1
|
Guiré R, Salo P, Zongo E, Ramadan MF, Koama BK, Meda RNT, Al-Asmari F, Rahim MA. The inhibitory activities of two compounds from Securidaca longepedunculata Fresen on the acetylcholinesterase from wheat pest Schizaphis graminum Rondani: in silico analysis. PLANT SIGNALING & BEHAVIOR 2025; 20:2444311. [PMID: 39701807 DOI: 10.1080/15592324.2024.2444311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/09/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Wheat is the third most widely consumed cereal in the world, after maize and rice. However, it is regularly attacked by the wheat aphid (Schizaphis graminum), causing considerable damage to wheat crops. The acetylcholinesterase enzyme, which plays a key role in the transmission of the synaptic cholinergic signal, has emerged as a promising target for the development of pest control strategies. Inhibition of this enzyme leads to the paralysis or even death of the aphid. The objective of this study is to identify the bioactive compounds in Securidaca longepedunculata (S. longepedunculata) that are capable of interacting with acetylcholinesterase from Schizaphis graminum and inhibiting its activity. Furthermore, a computer simulation of these compounds in interaction with the key protein was conducted. First, the secondary metabolites of S. longepedunculata were selected on the basis of GC-MS data available from specific reference sources. Subsequently, the compounds were subjected to virtual screening based on their docking scores in order to identify those with inhibitory properties. The compounds with the highest scores were subjected to molecular dynamics simulation over a 50 ns trajectory. Subsequently, MMGBSA free energy calculations were conducted. The results demonstrated that eight compounds exhibited inhibitory properties, four of which (echimidine, populin, salidroside, and farrerol) demonstrated superior stabilizing effects on proteins compared to the remaining compounds. In terms of free energy by MMGBSA and molecular simulation, it was observed that echimidine and populin formed robust and stable hydrogen bonds with the amino acids of the acetylcholinesterase enzyme. This study identifies and attempts to validate the potential inhibitory activities of echimidine and populin against acetylcholinesterase, with a view to developing potent insecticides and unique treatment strategies.
Collapse
Affiliation(s)
- Rasmané Guiré
- Laboratory of Research and Teaching in Animal Health and Biotechnology, Universite Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Pousbila Salo
- Laboratory of Research and Teaching in Animal Health and Biotechnology, Universite Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Eliasse Zongo
- Laboratory of Research and Teaching in Animal Health and Biotechnology, Universite Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Mohamed Fawzy Ramadan
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Benjamin Kouliga Koama
- Laboratory of Research and Teaching in Animal Health and Biotechnology, Universite Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Roland Nag-Tiero Meda
- Laboratory of Research and Teaching in Animal Health and Biotechnology, Universite Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Muhammad Abdul Rahim
- Department of Food Science & Nutrition, Faculty of Medicine and Allied Health Sciences, Times Institute, Multan, Pakistan
| |
Collapse
|
2
|
Gadakh S, Aghav B, Teraiya N, Prajapati D, Kamdar JH, Patel B, Yadav R. Discovery of novel benzoxazole analogues as potential anticancer agent selectively targeting aromatase. Bioorg Med Chem 2025; 122:118142. [PMID: 40054132 DOI: 10.1016/j.bmc.2025.118142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
Estrogen play an important role in the development of breast cancer in menopausal women. Aromatase, an enzyme that catalyses the last step in the production of estrogen, has been identified as a promising target for clinical development. In the present investigation, novel 2-substituted benzoxazoles were synthesized and evaluated for inhibition against aromatase. Among the studied compound, 6a exhibited 4.04-fold greater cytotoxicity (IC50 = 0.22 µM) than doxorubicin (IC50 = 0.89 µM). It also showed higher selectivity (26.30-304.95) against cancer cells compared to normal (Vero), with a substantial MID of 0.98 µM against the breast cancer subpanel. Furthermore, it displayed a significantly higher affinity for aromatase (IC50 = 64.9 nM) compared to the standard (IC50 = 1850 nM), indicating the mechanism of anticancer action. In the in-vitro enzymatic assay, it demonstrated 8.46-63.14-fold higher selectivity against aromatase compared to other enzymes. Additionally, docking interaction demonstrated a higher dock score of -10.2 kcal/mol to standard (-8.1 kcal/mol). Furthermore, higher stability in the MD simulation established aromatase as an anticancer target and validated the docking methodology. It was also discovered that compound 6a had a binding free energy of -67.72 kcal/mol, which was 1.46 times lower than the standard (-46.17 kcal/mol), supporting the in-silico protocol. Furthermore, MMGBSA discovered that lower binding free energy of Vander Waals force and lipophilicity had a greater impact on aromatase binding affinity and docking scores. These findings imply that compound 6a deserve to be investigated further in the development of potential anticancer agent as aromatase inhibitors.
Collapse
Affiliation(s)
- Sandip Gadakh
- Department of Chemistry, Changu Kana Thakur Arts, Commerce and Science College, New Panvel, Navi Mumbai, Maharashtra 410206, India
| | - Balasaheb Aghav
- Department of Chemistry, Changu Kana Thakur Arts, Commerce and Science College, New Panvel, Navi Mumbai, Maharashtra 410206, India.
| | - Nishith Teraiya
- Department of Pharmaceutical Chemistry, K B Institute of Pharmaceutical Education and Research, Kadi Sarva Vishvavidhyalay, Gandhinagar, Gujarat 382023, India
| | - Dhaval Prajapati
- Piramal Pharma Limited, Plot No. 18, Pharmaceutical Special Economic Zone, Village-Matoda, Taluka-Sanand, Ahmedabad, Gujarat 382213, India
| | - Jignesh H Kamdar
- In Silico Lab, Department of Microbiology, School of Science, RK University, Rajkot, Gujarat, India
| | - Bhumika Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Ruchi Yadav
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
3
|
Zhou M, Liu Y, Wang S, Feng J, Ni H, Lu C, Jin G. A novel strategy to bind pyrimidine sulfonamide derivatives with odd even chains: exploration of their design, synthesis and biological activity evaluation. Mol Divers 2024; 28:3011-3026. [PMID: 38082105 DOI: 10.1007/s11030-023-10729-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 12/05/2024]
Abstract
Based on the hybridization strategy of dominant fragments, a series of pyrimidine sulfonamide (PS) derivatives were obtained by combining the pharmacophore fragments (sulfonamide group and pyrimidine group) with different biological activities, and evaluated as a new type of anticancer drug. The compounds were evaluated for in vitro cytotoxicity against four human cancer cell lines (HeLa, HCT-116, A-549 and HepG2) and the normal human cell line L02. Compared with the anti-cancer drug 5-fluorouracil (5-FU), the antiproliferative activity of compound PS14 was close to 5-FU and it has good antitumor activity. The IC50 values were 15.13 ± 2.20, 19.87 ± 2.01, 12.64 ± 3.22, 22.20 ± 1.34 and 102.46 ± 2.27 μM, respectively. The structure activity relationship was analyzed. The antitumor activity of the compound tended to increase. When the substituents of the branch chain of sulfonamides were odd. In addition, the oil-water partition coefficient was also investigated. The logP value of PS14 was between 0 and 3, indicating that PS14 was a compound with good lipophilic property, poor water solubility and easy to be absorbed and transported through cell membrane. The anti-cancer mechanism was further studied by flow cytometry. After PS14 treated HeLa, HCT-116, A-549 and HepG2, the percentage of apoptotic cells was 45.30%, 28.2%, 31.00% and 35.20%, respectively, which was higher than that of the control 5-FU. The results of cell cycle showed that PRD2 mainly blocked the cell cycle in the S phase, thereby inhibiting cell proliferation. Furthermore, molecular docking analyzed possible interactions between the compound and the PI3Kα active site, this compound has good binding with PI3Kα. Overall, this study laid the groundwork for the development and structural modification of new pyrimidine sulfonamide drugs, and PS14 could be further developed into a cancer treatment drug.
Collapse
Affiliation(s)
- Meng Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Ying Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Shuo Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Jiankang Feng
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Huiyan Ni
- Department of Pharmacy, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212013, China.
| | - Chichong Lu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Guofan Jin
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
4
|
Ismail TI, El-Khazragy N, Azzam RA. In the pursuit of novel therapeutic agents: synthesis, anticancer evaluation, and physicochemical insights of novel pyrimidine-based 2-aminobenzothiazole derivatives. RSC Adv 2024; 14:16332-16348. [PMID: 38769969 PMCID: PMC11103668 DOI: 10.1039/d4ra01874e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
Cancer remains a worldwide healthcare undertaking, demanding continual innovation in anticancer drug development due to frequent drug resistance and adverse effects associated with existing therapies. The benzothiazole compounds, particularly 2-aminobenzothiazole derivatives, have attracted interest for their versatility in generating novel anticancer agents. This study explores the synthesis, and anticancer evaluation of new pyrimidine-based 2-aminobenzothiazole derivatives. A range of synthetic methods have been developed based on the reaction of 2-benzothaizolyl guanidine with various reagents such as α,β-unsaturated carbonyl, 2-cyano-three-(dimethylamino)-N-acrylamide, β-diketones, β-keto esters, and S,S ketene dithioacetals. Human tumour cell lines such as HepG2, HCT116, and MCF7 were used in in vitro cytotoxicity studies, and the results showed that several of the synthesized compounds were more potent than the standard drug, 5-fluorouracil, in terms of cell viability% with low IC50. Furthermore, the computed drug likeness and ADMET properties of the most potent synthesized compounds suggest their potential as promising candidates for further development, with favorable bioavailability and pharmacokinetic profiles.
Collapse
Affiliation(s)
- Toka I Ismail
- Chemistry Department, Faculty of Science, Helwan University Cairo 11795 Egypt
| | - Nashwa El-Khazragy
- Department of Clinical Pathology-Hematology, Ain Shams Medical Research Institute (MASRI), Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
- Department of Genetics and Molecular Biology, Egypt Center for Research and Regenerative Medicine (ECRRM) Cairo 11599 Egypt
| | - Rasha A Azzam
- Chemistry Department, Faculty of Science, Helwan University Cairo 11795 Egypt
| |
Collapse
|
5
|
Razzoqova S, Ibragimov A, Torambetov B, Kadirova S, Holczbauer T, Ashurov J, Ibragimov B. Synthesis, structure and Hirshfeld surface analysis of a coordination compound of cadmium acetate with 2-amino-benzoxazole. Acta Crystallogr E Crystallogr Commun 2023; 79:862-866. [PMID: 37693679 PMCID: PMC10483566 DOI: 10.1107/s2056989023007399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
A first coordination compound of 2-amino-benzoxazole (2AB), namely, bis-(2-amino-benzoxazole-κN 3)bis-(acetato-κ2 O,O')cadmium(II), [Cd(CH3COO)2(2AB)2], has been synthesized from ethanol solutions of Cd(CH3(COO)2 and 2AB. In the monoclinic crystals with the space group C21/c, the cadmium ions coordinate two neutral 2AB mol-ecules in a monodentate fashion through the oxazole N atom, while two acetate ligands are coordinated through the O atoms in a bidentate manner. The coordination polyhedron of the central ion is substanti-ally distorted octa-hedral. There are two relatively strong intra-molecular hydrogen bonds in the complex mol-ecule. Additionally, two inter-molecular hydrogen bonds associate complex mol-ecules into columns running in the [10] and [110] directions. The Hirshfeld surface analysis shows that 45.7% of the inter-molecular inter-actions are from H⋯H contacts, 24.7% are from O⋯H/H⋯O contacts and 18.8% are from C⋯H/H⋯C contacts, while other contributions are from N⋯H/H⋯N and O⋯O contacts.
Collapse
Affiliation(s)
- Surayyo Razzoqova
- National University of Uzbekistan named after Mirzo Ulugbek, 4 University St, Tashkent 100174, Uzbekistan
| | - Aziz Ibragimov
- Institute of General and Inorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str 77a, Tashkent 100170, Uzbekistan
| | - Batirbay Torambetov
- National University of Uzbekistan named after Mirzo Ulugbek, 4 University St, Tashkent 100174, Uzbekistan
| | - Shakhnoza Kadirova
- National University of Uzbekistan named after Mirzo Ulugbek, 4 University St, Tashkent 100174, Uzbekistan
| | - Tamas Holczbauer
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudosok korutja, H-1117 Budapest, Hungary
| | - Jamshid Ashurov
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str 83, Tashkent 100125, Uzbekistan
| | - Bakhtiyar Ibragimov
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str 83, Tashkent 100125, Uzbekistan
| |
Collapse
|
6
|
Taruneshwar Jha K, Shome A, Chahat, Chawla PA. Recent advances in nitrogen-containing heterocyclic compounds as receptor tyrosine kinase inhibitors for the treatment of cancer: Biological activity and structural activity relationship. Bioorg Chem 2023; 138:106680. [PMID: 37336103 DOI: 10.1016/j.bioorg.2023.106680] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Erratic cell proliferation is the initial symptom of cancer, which can eventually metastasize to other organs. Before cancer becomes metastatic, its spread is triggered by pro-angiogenic factors including vascular endothelial growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR), Platelet-derived growth factor receptor (PDGFR), fibroblast growth factor receptor (FGFR) and Platelet Factor (PF4), all of which are part of receptor tyrosine kinase (RTK) family. Receptor tyrosine kinases (RTKs) are cell-surface proteins and aresignaling enzymes that transfer ATP-phosphate to tyrosine residue substrates. Important biological processes like proliferation, differentiation, motility, and cell-cycle regulation are all possessedby these proteins. Unusual RTK expression is typically associated with cell growth abnormalities, which is linked to tumor acquisition, angiogenesis, and cancer progression. In addition to the already available medications, numerous other heterocyclic are being studied for their potential action against a variety of cancers. In the fight against cancer, in particular, these heterocycles have been used for their dynamic core scaffold and their inherent adaptability. In this review article, we have compiled last five years research work including nitrogen containing heterocycles that have targeted RTK. Herein, the SAR and activity of various compounds containing diverse heterocyclic (pyrimidine, indole, pyridine, pyrazole, benzimidazole, and pyrrole) scaffolds are discussed, and they may prove useful in the future for designing new leads against RTKs. Our focus in this manuscript is to comprehensively review the latest research on the biological activity and structural activity relationship of nitrogen compounds as RTK inhibitors. We believe that this may be an important contribution to the field, as it can help guide future research efforts and facilitate the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Keshav Taruneshwar Jha
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Abhimannu Shome
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Chahat
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India.
| |
Collapse
|
7
|
Nadar S, Khan T. Pyrimidine: An elite heterocyclic leitmotif in drug discovery-synthesis and biological activity. Chem Biol Drug Des 2022; 100:818-842. [PMID: 34914188 DOI: 10.1111/cbdd.14001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/07/2021] [Accepted: 12/01/2021] [Indexed: 01/25/2023]
Abstract
Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. Heterocycles possessing a pyrimidine scaffold have piqued tremendous interest of organic and medicinal chemists owing to their privileged bioactivities. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities. This heterocycle, being a significant endogenous component of the body, the pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. The landscape of FDA approved drugs, presently marketed incorporating the pyrimidine scaffold continues to evolve in number and diversity. There is a tremendous surge in discovery of new targets across many diseases especially those involving emerging resistance to clinically used battery of drugs. Pyrimidine scaffolds will continue to be explored expanding their chemical space portfolio in an effort to find novel drugs impacting these targets. This review aims to provide an elaborate recapitulation of the recent trends adopted to synthesize propitious pyrimidine incorporated hits and also focuses on the clinical significance reported for functionalized pyrimidine analogues that would quintessentially aid medicinal chemists for new research explorations in this arena.
Collapse
Affiliation(s)
- Sahaya Nadar
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
8
|
Qureshi F, Nawaz M, Hisaindee S, Almofty SA, Ansari MA, Jamal QMS, Ullah N, Taha M, Alshehri O, Huwaimel B, Bin Break MK. Microwave assisted synthesis of 2-amino-4-chloro-pyrimidine derivatives: Anticancer and computational study on potential inhibitory action against COVID-19. ARAB J CHEM 2022; 15:104366. [PMID: 36276298 PMCID: PMC9580235 DOI: 10.1016/j.arabjc.2022.104366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
We report microwave synthesis of seven unique pyrimidine anchored derivatives (1–7) incorporating multifunctional amino derivatives along with their in vitro anticancer activity and their activity against COVID-19 in silico. 1–7 were characterized by different analytical and spectroscopic techniques. Cytotoxic activity of 1–7 was tested against HCT116 and MCF7 cell lines, whereby 6 exhibited highest anticancer activity on HCT116 and MCF7 with EC50 values of 89.24 ± 1.36 µM and 89.37 ± 1.17 µM, respectively. Molecular docking was performed for derivatives (1–7) on main protease for SARS-CoV-2 (PDB ID: 6LU7). Results revealed that most of the derivatives had superior or equivalent affinity for the 3CLpro, as determined by docking and binding energy scores. 6 topped the rest with highest binding energy score of −8.12 kcal/mol with inhibition constant reported as 1.11 µM. ADME, drug-likeness, and pharmacokinetics properties of 1–7 were tested using Swiss ADME tool. Toxicity analysis was done with pkCSM online server. All derivatives showed high GI absorption. Except 1 and 3, all derivatives showed blood brain barrier permeability. Most derivatives showed negative logKp values suggesting derivatives are less skin permeable and bioavailability score of all derivatives was 0.55. The toxicity analysis demonstrated that all derivatives have no skin sensitization properties. 6 and 7 showed maximum tolerated dose (Human) values of −0.03 and −0.018, respectively and absence of AMES toxicity.
Collapse
Affiliation(s)
- Faiza Qureshi
- Deanship of Scientific Research, Imam Abdulrahman Bin Faisal University, P.0. Box 1982, Dammam 31441, Saudi Arabia.,Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Soleiman Hisaindee
- Chemistry Department, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates
| | - Sarah Ameen Almofty
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.0. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah, Saudi Arabia
| | - Nisar Ullah
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ohood Alshehri
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.,Department of Chemistry, College of Science and Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | | |
Collapse
|
9
|
Khadse AN, Savsani HH, Chikhale RV, Ghuge RB, Prajapati DR, Kureshi G, Murumkar PR, Patel KV, Rajput SJ, Yadav MR. Design, synthesis and biological evaluation of Piperazinylanthranilamides as potential factor Xa inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Yang X, Syed R, Fang B, Zhou C. A new discovery towards novel skeleton of benzimidazole‐conjugated pyrimidinones as unique effective antibacterial agents. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xi Yang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Rasheed Syed
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Cheng‐He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| |
Collapse
|
11
|
Haider K, Ahmad K, Najmi AK, Das S, Joseph A, Shahar Yar M. Design, synthesis, biological evaluation, and in silico studies of 2‐aminobenzothiazole derivatives as potent PI3Kα inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200146. [DOI: 10.1002/ardp.202200146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Kashif Haider
- Department of Pharmaceutical Chemistry School of Pharmaceutical Education & Research Jamia Hamdard India
| | - Kamal Ahmad
- Department of Pharmaceutical Chemistry School of Pharmaceutical Education & Research Jamia Hamdard India
| | - Abul Kalam Najmi
- Department of Pharmacology School of Pharmaceutical Education and Research Jamia Hamdard India
| | - Subham Das
- Department of Pharmaceutical Chemistry Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education Manipal India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education Manipal India
| | - M. Shahar Yar
- Department of Pharmaceutical Chemistry School of Pharmaceutical Education & Research Jamia Hamdard India
- Centre for Excellence for Biomaterials Engineering, Faculty of Applied Sciences. AIMST Bedong Malaysia
| |
Collapse
|
12
|
Eissa IH, El-Haggar R, Dahab MA, Ahmed MF, Mahdy HA, Alsantali RI, Elwan A, Masurier N, Fatahala SS. Design, synthesis, molecular modeling and biological evaluation of novel Benzoxazole-Benzamide conjugates via a 2-Thioacetamido linker as potential anti-proliferative agents, VEGFR-2 inhibitors and apoptotic inducers. J Enzyme Inhib Med Chem 2022; 37:1587-1599. [PMID: 35637622 PMCID: PMC9176662 DOI: 10.1080/14756366.2022.2081844] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A novel series of 2-thioacetamide linked benzoxazole-benzamide conjugates 1-15 was designed as potential inhibitors of the vascular endothelial growth factor receptor-2 (VEGFR-2). The prepared compounds were evaluated for their potential antitumor activity and their corresponding selective cytotoxicity was estimated using normal human fibroblast (WI-38) cells. Compounds 1, 9-12 and 15 showed good selectivity and displayed excellent cytotoxic activity against both HCT-116 and MCF-7 cancer cell lines compared to sorafenib, used as a reference compound. Furthermore, compounds 1 and 11 showed potent VEGFR-2 inhibitory activity. The cell cycle progression assay showed that 1 and 11 induced cell cycle arrest at G2/M phase, with a concomitant increase in the pre-G1 cell population. Further pharmacological studies showed that 1 and 11 induced apoptosis and inhibited the expression of the anti-apoptotic Bcl-2 and Bcl-xL proteins in both cell lines. Therefore, compounds 1 and 11 might serve as promising candidates for future anticancer therapy development.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Radwan El-Haggar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt.,Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Marwa F Ahmed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt.,Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Nicolas Masurier
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Samar S Fatahala
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
13
|
Rendón-Patiño A, Primo A, Cojocaru B, Ion SG, Popescu DG, Parvulescu VI, García H. Nanometric‐thick metal‐free h‐boron nitride/graphene films as base catalyst for the synthesis of benzoxazoles. ChemCatChem 2022. [DOI: 10.1002/cctc.202200356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Ana Primo
- Universitat Politecnica de Valencia Instituto de Tecnología Química SPAIN
| | - Bogdan Cojocaru
- University of Bucharest: Universitatea din Bucuresti Department of Organic Chemistry, Biochemistry and Catalysis SPAIN
| | - Sabina Gabriela Ion
- University of Bucharest: Universitatea din Bucuresti Department of Organic Chemistry, Biochemistry and Catalysis ROMANIA
| | - Dana G. Popescu
- University of Bucharest: Universitatea din Bucuresti Department of Organic Chemistry, Biochemistry and Catalysis ROMANIA
| | - Vasile i Parvulescu
- University of Bucharest: Universitatea din Bucuresti Department of Organic Chemistry, Biochemistry and Catalysis ROMANIA
| | - Hermenegildo García
- Universitat Politecnica de Valencia Instituto de Tecnología Química Av. de los Naranjos s/n 46022 Valencia SPAIN
| |
Collapse
|
14
|
Wang J, Takahashi K, Shoup TM, Gong L, Li Y, El Fakhri G, Zhang Z, Brownell AL. Organomediated Cleavage of Benzoyl Group Enables an Efficient Synthesis of 1- (6-Nitropyridin-2-yl)thiourea and its application for developing 18F-labeled PET Tracers. Bioorg Chem 2022; 124:105804. [DOI: 10.1016/j.bioorg.2022.105804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/08/2022] [Accepted: 04/08/2022] [Indexed: 11/24/2022]
|
15
|
Chikhale RV, Sinha SK, Patil RB, Prasad SK, Shakya A, Gurav N, Prasad R, Dhaswadikar SR, Wanjari M, Gurav SS. In-silico investigation of phytochemicals from Asparagus racemosus as plausible antiviral agent in COVID-19. J Biomol Struct Dyn 2021; 39:5033-5047. [PMID: 32579064 PMCID: PMC7335809 DOI: 10.1080/07391102.2020.1784289] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
COVID-19 has ravaged the world and is the greatest of pandemics in human history, in the absence of treatment or vaccine the mortality and morbidity rates are very high. The present investigation was undertaken to screen and identify the potent leads from the Indian Ayurvedic herb, Asparagus racemosus (Willd.) against SARS-CoV-2 using molecular docking and dynamics studies. The docking analysis was performed on the Glide module of Schrödinger suite on two different proteins from SARS-CoV-2 viz. NSP15 Endoribonuclease and spike receptor-binding domain. Asparoside-C, Asparoside-D and Asparoside -F were found to be most effective against both the proteins as confirmed through their docking score and affinity. Further, the 100 ns molecular dynamics study also confirmed the potential of these compounds from reasonably lower root mean square deviations and better stabilization of Asparoside-C and Asparoside-F in spike receptor-binding domain and NSP15 Endoribonuclease respectively. MM-GBSA based binding free energy calculations also suggest the most favourable binding affinities of Asparoside-C and Asparoside-F with binding energies of -62.61 and -55.19 Kcal/mol respectively with spike receptor-binding domain and NSP15 Endoribonuclease. HighlightsAsparagus racemosus have antiviral potentialPhytochemicals of Shatavari showed promising in-silico docking and MD resultsAsparaoside-C and Asparoside-F has good binding with target proteinsAsparagus racemosus holds promise as SARS-COV-2 (S) and (N) proteins inhibitor Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Saurabh K. Sinha
- Department of Pharmaceutical Sciences, Mohanlal Shukhadia University, Udaipur, India
| | - Rajesh B. Patil
- Sinhgad Technical Education Society’s, Smt. Kashibai Navale College of Pharmacy, Pune, India
| | | | - Anshul Shakya
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | - Nilambari Gurav
- PES’s Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa University, Goa, India
| | - Rupali Prasad
- Department of Pharmaceutical Sciences, R.T.M. University, Nagpur, India
| | | | - Manish Wanjari
- Regional Ayurveda Research Institute for Drug Development, Aamkho, Gwalior, India
| | - Shailendra S. Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Goa, India
| |
Collapse
|
16
|
Haider K, Rehman S, Pathak A, Najmi AK, Yar MS. Advances in 2-substituted benzothiazole scaffold-based chemotherapeutic agents. Arch Pharm (Weinheim) 2021; 354:e2100246. [PMID: 34467567 DOI: 10.1002/ardp.202100246] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/25/2023]
Abstract
Targeted therapy plays a pivotal role in cancer therapeutics by countering the drawbacks of conventional treatment like adverse events and drug resistance. Over the last decade, heterocyclic derivatives have received considerable attention as cytotoxic agents by modulating various signaling pathways. Benzothiazole is an important heterocyclic scaffold that has been explored for its therapeutic potential. Benzothiazole-based derivatives have emerged as potent inhibitors of enzymes such as EGFR, VEGFR, PI3K, topoisomerases, and thymidylate kinases. Several researchers have designed, synthesized, and evaluated benzothiazole scaffold-based enzyme inhibitors. Of these, several inhibitors have entered various phases of clinical trials. This review describes the recent advances and developments of benzothiazole architecture-based derivatives as potent anticancer agents.
Collapse
Affiliation(s)
- Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Sara Rehman
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Ankita Pathak
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Abul K Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohammad S Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
17
|
Sheena Mary Y, Shyma Mary Y, Temiz-Arpaci O, Yadav R, Celik I. DFT, docking, MD simulation, and vibrational spectra with SERS analysis of a benzoxazole derivative: an anti-cancerous drug. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01659-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Filho EV, Pinheiro EM, Pinheiro S, Greco SJ. Aminopyrimidines: Recent synthetic procedures and anticancer activities. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Li F, Zou L, Xu J, Liu F, Zhang X, Li H, Zhang G, Duan X. A high-performance colorimetric fluorescence sensor based on Michael addition reaction to detect HSO3− in real samples. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Kapse P, Chikhale RV, Khan MR, Wabaidur SM, Islam MA. Synthesis of novel cycloheptylbenzothiazole-2-carboxamides and biological evaluation as human estrogen receptor modulators. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Bhole RP, Chikhale RV, Wavhale RD, Asmary FA, Almutairi TM, Alhajri HM, Bonde CG. Design, synthesis and evaluation of novel enzalutamide analogues as potential anticancer agents. Heliyon 2021; 7:e06227. [PMID: 33869816 PMCID: PMC8035491 DOI: 10.1016/j.heliyon.2021.e06227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/13/2021] [Accepted: 02/04/2021] [Indexed: 01/20/2023] Open
Abstract
The androgen receptor inhibitor, Enzalutamide, proved effective against castration resistance prostate cancer, has demonstrated clinical benefits and increased survival rate in men. However, AR mutation (F876L) converts Enzalutamide from antagonist to agonist indicating a rapid evolution of resistance. Hence, our goal is to overcome this resistance mechanism by designing and developing novel Enzalutamide analogues. We designed a dataset of Enzalutamide derivatives using Enzalutamide's shape and electrostatic features to match with pharmacophoric features essential for tight binding with the androgen receptor. Based on this design strategy ten novel derivatives were selected including 5,5-dimethyl-3-(6-substituted benzo[d]thia/oxazol-2-yl)-2-thioxo-1-(4-(trifluoromethyl)pyridin-2-yl)imidazolidin-4-one (6a-j) for synthesis. All the compounds were evaluated in-vitro on prostate cancer cell lines DU-145, LNCaP and PC3. Interestingly, two compounds 3-(6-hydroxybenzo[d]thiazol-2-yl)-5,5-dimethyl-2-thioxo-1-(4-(trifluoromethyl)pyridin-2-yl) imidazolidin-4-one (6c, IC50 - 18.26 to 20.31μM) and 3-(6-hydroxybenzo[d]oxazol-2-yl)-5,5-dimethyl -2-thioxo- 1- (4-(trifluoromethyl) pyridin-2-yl)imidazolidin-4-one (6h, IC50 - 18.26 to 20.31μM) were successful with promising in-vitro antiproliferative activity against prostate cancer cell lines. The binding mechanism of potential androgen receptor inhibitors was further studied by molecular docking, molecular dynamics simulations and MM-GBSA binding free energy calculations and found in agreement with the in vitro studies. It provided strong theoretical support to our hypothesis.
Collapse
Affiliation(s)
- Ritesh P. Bhole
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, Maharashtra, India
| | - Rupesh V. Chikhale
- Division of Pharmacy and Optometry, University of Manchester, Manchester, UK
- School of Pharmacy, University of East Anglia, Norwich, UK
| | - Ravindra D. Wavhale
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, Maharashtra, India
| | - Fatmah Ali Asmary
- Department of Chemistry, P.O. Box 2455, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Tahani Mazyad Almutairi
- Department of Chemistry, P.O. Box 2455, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hassna Mohammed Alhajri
- Department of Chemistry, P.O. Box 2455, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Chandrakant G. Bonde
- School of Pharmacy & Technology Management, SVKM's NarseeMonjee Institute of Management & Studies (NMIMS), Mukesh Patel Technology Park, Shirpur, Dhule, 425405, Maharashtra, India
| |
Collapse
|
22
|
Matada GSP, Abbas N, Dhiwar PS, Basu R, Devasahayam G. Design, Synthesis, In Silico and In Vitro Evaluation of Novel Pyrimidine Derivatives as EGFR Inhibitors. Anticancer Agents Med Chem 2021; 21:451-461. [PMID: 32698735 DOI: 10.2174/1871520620666200721102726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The abnormal signaling from tyrosine kinase causes many types of cancers, including breast cancer, non-small cell lung cancer, and chronic myeloid leukemia. This research reports the in silico, synthesis, and in vitro study of novel pyrimidine derivatives as EGFR inhibitors. OBJECTIVE The objective of the research study is to discover more promising lead compounds using the drug discovery process, in which a rational drug design is achieved by molecular docking and virtual pharmacokinetic studies. METHODS The molecular docking studies were carried out using discovery studio 3.5-version software. The molecules with good docking and binding energy score were synthesized, and their structures were confirmed by FT-IR, NMR, Mass and elemental analysis. Subsequently, molecules were evaluated for their anti-cancer activity using MDA-MB-231, MCF-7, and A431 breast cancer cell lines by MTT and tyrosine kinase assay methodology. RESULTS Pyrimidine derivatives displayed anti-cancer activity. Particularly, compound R8 showed significant cytotoxicity against MDA-MB-231 with an IC50 value of 18.5±0.6μM. Molecular docking studies proved that the compound R8 has good binding fitting by forming hydrogen bonds with amino acid residues at ATP binding sites of EGFR. CONCLUSION Eight pyrimidine derivatives were designed, synthesized, and evaluated against breast cancer cell lines. Compound R8 significantly inhibited the growth of MDA-MB-231 and MCF-7. Molecular docking studies revealed that compound R8 has good fitting by forming different Hydrogen bonding interactions with amino acids at the ATP binding site of epidermal growth factor receptor target. Compound R8 was a promising lead molecule that showed better results as compared to other compounds in in vitro studies.
Collapse
Affiliation(s)
- Gurubasavaraja S P Matada
- Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Rajiv Gandhi University of Health & Science Bengaluru, Karnataka, 560107, India
| | - Nahid Abbas
- Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Rajiv Gandhi University of Health & Science Bengaluru, Karnataka, 560107, India
| | - Prasad S Dhiwar
- Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Rajiv Gandhi University of Health & Science Bengaluru, Karnataka, 560107, India
| | - Rajdeep Basu
- Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Rajiv Gandhi University of Health & Science Bengaluru, Karnataka, 560107, India
| | - Giles Devasahayam
- Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Rajiv Gandhi University of Health & Science Bengaluru, Karnataka, 560107, India
| |
Collapse
|
23
|
Khanal P, Chikhale R, Dey YN, Pasha I, Chand S, Gurav N, Ayyanar M, Patil BM, Gurav S. Withanolides from Withania somnifera as an immunity booster and their therapeutic options against COVID-19. J Biomol Struct Dyn 2021; 40:5295-5308. [PMID: 33459174 DOI: 10.1080/07391102.2020.1869588] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Traditionally, Withania somnifera is widely used as an immune booster, anti-viral, and for multiple medicinal purposes. The present study investigated the withanolides as an immune booster and anti-viral agents against the coronavirus-19. Withanolides from Withania somnifera were retrieved from the open-source database, their targets were predicted using DIGEP-Pred, and the protein-protein interaction was evaluated. The drug-likeness score and intestinal absorptivity of each compound were also predicted. The network of compounds, proteins, and modulated pathways was constructed using Cytoscape, and docking was performed using autodock4.0, and selected protein-ligand complexes were subjected to 100 ns Molecular Dynamics simulations. The molecular dynamics trajectories were subjected to free energy calculation by the MM-GBSA method. Withanolide_Q was predicted to modulate the highest number of proteins, showed human intestinal absorption, and was predicted for the highest drug-likeness score. Similarly, combined network interaction identified Withanolide_Q to target the highest number of proteins; RAC1 was majorly targeted, and fluid shear stress and atherosclerosis associated pathway were chiefly regulated. Similarly, Withanolide_D and Withanolide_G were predicted to have a better binding affinity with PLpro, Withanolide_M with 3CLpro, and Withanolide_M with spike protein based on binding energy and number of hydrogen bond interactions. MD studies suggested Withanoside_I with the highest binding free energy (ΔGbind-31.56 kcal/mol) as the most promising inhibitor. Among multiple withanolides from W. somnifera, Withanolide_D, Withanolide_G, Withanolide_M, and Withanolide_Q were predicted as the lead hits based on drug-likeness score, modulated proteins, and docking score to boost the immune system and inhibit the COVID-19 infection, which could primarily act against COVID-19. HighlightsWithanolides are immunity boosters.Withanolides are a group of bio-actives with potential anti-viral properties.Withanolide_G, Withanolide_I, and Withanolide_M from Withania somnifera showed the highest binding affinity with PLpro, 3CLpro, and spike protein, respectively.Withanolides from Withania somnifera holds promising anti-viral efficacy against COVID-19.Communicated by Vsevolod Makeev.
Collapse
Affiliation(s)
- Pukar Khanal
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, India
| | | | - Yadu Nandan Dey
- School of Pharmaceutical Technology, Adamas University, Kolkata, West Bengal, India
| | - Ismail Pasha
- Department of Pharmacology, Orotta College of Medicine and Health Sciences, Asmara University, Asmara, Eritrea
| | - Sharad Chand
- Department of Pharmacy Practice, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Deralakatte, Karnataka, India
| | - Nilambari Gurav
- PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa University, Goa, India
| | - Muniappan Ayyanar
- Department of Botany, A. Veeriya Vandayar Memorial Sri Pushpam College (Autonomous), Affiliated to Bharathidasan University, Thanjavur, India
| | - B M Patil
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, India
| | - Shailendra Gurav
- Goa College of Pharmacy, Department of Pharmacognosy, Panaji, Goa University, Goa, India
| |
Collapse
|
24
|
Pyrimidine and fused pyrimidine derivatives as promising protein kinase inhibitors for cancer treatment. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02656-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Yan X, Wen J, Zhou L, Fan L, Wang X, Xu Z. Current Scenario of 1,3-oxazole Derivatives for Anticancer Activity. Curr Top Med Chem 2020; 20:1916-1937. [PMID: 32579505 DOI: 10.2174/1568026620666200624161151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
Abstract
Cancer, which has been cursed for human beings for long time is considered as one of the
leading causes of morbidity and mortality across the world. In spite of different types of treatments
available, chemotherapy is still deemed as a favored treatment for the cancer. Unfortunately, many currently
accessible anticancer agents have developed multidrug resistance along with fatal adverse effects.
Therefore, intensive efforts have been made to seek for new active drugs with improved anticancer efficacy
and reduced adverse effects. In recent years, the emergence of heterocyclic ring-containing anticancer
agents has gained a great deal of attention among medicinal chemists. 1,3- oxazole is a versatile
heterocyclic compound, and its derivatives possess broad-spectrum pharmacological properties, including
anticancer activity against both drug-susceptible, drug-resistant and even multidrug-resistant cancer
cell lines through multiple mechanisms. Thus, the 1,3-oxazole moiety is a useful template for the development
of novel anticancer agents. This review will provide a comprehensive overview of the recent
advances on 1,3-oxazole derivatives with potential therapeutic applications as anticancer agents, focus
on the chemical structures, anticancer activity, and mechanisms of action.
Collapse
Affiliation(s)
- Xinjia Yan
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Jing Wen
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Lin Zhou
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Lei Fan
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Xiaobo Wang
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Zhi Xu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
26
|
Chikhale RV, Gupta VK, Eldesoky GE, Wabaidur SM, Patil SA, Islam MA. Identification of potential anti-TMPRSS2 natural products through homology modelling, virtual screening and molecular dynamics simulation studies. J Biomol Struct Dyn 2020; 39:6660-6675. [PMID: 32741259 DOI: 10.1080/07391102.2020.1798813] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
Abstract
Recent outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to a pandemic of COVID-19. The absence of a therapeutic drug and vaccine is causing severe loss of life and economy worldwide. SARS-CoV and SARS-CoV-2 employ the host cellular serine protease TMPRSS2 for spike (S) protein priming for viral entry into host cells. A potential way to reduce the initial site of SARS-CoV-2 infection may be to inhibit the activity of TMPRSS2. In the current study, the three-dimensional structure of TMPRSS2 was generated by homology modelling and subsequently validated with a number of parameters. The structure-based virtual screening of Selleckchem database was performed through 'Virtual Work Flow' (VSW) to find out potential lead-like TMPRSS2 inhibitors. Camostat and bromhexine are known TMPRSS2 inhibitor drugs, hence these were used as control molecules throughout the study. Based on better dock score, binding-free energy and binding interactions compared to the control molecules, six molecules (Neohesperidin, Myricitrin, Quercitrin, Naringin, Icariin, and Ambroxol) were found to be promising against the TMPRSS2. Binding interactions analysis revealed a number of significant binding interactions with binding site amino residues of TMPRSS2. The all-atoms molecular dynamics (MD) simulation study indicated that all proposed molecules retain inside the receptor in dynamic states. The binding energy calculated from the MD simulation trajectories also favour the strong affinity of the molecules towards the TMPRSS2. Proposed molecules belong to the bioflavonoid class of phytochemicals and are reported to possess antiviral activity, our study indicates their possible potential for application in COVID-19.
Collapse
Affiliation(s)
| | - Vivek K Gupta
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Agra, India
| | - Gaber E Eldesoky
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saikh M Wabaidur
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shripad A Patil
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Agra, India
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- School of Health Sciences, University of Kwazulu-Natal, Durban, South Africa
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
27
|
Mehrabi H, Hajipour M, Rezazadeh‐Jabalbarezi F, Alizadeh‐Bami F. Synthesis of 1,2,4,5‐tetrasubstituted imidazoles and 2,4,5,6‐tetrasubstituted pyrimidines: three‐component, the one‐pot reaction of arylamidines, malononitrile, and arylglyoxals or aryl aldehydes. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hossein Mehrabi
- Department of ChemistryVali‐e‐Asr University of Rafsanjan Rafsanjan Iran
| | - Mina Hajipour
- Department of ChemistryVali‐e‐Asr University of Rafsanjan Rafsanjan Iran
| | | | | |
Collapse
|
28
|
Kilic-Kurt Z, Ozmen N, Bakar-Ates F. Synthesis and anticancer activity of some pyrimidine derivatives with aryl urea moieties as apoptosis-inducing agents. Bioorg Chem 2020; 101:104028. [PMID: 32645482 DOI: 10.1016/j.bioorg.2020.104028] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/14/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022]
Abstract
A new series of pyrimidine derivatives containing aryl urea moieties was designed and synthesized. The anticancer activities of all compounds were evaluated in vitro against colon and prostat cancer cell lines by MTT assay. Among these compounds, 4b exhibited the highest cytotoxic activity against SW480 cancer cell line with IC50 value of 11.08 µM. Mechanistic studies showed that compound 4b arrested cell cycle at G2/M phase and induced apoptosis through upregulating Bax, Ikb-α and cleaved PARP and downregulating Bcl-2 expression levels. Moreover, compound 4b induced loss of mitochondrial membrane potential in SW480 cells. These results suggest that pyrimidine with urea moieties could be a template for designing new anticancer agents.
Collapse
Affiliation(s)
- Zühal Kilic-Kurt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| | - Nuri Ozmen
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Filiz Bakar-Ates
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
29
|
Synthesis and biological screening of a novel enaminone-grafted trithiocarbonate: a potential anticancer and antimicrobial agent. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02535-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Azzam RA, Elgemeie GH, Osman RR. Synthesis of novel pyrido[2,1-b]benzothiazole and N-substituted 2-pyridylbenzothiazole derivatives showing remarkable fluorescence and biological activities. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Omar AMME, AboulWafa OM, El-Shoukrofy MS, Amr ME. Benzoxazole derivatives as new generation of anti-breast cancer agents. Bioorg Chem 2020; 96:103593. [PMID: 32004897 DOI: 10.1016/j.bioorg.2020.103593] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 12/14/2022]
Abstract
New 2-substituted benzoxazole derivatives were synthesized and screened for their in vitro anti-proliferative activities against MCF-7 and MDA-MB-231 cell lines. Compounds 4b, 4d and 11c eliciting the highest activity against MCF-7 cells were further assayed for their cytotoxic activities against A431 and HCC827 cancer cells in addition to their in vitro inhibition of wild and mutated epidermal growth factor receptor (EGFR) enzymes. Compound 11c was the most active against A431 cells and it displayed a potent inhibition of EGFRWT while compounds 4b and 4d elicited higher potencies than erlotinib against mutated EGFRL858R. Compounds 4a, 6c and 8a showed the most potent cytotoxic activity against MDA-MB-231 cancer cells where compounds 4a and 6c were slightly less potent aromatase (ARO) inhibitors than letrozole. MCF-7 cells treated with compounds 4b, 4d, 11c and MDA-MB-231 cells treated with compounds 4a, 6c and 8a showed remarkable over-expression of caspase-9 protein level and elicited pre G1 apoptosis and cell cycle arrest at G2/M phase in addition to high annexin V binding affinity indicating significant apoptosis. Chemo-informatic and docking properties were also predicted. Docking results revealed that docked compounds displayed binding modes with EGFR and ARO enzymes comparable to that of the reference ligands. The benzoxazole derivatives 11c and 6c possessing amide and dithiocarbamate moieties respectively were found to be potent apoptosis-inducing anti-breast cancer agents with acceptable physicochemical properties. They exert their activity via inhibition of EGFR and ARO enzymes respectively.
Collapse
Affiliation(s)
- A-Mohsen M E Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Omaima M AboulWafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Mai S El-Shoukrofy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt.
| | - Mai E Amr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| |
Collapse
|
32
|
Thorat SG, Chikhale RV, Tajne MR. Development and Validation of HPLC and HPTLC Methods for Therapeutic Drug Monitoring of Capecitabine in Colorectal Cancer Patients. J Chromatogr Sci 2020; 57:892-900. [PMID: 31609432 DOI: 10.1093/chromsci/bmz067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/15/2019] [Indexed: 12/18/2022]
Abstract
Capecitabine is a prodrug of 5-fluorouracil, employed as a monotherapy or combination chemotherapy agent for treatment of colorectal cancer. Combination therapy of capecitabine consists of oxaliplatin, and hence, it becomes essential to determine that co-administration does not affect its metabolism. High-performance liquid chromatography and high-performance thin-layer chromatography methods were developed and validated to determine the plasma concentration of capecitabine. In this study, blood samples from 12 patients with colorectal cancer were collected and analyzed by both methods with a reference internal standard. Two groups consisting of six patients each were formed: the first group was treated with capecitabine monotherapy, the second group with capecitabine + oxaliplatin combination therapy. The results of analysis from both the methods indicated that there is no significant drug-drug interaction. The co-administration of oxaliplatin did not affect the metabolism of capecitabine. Both assay methods were compared for their sensitivity, robustness and specificity. It was found that both the assay methods were suitable for therapeutic drug monitoring of capecitabine.
Collapse
Affiliation(s)
- Sonali G Thorat
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Mahatma Jyotiba Fuley Shaikshanik Parisar, Amravati Road, Nagpur-440033, Maharashtra, India
| | - Rupesh V Chikhale
- Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PL, UK
| | - Madhukar R Tajne
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Mahatma Jyotiba Fuley Shaikshanik Parisar, Amravati Road, Nagpur-440033, Maharashtra, India
| |
Collapse
|
33
|
Šlachtová V, Chasák J, Brulíková L. Synthesis of Various 2-Aminobenzoxazoles: The Study of Cyclization and Smiles Rearrangement. ACS OMEGA 2019; 4:19314-19323. [PMID: 31763555 PMCID: PMC6868899 DOI: 10.1021/acsomega.9b02702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
This study reports two synthetic approaches leading to 2-aminobenzoxazoles and their N-substituted analogues. Our first synthetic strategy involves a reaction between various o-aminophenols and N-cyano-N-phenyl-p-toluenesulfonamide as a nonhazardous electrophilic cyanating agent in the presence of Lewis acid. The second synthetic approach uses the Smiles rearrangement upon activation of benzoxazole-2-thiol with chloroacetyl chloride. Both developed synthetic protocols are widely applicable, afford the desired aminobenzoxazoles in good to excellent yields, and use nontoxic and inexpensive starting material.
Collapse
|
34
|
Suprun EV. Protein post-translational modifications – A challenge for bioelectrochemistry. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Diao PC, Lin WY, Jian XE, Li YH, You WW, Zhao PL. Discovery of novel pyrimidine-based benzothiazole derivatives as potent cyclin-dependent kinase 2 inhibitors with anticancer activity. Eur J Med Chem 2019; 179:196-207. [PMID: 31254921 DOI: 10.1016/j.ejmech.2019.06.055] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 12/25/2022]
Abstract
To develop novel CDK2 inhibitors as anticancer agents, a series of novel pyrimidine-based benzothiazole derivatives were designed and synthesized. Initial biological evaluation demonstrated some of target compounds displayed potent antitumor activity in vitro against five cancer cell lines. Especially, the analogue 10s exhibited approximately potency with AZD5438 toward four cells including HeLa, HCT116, PC-3, and MDA-MB-231 with IC50 values of 0.45, 0.70, 0.92, 1.80 μM, respectively. More interestingly, the most highly active compound 10s in this study also possessed promising CDK2/cyclin A2 inhibitory activities with IC50 values of 15.4 nM, which was almost 3-fold potent than positive control AZD5438, and molecular docking studies revealed that the analogue bound efficiently with the CDK2 binding site. Further studies indicated that compound 10s could induce cell cycle arrest and apoptosis in a concentration-dependent manner. These observations suggest that pyrimidine-benzothiazole hybrids represent a new class of CDK2 inhibitors and well worth further investigation aiming to generate potential anticancer agents.
Collapse
Affiliation(s)
- Peng-Cheng Diao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Wei-Yuan Lin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Xie-Er Jian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Yan-Hong Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Wen-Wei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China.
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
36
|
Green synthesis and 3D pharmacophore study of pyrimidine and glucoside derivatives with in vitro potential anticancer and antioxidant activities. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02367-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Ebrahimi Z, Davoodnia A, Motavalizadehkakhky A, Mehrzad J. Synthesis of Benzo[f]chromeno[2,3-d]pyrimidines via the Tandem Intramolecular Pinner/Dimroth Rearrangement and their Antibacterial and Antioxidant Evaluation. ORG PREP PROCED INT 2019. [DOI: 10.1080/00304948.2019.1596472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Zohreh Ebrahimi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | | | - Jamshid Mehrzad
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
38
|
Asadian M, Davoodnia A, Beyramabadi SA. Efficient Synthesis of New Pyrimido[5′,4′:5,6]pyrano[2,3-d]pyrimidine-2,4,6(1H,3H)-triones via the Tandem Intramolecular Pinner–Dimroth Rearrangement, and Their Antibacterial Activity. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363218120290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Abdelbaset MS, Abdel-Aziz M, Ramadan M, Abdelrahman MH, Abbas Bukhari SN, Ali TF, Abuo-Rahma GEDA. Discovery of novel thienoquinoline-2-carboxamide chalcone derivatives as antiproliferative EGFR tyrosine kinase inhibitors. Bioorg Med Chem 2019; 27:1076-1086. [DOI: 10.1016/j.bmc.2019.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 12/13/2022]
|
40
|
Dorostkar-Ahmadi N, Davoodnia A, Tavakoli-Hoseini N, Behmadi H, Nakhaei-Moghaddam M. Facile synthesis of new pyrazolo[4′,3′:5,6]pyrano[2,3-d]pyrimidin-5(1H)-ones via the tandem intramolecular Pinner–Dimroth rearrangement and their antibacterial evaluation. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2018. [DOI: 10.1515/znb-2018-0166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
Some new 7-alkyl-4,6-dihydropyrazolo[4′,3′:5,6]pyrano[2,3-d]pyrimidin-5(1H)-ones were prepared through heterocyclization of 6-amino-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles with aliphatic carboxylic acids in the presence of phosphoryl chloride under reflux in high yields. The suggested mechanism involves a tandem intramolecular Pinner–Dimroth rearrangement. The products were characterized on the basis of FT-IR, 1H NMR, and 13C NMR spectral and microanalytical data and evaluated for their antibacterial activity against Gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) using the disk diffusion method.
Collapse
Affiliation(s)
- Nadieh Dorostkar-Ahmadi
- Department of Chemistry , Mashhad Branch, Islamic Azad University , 9175687119 Mashhad , I.R. Iran
| | - Abolghasem Davoodnia
- Department of Chemistry , Mashhad Branch, Islamic Azad University , 9175687119 Mashhad , I.R. Iran
| | - Niloofar Tavakoli-Hoseini
- Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University , 9175687119 Mashhad , I.R. Iran
| | - Hossein Behmadi
- Department of Chemistry , Mashhad Branch, Islamic Azad University , 9175687119 Mashhad , I.R. Iran
| | | |
Collapse
|
41
|
Shelar M, Patil M, Bhujbal S, Chaudhari R. Evaluation of anticonvulsant activity of the ethanolic extracts from leaves of Excoecaria agallocha. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2018. [DOI: 10.1016/j.fjps.2018.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
42
|
Zhang W, Fan YF, Cai CY, Wang JQ, Teng QX, Lei ZN, Zeng L, Gupta P, Chen ZS. Olmutinib (BI1482694/HM61713), a Novel Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor, Reverses ABCG2-Mediated Multidrug Resistance in Cancer Cells. Front Pharmacol 2018; 9:1097. [PMID: 30356705 PMCID: PMC6189370 DOI: 10.3389/fphar.2018.01097] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 09/07/2018] [Indexed: 12/25/2022] Open
Abstract
The main characteristic of tumor cell resistance is multidrug resistance (MDR). MDR is the principle cause of the decline in clinical efficacy of chemotherapeutic drugs. There are several mechanisms that could cause MDR. Among these, one of the most important mechanisms underlying MDR is the overexpression of adenosine triphosphate (ATP)-binding cassette (ABC) super-family of transporters, which effectively pump out cytotoxic agents and targeted anticancer drugs across the cell membrane. In recent years, studies found that ABC transporters and tyrosine kinase inhibitors (TKIs) interact with each other. TKIs may behave as substrates or inhibitors depending on the expression of specific pumps, drug concentration, their affinity for the transporters and types of co-administered agents. Therefore, we performed in vitro experiments to observe whether olmutinib could reverse MDR in cancer cells overexpressing ABCB1, ABCG2, or ABCC1 transporters. The results showed that olmutinib at 3 μM significantly reversed drug resistance mediated by ABCG2, but not by ABCB1 and ABCC1, by antagonizing the drug efflux function in ABCG2-overexpressing cells. In addition, olmutinib at reversal concentration affected neither the protein expression level nor the localization of ABCG2. The results observed from the accumulation/efflux study of olmutinib showed that olmutinib reversed ABCG2-mediated MDR with an increasing intracellular drug accumulation due to inhibited drug efflux. We also had consistent results with the ATPase assay that olmutinib stimulated ATPase activity of ABCG2 up to 3.5-fold. Additionally, the molecular interaction between olmutinib and ABCG2 was identified by docking simulation. Olmutinib not only interacts directly with ABCG2 but also works as a competitive inhibitor of the transport protein. In conclusion, olmutinib could reverse ABCG2-mediated MDR. The reversal effect of olmutinib on ABCG2-mediated MDR cells is not due to ABCG2 expression or intracellular localization, but rather related to its interaction with ABCG2 protein resulting in drug efflux inhibition and ATPase stimulation.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Plastic Surgery, Weifang Medical University, Weifang, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Ying-Fang Fan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Leli Zeng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| |
Collapse
|