine the positive hematopoiesis stimulating effect of OGP and the drug carrying function of tFNAs. The potential of OGP-tFNAs for hematopoietic stimulation and microenvironment regulation is investigated. It is shown that OGP-tFNAs can protect bone marrow stromal cells from 5-fluorouracil (5-FU)-induced DNA damage and apoptosis. OGP-tFNAs pretreatment activates the extracellularly regulated protein kinase signal and downregulates apoptosis-related proteins. OGP-tFNAs also alleviate the chemotherapy-induced inhibition of hematopoiesis-related cytokine expression, which is crucial for hematopoiesis reconstitution. In conclusion, OGP-tFNAs can protect hematopoietic cells and their microenvironment from chemotherapy-induced injuries and myelosuppression, while promoting hematopoiesis regeneration.
Collapse
Affiliation(s)
- Tianxu Zhang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Mi Zhou
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Dexuan Xiao
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Yueying Jiang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Maogeng Feng
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatology Hospital of Southwest Medical UniversityLuzhou646000P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| |
Collapse
|