1
|
Yang W, Li X, Lei J, Jiang S, Sun J, Liu Q, Zhang R, Zheng C, Guo X, Wei Y. Targeted Anti-Inflammatory Nanozymes with Pro-Angiogenic Activity for Myocardial Infarction Therapy. Adv Healthc Mater 2025:e2404979. [PMID: 40304163 DOI: 10.1002/adhm.202404979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/02/2025] [Indexed: 05/02/2025]
Abstract
Myocardial infarction (MI) poses a significant threat to human health. Current treatments emphasize early revascularization to restore blood supply to the myocardium, often overlooking the extensive oxidative damage and autophagy dysfunction resulting from reactive oxygen species (ROS) release after MI. Therefore, timely and effective interventions to clear ROS in the early stages of MI are crucial for inhibiting the MI pathological progression and restoring cardiac function. This study constructed a ROS-responsive biomimetic nanoparticle (PNP@Nb2C-MSN) by integrating niobium carbide MXenes (Nb2C) onto mesoporous silica nanoparticle (MSN) coated with platelet membrane. During the MI acute phase, these nanoparticles are targeted and delivered to the infarcted heart via intravenous injection. The MSN mesoporous structure enhances the ROS scavenging capacity of Nb2C, eliminating excess ROS in the infarct region and inhibiting the oxidative stress progression. Silicon ions released from MSN further promote angiogenesis within the infarct region. PNP@Nb2C-MSN reduces inflammation by downregulating the NF-κB pathway and enhances autophagy by activating the AMPK pathway, thereby blocking pathological microenvironmental progression after MI and improving cardiac function. In vitro and in vivo results highlight the therapeutic potential of PNP@Nb2C-MSN in MI, offering a promising MI treatment strategy.
Collapse
Affiliation(s)
- Wenling Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, 430022, China
| | - Xuelian Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, 430022, China
| | - Jie Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
- Department of Spine Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Shijiu Jiang
- Department of Cardiology, The First Affiliated Hospital, Shihezi University, Shihezi, 832002, China
| | - Jinpeng Sun
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, 430022, China
| | - Qingyi Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, 430022, China
| | - Ruiyu Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, 430022, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, 430022, China
| |
Collapse
|
2
|
Zheng DF, Zha XJ, Jiang EL, Qiu Y, Yang W, Xiao WD. Trojan Horse-Like Biohybrid Nanozyme for Ameliorating Liver Ischemia-Reperfusion Injury. Adv Healthc Mater 2025; 14:e2404458. [PMID: 39828639 DOI: 10.1002/adhm.202404458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Liver ischemia and reperfusion (I/R) injury is a reactive oxygen species (ROS)-related disease that occurs during liver transplantation and resection and hinders postoperative liver function recovery. Current approaches to alleviate liver I/R injury have limited effectiveness due to the short circulation time, poor solubility, and severe side effects of conventional antioxidants and anti-inflammatory drugs. Herein, a universal strategy is proposed to fabricate a Trojan horse-like biohybrid nanozyme (THBN) with hepatic-targeting capabilities. Tannic acid (TA) mediates adeno-associated virus (AAV8) decoration onto 2D Ti3C2 nanosheets, resulting in THBN with a size of 116.2 ± 9.5 nm. Remarkably, THBN exhibits catalase (CAT)-like activity, broad-spectrum ROS scavenging activity and targeted delivery to liver tissue owing to the presence of AAV8. Both in vivo and in vitro experiments confirmed the efficacy of THBN in attenuating liver I/R injury by mitigating inflammation and oxidative stress and inhibiting hepatocellular apoptosis. RNA-seq analysis suggests that THBN may alleviate liver I/R injury by activating the PKC pathway. The effective targeting and therapeutic capabilities of THBN represent an advancement in nanotherapeutics for hepatic ischemia‒reperfusion injury, shedding light on the promising potential of this next-generation nanotherapeutic approach.
Collapse
Affiliation(s)
- Dao-Feng Zheng
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xiang-Jun Zha
- Department of Ultrasound, Medical Research Center, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, 610031, China
| | - En-Lai Jiang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Wei-Dong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| |
Collapse
|
3
|
Gayathri VG, Richard B, Chacko JT, Bayry J, Rasheed PA. Non-Ti MXenes: new biocompatible and biodegradable candidates for biomedical applications. J Mater Chem B 2025; 13:1212-1228. [PMID: 39688533 DOI: 10.1039/d4tb01904k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
MXenes are a class of two-dimensional nanomaterials with the general formula Mn+1XnTx, where M denotes a transition metal, X denotes either carbon or nitrogen and Tx refers to surface terminations, such as -OH, -O, -F or -Cl. The unique properties of MXenes, including their tunable surface chemistry and high surface area-to-volume ratio, make them promising candidates for various biomedical applications, such as targeted drug delivery, photothermal therapy and so on. Among the family of MXenes, titanium (Ti)-based MXenes, especially Ti3C2Tx, have been extensively explored for biomedical applications. However, despite their potential, Ti-based MXenes have shown some limitations, such as low biocompatibility. Recent studies have also indicated that Ti MXenes may disrupt spermatogenesis and accumulate in the uterus. Non-Ti MXenes are emerging as promising alternatives to Ti-based MXenes due to their superior biodegradability and enhanced biocompatibility. Recently, non-Ti MXenes have been explored for a range of biomedical applications, including drug delivery, photothermal therapy, chemodynamic therapy and sonodynamic therapy. In addition, some non-Ti MXenes exhibit enzyme-mimicking activity, such as superoxide dismutase and peroxidase-like functions, which play a major role in scavenging reactive oxygen species (ROS). This review discusses the properties of non-Ti MXenes, such as biocompatibility, biodegradability, antibacterial activity, and neuroprotective effects, highlighting their potential in various biomedical applications. These properties can be leveraged to mitigate oxidative stress and develop safe and innovative strategies for managing chronic diseases. This review provides a comprehensive analysis of the various biomedical applications of non-Ti MXenes, including their use in drug delivery and combinatorial therapies and as nanozymes for sensing and therapeutic purposes. The theranostic applications of non-Ti MXenes are also discussed. Finally, the antibacterial properties of non-Ti MXenes and the proposed mechanisms are discussed. The review concludes with a summary of the key findings and future perspectives. In short, this review provides a thorough analysis of the biomedical applications of non-Ti MXenes, emphasizing their unique properties, potential opportunities and challenges in the field.
Collapse
Affiliation(s)
- Vijayakumar G Gayathri
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678 557, India.
| | - Bartholomew Richard
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678 557, India
| | - Jithin Thomas Chacko
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678 557, India
| | - Jagadeesh Bayry
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678 557, India.
| | - P Abdul Rasheed
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678 557, India.
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678 557, India
| |
Collapse
|
4
|
Yan X, Li X, Yu P, Wang L, Zhao Q. Nanozymes as Antibacterial Agents: New Concerns in Design and Enhancement Strategies. Chembiochem 2025; 26:e202400677. [PMID: 39432556 DOI: 10.1002/cbic.202400677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Nanozymes exhibiting natural enzyme-mimicking catalytic activities as antibacterial agents present several advantages, including high stability, low cost, broad-spectrum antibacterial activity, ease of preparation and storage, and minimal bacterial resistance. Consequently, they have attracted significant attention in recent years. However, the rapid expansion of antimicrobial nanozyme research has resulted in pioneering reviews that do not comprehensively address emerging concerns and enhancement strategies within this field. This paper first summarizes the factors influencing the intrinsic activity of nanozymes; subsequently, we outline new research considerations for designing antibacterial nanozymes with enhanced functionality and biosafety features such as degradable, imageable, targeted, and bacterial-binding nanozymes as well as those capable of selectively targeting pathogenic bacteria while sparing normal cells and probiotics. Furthermore, we review novel enhancement strategies involving external physical stimuli (light or ultrasound), the introduction of extrinsic small molecules, and self-supplying H2O2 to enhance the activity of antibacterial nanozymes under physiological conditions characterized by low concentrations of H2O2 and O2. Additionally, we present non-redox nanozymes that operate independently of highly toxic reactive oxygen species (ROS) alongside those designed to combat less common pathogenic bacteria. Finally, we discuss current issues, challenges faced in the field, and future prospects for antibacterial nanozymes.
Collapse
Affiliation(s)
- Xianhang Yan
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiaoqiang Li
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Pengtian Yu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lijun Wang
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Qingwei Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou, 310003, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Hangzhou, 310003, China
| |
Collapse
|
5
|
Ge X, Hu J, Qi X, Shi Y, Chen X, Xiang Y, Xu H, Li Y, Zhang Y, Shen J, Deng H. An Immunomodulatory Hydrogel Featuring Antibacterial and Reactive Oxygen Species Scavenging Properties for Treating Periodontitis in Diabetes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412240. [PMID: 39610168 DOI: 10.1002/adma.202412240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/01/2024] [Indexed: 11/30/2024]
Abstract
Periodontal disease is a multifactorial, bacterially induced inflammatory disorder characterized by progressive destruction of periodontal tissues. Additionally, diabetes mellitus exacerbates periodontitis, resulting in expedited resorption of periodontal bone. However, methods such as mechanical debridement, anti-inflammatory medications, and surgical approaches often fail to eradicate local infections and inflammation, complicating the reconstruction of periodontal tissue structures. Consequently, there is an urgent need to devise a novel strategy for managing diabetic periodontal conditions. Here, a multifunctional controlled-release drug delivery system (GOE1) is developed by encapsulating self-assembled nanoparticles (consisting of chlorhexidine acetate and epigallocatechin-3-gallate) into a hydrogel matrix composed of gelatin methacryloyl and oxidized hyaluronic acid. In vitro experiments demonstrate that the GOE1 hydrogel possesses good antimicrobial, antioxidant and anti-inflammatory properties, and transgenic sequence genomics further illustrates that IL-17-producing RAW 264.7 macrophages are critical for mediating M1/M2 macrophage transition and provide favorable immune microenvironment. In addition, in vivo experiments reveal that GOE1 significantly ameliorates periodontal tissue inflammation and reduces the loss of alveolar bone by reducing inflammatory infiltration and collagen destruction. Overall, the GOE1 hydrogel offers a promising therapeutic option for managing diabetic periodontitis.
Collapse
Affiliation(s)
- Xinxin Ge
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jiajun Hu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiaoliang Qi
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yizuo Shi
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiaojing Chen
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yajing Xiang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Hangbin Xu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ying Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yi Zhang
- Department of Burn and Plastic Surgery, Department of Wound Repair Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Hui Deng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
6
|
Koyappayil A, Chavan SG, Lee MH. MXenes in photothermal cancer therapy: applications and advances. NANOPHOTOTHERAPY 2025:283-298. [DOI: 10.1016/b978-0-443-13937-6.00006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Li K, Wang S, Chen C, Xie Y, Dai X, Chen Y. Sonocatalytic biomaterials. Coord Chem Rev 2025; 522:216242. [DOI: 10.1016/j.ccr.2024.216242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Song Z, Wang L, Chen L, Chen Y. 2D MXene Biomaterials for Catalytic Medical Applications. ChemMedChem 2024; 19:e202400329. [PMID: 38981670 DOI: 10.1002/cmdc.202400329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/11/2024]
Abstract
In recent years, two-dimensional transition metal carbides, nitrides, and carbonitrides, termed as MXenes, have been widely applied in energy storage, photocatalysis and biomedicine owing to their unique physicochemical properties of large specific surface area, high electrical conductivity, excellent optical performance, good stability, etc. Moreover, due to their strong light absorption capacity in the first and second near-infrared bio-window, and their ability of being simply functionalized with multiple organic/inorganic materials, MXene biomaterials have shown great potential in the field of catalytic therapy. This review will summarize the common catalytic mechanism of MXene biomaterials and their latest applications in catalytic medicine such as tumor therapy, antibacterial and anti-inflammatory, and present the current challenges and opportunities in clinical translation for future development to promote the advancement of MXene biomaterials in the field of catalytic medicine.
Collapse
Affiliation(s)
- Ziying Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Lin Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
9
|
Zhang M, Sun D, Huang H, Yang D, Song X, Feng W, Jing X, Chen Y. Nanosonosensitizer Optimization for Enhanced Sonodynamic Disease Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409663. [PMID: 39308222 DOI: 10.1002/adma.202409663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/16/2024] [Indexed: 11/16/2024]
Abstract
Low-intensity ultrasound-mediated sonodynamic therapy (SDT), which, by design, integrates sonosensitizers and molecular oxygen to generate therapeutic substances (e.g., toxic hydroxyl radicals, superoxide anions, or singlet oxygen) at disease sites, has shown enormous potential for the effective treatment of a variety of diseases. Nanoscale sonosensitizers play a crucial role in the SDT process because their structural, compositional, physicochemical, and biological characteristics are key determinants of therapeutic efficacy. In particular, advances in materials science and nanotechnology have invigorated a series of optimization strategies for augmenting the therapeutic efficacy of nanosonosensitizers. This comprehensive review systematically summarizes, discusses, and highlights state-of-the-art studies on the current achievements of nanosonosensitizer optimization in enhanced sonodynamic disease treatment, with an emphasis on the general design principles of nanosonosensitizers and their optimization strategies, mainly including organic and inorganic nanosonosensitizers. Additionally, recent advancements in optimized nanosonosensitizers for therapeutic applications aimed at treating various diseases, such as cancer, bacterial infections, atherosclerosis, and autoimmune diseases, are clarified in detail. Furthermore, the biological effects of the improved nanosonosensitizers for versatile SDT applications are thoroughly discussed. The review concludes by highlighting the current challenges and future opportunities in this rapidly evolving research field to expedite its practical clinical translation and application.
Collapse
Affiliation(s)
- Min Zhang
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Dandan Sun
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Hui Huang
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Dayan Yang
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Xinran Song
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xiangxiang Jing
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Yu Chen
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, 325088, P. R. China
- Shanghai Institute of Materdicine, Shanghai, 200051, P. R. China
| |
Collapse
|
10
|
Bian Y, Zhao K, Hu T, Tan C, Liang R, Weng X. A Se Nanoparticle/MgFe-LDH Composite Nanosheet as a Multifunctional Platform for Osteosarcoma Eradication, Antibacterial and Bone Reconstruction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403791. [PMID: 38958509 PMCID: PMC11434235 DOI: 10.1002/advs.202403791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Despite advances in treating osteosarcoma, postoperative tumor recurrence, periprosthetic infection, and critical bone defects remain critical concerns. Herein, the growth of selenium nanoparticles (SeNPs) onto MgFe-LDH nanosheets (LDH) is reported to develop a multifunctional nanocomposite (LDH/Se) and further modification of the nanocomposite on a bioactive glass scaffold (BGS) to obtain a versatile platform (BGS@LDH/Se) for comprehensive postoperative osteosarcoma management. The uniform dispersion of negatively charged SeNPs on the LDH surface restrains toxicity-inducing aggregation and inactivation, thus enhancing superoxide dismutase (SOD) activation and superoxide anion radical (·O2 -)-H2O2 conversion. Meanwhile, Fe3+ within the LDH nanosheets can be reduced to Fe2+ by depleting glutathione (GSH) in the tumor microenvironments (TME), which can catalyze H2O2 into highly toxic reactive oxygen species. More importantly, incorporating SeNPs significantly promotes the anti-bacterial and osteogenic properties of BGS@LDH/Se. Thus, the developed BGS@LDH/Se platform can simultaneously inhibit tumor recurrence and periprosthetic infection as well as promote bone regeneration, thus holding great potential for postoperative "one-stop-shop" management of patients who need osteosarcoma resection and scaffold implantation.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Kexin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tingting Hu
- Department Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Chaoliang Tan
- Department Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, P. R. China
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P. R. China
| |
Collapse
|
11
|
Wang Q, Zhao J, Huang T, Sun C, Chen W, Zou H, He X, Shen J, Xiao Y. Oxygen vacancy-rich nickel oxide nanoplatforms for enhanced photothermal and chemodynamic therapy combat methicillin-resistant Staphylococcus aureus. Acta Biomater 2024; 182:275-287. [PMID: 38761960 DOI: 10.1016/j.actbio.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Bacterial infections pose a global concern due to high fatality rates, particularly with the rise of drug-resistant bacteria and biofilm formation. There is an urgent need for innovative strategies to combat this issue. A study on chemodynamic therapy (CDT) using nanozymes in conjunction with photothermal therapy (PTT) has displayed potential in addressing drug-resistant bacterial infections. However, the effectiveness of this combined approach is limited by inadequate light absorption. This work suggests the NiOx nanoparticles enriched with oxygen vacancies enhance CDT and PTT to overcome this challenge. The presence of oxygen vacancies in NiOx can reduce the energy gap between its valence band and conduction band, facilitating oxygen adsorption. NiOx has exhibited notable antibacterial properties and complete eradication of biofilms in both laboratory and animal trials. In animal abscess models, NiOx demonstrated antibacterial and anti-inflammatory effects in the initial stages, while also promoting wound healing and tissue regeneration by influencing immune factors and encouraging collagen deposition and neovascularization. With positive biosafety and biocompatibility profiles, the oxygen vacancy-enhanced CDT and PTT therapy proposed in this article hold promise for effective sterilization, deep biofilm removal, and treatment of infections caused by drug-resistant bacteria. STATEMENT OF SIGNIFICANCE: This study constructs oxygen vacancies NiOx nanoparticles (NiOx NPs) to improve the efficacy of photothermal therapy and chemodynamic therapy. The presence of oxygen vacancies in NiOx NPs helps bridge the energy gap between its valence band and conduction band, facilitating oxygen adsorption and improving catalytic efficiency. In both in vivo and in vitro antibacterial experiments, NiOx NPs demonstrate effective antibacterial and anti-inflammatory properties. Furthermore, it aids in wound healing and tissue regeneration by modulating immune factors, collagen deposition, and angiogenesis. This approach presents a promising collaborative strategy for utilizing nickel-based defective nanomaterials in combating deep drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Qinquan Wang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Zhejiang, 325000, China
| | - Jing Zhao
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Tian Huang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Chen Sun
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Zhejiang, 325000, China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Zhejiang, 325000, China
| | - Haoran Zou
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Zhejiang, 325000, China
| | - Xiaojun He
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Yunbei Xiao
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Zhejiang, 325000, China.
| |
Collapse
|
12
|
Wu C, Xia L, Feng W, Chen Y. MXene-Mediated Catalytic Redox Reactions for Biomedical Applications. Chempluschem 2024; 89:e202300777. [PMID: 38358020 DOI: 10.1002/cplu.202300777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/16/2024]
Abstract
Reactive oxygen species (ROS) play a crucial role in orchestrating a myriad of physiological processes within living systems. With the advent of materdicine, an array of nanomaterials has been intricately engineered to influence the redox equilibrium in biological milieus, thereby pioneering a distinctive therapeutic paradigm predicated on ROS-centric biochemistry. Among these, two-dimensional carbides, nitrides, and carbonitrides, collectively known as MXenes, stand out due to their multi-valent and multi-elemental compositions, large surface area, high conductivity, and pronounced local surface plasmon resonance effects, positioning them as prominent contributors in ROS modulation. This review aims to provide an overview of the advancements in harnessing MXenes for catalytic redox reactions in various biological applications, including tumor, anti-infective, and anti-inflammatory therapies. The emphasis lies on elucidating the therapeutic mechanism of MXenes, involving both pro-oxidation and anti-oxidation processes, underscoring the redox-related therapeutic applications facilitated by self-catalysis, photo-excitation, and sono-excitation properties of MXenes. Furthermore, this review highlights the existing challenges and outlines future development trends in leveraging MXenes for ROS-involving disease treatments, marking a significant step towards the integration of these nanomaterials into clinical practice.
Collapse
Affiliation(s)
- Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Zhejiang, 325088, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Zhejiang, 325088, China
| |
Collapse
|
13
|
Yan R, Zhan M, Xu J, Peng Q. Functional nanomaterials as photosensitizers or delivery systems for antibacterial photodynamic therapy. BIOMATERIALS ADVANCES 2024; 159:213820. [PMID: 38430723 DOI: 10.1016/j.bioadv.2024.213820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Bacterial infection is a global health problem that closely related to various diseases threatening human life. Although antibiotic therapy has been the mainstream treatment method for various bacterial infectious diseases for decades, the increasing emergence of bacterial drug resistance has brought enormous challenges to the application of antibiotics. Therefore, developing novel antibacterial strategies is of great importance. By producing reactive oxygen species (ROS) with photosensitizers (PSs) under light irradiation, antibacterial photodynamic therapy (aPDT) has emerged as a non-invasive and promising approach for treating bacterial infections without causing drug resistance. However, the insufficient therapeutic penetration, poor hydrophilicity, and poor biocompatibility of traditional PSs greatly limit the efficacy of aPDT. Recently, studies have found that nanomaterials with characteristics of favorable photocatalytic activity, surface plasmonic resonance, easy modification, and high drug loading capacity can improve the therapeutic efficacy of aPDT. In this review, we aim to provide a comprehensive understanding of the mechanism of nanomaterials-mediated aPDT and summarize the representative nanomaterials in aPDT, either as PSs or carriers for PSs. In addition, the combination of advanced nanomaterials-mediated aPDT with other therapies, including targeted therapy, gas therapy, and multidrug resistance (MDR) therapy, is reviewed. Also, the concerns and possible solutions of nanomaterials-based aPDT are discussed. Overall, this review may provide theoretical basis and inspiration for the development of nanomaterials-based aPDT.
Collapse
Affiliation(s)
- Ruijiao Yan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Meijun Zhan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingchen Xu
- Department of Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
14
|
Zhang S, Meng L, Hu Y, Yuan Z, Li J, Liu H. Green Synthesis and Biosafety Assessment of MXene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308600. [PMID: 37974554 DOI: 10.1002/smll.202308600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/27/2023] [Indexed: 11/19/2023]
Abstract
The rise of MXene-based materials with fascinating physical and chemical properties has attracted wide attention in the field of biomedicine, because it can be exploited to regulate a variety of biological processes. The biomedical applications of MXene are still in its infancy, nevertheless, the comprehensive evaluation of MXene's biosafety is desperately needed. In this review, the composition and the synthetic methods of MXene materials are first introduced from the view of biosafety. The evaluation of the interaction between MXene and cells, as well as the safety of different forms of MXene applied in vivo are then discussed. This review provides a basic understanding of MXene biosafety and may bring new inspirations to the future applications of MXene-based materials in biomedicine.
Collapse
Affiliation(s)
- Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR) School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
- Department of Stomatology, Cangzhou Medical College, Jinan, 061001, China
| | - Ling Meng
- Institute for Advanced Interdisciplinary Research (iAIR) School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Ying Hu
- Institute for Advanced Interdisciplinary Research (iAIR) School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Zihan Yuan
- State Key Laboratory of Crystal Materials Shandong University, Jinan, Shandong, 250100, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR) School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
- State Key Laboratory of Crystal Materials Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
15
|
Xu Y, Chen B, Xu L, Zhang G, Cao L, Liu N, Wang W, Qian H, Shao M. Urchin-like Fe 3O 4@Bi 2S 3 Nanospheres Enable the Destruction of Biofilm and Efficiently Antibacterial Activities. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3215-3231. [PMID: 38205800 DOI: 10.1021/acsami.3c17888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Biofilm-associated infections (BAIs) have been considered a major threat to public health, which induce persistent infections and serious complications. The poor penetration of antibacterial agents in biofilm significantly limits the efficiency of combating BAIs. Magnetic urchin-like core-shell nanospheres of Fe3O4@Bi2S3 were developed for physically destructing biofilm and inducing bacterial eradication via reactive oxygen species (ROS) generation and innate immunity regulation. The urchin-like magnetic nanospheres with sharp edges of Fe3O4@Bi2S3 exhibited propeller-like rotation to physically destroy biofilm under a rotating magnetic field (RMF). The mild magnetic hyperthermia improved the generation of ROS and enhanced bacterial eradication. Significantly, the urchin-like nanostructure and generated ROS could stimulate macrophage polarization toward the M1 phenotype, which could eradicate the persistent bacteria with a metabolic inactivity state through phagocytosis, thereby promoting the recovery of implant infection and inhibiting recurrence. Thus, the design of magnetic-driven sharp-shaped nanostructures of Fe3O4@Bi2S3 provided enormous potential in combating biofilm infections.
Collapse
Affiliation(s)
- Yaqian Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Benjin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei 230012, Anhui, P. R. China
| | - Lingling Xu
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei 230012, Anhui, P. R. China
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Guoqiang Zhang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Limian Cao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Nian Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Wanni Wang
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei 230012, Anhui, P. R. China
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Haisheng Qian
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei 230012, Anhui, P. R. China
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Min Shao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, P. R. China
| |
Collapse
|
16
|
Li J, Zhang S, He C, Ling J. Electrospun fibers based anisotropic silk fibroin film with photodynamic antibacterial therapy for S. aureus infected wound healing. Int J Biol Macromol 2024; 254:127685. [PMID: 38287584 DOI: 10.1016/j.ijbiomac.2023.127685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 01/31/2024]
Abstract
Bacterial infection has been regarded as a life-threatening problem in clinic. In addition to screening of new antibiotics, it is important to develop highly effective antibacterial materials against antibiotic resistance with capacities on modulating chronic inflammation. Herein, aligned Chlorin e6 (Ce6) conjugated silk fibroin electrospun fibers were successfully fabricated on silk fibroin based film via electrospining to achieve effective photodynamic antibacterial activities under near infrared (NIR) irradiation. The aligned electrospun fiber based film composite (SFCF@Film) exhibited good mechanical properties and desirable hemocompatibility. SFCF@Film provided a promising guidance cue for directing cell orientation and promoting cell growth. Significantly, SFCF@Film effectively generated ROS under NIR irradiation to kill S. aureus for treating wound infections within 10 min and promoted M2 polarization of macrophages for wound healing at later stage. Therefore, we believed that this engineered bioscaffold can be a powerful strategy for handling wound infection.
Collapse
Affiliation(s)
- Jiaying Li
- Hospital-Acquired Infection Control Department, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Shuxuan Zhang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Chang He
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Jue Ling
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China.
| |
Collapse
|
17
|
Richard B, Shahana C, Vivek R, M AR, Rasheed PA. Acoustic platforms meet MXenes - a new paradigm shift in the palette of biomedical applications. NANOSCALE 2023; 15:18156-18172. [PMID: 37947786 DOI: 10.1039/d3nr04901a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The wide applicability of acoustics in the life of mankind spread over health, energy, environment, and others. These acoustic technologies rely on the properties of the materials with which they are made of. However, traditional devices have failed to develop into low-cost, portable devices and need to overcome issues like sensitivity, tunability, and applicability in biological in vivo studies. Nanomaterials, especially 2D materials, have already been proven to produce high optical contrast in photoacoustic applications. One such wonder kid in the materials family is MXenes, which are transition metal carbides, that are nowadays flourishing in the materials world. Recently, it has been demonstrated that MXene nanosheets and quantum dots can be synthesized by acoustic excitations. In addition, MXene can be used as a mechanical sensing material for building piezoresistive sensors to realize sound detection as it produces a sensitive response to pressure and vibration. It has also been demonstrated that MXene nanosheets show high photothermal conversion capability, which can be utilized in cancer treatment and photoacoustic imaging (PAI). In this review, we have rendered the role of acoustics in the palette of MXene, including acoustic synthetic strategies of MXenes, applications such as acoustic sensors, PAI, thermoacoustic devices, sonodynamic therapy, artificial ear drum, and others. The review also discusses the challenges and future prospects of using MXene in acoustic platforms in detail. To the best of our knowledge, this is the first review combining acoustic science in MXene research.
Collapse
Affiliation(s)
- Bartholomew Richard
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India.
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India
| | - C Shahana
- Department of Chemistry, National Institute of Technology Calicut, Calicut, Kerala, 673601, India
| | - Raju Vivek
- Bio-Nano Theranostic Research Laboratory, Cancer Research Program (CRP), School of Life Sciences, Bharathiar University, Coimbatore, 641 046, India
| | - Amarendar Reddy M
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, West Godavari, Andhra Pradesh, 534101, India
| | - P Abdul Rasheed
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India.
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678557, India
| |
Collapse
|
18
|
Xu PY, Kumar Kankala R, Wang SB, Chen AZ. Sonodynamic therapy-based nanoplatforms for combating bacterial infections. ULTRASONICS SONOCHEMISTRY 2023; 100:106617. [PMID: 37769588 PMCID: PMC10542942 DOI: 10.1016/j.ultsonch.2023.106617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
The rapid spread and uncontrollable evolution of antibiotic-resistant bacteria have already become urgent global to treat bacterial infections. Sonodynamic therapy (SDT), a noninvasive and effective therapeutic strategy, has broadened the way toward dealing with antibiotic-resistant bacteria and biofilms, which base on ultrasound (US) with sonosensitizer. Sonosensitizer, based on small organic molecules or inorganic nanoparticles, is essential to the SDT process. Thus, it is meaningful to design a sonosensitizer-loaded nanoplatform and synthesize the nanoplatform with an efficient SDT effect. In this review, we initially summarize the probable SDT-based antibacterial mechanisms and systematically discuss the current advancement in different SDT-based nanoplatform (including nanoplatform for organic small-molecule sonosensitizer delivery and nanoplatform as sonosensitizer) for bacterial infection therapy. In addition, the biomedical applications of SDT-involved multifunctional nanoplatforms are also discussed. We believe the innovative SDT-based nanoplatforms would become a highly efficient next-generation noninvasive therapeutic tool for combating bacterial infection.
Collapse
Affiliation(s)
- Pei-Yao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China.
| |
Collapse
|
19
|
Yuan M, Kermanian M, Agarwal T, Yang Z, Yousefiasl S, Cheng Z, Ma P, Lin J, Maleki A. Defect Engineering in Biomedical Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304176. [PMID: 37270664 DOI: 10.1002/adma.202304176] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/28/2023] [Indexed: 06/05/2023]
Abstract
With the promotion of nanochemistry research, large numbers of nanomaterials have been applied in vivo to produce desirable cytotoxic substances in response to endogenous or exogenous stimuli for achieving disease-specific therapy. However, the performance of nanomaterials is a critical issue that is difficult to improve and optimize under biological conditions. Defect-engineered nanoparticles have become the most researched hot materials in biomedical applications recently due to their excellent physicochemical properties, such as optical properties and redox reaction capabilities. Importantly, the properties of nanomaterials can be easily adjusted by regulating the type and concentration of defects in the nanoparticles without requiring other complex designs. Therefore, this tutorial review focuses on biomedical defect engineering and briefly discusses defect classification, introduction strategies, and characterization techniques. Several representative defective nanomaterials are especially discussed in order to reveal the relationship between defects and properties. A series of disease treatment strategies based on defective engineered nanomaterials are summarized. By summarizing the design and application of defective engineered nanomaterials, a simple but effective methodology is provided for researchers to design and improve the therapeutic effects of nanomaterial-based therapeutic platforms from a materials science perspective.
Collapse
Affiliation(s)
- Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Mehraneh Kermanian
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology (School of Pharmacy), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, 522502, India
| | - Zhuang Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Satar Yousefiasl
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Ziyong Cheng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology (School of Pharmacy), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| |
Collapse
|
20
|
Liu C, Bu H, Duan X, Li H, Bai Y. Host-Guest Interaction-Based Supramolecular Self-Assemblies for H 2O 2 Upregulation Augmented Chemiluminescence Resonance Energy Transfer-Induced Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38264-38272. [PMID: 37537944 DOI: 10.1021/acsami.3c06353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Given that light is hard to reach deep tumor tissue, how to enhance photodynamic therapy (PDT) efficacy is a big challenge. Herein, we proposed the supramolecular polymer self-assemblies (HACP) with bis[2,4,5-trichloro-6 (pentyloxycar-bonyl) phenyl] oxalate as the cargos (HACP@CPPO) to realize the chemiluminescence resonance energy transfer (CRET)-induced generation of 1O2 in situ. HACP was prepared by cinnamaldehyde-modified hyaluronic acid (HA-CA) and β-cyclodextrin-modified protoporphyrin IX (β-CD-PPIX) via host-guest interactions. The CA moiety could elevate H2O2 levels for the enhanced production of chemical energy and macrocyclic CD could enhance the stacking distance of PPIX for enhanced 1O2 yield. Thus, HACP@CPPO exhibited excellent antitumor performance without light irradiation.
Collapse
Affiliation(s)
- Caiping Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Huaitian Bu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiao Duan
- Department of Pharmacy, Changzhi Medical University, Changzhi 046000, China
| | - Hui Li
- School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|