1
|
Mehrotra S, Kaur N, Kaur S, Matharoo K, Pandey RK. From antibodies to nanobodies: The next frontier in cancer theranostics for solid tumors. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 144:287-329. [PMID: 39978969 DOI: 10.1016/bs.apcsb.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The field of cancer therapeutics has witnessed significant advancements over the past decades, particularly with the emergence of immunotherapy. This chapter traces the transformative journey from traditional antibody-based therapies to the innovative use of nanobodies in the treatment and diagnosis of solid tumors. Nanobodies are the smallest fragments of antibodies derived from camelid immunoglobulins and have redefined the possibilities in cancer theranostics due to their unique structural and functional properties. We provide an overview of the biochemical characteristics of nanobodies that make them particularly suitable for theranostic applications, such as their small size, high stability, enhanced infiltration into the complex tumor microenvironment (TME) and ability to bind with high affinity to epitopes that are inaccessible to conventional antibodies. Further, their ease of modification and functionalization has enabled the development of nanobody-based drug conjugates/toxins and radiolabeled compounds for precise imaging and targeted radiotherapy. We elucidate how nanobodies are being served as valuable tools for prognostic assessment, enabling clinicians to predict disease aggressiveness, monitor treatment response, and stratify patients for personalized therapeutic interventions.
Collapse
Affiliation(s)
- Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Navdeep Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kawaljit Matharoo
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | | |
Collapse
|
2
|
Li Q, Kong Y, Zhong Y, Huang A, Ying T, Wu Y. Half-life extension of single-domain antibody-drug conjugates by albumin binding moiety enhances antitumor efficacy. MedComm (Beijing) 2024; 5:e557. [PMID: 38737471 PMCID: PMC11082534 DOI: 10.1002/mco2.557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 05/14/2024] Open
Abstract
Single-domain antibody-drug conjugates (sdADCs) have been proven to have deeper solid tumor penetration and intratumor accumulation capabilities due to their smaller size compared with traditional IgG format ADCs. However, one of the key challenges for improving clinical outcomes of sdADCs is their abbreviated in vivo half-life. In this study, we innovatively fused an antihuman serum albumin (αHSA) nanobody to a sdADCs targeting oncofetal antigen 5T4, conferring serum albumin binding to enhance the pharmacokinetic profiles of sdADCs. The fusion protein was conjugated with monomethyl auristatin E (MMAE) at s224c site mutation. The conjugate exhibited potent cytotoxicity against various tumor cells. Compared with the nonalbumin-binding counterparts, the conjugate exhibited a 10-fold extended half-life in wild-type mice and fivefold prolonged serum half-life in BxPC-3 xenograft tumor models as well as enhanced tumor accumulation and retention in mice. Consequently, n501-αHSA-MMAE showed potent antitumor effects, which were comparable to n501-MMAE in pancreatic cancer BxPC-3 xenograft tumor models; however, in human ovarian teratoma PA-1 xenograft tumor models, n501-αHSA-MMAE significantly improved antitumor efficacy. Moreover, the conjugate showed mitigated hepatotoxicity. In summary, our results suggested that fusion to albumin-binding moiety as a viable strategy can enhance the therapeutic potential of sdADCs through optimized pharmacokinetics.
Collapse
Affiliation(s)
- Quanxiao Li
- MOE/NHC/CAMS Key Laboratory of Medical Molecular VirologyShanghai Institute of Infectious Disease and BiosecurityShanghai Frontiers Science Center of Pathogenic Microorganisms and InfectionShanghai Engineering Research Center for Synthetic ImmunologyDepartment of medical microbiology and parasitology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Yu Kong
- MOE/NHC/CAMS Key Laboratory of Medical Molecular VirologyShanghai Institute of Infectious Disease and BiosecurityShanghai Frontiers Science Center of Pathogenic Microorganisms and InfectionShanghai Engineering Research Center for Synthetic ImmunologyDepartment of medical microbiology and parasitology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Yuxuan Zhong
- MOE/NHC/CAMS Key Laboratory of Medical Molecular VirologyShanghai Institute of Infectious Disease and BiosecurityShanghai Frontiers Science Center of Pathogenic Microorganisms and InfectionShanghai Engineering Research Center for Synthetic ImmunologyDepartment of medical microbiology and parasitology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Ailing Huang
- College of Life SciencesHebei Agricultural UniversityBaodingChina
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular VirologyShanghai Institute of Infectious Disease and BiosecurityShanghai Frontiers Science Center of Pathogenic Microorganisms and InfectionShanghai Engineering Research Center for Synthetic ImmunologyDepartment of medical microbiology and parasitology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Yanling Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular VirologyShanghai Institute of Infectious Disease and BiosecurityShanghai Frontiers Science Center of Pathogenic Microorganisms and InfectionShanghai Engineering Research Center for Synthetic ImmunologyDepartment of medical microbiology and parasitology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
3
|
Zhang Q, Zhang N, Xiao H, Wang C, He L. Small Antibodies with Big Applications: Nanobody-Based Cancer Diagnostics and Therapeutics. Cancers (Basel) 2023; 15:5639. [PMID: 38067344 PMCID: PMC10705070 DOI: 10.3390/cancers15235639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 02/13/2025] Open
Abstract
Monoclonal antibodies (mAbs) have exhibited substantial potential as targeted therapeutics in cancer treatment due to their precise antigen-binding specificity. Despite their success in tumor-targeted therapies, their effectiveness is hindered by their large size and limited tissue permeability. Camelid-derived single-domain antibodies, also known as nanobodies, represent the smallest naturally occurring antibody fragments. Nanobodies offer distinct advantages over traditional mAbs, including their smaller size, high stability, lower manufacturing costs, and deeper tissue penetration capabilities. They have demonstrated significant roles as both diagnostic and therapeutic tools in cancer research and are also considered as the next generation of antibody drugs. In this review, our objective is to provide readers with insights into the development and various applications of nanobodies in the field of cancer treatment, along with an exploration of the challenges and strategies for their prospective clinical trials.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| | - Nan Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China;
| | - Han Xiao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730030, China;
| | - Chen Wang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| | - Lian He
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| |
Collapse
|
4
|
Wang Y, Nan J, Ma H, Xu J, Guo F, Wang Y, Liang Y, Zhang J, Zhu S. NIR-II Imaging and Sandwiched Plasmonic Biosensor for Ultrasensitive Intraoperative Definition of Tumor-Invaded Lymph Nodes. NANO LETTERS 2023; 23:4039-4048. [PMID: 37071592 PMCID: PMC10176571 DOI: 10.1021/acs.nanolett.3c00829] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Radical lymphadenectomy remains the cornerstone of preventing tumor metastasis through the lymphatic system. Current surgical resection of lymph nodes (LNs) based on fluorescence-guided surgery (FGS) suffers from low sensitivity/selectivity with only qualitative information, hampering accurate intraoperative decision-making. Herein, we develop a modularized theranostic system including NIR-II FGS and a sandwiched plasmonic chip (SPC). Intraoperative NIR-II FGS and detection of tumor-positive lymph nodes were performed on the gastric tumor to determine the feasibility of the modularized theranostic system in defining LN metastasis. Under the NIR-II imaging window, the orthotopic tumor and sentinel lymph nodes (SLNs) were successfully excised without ambient light interference in the operating room. Importantly, the SPC biosensor achieved 100% sensitivity and 100% specificity for tumor markers and realized rapid and high-throughput intraoperative SLN detection. We propose the synergetic design of combining the NIR-II FGS and suitable biosensor will substantially improve the efficiency of cancer diagnosis and therapy follow-up.
Collapse
Affiliation(s)
- Yajun Wang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Jingjie Nan
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Huilong Ma
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Jiajun Xu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
| | - Feifei Guo
- Cancer Institute, First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
| | - Yufeng Wang
- Cancer Institute, First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
| | - Yongye Liang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Junhu Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
5
|
Yibing S, Minna T, Sidi Z, Chenchen H, Cheng L, Quanxiao L, Keke H, Wenping S, Zhixing L, Wenshu L, Zhenlin Y, Yanling W, Fuyou L, Jialu H, Tianlei Y. First Nerve-Related Immunoprobe for Guidance of Renal Denervation through Colocalization of NIR-II and Photoacoustic Bioimaging. Adv Healthc Mater 2022; 11:e2201212. [PMID: 36047614 DOI: 10.1002/adhm.202201212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/06/2022] [Indexed: 01/28/2023]
Abstract
Nerve-related fluorophores generally locate in the visible or near-infrared region with shallow penetration depth and easy uptake by surrounding tissues. Prolonging the optical window promotes resolution by minimizing photoscattering and eliminating autofluorescence for NIR-II (second near infrared; 1000-1700 nm) and photoacoustic bioimaging. In addition, combination of the two could help in colocalization of targets at the 3D level. Catheter-based renal sympathetic denervation (RDN), an alternative treatment recently finishing its clinical evaluation for treating resistant hypertension, is highly dependent on experience and in urgent demand for in vivo guidance in locating the nerve over the renal artery. Here, an NIR-II and photoacoustic bioimaging system based on a dye-modified anti-tyrosine-hydroxylase antibody (TH-ICGM) to illustrate the peritoneal sympathetic nerve-related region are combined. With high resolution (0.15 mm) in NIR-II region for both absorbance (λex = 925 nm) and fluorescence (bioimaging in λem ≥ 1300 nm), TH-ICGM succeeds in providing 3D coordinates of procedure position with a precision in 0.1 mm. As the first nerve-related NIR-II immunoprobe, TH-ICGM has great clinical potential as assistance for nerve-related interventions.
Collapse
Affiliation(s)
- Shi Yibing
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Tang Minna
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhang Sidi
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Hu Chenchen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 200032, China
| | - Li Cheng
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Li Quanxiao
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Huang Keke
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Song Wenping
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Li Zhixing
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li Wenshu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yang Zhenlin
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wu Yanling
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Li Fuyou
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Hu Jialu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ying Tianlei
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|