1
|
Wang H, Xu Y, Zhang Z, Luo B, Hou D, Lu Y, Xie M, Guan W, Peng J, Wang H, Tao W. Exosome-Functionalized Self-Carrier Enzyme-Like/Drug With Triple Amplified Anti-Oxidative Stress for Synergistic Depression Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411030. [PMID: 40259849 DOI: 10.1002/smll.202411030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/10/2025] [Indexed: 04/23/2025]
Abstract
Depression, a severe disorder affecting both physical and mental health, is commonly treated with first-line antidepressants, which often exhibit limited efficacy due to poor penetration of the blood-brain barrier (BBB) and significant side effects, thus requiring the exploitation of biocompatible and effective treatments. Recent studies suggest that depression is closely linked to an imbalance in oxidative stress and subsequent inflammatory responses. Antioxidant therapies and targeting oxidative stress in inflammatory depression are therefore emerging as promising strategies. In this study, an exosome-functionalized and geniposide (GEN) self-carried Prussian blue (PB) nanotherapeutic approach is fabricated to realize efficient BBB penetration for synergistic depression therapy. The porous PB carrier possesses multi-enzyme capabilities, which can effectively scavenge the accumulated ROS, protecting the slightly inflammatory acidic environment released GEN from oxidation, and the GEN subsequently works simultaneously with PB to activate the Nrf2-ARE pathway, enhancing the body's oxidative stress defense mechanisms synergistically. The triple-amplified anti-oxidant strategy of this nanomaterial is shown to mitigate microglial activation and the reduction in neuroplasticity, ultimately alleviating the pathological markers of inflammatory depression. Overall, the constructed nanomaterials underscore the therapeutic potential of anti-oxidative stress for synergistic removal of ROS and activation of the Nrf2-ARE pathway in the treatment of inflammatory depression.
Collapse
Affiliation(s)
- Hanqing Wang
- College of Pharmacy & Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ningxia Medical University, Yinchuan, 750004, China
| | - Yunzhu Xu
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zicheng Zhang
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Banxin Luo
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing, 210023, China
| | - Dahai Hou
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Youyuan Lu
- College of Pharmacy & Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ningxia Medical University, Yinchuan, 750004, China
| | - Mingxia Xie
- College of Pharmacy & Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ningxia Medical University, Yinchuan, 750004, China
| | - Wenxian Guan
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing, 210023, China
| | - Jinlei Peng
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui Wang
- School of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weiwei Tao
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
2
|
Wei R, Chen Y, Yang Q, Wang T, He Y, Yin N, Yang L, Gao Y, Guo L, Feng M. Nanoenzyme-Anchored Mitofactories Boost Mitochondrial Transplantation to Restore Locomotor Function after Paralysis Following Spinal Cord Injury. ACS NANO 2025; 19:4403-4421. [PMID: 39853984 DOI: 10.1021/acsnano.4c12557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Mitochondrial transplantation is a significant therapeutic approach for addressing mitochondrial dysfunction in patients with spinal cord injury (SCI), yet it is limited by rapid mitochondrial deactivation and low transfer efficiency. Here, high-quality mitochondria microfactories (HQ-Mitofactories) were constructed by anchoring Prussian blue nanoenzymes onto mesenchymal stem cells for effective mitochondrial transplantation to treat paralysis from SCI. Notably, the results demonstrated that HQ-Mitofactories could continuously produce vitality-boosting mitochondria with highly interconnected and elongated network structures under oxidative stress by scavenging excessive ROS. Furthermore, HQ-Mitofactories enabled efficient transfer of therapeutic mitochondria to injured neurons primarily via gap junctions, resulting in the restoration of mitochondrial homeostasis and thereby suppressing intracellular ROS burst and facilitating neuronal repair. After i.v. administration, HQ-Mitofactories migrated to the injured spinal cords of SCI mice and subsequently promoted neuronal regeneration and remyelination. Consequently, HQ-Mitofactory-treated mice successfully recovered locomotor function within 4 weeks, with 40% of the mice fully restoring walking after hindlimb paralysis. Conversely, untreated SCI exhibited completely abolished hindlimb movements. In light of real-time generation of vitality-boosting mitochondria even under oxidative stress and enabling targeted mitochondrial transfer, HQ-Mitofactories have promising therapeutic potential in the context of mitochondrial transplantation to reduce SCI-related paralysis, and more broadly impact the field of neuroregenerative medicine.
Collapse
Affiliation(s)
- Runxiu Wei
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, China
| | - Yiman Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, China
| | - Qiang Yang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, China
| | - Tongge Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, China
| | - Yanyun He
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, China
| | - Na Yin
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, China
| | - Liya Yang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, China
| | - Yifei Gao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, China
| | - Ling Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Min Feng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, China
| |
Collapse
|
3
|
Wu Y, Yue X, Zhang Y, Yu N, Ge C, Liu R, Duan Z, Gao L, Zang X, Sun X, Zhang D. Dual-sided centripetal microgrooved poly (D,L-lactide-co-caprolactone) disk encased in immune-regulating hydrogels for enhanced bone regeneration. Mater Today Bio 2025; 30:101436. [PMID: 39866796 PMCID: PMC11762576 DOI: 10.1016/j.mtbio.2024.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/28/2025] Open
Abstract
Well-designed artificial scaffolds are urgently needed due to the limited self-repair capacity of bone, which hampers effective regeneration in critical defects. Optimal scaffolds must provide physical guidance to recruit cells and immune regulation to improve the regenerative microenvironment. This study presents a novel scaffold composed of dual-sided centripetal microgrooved poly(D,L-lactide-co-caprolactone) (PLCL) film combined with a dynamic hydrogel containing prednisolone (PLS)-loaded Prussian blue nanoparticles (PB@PLS). The microgrooves on the surface of the PLCL film were imprinted using a micropatterned polydimethylsiloxane (PDMS) template. Following aminolysis, the PLCL film was covalently grafted with the EM-7 peptide via glutaraldehyde. Functional group analysis, surface morphology and hydrophilicity were evaluated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and an optical contact angle measuring instrument, respectively. Bone regeneration-related cells (e.g., bone marrow mesenchymal stem cells, macrophages, Schwann cells, and endothelial cells) cultured on PLCL films tended to align along the stripes and migrate from the periphery toward the center region in vitro. Subsequently, the PLCL film was encapsulated in an immune-regulating hydrogel synthesized from thiol-modified gelatin and Cu2+ in the presence of PB@PLS nanoparticles, which demonstrated excellent antioxidant properties. This scaffold significantly accelerated critical-sized bone regeneration, as evidenced by an increase in the volume of newly formed bone and histological images in vivo. This innovative approach holds substantial promise for clinical applications in bone regeneration and broader tissue repair.
Collapse
Affiliation(s)
- You Wu
- China Uruguay Bio-Nano Pharmaceutical Joint Laboratory, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Xiaokun Yue
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Ying Zhang
- China Uruguay Bio-Nano Pharmaceutical Joint Laboratory, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Ning Yu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong, China
| | - Chengyan Ge
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong, China
| | - Rui Liu
- China Uruguay Bio-Nano Pharmaceutical Joint Laboratory, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Zhongying Duan
- China Uruguay Bio-Nano Pharmaceutical Joint Laboratory, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Lilong Gao
- School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Xinlong Zang
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Xin Sun
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Deteng Zhang
- China Uruguay Bio-Nano Pharmaceutical Joint Laboratory, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
4
|
Zhang J, Wang C, Wu X, Shen Q, Du Y. Nanozyme-based therapeutic strategies for rheumatoid arthritis. J Control Release 2025; 377:716-734. [PMID: 39617172 DOI: 10.1016/j.jconrel.2024.11.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Rheumatoid arthritis (RA) is a prevalent chronic autoimmune disease that leads to severe joint damage and disability. Conventional treatment options are limited by their efficacy and side effect profiles. Nanozymes, nanomaterials with enzyme-like activities, offer a novel therapeutic approach for RA. This review summarizes recent advances in nanozyme-based treatments, focusing on their antioxidant and immunomodulatory roles in mitigating RA. We discuss various nanozymes, including those based on cerium, iron, manganese, silver, copper, platinum, rhodium, and multi-metallic nanozymes, which mimic natural enzymes such as superoxide dismutase, catalase, and peroxidase to reduce oxidative stress. Additionally, we explore nanozyme-based combination therapies that integrate with other strategies, such as vesicles and phototherapy, to achieve synergistic effects and enhance efficacy. This review highlights the significant potential of nanozymes in improving RA treatment, offering a new perspective for future research and clinical applications.
Collapse
Affiliation(s)
- Jucong Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenxi Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaochuan Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiying Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China.
| |
Collapse
|
5
|
Zhang H, Yuan S, Zheng B, Wu P, He X, Zhao Y, Zhong Z, Zhang X, Guan J, Wang H, Yang L, Zheng X. Lubricating and Dual-Responsive Injectable Hydrogels Formulated From ZIF-8 Facilitate Osteoarthritis Treatment by Remodeling the Microenvironment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407885. [PMID: 39604796 DOI: 10.1002/smll.202407885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Osteoarthritis (OA) is a progressively developing condition primarily characterized by the deterioration of articular cartilage and the proliferation of bone, along with ongoing inflammation. Although the precise pathogenesis remains somewhat elusive, restoring the homeostatic balance of the intra-articular microenvironment is crucial for the management of OA. Intra-articular injection of medication is one of the most direct and effective treatment methods; however, most injectable drugs used for osteoarthritis treatment, due to their rapid breakdown, quick release, poor biological activity, and frequent injections, leading to increased risk of infection and suboptimal therapeutic outcomes. In this study, a lubricating and dual-responsive injectable hydrogel based on zeolitic imidazolate frameworks-8 (ZIF-8) impregnated with Quercetin (Que) is designed, which can facilitate OA treatment by remodeling the microenvironment. The prepared injectable nanocomposite hydrogel (MH/CCM@ZIF-8@Que) exhibits pH and reactive oxygen species (ROS) responsiveness, alongside a controllable release of bioactive substances to modulate the microenvironment of bone tissue, thereby mitigating synovitis and the degeneration of cartilage matrix, while simultaneously facilitating cartilage repair. This developed thermosensitive injectable hydrogel, which effectively balances lubrication with the controlled release of bioactive substances, represents a highly promising therapeutic approach for osteoarthritis.
Collapse
Affiliation(s)
- Hongtao Zhang
- Department of Orthopedics, Zhongshan Torch Development Zone People's Hospital, Zhongshan, 528437, P. R. China
| | - Shiguo Yuan
- Department of Orthopaedic, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou, 570203, P. R. China
- Department of Orthopaedic, Hainan Traditional Chinese Medicine Hospital, Hainan Medical University, Haikou, 570203, P. R. China
| | - Boyuan Zheng
- Department of Sports Medicine, The First Affiliated Hospital, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Guangdong Provincial Key Laboratory of Speed Capability, Jinan University, Guangzhou, 510630, P. R. China
| | - Peng Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Xiuming He
- Department of Orthopedics, Zhongshan Torch Development Zone People's Hospital, Zhongshan, 528437, P. R. China
| | - Yi Zhao
- Department of Orthopedics, the Third Hospital of Shijiazhuang, Shijiazhuang, 050011, P. R. China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, P. R. China
| | - Xiaofang Zhang
- Department of Pharmacy, the First Affiliated Hospital, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Science and Technology Planning Project of Guangzhou, Jinan University, Guangzhou, 510630, P. R. China
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150086, P. R. China
| | - Jian Guan
- Department of Orthopedics, the Third Hospital of Shijiazhuang, Shijiazhuang, 050011, P. R. China
| | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Guangdong Provincial Key Laboratory of Speed Capability, Jinan University, Guangzhou, 510630, P. R. China
| | - Lei Yang
- Department of Orthopedics, Key Laboratory of Hepatosplenic Surgery of Ministry of Education, NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 163711, P. R. China
| | - Xiaofei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Guangdong Provincial Key Laboratory of Speed Capability, Jinan University, Guangzhou, 510630, P. R. China
| |
Collapse
|
6
|
Hou Y, Yang Z, Ma J, Liu J, Sun X, Li J, Zhang B. Screening of potential biomarkers of osteoarthritis: a bioinformatics analysis. Clin Rheumatol 2025; 44:453-463. [PMID: 39585570 DOI: 10.1007/s10067-024-07213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/25/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is the most common joint disease worldwide, with an age-associated increasing in both incidence and prevalence. However, early diagnosis of OA is a challenge due to the lack of effective biomarkers. This study aimed to identify new biomarkers and mechanisms of OA. METHODS Microarray expression data of synovial tissues from osteoarthritic and healthy populations were downloaded from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) were identified using GEO2R. Functions and enrichment pathways of DEGs were explained by enrichment analysis and construction of protein-protein interaction (PPI) networks, and hub genes were identified. RESULTS By performing Venn analysis on the DEGs obtained from the two datasets, 28 upregulated and 84 downregulated DEGs were gained. JUN, activating transcription factor 3 (ATF3), and Dual-specificity phosphatase 1 (DUSP1), which play important roles in OA, were screened using PPI network construction. The receiver operating characteristic (ROC) curve of JUN, ATF3, and DUSP1 revealed satisfactory diagnostic value for OA. hsa-mir-26b-5p interacts with JUN, ATF3, and DUSP1. CONCLUSION The expression of JUN, ATF3, and DUSP1 was reduced in patients with OA and the three genes mentioned above could be used as potential markers for the diagnosis of OA. hsa-mir-26b-5p may play an important role in the pathogenesis of OA and may be a potential therapeutic target. Key Points • JUN, ATF3, and DUSP1 could be used as potential markers for the diagnosis of OA. • hsa-mir-26b-5p may play an important role in the pathogenesis of OA.
Collapse
Affiliation(s)
- Yongwang Hou
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, 075000, Hebei Province, China.
| | - Zhicong Yang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, 075000, Hebei Province, China
| | - Junshuai Ma
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, 075000, Hebei Province, China
| | - Jiangmin Liu
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, 075000, Hebei Province, China
| | - Xiaojie Sun
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, 075000, Hebei Province, China
| | - Jingqi Li
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, 075000, Hebei Province, China
| | - Bin Zhang
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, 075000, Hebei Province, China.
| |
Collapse
|
7
|
Chen Z, Huang WX, Wang H, Zhang M, Chen K, Deng H. Development of a Dual-Readout Multicolor Immunoassay for the Rapid Analysis of Isocarbophos in Vegetable and Fruit Samples. Foods 2024; 13:4057. [PMID: 39766999 PMCID: PMC11675379 DOI: 10.3390/foods13244057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Multicolor immunoassay is a powerful tool for rapid analysis without the use of bulky instruments owing to various color conversions, which is suitable for on-site visual analysis for pesticides. Herein, this study developed a multicolor immunoassay for the rapid detection of isocarbophos. After competitive immunoassay, the secondary antibody (GAM-ALP) catalyzed ascorbyl-2-phosphate (AAP) into ascorbic acid (AA). The AA can reduce K3[Fe(CN)6] into K4[Fe(CN)6]. The latter can react with Fe3+ to form Prussian blue; otherwise, the orange AAP-Fe3+ complex was generated. Therefore, the multicolor immunoassay achieved a color conversion of orange-green-blue in response to isocarbophos, allowing for rapid semiquantitative analysis by the naked eye. After parameter optimization, the multicolor immunoassay was developed depending on the ratiometric absorbance between the Prussian blue and AAP-Fe3+ complex. Moreover, a smartphone was used to measure the RGB value of the color conversion for the development of portable visual, quantitative analysis. Both the absorbance-based and RGB-based multicolor immunoassays showed good accuracy and practicability in the recovery test. This study provided a common approach for the development of dual-readout multicolor immunoassay, which can be used for on-site rapid screening by quantitative or visual semiquantitative analysis.
Collapse
Affiliation(s)
- Zijian Chen
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China; (Z.C.); (H.W.); (M.Z.); (K.C.)
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Zhaoqing), Ministry of Agriculture and Rural Affairs, Zhaoqing 526061, China
- Guangdong Engineering Technology Research Center of Food & Agricultural Product Safety Analysis and Testing, Zhaoqing 526061, China
| | - Wei-Xuan Huang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China;
| | - Hongwu Wang
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China; (Z.C.); (H.W.); (M.Z.); (K.C.)
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Zhaoqing), Ministry of Agriculture and Rural Affairs, Zhaoqing 526061, China
- Guangdong Engineering Technology Research Center of Food & Agricultural Product Safety Analysis and Testing, Zhaoqing 526061, China
| | - Meiling Zhang
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China; (Z.C.); (H.W.); (M.Z.); (K.C.)
| | - Kai Chen
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China; (Z.C.); (H.W.); (M.Z.); (K.C.)
| | - Hao Deng
- Key Laboratory of Tropical Fruit and Vegetable Cold-Chain of Hainan Province, Institute of Agro-Products of Processing and Design, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| |
Collapse
|
8
|
Gu X, Zhang S, Ma W. Prussian blue nanotechnology in the treatment of spinal cord injury: application and challenges. Front Bioeng Biotechnol 2024; 12:1474711. [PMID: 39323764 PMCID: PMC11422158 DOI: 10.3389/fbioe.2024.1474711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
Spinal cord injury (SCI) is a serious neurological condition that currently lacks effective treatments, placing a heavy burden on both patients and society. Prussian blue nanoparticles exhibit great potential for treating spinal cord injuries due to their excellent physicochemical properties and biocompatibility. These nanoparticles have strong anti-inflammatory and antioxidant capabilities, effectively scavenge free radicals, and reduce oxidative stress damage to cells. Prussian blue nanotechnology shows broad application potential in drug delivery, bioimaging, cancer therapy, anti-inflammatory and oxidative stress treatment, and biosensors. This article reviewed the potential applications of Prussian blue nanotechnology in treating spinal cord injuries, explored the challenges and solutions associated with its application, and discussed the future prospects of this technology in SCI treatment.
Collapse
Affiliation(s)
- XiaoPeng Gu
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Orthopedics, NingBo NO.6 Hospital, Ningbo, Zhejiang, China
- Department of Orthopedics, Zhoushan Guhechuan Hospital, Zhoushan, Zhejiang, China
- Zhoushan Institute of Orthopedics and Traumatology, Zhoushan, Zhejiang, China
| | - SongOu Zhang
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - WeiHu Ma
- Department of Orthopedics, NingBo NO.6 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
9
|
Xiong Y, Mi B, Liu G, Zhao Y. Microenvironment-sensitive nanozymes for tissue regeneration. Biomaterials 2024; 309:122585. [PMID: 38692147 DOI: 10.1016/j.biomaterials.2024.122585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Tissue defect is one of the significant challenges encountered in clinical practice. Nanomaterials, including nanoparticles, nanofibers, and metal-organic frameworks, have demonstrated an extensive potential in tissue regeneration, offering a promising avenue for future clinical applications. Nonetheless, the intricate landscape of the inflammatory tissue microenvironment has engendered challenges to the efficacy of nanomaterial-based therapies. This quandary has spurred researchers to pivot towards advanced nanotechnological remedies for overcoming these therapeutic constraints. Among these solutions, microenvironment-sensitive nanozymes have emerged as a compelling instrument with the capacity to reshape the tissue microenvironment and enhance the intricate process of tissue regeneration. In this review, we summarize the microenvironmental characteristics of damaged tissues, offer insights into the rationale guiding the design and engineering of microenvironment-sensitive nanozymes, and explore the underlying mechanisms that underpin these nanozymes' responsiveness. This analysis includes their roles in orchestrating cellular signaling, modulating immune responses, and promoting the delicate process of tissue remodeling. Furthermore, we discuss the diverse applications of microenvironment-sensitive nanozymes in tissue regeneration, including bone, soft tissue, and cartilage regeneration. Finally, we shed our sights on envisioning the forthcoming milestones in this field, prospecting a future where microenvironment-sensitive nanozymes contribute significantly to the development of tissue regeneration and improved clinical outcomes.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Bobin Mi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore; Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
10
|
Lee H, Choe J, Son MH, Lee IH, Lim MJ, Jeon J, Yang S. A Novel BD2-Selective Inhibitor of BRDs Mitigates ROS Production and OA Pathogenesis. Antioxidants (Basel) 2024; 13:943. [PMID: 39199189 PMCID: PMC11352053 DOI: 10.3390/antiox13080943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Bromodomain and extra-terminal domain (BET) family proteins regulate transcription and recognize lysine residues in histones. Selective BET inhibitors targeting one domain have attracted attention because they maintain normal physiological activities, whereas pan (nonselective) BET inhibitors do not. Osteoarthritis (OA) is a joint disorder characterized by cartilage degeneration for which no treatment currently exists. Here, we investigated whether the selective inhibition of BET proteins is an appropriate therapeutic strategy for OA. We focused on the development and characterization of 2-(4-(2-(dimethylamino)ethoxy)-3,5-dimethylphenyl)-5,7-dimethoxyquinazolin-4(3H)-one (BBC0906), a novel bromodomain 2 (BD2)-specific inhibitor designed to suppress OA progression. Using a DNA-encoded chemical library (DEL) screening approach, BBC0906 was identified because of its high affinity with the BD2 domain of BET proteins. BBC0906 effectively reduced reactive oxygen species (ROS) production and suppressed catabolic factor expression in chondrocytes in vitro. Moreover, in an OA mouse model induced by the destabilization of the medial meniscus (DMM), BBC0906 intra-articular injection attenuated cartilage degradation and alleviated OA. Importantly, BBC0906 selectively inhibits the BD2 domain, thus minimizing its potential side effects. We highlighted the therapeutic potential of targeting BET proteins to modulate oxidative stress and suppress cartilage degradation in OA. BBC0906 is a promising candidate for OA treatment, offering improved safety and efficacy.
Collapse
Affiliation(s)
- Hyemi Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jihye Choe
- Benobio Co., Ltd., Seongnam-si 13494, Republic of Korea; (J.C.); (M.-H.S.); (I.-H.L.)
| | - Min-Hee Son
- Benobio Co., Ltd., Seongnam-si 13494, Republic of Korea; (J.C.); (M.-H.S.); (I.-H.L.)
| | - In-Hyun Lee
- Benobio Co., Ltd., Seongnam-si 13494, Republic of Korea; (J.C.); (M.-H.S.); (I.-H.L.)
| | - Min Ju Lim
- Department of Biomedical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Republic of Korea;
| | - Jimin Jeon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
11
|
Lee H, Jang H, Heo D, Eom JI, Han CH, Kim SM, Shin YS, Pan CH, Yang S. Tisochrysis lutea Fucoxanthin Suppresses NF-κB, JNK, and p38-Associated MMP Expression in Arthritis Pathogenesis via Antioxidant Activity. Antioxidants (Basel) 2024; 13:941. [PMID: 39199188 PMCID: PMC11351224 DOI: 10.3390/antiox13080941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Tisochrysis lutea is a highly nutritious marine microalga that has various applications in aquaculture and biotechnology. However, the effects of T. lutea extract (TLE) on osteoarthritis (OA) pathogenesis remain unexplored. In this study, we aimed to determine the effects of TLE on OA development. We found that TLE inhibits the expression of matrix metalloproteinases (MMPs) and reactive oxygen species (ROS) activity in an OA mouse model generated by the destabilization of the medial meniscus (DMM) surgery. In vivo assays of the OA model mice demonstrated that TLE has a protective effect against cartilage destruction by inhibiting MMP3 and MMP13 expression. To enable the medical use of TLE, the components of TLE were characterized using high-performance liquid chromatography (HPLC) analysis. Interestingly, we found that Fucoxanthin accounts for 41.2% of TLE and showed anti-catabolic and antioxidant effects under IL-1β-treated in vitro conditions. RNA sequencing analysis showed that fucoxanthin decreased p38, NF-κB, and JNK signaling pathway gene expression, all of which are activated by IL-1β. Furthermore, in vivo analysis showed that fucoxanthin inhibited the IL-1β-stimulated phosphorylation of p65, JNK, and p38. These results highlight new possibilities for the use of TLE as a source of fucoxanthin, an antioxidant, for OA treatment.
Collapse
Affiliation(s)
- Hyemi Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; (H.L.); (H.J.); (D.H.)
| | - Hahyeong Jang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; (H.L.); (H.J.); (D.H.)
| | - Dahyoon Heo
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; (H.L.); (H.J.); (D.H.)
| | - Jae-In Eom
- Microalgae Ask Us Co., Ltd., Gangneung 25441, Republic of Korea; (J.-I.E.); (C.-H.H.); (S.-M.K.); (Y.-S.S.)
| | - Cheol-Ho Han
- Microalgae Ask Us Co., Ltd., Gangneung 25441, Republic of Korea; (J.-I.E.); (C.-H.H.); (S.-M.K.); (Y.-S.S.)
| | - Se-Min Kim
- Microalgae Ask Us Co., Ltd., Gangneung 25441, Republic of Korea; (J.-I.E.); (C.-H.H.); (S.-M.K.); (Y.-S.S.)
| | - Yoo-Seob Shin
- Microalgae Ask Us Co., Ltd., Gangneung 25441, Republic of Korea; (J.-I.E.); (C.-H.H.); (S.-M.K.); (Y.-S.S.)
| | - Cheol-Ho Pan
- Microalgae Ask Us Co., Ltd., Gangneung 25441, Republic of Korea; (J.-I.E.); (C.-H.H.); (S.-M.K.); (Y.-S.S.)
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; (H.L.); (H.J.); (D.H.)
| |
Collapse
|
12
|
Lee H, Nam J, Jang H, Park YS, Son MH, Lee IH, Eyun SI, Yang JH, Jeon J, Yang S. BRD2-specific inhibitor, BBC0403, inhibits the progression of osteoarthritis pathogenesis in osteoarthritis-induced C57BL/6 male mice. Br J Pharmacol 2024; 181:2528-2544. [PMID: 38600628 DOI: 10.1111/bph.16359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND AND PURPOSE The discovery of new bromo- and extra-terminal inhibitors presents new drugs to treat osteoarthritis (OA). EXPERIMENTAL APPROACH The new drug, BBC0403, was identified in the DNA-encoded library screening system by searching for compounds that target BRD (bromodomain-containing) proteins. The binding force with BRD proteins was evaluated using time-resolved fluorescence energy transfer (TR-FRET) and binding kinetics assays. Subsequently, in vitro and ex vivo analyses demonstrated the effects of the BRD2 inhibitor, BBC0403, on OA. For animal experiments, medial meniscus destabilization was performed to create a 12-week-old male C57BL/6 mouse model, and intra-articular (i.a.) injections were administered. Histological and immunohistochemical analyses were then performed. The underlying mechanism was confirmed by gene set enrichment analysis (GSEA) using RNA-seq. KEY RESULTS TR-FRET and binding kinetics assays revealed that BBC0403 exhibited higher binding specificity for BRD2 compared to BRD3 and BRD4. The anti-OA effects of BBC0403 were tested at concentrations of 5, 10 and 20 μM (no cell toxicity in the range tested). The expression of catabolic factors, prostaglandin E2 (PGE2) production and extracellular matrix (ECM) degradation was reduced. Additionally, the i.a. injection of BBC0403 prevented OA cartilage degradation in mice. Finally, BBC0403 was demonstrated to suppress NF-κB and MAPK signalling pathways. CONCLUSION AND IMPLICATIONS This study demonstrated that BBC0403 is a novel BRD2-specific inhibitor and a potential i.a.-injectable therapeutic agent to treat OA.
Collapse
Affiliation(s)
- Hyemi Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Jiho Nam
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Hahyeong Jang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | | | | | | | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Jae-Hyun Yang
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute Harvard Medical School (HMS), Boston, Massachusetts, USA
| | - Jimin Jeon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
13
|
Deng W, Zhou Y, Wan Q, Li L, Deng H, Yin Y, Zhou Q, Li Q, Cheng D, Hu X, Wang Y, Feng G. Nano-enzyme hydrogels for cartilage repair effectiveness based on ternary strategy therapy. J Mater Chem B 2024; 12:6242-6256. [PMID: 38842217 DOI: 10.1039/d4tb00307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Designing artificial nano-enzymes for scavenging reactive oxygen species (ROS) in chondrocytes (CHOs) is considered the most feasible pathway for the treatment of osteoarthritis (OA). However, the accumulation of ROS due to the amount of nano-enzymatic catalytic site exposure and insufficient oxygen supply seriously threatens the clinical application of this therapy. Although metal-organic framework (MOF) immobilization of artificial nano-enzymes to enhance active site exposure has been extensively studied, artificial nano-enzymes/MOFs for ROS scavenging in OA treatment are still lacking. In this study, a biocompatible lubricating hydrogel-loaded iron-doped zeolitic imidazolate framework-8 (Fe/ZIF-8/Gel) centrase was engineered to scavenge endogenous overexpressed ROS synergistically generating dissolved oxygen and enhancing sustained lubrication for CHOs as a ternary artificial nano-enzyme. This property enabled the nano-enzymatic hydrogels to mitigate OA hypoxia and inhibit oxidative stress damage successfully. Ternary strategy-based therapies show excellent cartilage repair in vivo. The experimental results suggest that nano-enzyme-enhanced lubricating hydrogels are a potentially effective OA treatment and a novel strategy.
Collapse
Affiliation(s)
- Wei Deng
- Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, 17 Gaopeng Avenue, Chengdu 610041, China.
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China
| | - Yue Zhou
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinlin Wan
- Medical College of Soochow University, Suzhou, 215123, China
| | - Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Hui Deng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yong Yin
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China
| | - Qingsong Zhou
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China
| | - Qiujiang Li
- Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, 17 Gaopeng Avenue, Chengdu 610041, China.
| | - Duo Cheng
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Ganjun Feng
- Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, 17 Gaopeng Avenue, Chengdu 610041, China.
| |
Collapse
|
14
|
Guo J, Li C, Lin J, Fang J, Sun Y, Zhang P, Li S, Li W, Zhang X. Chemically programmed nanozyme with microenvironment remodeling for combinatorial treatment of osteoarthritis. CHEMICAL ENGINEERING JOURNAL 2024; 485:149897. [DOI: 10.1016/j.cej.2024.149897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
|
15
|
Oh E, Jang H, Ok S, Eom J, Lee H, Kim SH, Kim JH, Jeong YM, Kim KJ, Yun SP, Kwon HJ, Lee IC, Park JY, Yang S. WGA-M001, a Mixture of Total Extracts of Tagetes erecta and Ocimum basilicum, Synergistically Alleviates Cartilage Destruction by Inhibiting ERK and NF-κB Signaling. Int J Mol Sci 2023; 24:17459. [PMID: 38139287 PMCID: PMC10743532 DOI: 10.3390/ijms242417459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Tagetes erecta and Ocimum basilicum are medicinal plants that exhibit anti-inflammatory effects against various diseases. However, their individual and combined effects on osteoarthritis (OA) are unknown. Herein, we aimed to demonstrate the effects of T. erecta, O. basilicum, and their mixture, WGA-M001, on OA pathogenesis. The administration of total extracts of T. erecta and O. basilicum reduced cartilage degradation and inflammation without causing cytotoxicity. Although WGA-M001 contained lower concentrations of the individual extracts, it strongly inhibited the expression of pathogenic factors. In vivo OA studies also supported that WGA-M001 had protective effects against cartilage destruction at lower doses than those of T. erecta and O. basilicum. Moreover, its effects were stronger than those observed using Boswellia and Perna canaliculus. WGA-M001 effectively inhibited the interleukin (IL)-1β-induced nuclear factor kappa-light-chain-enhancer of the activated B cell (NF-κB) pathway and ERK phosphorylation. Furthermore, RNA-sequence analysis also showed that WGA-M001 decreased the expression of genes related to the IL-1β-induced NF-κB and ERK signaling pathways. Therefore, WGA-M001 is more effective than the single total extracts of T. erecta and O. basilicum in attenuating OA progression by regulating ERK and NF-κB signaling. Our results open new possibilities for WGA-M001 as a potential therapeutic agent for OA treatment.
Collapse
Affiliation(s)
- Eunjeong Oh
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; (E.O.); (H.J.); (S.O.); (J.E.)
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Hahyeong Jang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; (E.O.); (H.J.); (S.O.); (J.E.)
| | - Subin Ok
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; (E.O.); (H.J.); (S.O.); (J.E.)
| | - Jiwon Eom
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; (E.O.); (H.J.); (S.O.); (J.E.)
| | - Hyunyong Lee
- Wooree Green Science, Ansan 15409, Republic of Korea; (H.L.); (S.H.K.); (J.H.K.); (Y.M.J.); (K.J.K.)
| | - Sung Hun Kim
- Wooree Green Science, Ansan 15409, Republic of Korea; (H.L.); (S.H.K.); (J.H.K.); (Y.M.J.); (K.J.K.)
| | - Jong Hwa Kim
- Wooree Green Science, Ansan 15409, Republic of Korea; (H.L.); (S.H.K.); (J.H.K.); (Y.M.J.); (K.J.K.)
| | - Yu Mi Jeong
- Wooree Green Science, Ansan 15409, Republic of Korea; (H.L.); (S.H.K.); (J.H.K.); (Y.M.J.); (K.J.K.)
| | - Kyeong Jin Kim
- Wooree Green Science, Ansan 15409, Republic of Korea; (H.L.); (S.H.K.); (J.H.K.); (Y.M.J.); (K.J.K.)
- Department of Horticulture, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea;
| | - Hyung-Jun Kwon
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology, Jeongeup 53212, Republic of Korea; (H.-J.K.); (I.-C.L.); (J.-Y.P.)
| | - In-Chul Lee
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology, Jeongeup 53212, Republic of Korea; (H.-J.K.); (I.-C.L.); (J.-Y.P.)
| | - Ji-Young Park
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology, Jeongeup 53212, Republic of Korea; (H.-J.K.); (I.-C.L.); (J.-Y.P.)
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; (E.O.); (H.J.); (S.O.); (J.E.)
| |
Collapse
|
16
|
Santos MM, Santos AM, Nascimento Júnior JAC, Andrade TDA, Rajkumar G, Frank LA, Serafini MR. The management of osteoarthritis symptomatology through nanotechnology: a patent review. J Microencapsul 2023; 40:475-490. [PMID: 37698545 DOI: 10.1080/02652048.2023.2258955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Osteoarthritis is considered a degenerative joint disease that is characterised by inflammation, chronic pain, and functional limitation. The increasing development of nanotechnology in drug delivery systems has provided new ideas and methods for osteoarthritis therapy. This review aimed to evaluate patents that have developed innovations, therapeutic strategies, and alternatives using nanotechnology in osteoarthritis treatment. The results show patents deposited from 2015 to November 2021 in the online databases European Patent Office and World Intellectual Property Organisation. A total of 651 patents were identified for preliminary assessment and 16 were selected for full reading and discussion. The evaluated patents are focused on the intraarticular route, oral route, and topical route for osteoarthritis treatment. The intraarticular route presented a higher patent number, followed by the oral and topical routes, respectively. The development of new technologies allows us to envision a promising and positive future in osteoarthritis treatment.
Collapse
Affiliation(s)
| | | | | | | | - Gomathi Rajkumar
- Department of Botany, Sri Sarada College for Women (Autonomous), Affiliated to Periyar University, Salem, India
| | - Luiza Abrahão Frank
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mairim Russo Serafini
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| |
Collapse
|
17
|
Liu L, Tang H, Wang Y. Polymeric biomaterials: Advanced drug delivery systems in osteoarthritis treatment. Heliyon 2023; 9:e21544. [PMID: 38034809 PMCID: PMC10682535 DOI: 10.1016/j.heliyon.2023.e21544] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Polymeric biomaterials have emerged as a highly promising candidate for drug delivery systems (DDS), exhibiting significant potential to enhance the therapeutic landscape of osteoarthritis (OA) therapy. Their remarkable capacity to manifest desirable physicochemical attributes, coupled with their excellent biocompatibility and biodegradability, has greatly expanded their utility in pharmacotherapeutic applications. Nevertheless, an urgent necessity exists for a comprehensive synthesis of the most recent advances in polymeric DDS, providing valuable guidance for their implementation in the context of OA therapy. This review is dedicated to summarizing and examining recent developments in the utilization of polymeric DDS for OA therapy. Initially, we present an overview of the intricate pathophysiology characterizing OA and underscore the prevailing limitations inherent to current treatment modalities. Subsequently, we introduce diverse categories of polymeric DDS, including hydrogels, nanofibers, and microspheres, elucidating their inherent advantages and limitations. Moreover, we discuss and summarize the delivery of bioactive agents through polymeric biomaterials for OA therapy, emphasizing key findings and emerging trends. Finally, we highlight prospective directions for advancing polymeric DDS, offering a promising approach to enhance their translational potential for OA therapy.
Collapse
Affiliation(s)
- Lin Liu
- Department of Emergency, Honghui Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
| | - Haifeng Tang
- Department of Emergency, Honghui Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
| | - Yanjun Wang
- Department of Emergency, Honghui Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
| |
Collapse
|
18
|
Lee H, Nam J, Jang H, Park YS, Son MH, Lee IH, Eyun SI, Jeon J, Yang S. Novel molecule BBC0901 inhibits BRD4 and acts as a catabolic regulator in the pathogenesis of osteoarthritis. Biomed Pharmacother 2023; 166:115426. [PMID: 37666177 DOI: 10.1016/j.biopha.2023.115426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023] Open
Abstract
Osteoarthritis (OA) is induced by matrix degradation and inflammation mediated by bromo-domain-containing protein 4 (BRD4)-dependent catabolic factors. BRD4 acts as both a transcriptional regulator and an epigenetic reader. BBC0901 was identified as an inhibitor of BRD4 using a DNA-encoded library screening system. We aimed to demonstrate the effects of BBC0901 on OA pathogenesis by in vitro, ex vivo, and in vivo analyses. BBC0901 inhibited the expression of catabolic factors that degrade cartilage without significantly affecting the viability of mouse articular chondrocytes. Additionally, ex vivo experiments under conditions mimicking OA showed that BBC0901 suppressed extracellular matrix degradation. RNA sequencing analysis of gene expression patterns showed that BBC0901 inhibited the expression of catabolic factors, such as matrix metalloproteinases (MMPs) and cyclooxygenase (COX)2, along with reactive oxygen species (ROS) production. Furthermore, intra-articular (IA) injection of BBC0901 into the knee joint blocked osteoarthritic cartilage destruction by inhibition of MMP3, MMP13, COX2, interleukin (IL)6, and ROS production, thereby obstructing the nuclear factor kappa-light-chain-enhancer of activated B cell and mitogen activated protein kinase signaling. In conclusion, BBC0901-mediated BRD4 inhibition prevented OA development by attenuating catabolic signaling and hence, can be considered a promising IA therapeutic for OA.
Collapse
Affiliation(s)
- Hyemi Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Jiho Nam
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Hahyeong Jang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Young-Sik Park
- Benobio Co., Ltd., Gyeonggi-do 13494, Republic of Korea.
| | - Min-Hee Son
- Benobio Co., Ltd., Gyeonggi-do 13494, Republic of Korea.
| | - In-Hyun Lee
- Benobio Co., Ltd., Gyeonggi-do 13494, Republic of Korea.
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Jimin Jeon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|