1
|
Tarakad A. Motor Features of Parkinson's Disease. Neurol Clin 2025; 43:279-289. [PMID: 40185522 DOI: 10.1016/j.ncl.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
The most characteristic motor feature of Parkinson's disease is bradykinesia. Other cardinal motor features of Parkinson's disease include tremor (particularly rest tremor), rigidity, and postural instability/gait changes. Additional motor features common to the disease include dystonia, postural abnormalities, speech and swallowing dysfunction, and levodopa-related dyskinesias. The pathophysiology of many of these motor features remains poorly understood. During the natural course of the disease, nonmotor features (discussed elsewhere) often precede the onset of motor features and meaningfully contribute to motor disability and the gradual decline in the quality of life.
Collapse
Affiliation(s)
- Arjun Tarakad
- Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, 7200 Cambridge Street, 9th Floor, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Scott KJ, Bilkey DK. Sex-dependent effects of rat maternal immune activation on motor function in offspring of poly I:C treated rats. Behav Brain Res 2025; 481:115431. [PMID: 39814236 DOI: 10.1016/j.bbr.2025.115431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
A majority of people with schizophrenia will experience motor symptoms such as impairments to coordination, balance and motor sequencing. These neurological soft signs are associated with negative social and functional outcomes, and poor disease prognosis. They occur prior to medication exposure, suggesting they are an intrinsic feature of schizophrenia. Despite the need to better understand this dysfunction, relatively few studies have provided a detailed focus on motor capability in animal models of schizophrenia. Here we investigate motor coordination in a rat maternal immune activation (MIA) model of schizophrenia risk. The female and male offspring of Polyinosinic:polycytidylic acid (Poly I:C), and vehicle-treated, pregnant dams were tested in a horizontal ladder rung task using regular and irregular rung configurations. We extracted information about limb positions from video, and measured faults and gait coordination in the task. We found that adult male MIA rats were more likely to slip from the ladder rungs than control animals, and they were more likely to have multiple limbs slip simultaneously. MIA rats also exhibited more variability in stride length, a result that correlated with slips and mirrored disease-related changes in human gait. In contrast, female MIA rats displayed minimal alterations in motor performance. Our findings show that the ladder task uncovers sex-dependent effects on motor coordination in MIA rats and highlights the potential usefulness of the MIA model for investigating motor dysfunction in an animal model of schizophrenia risk.
Collapse
Affiliation(s)
- K Jack Scott
- Department of Psychology, University of Otago, New Zealand
| | - David K Bilkey
- Department of Psychology, University of Otago, New Zealand.
| |
Collapse
|
3
|
von Känel S, Pavlidou A, Nadesalingam N, Chapellier V, Nuoffer MG, Kyrou A, Maderthaner L, Wüthrich F, Lefebvre S, Walther S. Manual dexterity and grip force are distinctly linked to domains of neurological soft signs in schizophrenia spectrum disorders. Schizophr Res 2025; 277:65-73. [PMID: 40020341 DOI: 10.1016/j.schres.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/30/2025] [Accepted: 02/22/2025] [Indexed: 03/03/2025]
Abstract
Motor abnormalities are highly prevalent among patients with schizophrenia spectrum disorders. Very likely, motor control processes, such as dexterity and grip force (GF), are impaired in schizophrenia. We aimed to explore associations between various motor abnormalities and motor control processes and to investigate whether specific motor abnormalities predict the performance of fine motor movements and GF. Our analyses included 198 patients with schizophrenia spectrum disorders. We applied well-established standardized motor rating scales to assess five different motor abnormalities: psychomotor slowing (PS), neurological soft signs (NSS), parkinsonism, catatonia, and dyskinesia. As a measure of manual dexterity, we used the coin rotation (CR) task, requiring patients to rotate a coin between their thumb, index, and middle finger. Maximal grip strength was measured with the GF task. Correlation analyses revealed that both CR and GF performances were associated with different motor abnormalities, most strongly with NSS (CR: tau = -0.263, p < 0.001; GF: tau = -0.208, p < 0.001). Hierarchical regression showed that NSS predicted performance on the CR and GF task better compared to PS, parkinsonism, and catatonia alone (CR: ∆R2 = 0.09, F = 22.26, p < 0.001; GF: ∆R2 = 0.02, F = 6.61, p < 0.001). When looking within the NSS domains, CR performance was predicted better by motor coordination and sequencing of motor acts, whereas GF was predicted better by sensory integration. Motor control processes are influenced by different motor abnormalities, especially NSS. Our results suggest that distinct aspects of NSS affect fine motor movements and GF. This knowledge is important for designing specific novel interventions aimed at improving specific motor control processes.
Collapse
Affiliation(s)
- Sofie von Känel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland; Graduate School for Health Science, University of Bern, Switzerland.
| | - Anastasia Pavlidou
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Niluja Nadesalingam
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Victoria Chapellier
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Melanie G Nuoffer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland; Graduate School for Health Science, University of Bern, Switzerland
| | - Alexandra Kyrou
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Lydia Maderthaner
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland; Competence Centre for Psychosomatics, Department of Neurology, University Hospital Inselspital Bern, Switzerland
| | - Florian Wüthrich
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland; University Hospital of Old Age Psychiatry, University of Bern, Switzerland
| | - Stephanie Lefebvre
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland; Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Germany
| |
Collapse
|
4
|
Osborne KJ, Walther S, Mittal VA. Motor actions across psychiatric disorders: A research domain criteria (RDoC) perspective. Clin Psychol Rev 2024; 114:102511. [PMID: 39510028 DOI: 10.1016/j.cpr.2024.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/19/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
The motor system is critical for understanding the pathophysiology and treatment of mental illness. Abnormalities in the processes that allow us to plan and execute movement in a goal-directed, context-appropriate manner (i.e., motor actions) are especially central to clinical motor research. Within this context, the NIMH Research Domain Criteria (RDoC) framework now includes a Motor Actions construct within the recently incorporated Sensorimotor Systems Domain, providing a useful framework for conducting research on motor action processes. However, there is limited available resources for understanding or implementing this framework. We address this gap by providing a comprehensive critical review and conceptual integration of the current clinical literature on the subconstructs comprising the Motor Actions construct. This includes a detailed discussion of each Motor Action subconstruct (e.g., action planning/execution) and its measurement across different units of analysis (e.g., molecules to behavior), the temporal and conceptual relationships among the Motor Action subconstructs (and other relevant RDoC domain constructs), and how abnormalities in these Motor Action subconstructs manifest in mental illness. Together, the review illustrates how motor system dysfunction is implicated in the pathophysiology of many psychiatric conditions and demonstrates shared and distinct mechanisms that may account for similar manifestations of motor abnormalities across disorders.
Collapse
Affiliation(s)
- K Juston Osborne
- Washington University in St. Louis, Department of Psychiatry, 4444 Forest Park Ave., St. Louis, MO, USA; Northwestern University, Department of Psychology, 633 Clark St. Evanston, IL, USA.
| | - Sebastian Walther
- University Hospital Würzburg, Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
| | - Vijay A Mittal
- Northwestern University, Department of Psychology, 633 Clark St. Evanston, IL, USA; Northwestern University, Department of Psychiatry, 676 N. St. Claire, Chicago, IL, USA; Northwestern University, Department of Psychiatry, Institute for Policy Research, Department of Medical Social Sciences, Institute for Innovations in Developmental Sciences (DevSci), 633 Clark St., Evanston, Chicago, IL, USA
| |
Collapse
|
5
|
Fritze S, Brandt GA, Volkmer S, Daub J, Krayem M, Kukovic J, Schwarz E, Braun U, Northoff G, Wolf RC, Kubera KM, Meyer-Lindenberg A, Hirjak D. Deciphering the interplay between psychopathological symptoms, sensorimotor, cognitive and global functioning: a transdiagnostic network analysis. Eur Arch Psychiatry Clin Neurosci 2024; 274:1625-1637. [PMID: 38509230 PMCID: PMC11422259 DOI: 10.1007/s00406-024-01782-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Understanding the relationship between psychopathology and major domains of human neurobehavioral functioning may identify new transdiagnostic treatment targets. However, studies examining the interrelationship between psychopathological symptoms, sensorimotor, cognitive, and global functioning in a transdiagnostic sample are lacking. We hypothesized a close relationship between sensorimotor and cognitive functioning in a transdiagnostic patient sample. METHODS We applied network analysis and community detection methods to examine the interplay and centrality [expected influence (EI) and strength] between psychopathological symptoms, sensorimotor, cognitive, and global functioning in a transdiagnostic sample consisting of 174 schizophrenia spectrum (SSD) and 38 mood disorder (MOD) patients. All patients (n = 212) were examined with the Positive and Negative Syndrome Scale (PANSS), the Heidelberg Neurological Soft Signs Scale (NSS), the Global Assessment of Functioning (GAF), and the Brief Cognitive Assessment Tool for Schizophrenia consisted of trail making test B (TMT-B), category fluency (CF) and digit symbol substitution test (DSST). RESULTS NSS showed closer connections with TMT-B, CF, and DSST than with GAF and PANSS. DSST, PANSS general, and NSS motor coordination scores showed the highest EI. Sensory integration, DSST, and CF showed the highest strength. CONCLUSIONS The close connection between sensorimotor and cognitive impairment as well as the high centrality of sensorimotor symptoms suggests that both domains share aspects of SSD and MOD pathophysiology. But, because the majority of the study population was diagnosed with SSD, the question as to whether sensorimotor symptoms are really a transdiagnostic therapeutic target needs to be examined in future studies including more balanced diagnostic groups.
Collapse
Affiliation(s)
- Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
| | - Geva A Brandt
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
| | - Sebastian Volkmer
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jonas Daub
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
| | - Maria Krayem
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
| | - Jacqueline Kukovic
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Mental Health (DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany
| | - Urs Braun
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
- German Centre for Mental Health (DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Robert Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
- German Centre for Mental Health (DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany.
- German Centre for Mental Health (DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany.
| |
Collapse
|
6
|
Nadesalingam N, Kyrou A, Chapellier V, Maderthaner L, von Känel S, Wüthrich F, Nuoffer MG, Lefebvre S, Pavlidou A, Wobrock T, Gaebel W, Cordes J, Langguth B, Falkai P, Schneider-Axmann T, Strube W, Hasan A, Walther S. Testing a Motor Score Based on PANSS Ratings: A Proxy for Comprehensive Motor Assessment. Schizophr Bull 2024:sbae153. [PMID: 39222718 DOI: 10.1093/schbul/sbae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND HYPOTHESIS Abnormal psychomotor behavior is a core schizophrenia symptom. However, assessment of motor abnormalities with expert rating scales is challenging. The Positive and Negative Syndrome Scale (PANSS) includes 3 items broadly related to hypokinetic motor behavior. Here, we tested whether a sum score of the PANSS items mannerisms and posturing (G5), motor retardation (G7), and disturbance of volition (G13) corresponds to expert ratings, potentially qualifying as a proxy-marker of motor abnormalities. STUDY DESIGN Combining baseline datasets (n = 196) of 2 clinical trials (OCoPS-P, BrAGG-SoS), we correlated PANSS motor score (PANSSmot) and 5 motor rating scales. In addition, we tested whether the cutoff set at ≥3 on each PANSS motor item, ie, "mild" on G05, G07, and G13 (in total ≥9 on PANSSmot) would differentiate the patients into groups with high vs low scores in motor scales. We further sought for replication in an independent trial (RESIS, n = 102), tested the longitudinal stability using week 3 data of OCoPS-P (n = 75), and evaluated the validity of PANSSmot with instrumental measures of physical activity (n = 113). STUDY RESULTS PANSSmot correlated with all motor scales (Spearman-Rho-range 0.19-0.52, all P ≤ .007). Furthermore, the cutoff set at ≥3 on each PANSS motor item was able to distinguish patients with high vs low motor scores in all motor scales except using Abnormal Involuntary Movement Scale (Mann-Whitney-U-Tests: all U ≥ 580, P ≤ .017). CONCLUSIONS Our findings suggest that PANSSmot could be a proxy measure for hypokinetic motor abnormalities. This might help to combine large datasets from clinical trials to explore whether some interventions may hold promise to alleviate hypokinetic motor abnormalities in psychosis.
Collapse
Affiliation(s)
- Niluja Nadesalingam
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Alexandra Kyrou
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Victoria Chapellier
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Lydia Maderthaner
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Sofie von Känel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Florian Wüthrich
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Melanie G Nuoffer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Stephanie Lefebvre
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Anastasia Pavlidou
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Thomas Wobrock
- Centre of Mental Health, County Hospitals Darmstadt-Dieburg, Groß-Umstadt, Germany
- Department of Psychiatry and Psychotherapy, Georg-August University Göttingen, Göttingen, Germany
| | - Wolfgang Gaebel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Joachim Cordes
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Department of Psychiatry and Psychotherapy, Kaiserswerther Diakonie, Florence Nightingale Hospital, Düsseldorf, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Ludwig Maximilian University Munich, München, Germany
| | - Thomas Schneider-Axmann
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Ludwig Maximilian University Munich, München, Germany
| | - Wolfgang Strube
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Augsburg, Germany
- DZPG (German Center of Mental Health), Partner Site, Munich/Augsburg, Augsburg, Germany
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Moussa-Tooks AB, Beermann A, Manzanarez Felix K, Coleman M, Bouix S, Holt D, Lewandowski KE, Öngür D, Breier A, Shenton ME, Heckers S, Walther S, Brady RO, Ward HB. Isolation of Distinct Networks Driving Action and Cognition in Psychomotor Processes. Biol Psychiatry 2024; 96:390-400. [PMID: 38452884 PMCID: PMC11414019 DOI: 10.1016/j.biopsych.2024.02.1013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/02/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Psychomotor disturbances are observed across psychiatric disorders and often manifest as psychomotor slowing, agitation, disorganized behavior, or catatonia. Psychomotor function includes both cognitive and motor components, but the neural circuits driving these subprocesses and how they relate to symptoms have remained elusive for centuries. METHODS We analyzed data from the HCP-EP (Human Connectome Project for Early Psychosis), a multisite study of 125 participants with early psychosis and 58 healthy participants with resting-state functional magnetic resonance imaging and clinical characterization. Psychomotor function was assessed using the 9-hole pegboard task, a timed motor task that engages mechanical and psychomotor components of action, and tasks assessing processing speed and task switching. We used multivariate pattern analysis of whole-connectome data to identify brain correlates of psychomotor function. RESULTS We identified discrete brain circuits driving the cognitive and motor components of psychomotor function. In our combined sample of participants with psychosis (n = 89) and healthy control participants (n = 52), the strongest correlates of psychomotor function (pegboard performance) (p < .005) were between a midline cerebellar region and left frontal region and presupplementary motor area. Psychomotor function was correlated with both cerebellar-frontal connectivity (r = 0.33) and cerebellar-presupplementary motor area connectivity (r = 0.27). However, the cognitive component of psychomotor performance (task switching) was correlated only with cerebellar-frontal connectivity (r = 0.19), whereas the motor component (processing speed) was correlated only with cerebellar-presupplementary motor area connectivity (r = 0.15), suggesting distinct circuits driving unique subprocesses of psychomotor function. CONCLUSIONS We identified cerebellar-cortical circuits that drive distinct subprocesses of psychomotor function. Future studies should probe relationships between cerebellar connectivity and psychomotor performance using neuromodulation.
Collapse
Affiliation(s)
- Alexandra B Moussa-Tooks
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University Bloomington, Bloomington, Indiana
| | - Adam Beermann
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Michael Coleman
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Department of Psychiatry, Brigham & Women's Hospital, Boston, Massachusetts
| | - Sylvain Bouix
- Department of Software Engineering and Information Technology, École de technologie supérieure, Montréal, Québec, Canada
| | - Daphne Holt
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Kathryn E Lewandowski
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; McLean Hospital, Belmont, Massachusetts
| | - Dost Öngür
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; McLean Hospital, Belmont, Massachusetts
| | - Alan Breier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
| | - Martha E Shenton
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Department of Psychiatry, Brigham & Women's Hospital, Boston, Massachusetts; Department of Radiology, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sebastian Walther
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Roscoe O Brady
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; McLean Hospital, Belmont, Massachusetts
| | - Heather Burrell Ward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
8
|
Damme KSF, Han YC, Han Z, Reber PJ, Mittal VA. Motor precision deficits in clinical high risk for psychosis. Eur Arch Psychiatry Clin Neurosci 2024; 274:1427-1435. [PMID: 37458819 PMCID: PMC10792107 DOI: 10.1007/s00406-023-01645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/25/2023] [Indexed: 08/02/2023]
Abstract
Motor deficits appear prior to psychosis onset, provide insight into vulnerability as well as mechanisms that give rise to emerging illness, and are predictive of conversion. However, to date, the extant literature has often targeted a complex abnormality (e.g., gesture dysfunction, dyskinesia), or a single fundamental domain (e.g., accuracy) but rarely provided critical information about several of the individual components that make up more complex behaviors (or deficits). This preliminary study applies a novel implicit motor task to assess domains of motor accuracy, speed, recognition, and precision in individuals at clinical high risk for psychosis (CHR-p). Sixty participants (29 CHR-p; 31 healthy volunteers) completed clinical symptom interviews and a novel Serial Interception Sequence Learning (SISL) task that assessed implicit motor sequence accuracy, speed, precision, and explicit sequence recognition. These metrics were examined in multilevel models that enabled the examination of overall effects and changes in motor domains over blocks of trials and by positive/negative symptom severity. Implicit motor sequence accuracy, speed, and explicit sequence recognition were not detected as impacted in CHR-p. When compared to healthy controls, individuals at CHR-p were less precise in motor responses both overall (d = 0.91) and particularly in early blocks which normalized over later blocks. Within the CHR-p group, these effects were related to positive symptom levels (t = - 2.22, p = 0.036), such that individuals with higher symptom levels did not improve in motor precision over time (r's = 0.01-0.05, p's > 0.54). CHR-p individuals showed preliminary evidence of motor precision deficits but no other motor domain deficits, particularly in early performance that normalized with practice.
Collapse
Affiliation(s)
- Katherine S F Damme
- Department of Psychology, Northwestern University, 2029 Sheridan Rd, Evanston, IL, 60208, USA.
- Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston and Chicago, IL, USA.
| | - Y Catherine Han
- Department of Psychology, Northwestern University, 2029 Sheridan Rd, Evanston, IL, 60208, USA
| | - Ziyan Han
- Department of Psychology, Northwestern University, 2029 Sheridan Rd, Evanston, IL, 60208, USA
| | - Paul J Reber
- Department of Psychology, Northwestern University, 2029 Sheridan Rd, Evanston, IL, 60208, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, 2029 Sheridan Rd, Evanston, IL, 60208, USA
- Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston and Chicago, IL, USA
- Department of Psychiatry, Northwestern University, Chicago, IL, USA
- Medical Social Sciences, Northwestern University, Chicago, IL, USA
- Institute for Policy Research (IPR), Northwestern University, Chicago, IL, USA
| |
Collapse
|
9
|
Zoupou E, Moore TM, Calkins ME, Gur RE, Gur RC, Scott JC. Domain-specific associations between psychopathology and neurocognitive functioning. Psychol Med 2024; 54:3145-3155. [PMID: 38828712 DOI: 10.1017/s0033291724001302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
BACKGROUND Neurocognitive dysfunction is a transdiagnostic finding in psychopathology, but relationships among cognitive domains and general and specific psychopathology dimensions remain unclear. This study aimed to examine associations between cognition and psychopathology dimensions in a large youth cohort. METHOD The sample (N = 9350; age 8-21 years) was drawn from the Philadelphia Neurodevelopmental Cohort. Data from structured clinical interviews were modeled using bifactor confirmatory factor analysis (CFA), resulting in an overall psychopathology ('p') factor score and six orthogonal psychopathology dimensions: dysphoria/distress, obsessive-compulsive, behavioral/externalizing, attention-deficit/hyperactivity, phobias, and psychosis. Neurocognitive data were aggregated using correlated-traits CFA into five factors: executive functioning, memory, complex cognition, social cognition, and sensorimotor speed. We examined relationships among specific and general psychopathology dimensions and neurocognitive factors. RESULTS The final model showed both overall and specific associations between cognitive functioning and psychopathology, with acceptable fit (CFI = 0.91; TLI = 0.90; RMSEA = 0.024; SRMR = 0.054). Overall psychopathology and most psychopathology dimensions were negatively associated with neurocognitive functioning (phobias [p < 0.0005], behavioral/externalizing [p < 0.0005], attention-deficit/hyperactivity [p < 0.0005], psychosis [p < 0.0005 to p < 0.05]), except for dysphoria/distress and obsessive-compulsive symptoms, which were positively associated with complex cognition (p < 0.05 and p < 0.01, respectively). CONCLUSION By modeling a broad range of cognitive and psychopathology domains in a large, diverse sample of youth, we found aspects of neurocognitive functioning shared across clinical phenotypes, as well as domain-specific patterns. Findings support transdiagnostic examination of cognitive performance to parse variability in the link between neurocognitive functioning and clinical phenotypes.
Collapse
Affiliation(s)
- Eirini Zoupou
- Department of Psychiatry, Neurodevelopment and Psychosis Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tyler M Moore
- Department of Psychiatry, Neurodevelopment and Psychosis Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Monica E Calkins
- Department of Psychiatry, Neurodevelopment and Psychosis Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raquel E Gur
- Department of Psychiatry, Neurodevelopment and Psychosis Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute (LiBI), Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA 19104, USA
| | - Ruben C Gur
- Department of Psychiatry, Neurodevelopment and Psychosis Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute (LiBI), Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA 19104, USA
| | - J Cobb Scott
- Department of Psychiatry, Neurodevelopment and Psychosis Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- VISN4 MIRECC, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Yorca-Ruiz Á, Magdaleno Herrero R, Ortiz García de la Foz V, Murillo-García N, Ayesa-Arriola R. Breaking down processing speed: Motor and cognitive insights in first-episode psychosis and unaffected first-degree relatives. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2024:S2950-2853(24)00036-X. [PMID: 38908403 DOI: 10.1016/j.sjpmh.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/17/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
INTRODUCTION Processing speed (PS) deficits represent a fundamental aspect of cognitive impairment, evident not only in schizophrenia but also in individuals undergoing their first episode of psychosis (FEP) and their unaffected first-degree relatives. Heterogeneity in tests assessing PS reflects the participation of motor and cognitive subcomponents to varying degrees. We aim to explore differences in performance of the subcomponents of PS in FEP patients, parents, siblings, and controls. MATERIALS AND METHODS Results from tests, including Trail Making Test part A and part B, Digit Symbol Coding Test, Grooved Pegboard Test, and Stroop Word and Stroop Color subtests, were obtained from 133 FEP patients, 146 parents, and 202 controls. Exploratory factor analysis (EFA) was employed in controls to establish the structure, followed by confirmatory factor analysis (CFA) to verify if the other groups share this structure. RESULTS EFA revealed a two-factor model: Factor 1 for the motor subcomponent and Factor 2 for the cognitive subcomponent. Subsequently, CFA indicated a good fit for the remaining groups with differences in the relationship between the factors. CONCLUSIONS Differences in the relationships of factors within a common structure suggest the involvement of different compensatory strategies among groups, providing insights into the underlying mechanisms of PS deficits in patients and relatives.
Collapse
Affiliation(s)
- Ángel Yorca-Ruiz
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria, Santander, Spain; Department of Psychiatry, Valdecilla Biomedical Research Institute, Santander, Spain
| | - Rebeca Magdaleno Herrero
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria, Santander, Spain; Department of Psychiatry, Valdecilla Biomedical Research Institute, Santander, Spain
| | - Víctor Ortiz García de la Foz
- Department of Psychiatry, Valdecilla Biomedical Research Institute, Santander, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Madrid, Spain
| | - Nancy Murillo-García
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria, Santander, Spain; Department of Psychiatry, Valdecilla Biomedical Research Institute, Santander, Spain
| | - Rosa Ayesa-Arriola
- Department of Psychiatry, Valdecilla Biomedical Research Institute, Santander, Spain; Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Madrid, Spain.
| |
Collapse
|
11
|
Walther S, Alexaki D, Weiss F, Baumann-Gama D, Kyrou A, Nuoffer MG, Wüthrich F, Lefebvre S, Nadesalingam N. Psychomotor Slowing in Psychosis and Inhibitory Repetitive Transcranial Magnetic Stimulation: A Randomized Clinical Trial. JAMA Psychiatry 2024; 81:563-571. [PMID: 38416468 PMCID: PMC10902782 DOI: 10.1001/jamapsychiatry.2024.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/19/2023] [Indexed: 02/29/2024]
Abstract
Importance Psychomotor slowing is a frequent symptom of psychosis, impairing gross and fine motor behavior. It is associated with poor outcomes and functioning, and no treatment is available. Objective To investigate whether 15 sessions of inhibitory repetitive transcranial magnetic stimulation (rTMS) may reduce psychomotor slowing. Design, Setting, and Participants This was a 4-arm, double-blind, randomized, sham-controlled trial at a university hospital in Switzerland. Enrollment took place from March 2019 to August 2022. Adults aged 18 to 60 years with schizophrenia spectrum disorders and severe psychomotor slowing were eligible. All patients continued existing medications, including antipsychotics and benzodiazepines. Those with substance misuse (other than nicotine), conditions associated with impaired or aberrant movement, convulsions, history of hearing problems, other conditions typically excluded from magnetic resonance imaging or TMS, any TMS treatment in the past 3 months, or those who were pregnant or breastfeeding were excluded. Of 615 patients screened for eligibility, 103 were randomized and 88 received at least 1 session of rTMS: 22 were assigned to 1-Hz rTMS, 22 to iTBS, 22 to sham, and 22 to the waiting group. Follow-up was conducted at 6 weeks and 24 weeks following the week 3 assessments including clinical, functional, and motor measures. Interventions Fifteen sessions of rTMS in 3 weeks over the supplementary motor area: 1-Hz rTMS, iTBS, sham, or no treatment (waiting). After 3 weeks, the waiting group received 15 sessions of 1-Hz rTMS over the supplementary motor area. Main Outcomes and Measures The main outcome was the proportion of responders at week 3 in the Salpêtrière Retardation Rating Scale (SRRS) defined as a 30% or greater reduction from baseline (last-observation-carried-forward). The SRRS has 15 items and a maximum total score of 60. Results Of the 88 participants analyzed, 45 were men and 43 were women. The mean (SD) age was 36.3 (12.4) years and the mean (SD) SRRS score was 24.0 (5.9). A total of 69 participants completed the study. At week 3, response rates differed between groups: 15 of 22 (68%) in the 1-Hz rTMS group, 8 of 22 (36%) in the iTBS group, 7 of 22 (32%) in the sham group, and 4 of 22 (18%) in the waiting group (χ23 = 12.1; P = .007). The 1-Hz rTMS group had more responders than sham (odds ratio [OR], 0.13; 95% CI, 0.02-0.65; P = .03), iTBS (OR, 0.12; 95% CI, 0.02-0.61; P = .02), and waiting (OR, 0.04; 95% CI, 0.01-0.22; P = .003). In the waiting group, 10 of 16 participants (63%) responded after receiving 15 sessions of 1-Hz rTMS. No serious adverse events occurred. Conclusions and Relevance In this study, inhibitory add-on rTMS safely alleviated psychomotor slowing in psychosis compared with iTBS, sham, and no treatment. The treatment was also effective with delayed onset. Future studies need to explore the neural changes associated with supplementary motor area rTMS in psychosis. Trial Registration ClinicalTrials.gov Identifier: NCT03921450.
Collapse
Affiliation(s)
- Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Danai Alexaki
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Florian Weiss
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Daniel Baumann-Gama
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Alexandra Kyrou
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Melanie G. Nuoffer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Florian Wüthrich
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Stephanie Lefebvre
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Niluja Nadesalingam
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Lefebvre S, Gehrig G, Nadesalingam N, Nuoffer MG, Kyrou A, Wüthrich F, Walther S. The pathobiology of psychomotor slowing in psychosis: altered cortical excitability and connectivity. Brain 2024; 147:1423-1435. [PMID: 38537253 PMCID: PMC10994557 DOI: 10.1093/brain/awad395] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 04/06/2024] Open
Abstract
Psychomotor slowing is a frequent symptom of schizophrenia. Short-interval intracortical inhibition assessed by transcranial magnetic stimulation demonstrated inhibitory dysfunction in schizophrenia. The inhibitory deficit results from additional noise during information processing in the motor system in psychosis. Here, we tested whether cortical inhibitory dysfunction was linked to psychomotor slowing and motor network alterations. In this cross-sectional study, we included 60 patients with schizophrenia and psychomotor slowing determined by the Salpêtrière Retardation Rating Scale, 23 patients without slowing and 40 healthy control participants. We acquired single and double-pulse transcranial magnetic stimulation effects from the left primary motor cortex, resting-state functional connectivity and diffusion imaging on the same day. Groups were compared on resting motor threshold, amplitude of the motor evoked potentials, as well as short-interval intracortical inhibition. Regression analyses calculated the association between motor evoked potential amplitudes or cortical inhibition with seed-based resting-state functional connectivity from the left primary motor cortex and fractional anisotropy at whole brain level and within major motor tracts. In patients with schizophrenia and psychomotor slowing, we observed lower amplitudes of motor evoked potentials, while the short-interval intracortical inhibition/motor evoked potentials amplitude ratio was higher than in healthy controls, suggesting lower cortical inhibition in these patients. Patients without slowing also had lower amplitudes of motor evoked potentials. Across the combined patient sample, cortical inhibition deficits were linked to more motor coordination impairments. In patients with schizophrenia and psychomotor slowing, lower amplitudes of motor evoked potentials were associated with lower fractional anisotropy in motor tracts. Moreover, resting-state functional connectivity between the primary motor cortex, the anterior cingulate cortex and the cerebellum increased with stronger cortical inhibition. In contrast, in healthy controls and patients without slowing, stronger cortical inhibition was linked to lower resting-state functional connectivity between the left primary motor cortex and premotor or parietal cortices. Psychomotor slowing in psychosis is linked to less cortical inhibition and aberrant functional connectivity of the primary motor cortex. Higher neural noise in the motor system may drive psychomotor slowing and thus may become a treatment target.
Collapse
Affiliation(s)
- Stephanie Lefebvre
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3000 Bern, Switzerland
| | - Gwendolyn Gehrig
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| | - Niluja Nadesalingam
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3000 Bern, Switzerland
| | - Melanie G Nuoffer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3000 Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, 3000 Bern, Switzerland
| | - Alexandra Kyrou
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| | - Florian Wüthrich
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3000 Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3000 Bern, Switzerland
| |
Collapse
|
13
|
Hulstijn W, Cornelis C, Morsel A, Timmers M, Morrens M, Sabbe BGC. Motor learning and performance in schizophrenia and aging: two different patterns of decline. Exp Brain Res 2024:10.1007/s00221-024-06797-9. [PMID: 38459999 DOI: 10.1007/s00221-024-06797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/27/2024] [Indexed: 03/11/2024]
Abstract
Psychomotor slowing has consistently been observed in schizophrenia, however research on motor learning in schizophrenia is limited. Additionally, motor learning in schizophrenia has never been compared with the waning of motor learning abilities in the elderly. Therefore, in an extensive study, 30 individuals with schizophrenia, 30 healthy age-matched controls and 30 elderly participants were compared on sensorimotor learning tasks including sequence learning and adaptation (both explicit and implicit), as well as tracking and aiming. This paper presents new findings on an explicit motor sequence learning task, an explicit verbal learning task and a simple aiming task and summarizes all previously published findings of this large investigation. Individuals with schizophrenia and elderly had slower Movement Time (MT)s compared with controls in all tasks, however both groups improved over time. Elderly participants learned slower on tracking and explicit sequence learning while individuals with schizophrenia adapted slower and to a lesser extent to movement perturbations in adaptation tasks and performed less well on cognitive tests including the verbal learning task. Results suggest that motor slowing is present in schizophrenia and the elderly, however both groups show significant but different motor skill learning. Cognitive deficits seem to interfere with motor learning and performance in schizophrenia while task complexity and decreased movement precision interferes with motor learning in the elderly, reflecting different underlying patterns of decline in these conditions. In addition, evidence for motor slowing together with impaired implicit adaptation supports the influence of cerebellum and the cerebello-thalamo-cortical-cerebellar (CTCC) circuits in schizophrenia, important for further understanding the pathophysiology of the disorder.
Collapse
Affiliation(s)
- Wouter Hulstijn
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - Claudia Cornelis
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
- Psychiatric Center Multiversum, Mortsel, Belgium
| | - Anne Morsel
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
| | - Maarten Timmers
- Janssen Pharmaceutica NV, Janssen Research and Development, Beerse, Belgium
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
- University Psychiatric Center Duffel, Duffel, Belgium
| | - Bernard G C Sabbe
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
14
|
Ansado J, Eynard B, Mirofle N, Mennetrey C, Banchereau J, Sablon M, Lokietek E, Le Vourc'h F, Tissot J, Wrobel J, Martel C, Granon S, Suarez S. Adult norms for the decision-making MindPulse Digital Test. APPLIED NEUROPSYCHOLOGY. ADULT 2024:1-19. [PMID: 38354094 DOI: 10.1080/23279095.2024.2307413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
We present adult normalized data for MindPulse (MP), a new tool evaluating attentional and executive functioning (AEF) in decision-making. We recruited 722 neurotypical participants (18-80 years), with 149 retested. The MP test includes three tasks: Simple Reaction Time (SRT), Go/No-go, and complex Go/No-go, involving perceptual components, motor responses, and measurements of reaction time (RT) and correctness. We compare responses, evaluating 14 cognitive indices (including new composite indices to describe AEF: Executive Speed and Reaction to Difficulty). We adjust for age/sex effects, introduce a difficulty scale, and consider standard deviations, aberrant times, and Spearman Correlation for speed-accuracy balance. Wilcoxon unpaired rank test is used to assess sex effects, and linear regression is employed to assess the age linear dependency model on the normalized database. The study demonstrated age and sex effects on RTs, in all three subtests, and the ability to correct it for individual results. The test showed excellent validity (Cronbach Alpha for the three subtasks is 92, 87, 95%) and high internal consistency (p < 0.001 for each subtask significantly faster than the more complex subtask) of the MP across the wide age range. Results showed correlation within the three RT parts of the test (p < .001 for each) and the independence of SRT, RD, and ES indices. The Retest effect was lower than intersubject variance, showing consistency over time. This study highlights the MP test's strong validity on a homogeneous, large adult sample. It emphasizes assessing AEF and Reaction to Difficulty dynamically with high sensitivity.
Collapse
Affiliation(s)
| | - Bertrand Eynard
- It's Brain SAS, Orsay, France
- IPHT/DRF/CEA Institut de Physique Théorique, Gif-sur-Yvette, France
- CRM Montréal, Montreal, Canada
| | - Nastasia Mirofle
- Institut des Neurosciences de Paris-Saclay, CNRS UMR 9197, Université Paris-Saclay, Paris, France
| | | | | | | | - Eline Lokietek
- Centre SSR Marguerite Boucicaut, Chalon sur Saône, France
| | | | | | | | - Claire Martel
- Centre de Santé Universitaire, St Martin d'Hères, France
| | - Sylvie Granon
- Institut des Neurosciences de Paris-Saclay, CNRS UMR 9197, Université Paris-Saclay, Paris, France
| | | |
Collapse
|
15
|
Haatveit B, Westlye LT, Vaskinn A, Flaaten CB, Mohn C, Bjella T, Sæther LS, Sundet K, Melle I, Andreassen OA, Alnæs D, Ueland T. Intra- and inter-individual cognitive variability in schizophrenia and bipolar spectrum disorder: an investigation across multiple cognitive domains. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:89. [PMID: 38110366 PMCID: PMC10728206 DOI: 10.1038/s41537-023-00414-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/17/2023] [Indexed: 12/20/2023]
Abstract
There is substantial cognitive heterogeneity among patients with schizophrenia (SZ) and bipolar disorders (BD). More knowledge about the magnitude and clinical correlates of performance variability could improve our understanding of cognitive impairments. Using double generalized linear models (DGLMs) we investigated cognitive mean and variability differences between patients with SZ (n = 905) and BD spectrum disorders (n = 522), and healthy controls (HC, n = 1170) on twenty-two variables. The analysis revealed significant case-control differences on 90% of the variables. Compared to HC, patients showed larger intra-individual (within subject) variability across tests and larger inter-individual (between subject) variability in measures of fine-motor speed, mental processing speed, and inhibitory control (SZ and BD), and in verbal learning and memory and intellectual functioning (SZ). In SZ, we found that lager intra -and inter (on inhibitory control and speed functions) individual variability, was associated with lower functioning and more negative symptoms. Inter-individual variability on single measures of memory and intellectual function was additionally associated with disorganized and positive symptoms, and use of antidepressants. In BD, there were no within-subject associations with symptom severity. However, greater inter-individual variability (primarily on inhibitory control and speeded functions) was associated with lower functioning, more negative -and disorganized symptoms, earlier age at onset, longer duration of illness, and increased medication use. These results highlight larger individual differences in patients compared to controls on various cognitive domains. Further investigations of the causes and correlates of individual differences in cognitive function are warranted.
Collapse
Affiliation(s)
- Beathe Haatveit
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Anja Vaskinn
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Camilla Bärthel Flaaten
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Christine Mohn
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thomas Bjella
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Sofie Sæther
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Kjetil Sundet
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Torill Ueland
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Fritze S, Brandt GA, Benedyk A, Moldavski A, Geiger-Primo LS, Andoh J, Volkmer S, Braun U, Kubera KM, Wolf RC, von der Goltz C, Schwarz E, Meyer-Lindenberg A, Tost H, Hirjak D. Psychomotor slowing in schizophrenia is associated with cortical thinning of primary motor cortex: A three cohort structural magnetic resonance imaging study. Eur Neuropsychopharmacol 2023; 77:53-66. [PMID: 37717350 DOI: 10.1016/j.euroneuro.2023.08.499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023]
Abstract
Psychomotor slowing (PS) is characterized by slowed movements and lower activity levels. PS is frequently observed in schizophrenia (SZ) and distressing because it impairs performance of everyday tasks and social activities. Studying brain topography contributing to PS in SZ can help to understand the underlying neurobiological mechanisms as well as help to develop more effective treatments that specifically target affected brain areas. Here, we conducted structural magnetic resonance imaging (sMRI) of three independent cohorts of right-handed SZ patients (SZ#1: n = 72, SZ#2: n = 37, SZ#3: n = 25) and age, gender and education matched healthy controls (HC) (HC#1: n = 40, HC#2: n = 37, HC#3: n = 38). PS severity in the three SZ cohorts was determined using the Positive and Negative Syndrome Scale (PANSS) item #G7 (motor retardation) and Trail-Making-Test B (TMT-B). FreeSurfer v7.2 was used for automated parcellation and segmentation of cortical and subcortical regions. SZ#1 patients showed reduced cortical thickness in right precentral gyrus (M1; p = 0.04; Benjamini-Hochberg [BH] corr.). In SZ#1, cortical thinning in right M1 was associated with PANSS item #G7 (p = 0.04; BH corr.) and TMT-B performance (p = 0.002; BH corr.). In SZ#1, we found a significant correlation between PANSS item #G7 and TMT-B (p = 0.005, ρ=0.326). In conclusion, PANSS G#7 and TMT-B might have a surrogate value for predicting PS in SZ. Cortical thinning of M1 rather than alterations of subcortical structures may point towards cortical pathomechanism underlying PS in SZ.
Collapse
Affiliation(s)
- Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Geva A Brandt
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anastasia Benedyk
- Department of Psychiatry and Psychotherapy, Research Group System Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Alexander Moldavski
- Department of Psychiatry and Psychotherapy, Research Group System Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Lena S Geiger-Primo
- Department of Psychiatry and Psychotherapy, Research Group System Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Jamila Andoh
- Department of Psychiatry and Psychotherapy, Research Group System Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Sebastian Volkmer
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Urs Braun
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | | | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychiatry and Psychotherapy, Research Group System Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Research Group System Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
17
|
Zarubin VC, Damme KSF, Vargas T, Osborne KJ, Norton ES, Briggs-Gowan M, Allen NB, Wakschlag L, Mittal VA. Neurodevelopmental vulnerability to psychosis: developmentally-based methods enable detection of early life inhibitory control deficits that predict psychotic-like experiences at the transition to adolescence. Psychol Med 2023; 53:7746-7755. [PMID: 37395596 PMCID: PMC10761594 DOI: 10.1017/s003329172300171x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
BACKGROUND Inhibitory control develops in early childhood, and atypical development may be a measurable marker of risk for the later development of psychosis. Additionally, inhibitory control may be a target for intervention. METHODS Behavioral performance on a developmentally appropriate Go/No-Go task including a frustration manipulation completed by children ages 3-5 years (early childhood; n = 107) was examined in relation to psychotic-like experiences (PLEs; 'tween'; ages 9-12), internalizing symptoms, and externalizing symptoms self-reported at long-term follow-up (pre-adolescence; ages 8-11). ERP N200 amplitude for a subset of these children (n = 34) with electrophysiological data during the task was examined as an index of inhibitory control. RESULTS Children with lower accuracy on No-Go trials compared to Go trials in early childhood (F(1,101) = 3.976, p = 0.049), evidenced higher PLEs at the transition to adolescence 4-9 years later, reflecting a specific deficit in inhibitory control. No association was observed with internalizing or externalizing symptoms. Decreased accuracy during the frustration manipulation predicted higher internalizing, F(2,202) = 5.618, p = 0.004, and externalizing symptoms, F(2,202) = 4.663, p = 0.010. Smaller N200 amplitudes were observed on No-Go trials for those with higher PLEs, F(1,101) = 6.075, p = 0.020; no relationship was observed for internalizing or externalizing symptoms. CONCLUSIONS Long-term follow-up demonstrates for the first time a specific deficit in inhibitory control behaviorally and electrophysiology, for individuals who later report more PLEs. Decreases in task performance under frustration induction indicated risk for internalizing and externalizing symptoms. These findings suggest that pathophysiological mechanisms for psychosis are relevant and discriminable in early childhood, and further, suggest an identifiable and potentially modifiable target for early intervention.
Collapse
Affiliation(s)
- Vanessa C Zarubin
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Katherine S F Damme
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston and Chicago, IL, USA
| | - Teresa Vargas
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - K Juston Osborne
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Elizabeth S Norton
- Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston and Chicago, IL, USA
- Department of Medical Social Sciences, Northwestern University, Chicago, IL, USA
- Department of Communication Sciences & Disorders, School of Communication, Northwestern University, Evanston, IL, USA
| | - Margaret Briggs-Gowan
- Department of Psychiatry, University of Connecticut Health Center, Farmington, CT, USA
| | - Norrina B Allen
- Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston and Chicago, IL, USA
- Department of Preventative Medicine, Northwestern University, Chicago, IL, USA
| | - Laurie Wakschlag
- Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston and Chicago, IL, USA
- Department of Psychiatry, Northwestern University, Chicago, IL, USA
- Institute for Policy Research (IPR), Northwestern University, Chicago, IL, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Medical Social Sciences, Northwestern University, Chicago, IL, USA
- Department of Psychiatry, Northwestern University, Chicago, IL, USA
- Institute for Policy Research (IPR), Northwestern University, Chicago, IL, USA
| |
Collapse
|
18
|
Lai YJ, Lin YC, Hsu CH, Tseng HH, Lee CN, Huang PC, Hsu HY, Kuo LC. Are the sensorimotor control capabilities of the hands the factors influencing hand function in people with schizophrenia? BMC Psychiatry 2023; 23:807. [PMID: 37936136 PMCID: PMC10631069 DOI: 10.1186/s12888-023-05259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/07/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Previous works reported people with schizophrenia experienced inferior hand functions which influence their daily participation and work efficiency. Sensorimotor capability is one of indispensable elements acting in a well-executed feed-forward and feedback control loop to contribute to hand performances. However, rare studies investigated contribution of sensorimotor ability to hand functions for people with schizophrenia. This study aimed to explore hand function in people with schizophrenia based on the perspective of the sensorimotor control capabilities of the hands. METHODS Twenty-seven people at the chronic stage of schizophrenia were enrolled. The following assessment tools were used: the Purdue Pegboard Test (PPT) and the VALPAR Component Work Sample-8 (VCWS 8) system for hand function; the Self-Reported Graphic version of the Personal and Social Performance (SRG-PSP) scale for functionality; and the Semmes-Weinstein Monofilaments (SWM), the pinch-holding-up-activity (PHUA) test and the Manual Tactile Test (MTT) for the sensory and sensorimotor parameters. The Clinical Global Impression-Severity (CGI-S) scale and the Extrapyramidal Symptom Rating Scale (ESRS) were used to grade the severity of the illness and the side-effects of the drugs. Spearman's rank correlation coefficient was used to analyze associations among hand function, functionality, and sensorimotor capabilities. A multiple linear regression analysis was used to identify the determinants of hand function. RESULTS The results indicated that both hand function and sensorimotor capability were worse in people with schizophrenia than in healthy people, with the exception of the sensory threshold measured with the SWM. Moreover, the sensorimotor abilities of the hands were associated with hand function. The results of the regression analysis showed that the MTT measure of stereognosis was a determinant of the PPT measure of the dominant hand function and of the performance on the VCWS 8, and that the ESRS and the MTT measure of barognosis were determinants of the performance on the assembly task of the PPT. CONCLUSIONS The findings suggested that sensorimotor capabilities, especially stereognosis and barognosis, are crucial determinants of hand function in people with schizophrenia. The results also revealed that the side effects of drugs and the duration of the illness directly affect hand function. CLINICAL TRAIL REGISTRATION ClinicalTrials.gov , identifier NCT04941677, 28/06/2021.
Collapse
Affiliation(s)
- Yu-Jen Lai
- Department of Occupational Therapy, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chen Lin
- Department of Occupational Therapy, Da-Yeh University, Changhua, Taiwan
| | - Chieh-Hsiang Hsu
- Department of Occupational Therapy, Da-Yeh University, Changhua, Taiwan
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Huai-Hsuan Tseng
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ning Lee
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pai-Chuan Huang
- Department of Occupational Therapy, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Hsiu-Yun Hsu
- Department of Occupational Therapy, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
- Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
| | - Li-Chieh Kuo
- Department of Occupational Therapy, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
- Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan.
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
19
|
Messina A, Caraci F, Aguglia E, Signorelli MS. Catatonia-like behavior and immune activation: a crosstalk between psychopathology and pathology in schizophrenia. Ann Gen Psychiatry 2023; 22:39. [PMID: 37821904 PMCID: PMC10566179 DOI: 10.1186/s12991-023-00471-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND In Kalhbaum's first characterization of catatonia, the emotional symptoms, such as decreased or restricted expression of feelings and emotions, which is described as blunted affect, are related to the motor symptoms. In later years, the affective domain was excluded from the concept of catatonia and was not included among the diagnostic criteria in the various Diagnostic Statistical Manual (DSM) versions. In recent times, some authors have proposed the proposition of reevaluating the notion of catatonia through the reintroduction of the affective domain. The objective of this study was to examine the correlation between catatonic-like behavior (CLB), such as emotional withdrawal, blunted affect, and psychomotor slowing, and inflammatory markers, namely the neutrophil/lymphocytes ratio (NLR) and lymphocytes/monocytes ratio (LMR), in individuals diagnosed with schizophrenia. METHOD A sample of 25 patients with schizophrenia (10 females, 15 males) was recruited, and the Brief Psychiatric Rating Scale (BPRS) was used to assess the severity of emotional withdrawal, blunted affect, and psychomotor slowing. FINDINGS The correlation analysis (Spearman ρ) revealed a robust direct association between blunted affect and psychomotor slowing (ρ = 0.79, P = 0.001), and a significant direct correlation between CLB (emotional withdrawal, ρ = 0.51, P = 0.05; blunted affect ρ = 0.58, P = 0.05; motor retardation, ρ = 0.56, P = 0.05) and LMR (ρ = 0.53, P = 0.05). In addition, patients with a duration of illness (DOI) older than five years had a higher presence of CLB and a higher LMR than patients with a more recent diagnosis of the disease. Likely, patients with positive symptoms and in the prodromal and active stages of the disease have a different immune profile than patients in the residual stage and with a predominance of negative symptoms. CONCLUSIONS Psychomotor slowing and blunted affect are two significantly related features, representing the two-faced Janus of immobility. Furthermore, aggregating them in CLB is more predominant the longer the duration of schizophrenia and is associated with different a specific pattern of immune activation.
Collapse
Affiliation(s)
- Antonino Messina
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania, Italy.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Eugenio Aguglia
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania, Italy
| | - Maria Salvina Signorelli
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania, Italy
| |
Collapse
|
20
|
Vöckel J, Thiemann U, Weisbrod M, Schröder J, Resch F, Klein C, Bender S. Movement initiation and preparation in subjects with schizophrenia - The amplitude of the readiness potential as a biological marker for negative symptom severity. Schizophr Res 2023; 260:3-11. [PMID: 37543008 DOI: 10.1016/j.schres.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 04/24/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
OBJECTIVE Despite extensive research, the etiology of negative symptoms is not well understood. Preliminary findings are linking motor disturbances to negative symptom severity. We aimed to further the understanding to what extent motor movement preparation influences negative symptom severity. METHODS In a cohort of 31 subjects with schizophrenia and 20 control subjects we recorded the readiness potential amplitude over Cz during spontaneous movements of the right and left thumb. We further assessed negative and positive symptom severity (scale for the assessment of negative and positive symptoms) as well as neurological soft signs (NSS). RESULTS In subjects with schizophrenia the severity of negative symptoms was best predicted by the readiness potential amplitude and the NSS subdomain motor coordination. The correlation between deficits in motor coordination and negative symptom severity was partially mediated by the readiness potential amplitude in subjects with schizophrenia. CONCLUSIONS Deficits in motor processing are linked to negative symptom severity in schizophrenia. The readiness potential may represent a biological marker of these basal deficits. In combination with the assessment of NSS, the readiness potential may be a marker of the course of negative symptom severity and help clarifying interdependencies between (pre)frontal networks for action initiation and coordination, as well as negative symptoms.
Collapse
Affiliation(s)
- Jasper Vöckel
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Ulf Thiemann
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Blumenstr. 8, 69115 Heidelberg, Germany; Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, LVR Hospital, Bonn, Germany
| | - Matthias Weisbrod
- Department of Psychiatry and Psychotherapy, SRH Klinikum Karlsbad-Langensteinbach, Germany; Department of General Psychiatry, Center of Psychosocial Medicine, University of Heidelberg, Germany
| | - Johannes Schröder
- Section of Geriatric Psychiatry, Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Voßstr. 4, 69115 Heidelberg, Germany
| | - Franz Resch
- Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Blumenstr. 8, 69115 Heidelberg, Germany
| | - Christoph Klein
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine and University of Freiburg, Hauptstr. 8, 79104 Freiburg, Germany; 2(nd) Department of Psychiatry, National and Kapodistrian University of Athens, Medical School, University General Hospital "Attikon", Athens, Greece
| | - Stephan Bender
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Blumenstr. 8, 69115 Heidelberg, Germany
| |
Collapse
|
21
|
Berardi M, Brosch K, Pfarr JK, Schneider K, Sültmann A, Thomas-Odenthal F, Wroblewski A, Usemann P, Philipsen A, Dannlowski U, Nenadić I, Kircher T, Krug A, Stein F, Dietrich M. Relative importance of speech and voice features in the classification of schizophrenia and depression. Transl Psychiatry 2023; 13:298. [PMID: 37726285 PMCID: PMC10509176 DOI: 10.1038/s41398-023-02594-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/10/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
Speech is a promising biomarker for schizophrenia spectrum disorder (SSD) and major depressive disorder (MDD). This proof of principle study investigates previously studied speech acoustics in combination with a novel application of voice pathology features as objective and reproducible classifiers for depression, schizophrenia, and healthy controls (HC). Speech and voice features for classification were calculated from recordings of picture descriptions from 240 speech samples (20 participants with SSD, 20 with MDD, and 20 HC each with 4 samples). Binary classification support vector machine (SVM) models classified the disorder groups and HC. For each feature, the permutation feature importance was calculated, and the top 25% most important features were used to compare differences between the disorder groups and HC including correlations between the important features and symptom severity scores. Multiple kernels for SVM were tested and the pairwise models with the best performing kernel (3-degree polynomial) were highly accurate for each classification: 0.947 for HC vs. SSD, 0.920 for HC vs. MDD, and 0.932 for SSD vs. MDD. The relatively most important features were measures of articulation coordination, number of pauses per minute, and speech variability. There were moderate correlations between important features and positive symptoms for SSD. The important features suggest that speech characteristics relating to psychomotor slowing, alogia, and flat affect differ between HC, SSD, and MDD.
Collapse
Affiliation(s)
- Mark Berardi
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany.
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Katharina Schneider
- Institute for Linguistics: General Linguistics, University of Mainz, Mainz, Germany
| | - Angela Sültmann
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Adrian Wroblewski
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Paula Usemann
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Maria Dietrich
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
22
|
Hitczenko K, Segal Y, Keshet J, Goldrick M, Mittal VA. Speech characteristics yield important clues about motor function: Speech variability in individuals at clinical high-risk for psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:60. [PMID: 37717025 PMCID: PMC10505148 DOI: 10.1038/s41537-023-00382-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/24/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND AND HYPOTHESIS Motor abnormalities are predictive of psychosis onset in individuals at clinical high risk (CHR) for psychosis and are tied to its progression. We hypothesize that these motor abnormalities also disrupt their speech production (a highly complex motor behavior) and predict CHR individuals will produce more variable speech than healthy controls, and that this variability will relate to symptom severity, motor measures, and psychosis-risk calculator risk scores. STUDY DESIGN We measure variability in speech production (variability in consonants, vowels, speech rate, and pausing/timing) in N = 58 CHR participants and N = 67 healthy controls. Three different tasks are used to elicit speech: diadochokinetic speech (rapidly-repeated syllables e.g., papapa…, pataka…), read speech, and spontaneously-generated speech. STUDY RESULTS Individuals in the CHR group produced more variable consonants and exhibited greater speech rate variability than healthy controls in two of the three speech tasks (diadochokinetic and read speech). While there were no significant correlations between speech measures and remotely-obtained motor measures, symptom severity, or conversion risk scores, these comparisons may be under-powered (in part due to challenges of remote data collection during the COVID-19 pandemic). CONCLUSION This study provides a thorough and theory-driven first look at how speech production is affected in this at-risk population and speaks to the promise and challenges facing this approach moving forward.
Collapse
Affiliation(s)
- Kasia Hitczenko
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Études Cognitives, ENS, EHESS, CNRS, PSL University, Paris, France.
| | - Yael Segal
- Faculty of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Joseph Keshet
- Faculty of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Matthew Goldrick
- Department of Linguistics, Northwestern University, Evanston, IL, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Cognitive Science Program, Northwestern University, Evanston, IL, USA
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Cognitive Science Program, Northwestern University, Evanston, IL, USA
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
- Department of Psychiatry, Northwestern University, Evanston, IL, USA
- Medical Social Sciences, Northwestern University, Chicago, IL, USA
- Institute for Innovations in Developmental Sciences, Evanston/Chicago, IL, USA
| |
Collapse
|
23
|
Nadesalingam N, Lefebvre S, Alexaki D, Baumann Gama D, Wüthrich F, Kyrou A, Kerkeni H, Kalla R, Walther S. The Behavioral Mapping of Psychomotor Slowing in Psychosis Demonstrates Heterogeneity Among Patients Suggesting Distinct Pathobiology. Schizophr Bull 2023; 49:507-517. [PMID: 36413085 PMCID: PMC10016403 DOI: 10.1093/schbul/sbac170] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Psychomotor slowing (PS) occurs in up to half of schizophrenia patients and is linked to poorer outcomes. As standard treatment fails to improve PS, novel approaches are needed. Here, we applied the RDoC framework using 3 units of analysis, ie, behavior, self-report, and physiology to test, whether patients with PS are different from patients without PS and controls. METHODS Motor behavior was compared between 71 schizophrenia patients with PS, 25 without PS, and 42 healthy controls (HC) using 5 different measures: (1) for behavior, an expert rating scale: Motor score of the Salpêtrière Retardation Rating Scale, (2) for self-report, the International Physical Activity Questionnaire; and for physiology, (3) Actigraphy, which accounts for gross motor behavior, (4) Gait velocity, and (5) coin rotation task to assess manual dexterity. RESULTS The ANCOVAs comparing the 3 groups revealed differences between patients with PS and HC in expert ratings, self-report, and instrumental measures (all P ≤ .001). Patients with PS also scored higher in expert ratings and had lower instrumental activity levels compared to patients without PS (all P ≤ .045). Instrumental activity levels correlated with an expert rating of PS (rho = -0.51, P-fdr corrected <.001) and classified similarly at 72% accuracy. CONCLUSIONS PS is characterized by slower gait, lower activity levels, and slower finger movements compared to HC. However, only actigraphy and observer ratings enable to clearly disentangle PS from non-PS patients. Actigraphy may become the standard assessment of PS in neuroimaging studies and clinical trials.
Collapse
Affiliation(s)
- Niluja Nadesalingam
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Stéphanie Lefebvre
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Danai Alexaki
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Klinik Sonnenhalde AG Psychiatrie und Psychotherapie, Basel, Switzerland
| | - Daniel Baumann Gama
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Florian Wüthrich
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Alexandra Kyrou
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Hassen Kerkeni
- Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland
| | - Roger Kalla
- Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
24
|
Rouy M, Roger M, Goueytes D, Pereira M, Roux P, Faivre N. Preserved electrophysiological markers of confidence in schizophrenia spectrum disorder. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:12. [PMID: 36823178 PMCID: PMC9950441 DOI: 10.1038/s41537-023-00333-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
A large number of behavioral studies suggest that confidence judgments are impaired in schizophrenia, motivating the search for neural correlates of an underlying metacognitive impairment. Electrophysiological studies suggest that a specific evoked response potential reflecting performance monitoring, namely the error-related negativity (ERN), is blunted in schizophrenia compared to healthy controls. However, attention has recently been drawn to a potential confound in the study of metacognition, namely that lower task-performance in schizophrenia compared to healthy controls involves a decreased index of metacognitive performance (where metacognitive performance is construed as the ability to calibrate one's confidence relative to response correctness), independently of metacognitive abilities among patients. Here, we assessed how this confound might also apply to ERN-blunting in schizophrenia. We used an adaptive staircase procedure to titrate task-performance on a motion discrimination task in which participants (N = 14 patients and 19 controls) had to report their confidence after each trial while we recorded high density EEG. Interestingly, not only metaperceptual abilities were preserved among patients at the behavioral level, but contrary to our hypothesis, we also found no electrophysiological evidence for altered EEG markers of performance monitoring. These results bring additional evidence suggesting an unaltered ability to monitor perceptual performance on a trial by trial basis in schizophrenia.
Collapse
Affiliation(s)
- Martin Rouy
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France.
| | | | - Dorian Goueytes
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - Michael Pereira
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - Paul Roux
- Centre Hospitalier de Versailles, Service Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie, Le Chesnay; Université Paris-Saclay; Université de Versailles Saint-Quentin-En-Yvelines; DisAP-DevPsy-CESP, INSERM UMR1018, Villejuif, France
| | - Nathan Faivre
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| |
Collapse
|
25
|
Pratt DN, Luther L, Kinney KS, Osborne KJ, Corlett PR, Powers AR, Woods SW, Gold JM, Schiffman J, Ellman LM, Strauss GP, Walker EF, Zinbarg R, Waltz JA, Silverstein SM, Mittal VA. Comparing a Computerized Digit Symbol Test to a Pen-and-Paper Classic. SCHIZOPHRENIA BULLETIN OPEN 2023; 4:sgad027. [PMID: 37868160 PMCID: PMC10590153 DOI: 10.1093/schizbullopen/sgad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Background and Hypothesis Processing speed dysfunction is a core feature of psychosis and predictive of conversion in individuals at clinical high risk (CHR) for psychosis. Although traditionally measured with pen-and-paper tasks, computerized digit symbol tasks are needed to meet the increasing demand for remote assessments. Therefore we: (1) assessed the relationship between traditional and computerized processing speed measurements; (2) compared effect sizes of impairment for progressive and persistent subgroups of CHR individuals on these tasks; and (3) explored causes contributing to task performance differences. Study Design Participants included 92 CHR individuals and 60 healthy controls who completed clinical interviews, the Brief Assessment of Cognition in Schizophrenia Symbol Coding test, the computerized TestMyBrain Digit Symbol Matching Test, a finger-tapping task, and a self-reported motor abilities measure. Correlations, Hedges' g, and linear models were utilized, respectively, to achieve the above aims. Study Results Task performance was strongly correlated (r = 0.505). A similar degree of impairment was seen between progressive (g = -0.541) and persistent (g = -0.417) groups on the paper version. The computerized task uniquely identified impairment for progressive individuals (g = -477), as the persistent group performed similarly to controls (g = -0.184). Motor abilities were related to the computerized version, but the paper version was more related to symptoms and psychosis risk level. Conclusions The paper symbol coding task measures impairment throughout the CHR state, while the computerized version only identifies impairment in those with worsening symptomatology. These results may be reflective of sensitivity differences, an artifact of existing subgroups, or evidence of mechanistic differences.
Collapse
Affiliation(s)
- Danielle N Pratt
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Lauren Luther
- Department of Psychology, University of Georgia, Athens, GA, USA
| | - Kyle S Kinney
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | | | | | - Albert R Powers
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - James M Gold
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jason Schiffman
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Lauren M Ellman
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Gregory P Strauss
- Department of Psychology, University of Georgia, Athens, GA, USA
- Department of Neuroscience, University of Georgia, Athens, GA, USA
| | - Elaine F Walker
- Department of Psychology and Program in Neuroscience, Emory University, Atlanta, GA, USA
| | - Richard Zinbarg
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - James A Waltz
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Steven M Silverstein
- Departments of Psychiatry, Neuroscience and Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institutes for Policy Research (IPR) and Innovations in Developmental Sciences (DevSci), Psychiatry, Medical Social Sciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
26
|
Psychomotor slowing alters gait velocity, cadence, and stride length and indicates negative symptom severity in psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:116. [PMID: 36585399 PMCID: PMC9803648 DOI: 10.1038/s41537-022-00324-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/17/2022] [Indexed: 01/01/2023]
Abstract
Schizophrenia is a severe mental disorder, in which 50% of the patients present with motor abnormalities such as psychomotor slowing. Slow spontaneous gait has been reported in schizophrenia. However, comprehensive objective instrumental assessments of multiple gait conditions are missing. Finally, the specific gait patterns of subjects with psychomotor slowing are still unknown. Therefore, this study aimed to objectively assess multiple gait parameters at different walking conditions in patients with schizophrenia with and without psychomotor slowing. Also, we hypothesised gait impairments to correlate with expert ratings of hypokinetic movement disorders and negative symptoms. We collected gait data (GAITRite®) in 70 patients with psychomotor slowing (SRRS (Salpetriere retardation rating scale) ≥15), 22 non-psychomotor slowed patients (SRRS < 15), and 42 healthy controls. Participants performed four walking conditions (self-selected speed, maximum speed, head reclined, and eyes closed) and six gait parameters were extracted (velocity, cadence, stride length, functional ambulation profile (FAP), and variance of stride length and time). Patients with psychomotor slowing presented slower velocity, lower cadence, and shorter stride length in all walking conditions compared to healthy controls, with the non-slowed patients in an intermediate position (all F > 16.18, all p < 0.001). Secondly, slower velocity was associated with more severe hypokinetic movement disorders and negative symptoms. In conclusion, gait impairments exist in a spectrum with healthy controls on one end and patients with psychomotor slowing on the other end. Patients with psychomotor slowing are specifically impaired when an adaptation of gait patterns is required, contributing to the deleterious effects of sedentary behaviours.
Collapse
|
27
|
Daderwal MC, Sreeraj VS, Suhas S, Rao NP, Venkatasubramanian G. Montreal Cognitive Assessment (MoCA) and Digit Symbol Substitution Test (DSST) as a screening tool for evaluation of cognitive deficits in schizophrenia. Psychiatry Res 2022; 316:114731. [PMID: 35926360 DOI: 10.1016/j.psychres.2022.114731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 07/02/2022] [Accepted: 07/16/2022] [Indexed: 11/28/2022]
Abstract
Cognitive deficit is one of the core features of schizophrenia and is associated with poor functional outcomes. There is a lack of validated criteria to screen and monitor cognitive deficits in schizophrenia. This study aimed to evaluate the concurrent validity and sensitivity of MoCA (Montreal Cognitive Assessment) and DSST (Digit Symbol Substitution Test) in identifying cognitive deficits in Schizophrenia comparing with a comprehensive MCCB [MATRICS (Measurement And Treatment Research to Improve Cognition in Schizophrenia) Consensus Cognitive Battery] equivalent battery. We did clinical and cognitive assessments on 30 patients with schizophrenia and 30 age and gender-matched healthy controls. The Cronbach's Alpha of MoCA was 0.839, and on adding the DSST, it increased to 0.859. In stepwise binary logistic regression, adding DSST to MoCA improved the prediction of cognitive impairment as defined by a comprehensive battery with 86.7% classification accuracy. Receiver operating characteristic curve analysis suggested a score of 25 of MoCA and 59 of DSST as an optimal cut-off in identifying severe cognitive deficits with an additional MoCA cut-off of 27 for identifying mild cognitive deficits. Combined MoCA and DSST is a sensitive and quick method to screen for neurocognitive deficits in schizophrenia.
Collapse
Affiliation(s)
| | - Vanteemar S Sreeraj
- InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru 560029, India.
| | - Satish Suhas
- InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru 560029, India
| | - Naren P Rao
- InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru 560029, India
| | - Ganesan Venkatasubramanian
- InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru 560029, India
| |
Collapse
|
28
|
Osborne KJ, Zhang W, Farrens J, Geiger M, Kraus B, Glazer J, Nusslock R, Kappenman ES, Mittal VA. Neural mechanisms of motor dysfunction in individuals at clinical high-risk for psychosis: Evidence for impairments in motor activation. JOURNAL OF PSYCHOPATHOLOGY AND CLINICAL SCIENCE 2022; 131:375-391. [PMID: 35511525 PMCID: PMC9447290 DOI: 10.1037/abn0000754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Motor abnormalities are a core feature of psychotic disorders observed from the premorbid period through chronic illness, suggesting motor dysfunction may reflect the pathophysiology of psychosis. Electrophysiology research in schizophrenia suggests impaired motor activation and preparation may underlie these motor abnormalities. Despite behavioral studies suggesting similar motor dysfunction in those at clinical high-risk (CHR) for psychosis, there have been no studies examining neural mechanisms of motor dysfunction in the CHR period, where research can inform pathophysiological and risk models. The present study used the lateralized readiness potential (LRP), an event-related potential index of motor activation and preparation, to examine mechanisms of motor dysfunction in 42 CHR and 41 control participants (N = 83, 56% female). Response competition was manipulated to determine whether deficits are secondary to cognitive control impairments or reflect primary motor deficits. Behaviorally, CHR participants exhibited overall slower responses than controls. Further, relative to controls, CHR participants showed reduced activation of correct but not incorrect responses, reflected in blunted LRP amplitude under weak response competition and no difference in amplitude associated with the incorrect response under strong response competition. This pattern of results suggests individuals at CHR for psychosis exhibit primary motor deficits in activating and preparing behavioral responses and are contrary to a deficit in cognitive control. Further, blunted LRP amplitude was associated with worsening of negative symptoms at 12-month follow-up. Together, these findings are consistent with LRP studies in psychosis and implicate motor activation deficits as potential mechanisms of motor dysfunction in the high-risk period. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- K. Juston Osborne
- Northwestern University, Department of Psychology, Evanston, IL, USA
| | - Wendy Zhang
- San Diego State University, Department of Psychology, San Diego, CA, USA
- SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Jaclyn Farrens
- San Diego State University, Department of Psychology, San Diego, CA, USA
| | - McKena Geiger
- San Diego State University, Department of Psychology, San Diego, CA, USA
| | - Brian Kraus
- Northwestern University, Department of Psychology, Evanston, IL, USA
| | - James Glazer
- Northwestern University, Department of Psychology, Evanston, IL, USA
| | - Robin Nusslock
- Northwestern University, Department of Psychology, Evanston, IL, USA
| | - Emily S. Kappenman
- San Diego State University, Department of Psychology, San Diego, CA, USA
- SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Vijay A. Mittal
- Northwestern University, Department of Psychology, Department of Psychiatry, Institute for Policy Research, Department of Medical Social Sciences, Institute for Innovations in Developmental Sciences (DevSci), Evanston, Chicago, IL, USA
| |
Collapse
|
29
|
Nadesalingam N, Chapellier V, Lefebvre S, Pavlidou A, Stegmayer K, Alexaki D, Gama DB, Maderthaner L, von Känel S, Wüthrich F, Walther S. Motor abnormalities are associated with poor social and functional outcomes in schizophrenia. Compr Psychiatry 2022; 115:152307. [PMID: 35303585 DOI: 10.1016/j.comppsych.2022.152307] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Up to 50% of patients with schizophrenia are suffering from motor abnormalities, which may contribute to decreased quality of life, impaired work capacity, and a reduced life expectancy by 10-20 years. However, the effect of motor abnormalities on social and global functioning, as well as, functional capacity is not clear. We hypothesized, that the presence of motor abnormalities is associated with poorer functional outcomes in patients with schizophrenia. METHODS We collected data on 5 different motor abnormalities in 156 patients suffering from schizophrenia spectrum disorders: parkinsonism, catatonia, dyskinesia, neurological soft signs and psychomotor slowing (PS). Additionally, we used three different scales to evaluate the functional outcomes in these patients: the Global Assessment of Functioning (GAF) and the Social and Occupational Functioning Assessment Scale (SOFAS) which use clinicians' judgment; and one using a performance-based measure of functional capacity, the brief version of the UCSD Performance-based Skills Assessment (UPSA-B). RESULTS Our analysis demonstrated that patients with catatonia (all F > 4.5; p < 0.035) and parkinsonism (all F > 4.9; p < 0.027) scored lower on GAF and SOFAS compared to patients without catatonia and parkinsonism. In contrast, no significant difference on functional outcomes between patients with dyskinesia versus without dyskinesia exist in our study. Furthermore, there are statistically significant negative correlations for parkinsonism and PS with GAF, SOFAS and UPSA-B (all tau are at least -0.152, p-value <0.036). We also found significant negative correlations between catatonia and both GAF & SOFAS (all tau are at least -0.203, p-value<0.001) and between NES and SOFAS (tau = -0.137, p-value = 0.033). CONCLUSION Here, we showed that four of the most common motor abnormalities observed in schizophrenia were associated with at least one of the patients' functional outcomes. The stronger the motor impairment was the worse the global and social functioning. Future studies need to test, whether amelioration of motor abnormalities is linked to improved community functioning.
Collapse
Affiliation(s)
- Niluja Nadesalingam
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland.
| | - Victoria Chapellier
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Stephanie Lefebvre
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Anastasia Pavlidou
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Danai Alexaki
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Daniel Baumann Gama
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Lydia Maderthaner
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Sofie von Känel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Florian Wüthrich
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| |
Collapse
|
30
|
The polysemous concepts of psychomotricity and catatonia: A European multi-consensus perspective. Eur Neuropsychopharmacol 2022; 56:60-73. [PMID: 34942409 DOI: 10.1016/j.euroneuro.2021.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022]
Abstract
Current classification systems use the terms "catatonia" and "psychomotor phenomena" as mere a-theoretical descriptors, forgetting about their theoretical embedment. This was the source of misunderstandings among clinicians and researchers of the European collaboration on movement and sensorimotor/psychomotor functioning in schizophrenia and other psychoses or ECSP. Here, we review the different perspectives, their historical roots and highlight discrepancies. In 1844, Wilhelm Griesinger coined the term "psychic-motor" to name the physiological process accounting for volition. While deriving from this idea, the term "psychomotor" actually refers to systems that receive miscellaneous intrapsychic inputs, convert them into coherent behavioral outputs send to the motor systems. More recently, the sensorimotor approach has drawn on neuroscience to redefine the motor signs and symptoms observed in psychoses. In 1874, Karl Kahlbaum conceived catatonia as a brain disease emphasizing its somatic - particularly motor - features. In conceptualizing dementia praecox Emil Kraepelin rephrased catatonic phenomena in purely mental terms, putting aside motor signs which could not be explained in this way. Conversely, the Wernicke-Kleist-Leonhard school pursued Kahlbaum's neuropsychiatric approach and described many new psychomotor signs, e.g. parakinesias, Gegenhalten. They distinguished 8 psychomotor phenotypes of which only 7 are catatonias. These barely overlap with consensus classifications, raising the risk of misunderstanding. Although coming from different traditions, the authors agreed that their differences could be a source of mutual enrichment, but that an important effort of conceptual clarification remained to be made. This narrative review is a first step in this direction.
Collapse
|
31
|
Walther S, Mittal VA. Motor Behavior is Relevant for Understanding Mechanism, Bolstering Prediction, And Improving Treatment: A Transdiagnostic Perspective. Schizophr Bull 2022; 48:741-748. [PMID: 35137227 PMCID: PMC9212099 DOI: 10.1093/schbul/sbac003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sebastian Walther
- To whom the correspondence should be addressed; Murtenstrasse 21, 3008 Bern, Switzerland; tel: +41 31 632 8979, fax: +41 31 632 8950, e-mail:
| | - Vijay A Mittal
- Departments of Psychology, Psychiatry, and Medical Social Sciences, Institute for Policy Research and Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, IL,USA
| |
Collapse
|
32
|
Walther S, Vladimirova I, Alexaki D, Schäppi L, Damme KSF, Mittal VA, Shankman SA, Stegmayer K. Low physical activity is associated with two hypokinetic motor abnormalities in psychosis. J Psychiatr Res 2022; 146:258-263. [PMID: 34785041 PMCID: PMC8792361 DOI: 10.1016/j.jpsychires.2021.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/20/2021] [Accepted: 11/05/2021] [Indexed: 02/03/2023]
Abstract
Individuals with schizophrenia engage in more sedentary behavior than healthy controls, which is thought to contribute to multiple health adversities. Age, medication side effects and environment are critical determinants of physical activity in psychosis. While motor abnormalities are frequently observed in psychosis, their association with low physical activity has received little interest. Here, we aimed to explore the association of actigraphy as an objective measure of physical activity with clinician assessed hypokinetic movement disorders such as parkinsonism and catatonia. Furthermore, we studied whether patients with current catatonia would differ on motor rating scales and actigraphy from patients without catatonia. In 52 patients with schizophrenia spectrum disorders, we cross-sectionally assessed physical activity using wrist actigraphy and ratings of catatonia, parkinsonism, and negative syndrome. The sample was enriched with subjects with severe psychomotor slowing. Lower activity levels correlated with increased age and severity of catatonia and parkinsonism. The 22 patients with catatonia had lower activity as well as higher scores on parkinsonism, involuntary movements, and negative symptoms compared to the 30 patients without catatonia. Collectively, these results suggest that various hypokinetic motor abnormalities are linked to lower physical activity. Therefore, future research should determine the direction of the associations between hypokinetic motor abnormalities and physical activity using longitudinal assessments and interventional trials.
Collapse
Affiliation(s)
- Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland.
| | - Irena Vladimirova
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Danai Alexaki
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Lea Schäppi
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | | | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
| | - Stewart A Shankman
- Department of Psychology, Northwestern University, Evanston, IL, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| |
Collapse
|
33
|
Fritze S, Sambataro F, Kubera KM, Brandt GA, Meyer-Lindenberg A, Wolf RC, Hirjak D. Characterizing the sensorimotor domain in schizophrenia spectrum disorders. Eur Arch Psychiatry Clin Neurosci 2022; 272:1097-1108. [PMID: 34839404 PMCID: PMC9388408 DOI: 10.1007/s00406-021-01354-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/08/2021] [Indexed: 12/27/2022]
Abstract
The rapidly evolving field of sensorimotor neuroscience reflects the scientific and clinical relevance of sensorimotor abnormalities as an intrinsic component of the disease process, e.g., in patients with schizophrenia spectrum disorders (SSD). Despite previous efforts, however, prevalence rates and relationships between different categories of sensorimotor abnormalities in SSD patients are still subject of ongoing debate. In this study, we examined five different categories of the sensorimotor domain (Neurological soft signs (NSS), parkinsonism, catatonia, akathisia, and tardive dyskinesia) according to well-established clinical ratings scales and the respective cut-off criteria in a sample of 131 SSD patients. We used a collection of statistical methods to better understand prevalence, overlap and heterogeneity, as well as psychopathological and cognitive correlates of sensorimotor abnormalities. 97.7% of the SSD patients considered by this study exhibited at least one categorically defined sensorimotor abnormality that tended to co-vary within three different sensorimotor subgroups (moderate, hyperkinetic and hypokinetic). Finally, hyperkinetic and hypokinetic groups differed significantly in their neurocognitive performance compared with the moderate group. The results suggest different patterns of clinical overlap, highlight the relationship between sensorimotor and cognitive domain and provide clues for further neurobiological studies.
Collapse
Affiliation(s)
- Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padova, Italy ,Padova Neuroscience Center, University of Padova, Padua, Italy
| | - Katharina M. Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Geva A. Brandt
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Robert C. Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
34
|
Abstract
ABSTRACT Inflammatory phenomena are found in many psychiatric disorders-notably, depression, schizophrenia, and posttraumatic stress disorder. Inflammation has been linked to severity and treatment resistance, and may both contribute to, and result from, the pathophysiology of some psychiatric illnesses. Emerging research suggests that inflammation may contribute to symptom domains of reward, motor processing, and threat reactivity across different psychiatric diagnoses. Reward-processing deficits contribute to motivational impairments in depression and schizophrenia, and motor-processing deficits contribute to psychomotor slowing in both depression and schizophrenia. A number of experimental models and clinical trials suggest that inflammation produces deficits in reward and motor processing through common pathways connecting the cortex and the striatum, which includes the nucleus accumbens, caudate nucleus, and putamen.The observed effects of inflammation on psychiatric disorders may cut across traditional conceptualizations of psychiatric diagnoses. Further study may lead to targeted immunomodulating treatments that address difficult-to-treat symptoms in a number of psychiatric disorders. In this review, we use a Research Domain Criteria framework to discuss proposed mechanisms for inflammation and its effects on the domains of reward processing, psychomotor slowing, and threat reactivity. We also discuss data that support contributing roles of metabolic dysregulation and sex differences on the behavioral outcomes of inflammation. Finally, we discuss ways that future studies can help disentangle this complex topic to yield fruitful results that will help advance the field of psychoneuroimmunology.
Collapse
Affiliation(s)
- David S Thylur
- From the Department of Psychiatry and Behavioral Sciences, Emory University
| | | |
Collapse
|
35
|
Getting a tool gives wings even in schizophrenia: underestimation of tool-related effort in a motor imagery task. NPJ SCHIZOPHRENIA 2021; 7:45. [PMID: 34526496 PMCID: PMC8443579 DOI: 10.1038/s41537-021-00175-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/06/2021] [Indexed: 11/08/2022]
Abstract
Humans frequently use tools to reduce action-related efforts. Interestingly, several studies have demonstrated that individuals had tool-related biases in terms of perceived effort reduction during motor imagery tasks, despite the lack of evidence of real benefits. Reduced effort allocation has been repeatedly found in schizophrenia, but it remains unknown how schizophrenia patients perceive tool-related benefits regarding effort. Twenty-four schizophrenia patients and twenty-four nonclinical participants were instructed to move the same quantities of objects with their hands or with a tool in both real and imagined situations. Imagined and real movement durations were recorded. Similarly to nonclinical participants, patients overestimated tool-related benefits and underestimated tool-related effort in terms of time when they mentally simulated a task requiring the use of a tool. No association between movement durations and psychotic symptoms was found. Our results open new perspectives on the issue of effort in schizophrenia.
Collapse
|
36
|
Pavlidou A, Viher PV, Bachofner H, Weiss F, Stegmayer K, Shankman SA, Mittal VA, Walther S. Hand gesture performance is impaired in major depressive disorder: A matter of working memory performance? J Affect Disord 2021; 292:81-88. [PMID: 34107424 PMCID: PMC8797922 DOI: 10.1016/j.jad.2021.05.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Individuals with depression exhibit numerous interpersonal deficits. As effective use of gestures is critical for social communication, it is possible that depressed individuals' interpersonal deficits may be due to deficits in gesture performance. The present study thus compared gesture performance of depressed patients and controls and examined whether these deficits relate to cognitive and other domains of dysfunction. METHODS Gesture performance was evaluated in 30 depressed patients and 30 controls using the Test of Upper Limb Apraxia (TULIA). Clinical rating scales were assessed to determine if gesture deficits were associated with motor, cognitive or functional outcomes. RESULTS Compared to controls, depressed patients exhibited impaired gesture performance with 2/3 of the patients demonstrating gesture deficits. Within depressed patients, gesture performance was highly correlated with working memory abilities. In contrast, no association between gesture performance and gestural knowledge, psychomotor retardation, depression severity, or frontal dysfunction was observed in patients. LIMITATIONS This is a cross-sectional study and a larger size would have allowed for confident detection of more subtle, but potentially relevant effects. CONCLUSION Gesture performance is impaired in depressed patients, and appears to be related to poor working memory abilities, suggesting a disruption in the retrieval of gestural cues indicative of a distinct clinical phenomenon that might be related to social functioning.
Collapse
Affiliation(s)
- Anastasia Pavlidou
- University of Bern, University Hospital of Psychiatry, Translation Research Center, Bern, Switzerland.
| | - Petra V Viher
- University of Bern, University Hospital of Psychiatry, Translation Research Center, Bern, Switzerland
| | - Hanta Bachofner
- University of Bern, University Hospital of Psychiatry, Translation Research Center, Bern, Switzerland
| | - Florian Weiss
- University of Bern, University Hospital of Psychiatry, Translation Research Center, Bern, Switzerland
| | - Katharina Stegmayer
- University of Bern, University Hospital of Psychiatry, Translation Research Center, Bern, Switzerland
| | - Stewart A Shankman
- Northwestern University, Department of Psychology, Evanston, IL, USA; Northwestern University, Department of Psychiatry and Behavioral Sciences, Chicago, IL, USA
| | - Vijay A Mittal
- Northwestern University, Department of Psychology, Evanston, IL, USA; Northwestern University, Department of Psychiatry and Behavioral Sciences, Chicago, IL, USA; Northwestern University, Department of Psychiatry, Institute for Policy Research, Department of Medical Social Sciences, Institute for Innovations in Developmental Sciences (DevSci), Evanston, Chicago, IL, USA
| | - Sebastian Walther
- University of Bern, University Hospital of Psychiatry, Translation Research Center, Bern, Switzerland
| |
Collapse
|
37
|
Suarez S, Eynard B, Granon S. A Dissociation of Attention, Executive Function and Reaction to Difficulty: Development of the MindPulse Test, a Novel Digital Neuropsychological Test for Precise Quantification of Perceptual-Motor Decision-Making Processes. Front Neurosci 2021; 15:650219. [PMID: 34349614 PMCID: PMC8326915 DOI: 10.3389/fnins.2021.650219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/15/2021] [Indexed: 12/02/2022] Open
Abstract
Traditionally, neuropsychological testing has assessed processing speed and precision, closely related to the ability to perform high-order cognitive tasks. An individual making a decision under time pressure must constantly rebalance its speed to action in order to account for possible errors. A deficit in processing speed appears to be afrequent disorder caused by cerebral damage — but it can be hard to pinpoint the exact cause of the slowdown. It is therefore important to separate the perceptual-motor component of processing speed from the decision-time component. We present a technique to isolate Reaction Times (RTs): a short digital test to assess the decision-making abilities of individuals by gauging their ability to balance between speed and precision. Our hypothesis is that some subjects willaccelerate, and others slow down in the face of the difficulty. This pilot study, conducted on 83 neurotypical adult volunteers, used images stimuli. The test was designed to measure RTs and correctness. After learning release gesture, the subjects were presented with three tasks: a simple Reaction Time task, a Go/No-Go, and a complex Go/No-Go with 2 simultaneous Choices. All three tasks have in common a perceptual component and a motor response. By measuring the 3 reference points requiring attentional and executive processing, while progressively increasing the conceptual complexity of the task, we were able to compare the processing times for different tasks — thus calculating the deceleration specific to the reaction time linked to difficulty. We defined the difficulty coefficient of a task as being the ratio of the group average time of this task minus the base time/average time of the unit task minus the base time. We found that RTs can be broken down into three elementary, uncorrelated components: Reaction Time, Executive Speed, and Reaction to Difficulty (RD). We hypothesized that RD reflects how the subject reacts to difficulty by accelerating (RD < 0) or decelerating (RD > 0). Thus we provide here a first proof of concept: the ability to measure four axes of the speed-precision trade-off inherent in a subject’s fundamental decision making: perceptual-motor speed, executive speed, subject accuracy, and reaction to difficulty.
Collapse
Affiliation(s)
| | - Bertrand Eynard
- IHES, Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France.,IPHT/DRF/CEA Institut de Physique Théorique, Gif-sur-Yvette, France
| | - Sylvie Granon
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
38
|
Mittal VA, Bernard JA, Strauss GP, Walther S. New Insights Into Sedentary Behavior Highlight the Need to Revisit the Way We See Motor Symptoms in Psychosis. Schizophr Bull 2021; 47:877-879. [PMID: 33948658 PMCID: PMC8266637 DOI: 10.1093/schbul/sbab057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/30/2022]
Affiliation(s)
- Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL,To whom correspondence should be addressed; Department of Psychology, Northwestern University, 2029 Sheridan Road, Evanston, IL 60208, US; tel: 847-467-3380, fax: 847-491-7859, e-mail:
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX
| | | | - Sebastian Walther
- University Hospital of Psychiatry, Translational Research Center, University of Bern, Bern, Switzerland
| |
Collapse
|
39
|
Pavlidou A, Walther S. Using Virtual Reality as a Tool in the Rehabilitation of Movement Abnormalities in Schizophrenia. Front Psychol 2021; 11:607312. [PMID: 33488466 PMCID: PMC7817610 DOI: 10.3389/fpsyg.2020.607312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/02/2020] [Indexed: 11/29/2022] Open
Abstract
Movement abnormalities are prevalent across all stages of schizophrenia contributing to poor social functioning and reduced quality of life. To date, treatments are scarce, often involving pharmacological agents, but none have been shown to improve movement abnormalities effectively. Virtual reality (VR) is a tool used to simulate virtual environments where behavioral performance can be quantified safely across different tasks while exerting control over stimulus delivery, feedback and measurement in real time. Sensory information is transmitted via a head mounted display allowing users to directly interact with virtual objects and bodies using gestures and body movements in the real world to perform different actions, permitting a sense of immersion in the simulated virtual environment. Although, VR has been widely used for successful motor rehabilitation in a variety of different neurological domains, none have been exploited for motor rehabilitation in schizophrenia. The objectives of this article are to review movement abnormalities specific to schizophrenia, and how VR can be utilized to restore and improve motor functioning in patients with schizophrenia. Constructing VR-mediated motor-cognitive interventions that can help in retaining and transferring the learned outcomes to real life are also discussed.
Collapse
Affiliation(s)
- Anastasia Pavlidou
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | | |
Collapse
|
40
|
Klauser P, Cropley VL, Baumann PS, Lv J, Steullet P, Dwir D, Alemán-Gómez Y, Bach Cuadra M, Cuenod M, Do KQ, Conus P, Pantelis C, Fornito A, Van Rheenen TE, Zalesky A. White Matter Alterations Between Brain Network Hubs Underlie Processing Speed Impairment in Patients With Schizophrenia. SCHIZOPHRENIA BULLETIN OPEN 2021; 2:sgab033. [PMID: 34901867 PMCID: PMC8650074 DOI: 10.1093/schizbullopen/sgab033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Processing speed (PS) impairment is one of the most severe and common cognitive deficits in schizophrenia. Previous studies have reported correlations between PS and white matter diffusion properties, including fractional anisotropy (FA), in several fiber bundles in schizophrenia, suggesting that white matter alterations could underpin decreased PS. In schizophrenia, white matter alterations are most prevalent within inter-hub connections of the rich club. However, the spatial and topological characteristics of this association between PS and FA have not been investigated in patients. In this context, we tested whether structural connections comprising the rich club network would underlie PS impairment in 298 patients with schizophrenia or schizoaffective disorder and 190 healthy controls from the Australian Schizophrenia Research Bank. PS, measured using the digit symbol coding task, was largely (Cohen’s d = 1.33) and significantly (P < .001) reduced in the patient group when compared with healthy controls. Significant associations between PS and FA were widespread in the patient group, involving all cerebral lobes. FA was not associated with other cognitive measures of phonological fluency and verbal working memory in patients, suggesting specificity to PS. A topological analysis revealed that despite being spatially widespread, associations between PS and FA were over-represented among connections forming the rich club network. These findings highlight the need to consider brain network topology when investigating high-order cognitive functions that may be spatially distributed among several brain regions. They also reinforce the evidence that brain hubs and their interconnections may be particularly vulnerable parts of the brain in schizophrenia.
Collapse
Affiliation(s)
- Paul Klauser
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - Philipp S Baumann
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Jinglei Lv
- School of Biomedical Engineering and Brain and Mind Center, University of Sydney, Sydney, New South Whales,Australia
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Yasser Alemán-Gómez
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Meritxell Bach Cuadra
- Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland
- Medical Image Analysis Laboratory, Center for Biomedical Imaging, University of Lausanne, Lausanne, Switzerland
| | - Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- Centre for Mental Health, School of Health Sciences, Faculty of Health, Arts and Design, Swinburne University, Melbourne, Victoria, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Clark SV, Tannahill A, Calhoun VD, Bernard JA, Bustillo J, Turner JA. Weaker Cerebellocortical Connectivity Within Sensorimotor and Executive Networks in Schizophrenia Compared to Healthy Controls: Relationships with Processing Speed. Brain Connect 2020; 10:490-503. [PMID: 32893675 PMCID: PMC7699013 DOI: 10.1089/brain.2020.0792] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The cognitive dysmetria theory of schizophrenia proposes that communication between the cerebellum and cerebral cortex is disrupted by structural and functional abnormalities, resulting in psychotic symptoms and cognitive deficits. Methods: Using publicly available data, resting-state functional connectivity (rsFC) was calculated from 20 hemispheric cerebellar lobules as seed regions of interest to the rest of the brain. Group differences in rsFC between individuals with schizophrenia (SZ) and healthy controls (HCs) were computed, and relationships between rsFC and symptom severity and cognitive functioning were explored. Results: HCs demonstrated stronger connectivity than SZ between several cerebellar lobules and cortical regions, most robustly between motor-related cerebellar lobules (V and VIIIa/b) and temporal and parietal cortices. In addition, seven of nine lobules in which reduced cerebellocortical connectivity was observed showed diagnosis × processing speed interactions; HC showed a positive relationship between connectivity and processing speed, whereas SZ did not show this relationship. Other cognitive domains and symptom severity did not show relationships with connectivity. Conclusions: These findings partially support the cognitive dysmetria theory, and suggest that disrupted cerebellocortical connectivity is associated with slowed processing speed in schizophrenia. Impact statement We show in this work that in chronic schizophrenia, there is weaker functional connectivity between previously unstudied inferior posterior cerebellar lobules and cortical association areas. These findings align and extend previous work showing abnormal connectivity of anterior cerebellar lobules. Further, we present a novel finding that these connectivity deficits are differentially associated with processing speed in the schizophrenia versus healthy control groups. Findings provide further evidence for cerebellocortical dysconnectivity and processing speed deficits as biomarkers of schizophrenia, which may have implications for downstream effects on higher order cognitive functions, in line with the cognitive dysmetria theory.
Collapse
Affiliation(s)
- Sarah V. Clark
- Department of Psychology, Georgia State University, Atlanta, Georgia, USA
| | - Amber Tannahill
- Department of Psychology, Georgia State University, Atlanta, Georgia, USA
| | - Vince D. Calhoun
- Department of Psychology, Georgia State University, Atlanta, Georgia, USA
- Department of Neuroscience, Georgia State University, Atlanta, Georgia, USA
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico, USA
- The Mind Research Network, Albuquerque, New Mexico, USA
| | - Jessica A. Bernard
- Department of Psychological and Brain Sciences and Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| | - Juan Bustillo
- Department of Psychiatry, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jessica A. Turner
- Department of Psychology, Georgia State University, Atlanta, Georgia, USA
- Department of Neuroscience, Georgia State University, Atlanta, Georgia, USA
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
42
|
Lefebvre S, Pavlidou A, Walther S. What is the potential of neurostimulation in the treatment of motor symptoms in schizophrenia? Expert Rev Neurother 2020; 20:697-706. [DOI: 10.1080/14737175.2020.1775586] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Stephanie Lefebvre
- Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Anastasia Pavlidou
- Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|