1
|
Taha M, Rahim F, Uddin I, Amir M, Iqbal N, Wadood A, Khan KM, Uddin N, Rehman AU, Farooq RK. Discovering phenoxy acetohydrazide derivatives as urease inhibitors and molecular docking studies. J Biomol Struct Dyn 2024; 42:3118-3127. [PMID: 37211867 DOI: 10.1080/07391102.2023.2212794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023]
Abstract
Helicobacter pylori causes severe stomach disorders and the use of enzyme inhibitors for treatment is one of the possible therapies. The great biological potential of imine analogs as urease inhibitors has been the focus of researchers in past years. In this regard, we have synthesized twenty-one derivatives of dichlorophenyl hydrazide. These compounds were characterized by different spectroscopic techniques i.e. NMR and HREI-MS. Compounds 2 and 10 were found to be the most active in the series. Structure-activity relationship has been established for all compounds based on different substituents attached to the phenyl ring that play a vital role in enzyme inhibition. From the structure-activity relationship, it has been observed that these analogs showed excellent potential for urease and can be an alternate therapy in the future. The molecular docking study was performed to further explore the binding interactions of synthesized analogs with enzyme active sites.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Imad Uddin
- Department of Chemistry, University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Mohd Amir
- Department of Natural Products & Alternative Medicine College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Naveed Iqbal
- Department of Chemistry, University of Poonch, Rawalakot, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Nizam Uddin
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Ashfaq Ur Rehman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Gul Q, Karim N, Shoaib M, Zahoor M, Rahman MU, Bilal H, Ullah R, Alotaibi A. Vanillin derivatives as antiamnesic agents in scopolamine-induced memory impairment in mice. Heliyon 2024; 10:e26657. [PMID: 38420420 PMCID: PMC10901097 DOI: 10.1016/j.heliyon.2024.e26657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Amnesia is a major health problem prevalent in almost every part of the world specifically in old age peoples. Vanillin analogues have played an important role in the field medicines. Some of them have been documented to be promising inhibitors of cholinesterases and could therefore, be used as antidepressant, anti-Alzheimer and as neuroprotective drugs. In this connection, the present study was designed to synthesize new vanillin analogues (SB-1 to SB-6) of varied biological potentials. The synthesized compounds were investigated as inhibitors against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes and as scavengers of DPPH and ABTS free radicals followed by behavioural antiamnesic evaluation in mice. The compounds; SB-1, SB-3, SB-4 and SB-6 more potently inhibited AChE with IC50 values of 0.078, 0.157, 0.108, and 0.014 μM respectively. The BChE was more potently inhibited by SB-3 with IC50 of 0.057 μM. Moreover, all of the tested compounds exhibited strong antioxidant potentials with promising results of SB-3 against DPPH with IC50 of 0.305 μM, while SB-5 was most active against ABTS with IC50 of 0.190 μM. The in-vivo studies revealed the improvement in memory deficit caused by scopolamine. Y-Maze and new object recognition test showed a considerable decline in cognitive dysfunctions. In Y-Maze test the spontaneous alteration of 69.44 ± 1% and 84.88 ± 1.35% for SB-1 and 68.92 ± 1% and 80.89 ± 1% for SB-3 at both test doses were recorded while during the novel object recognition test the Discrimination Index percentage of SB-1 was more pronounced as compared to standard drug. All compounds were found to be potent inhibitors of AChE, BChE, DPPH, and ABTS in vitro however, SB-1 and SB-3 were comparatively more potent. SB-1 was also more active in reclamation of memory deficit caused by scopolamine. SB-1 and SB-3 may be considered as excellent drug candidates for treating amnesia subjected to toxicological evaluations in other animal models.
Collapse
Affiliation(s)
- Qamar Gul
- Department of Pharmacy, University of Malakand, Chakdara Dir Lower, KPK, Pakistan
| | - Nasiara Karim
- Department of Pharmacy, University of Peshawar, Peshawar, KPK, Pakistan
| | - Mohammad Shoaib
- Department of Pharmacy, University of Malakand, Chakdara Dir Lower, KPK, Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand Chakdara Dir Lower, KPK, Pakistan
| | - Mehboob Ur Rahman
- Department of Pharmacy, University of Malakand, Chakdara Dir Lower, KPK, Pakistan
| | - Hayat Bilal
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, KPK, Pakistan
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amal Alotaibi
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Sepehri S, Khedmati M. An overview of the privileged synthetic heterocycles as urease enzyme inhibitors: Structure-activity relationship. Arch Pharm (Weinheim) 2023; 356:e2300252. [PMID: 37401193 DOI: 10.1002/ardp.202300252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023]
Abstract
Urease is a metalloenzyme including two Ni2+ ions, found in some plants, bacteria, fungi, microorganisms, invertebrate animals, and animal tissues. Urease acts as a significant virulence factor, mainly in catheter blockage and infective urolithiasis as well as in the pathogenesis of gastric infection. Therefore, studies on urease lead to novel synthetic inhibitors. In this review, the synthesis and antiurease activities of a collection of privileged synthetic heterocycles such as (thio)barbiturate, (thio)urea, dihydropyrimidine, and triazol derivatives were described and discussed according to structure-activity relationship findings in search of the best moieties and substituents that are answerable for encouraging the desired activity even more potent than the standard. It was found that linking substituted phenyl and benzyl rings to the heterocycles led to potent urease inhibitors.
Collapse
Affiliation(s)
- Saghi Sepehri
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mina Khedmati
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
4
|
Theodosis-Nobelos P, Papagiouvannis G, Rekka EA. Ferulic, Sinapic, 3,4-Dimethoxycinnamic Acid and Indomethacin Derivatives with Antioxidant, Anti-Inflammatory and Hypolipidemic Functionality. Antioxidants (Basel) 2023; 12:1436. [PMID: 37507974 PMCID: PMC10375978 DOI: 10.3390/antiox12071436] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
A series of thiomorpholine and cinnamyl alcohol derivatives, conjugated with cinnamic acid-containing moieties, such as ferulic acid, sinapic acid and 3,4-dimethoxycinnamic acid, were synthesized and tested for their antioxidant, anti-inflammatory and hypolipidemic properties. An indomethacin ester with 2,6-di-tert-butyl-4-(hydroxymethyl)phenol was also prepared for reasons of comparison. The majority of the compounds demonstrated considerable antioxidant capacity and radical scavenging activity, reaching up to levels similar to the well-known antioxidant trolox. Some of them had an increased anti-inflammatory effect on the reduction of carrageenan-induced rat paw edema (range 17-72% at 150 μmol/kg), having comparable activity to the NSAIDs (non-steroidal anti-inflammatory drugs) used as reference. They had moderate activity in soybean lipoxygenase inhibition. All the tested compounds exhibited a significant decrease in lipidemic indices in Triton-induced hyperlipidemia in rats, whilst the most active triglycerides and total cholesterol decreased by 72.5% and 76%, respectively, at 150 μmol/kg (i.p.), slightly better than that of simvastatin, a well-known hypocholesterolemic drug, but with negligible triglyceride-lowering effect. Since our designed compounds seem to exhibit multiple pharmacological activities, they may be of use in occasions involving inflammation, oxidative stress, lipidemic deregulation and degenerative conditions.
Collapse
Affiliation(s)
| | - Georgios Papagiouvannis
- Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia 1036, Cyprus
| | - Eleni A Rekka
- Laboratory of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
5
|
Bayrak H, Fahim AM, Yaylaci Karahalil F, Azafad I, Boyraci GM, Taflan E. Synthesis, antioxidant activity, docking simulation, and computational investigation of novel heterocyclic compounds and Schiff Bases from picric acid. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
6
|
Improving the antimicrobial activity of old antibacterial drug mafenide: Schiff bases and their bioactivity targeting resistant pathogens. Future Med Chem 2023; 15:255-274. [PMID: 36891917 DOI: 10.4155/fmc-2022-0259] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Background: Increasing rates of acquired resistance have justified the critical need for novel antimicrobial drugs. One viable concept is the modification of known drugs. Methods & results: 21 mafenide-based compounds were prepared via condensation reactions and screened for antimicrobial efficacy, which demonstrated promising activity against both Gram-positive and Gram-negative pathogens, pathogenic fungi and mycobacterial strains (minimum inhibitory concentrations from 3.91 μM). Importantly, they retained activity against a panel of superbugs (methicillin- and vancomycin-resistant staphylococci, enterococci, multidrug-resistant Mycobacterium tuberculosis) without any cross-resistance. Unlike mafenide, most of its imines were bactericidal. Toxicity to HepG2 cells was also investigated. Conclusion: Schiff bases were significantly more active than the parent drug, with iodinated salicylidene and 5-nitrofuran/thiophene-methylidene scaffolds being preferred in identifying the most promising drug candidates.
Collapse
|
7
|
Riazimontazer E, Heiran R, Jarrahpour A, Gholami A, Hashemi Z, Kazemi A. Molecular Docking and Antibacterial Assessment of Monocyclic
β
‐Lactams against Broad‐Spectrum and Nosocomial Multidrug‐Resistant Pathogens. ChemistrySelect 2022. [DOI: 10.1002/slct.202203373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Elham Riazimontazer
- Biotechnology Research Center Shiraz University of Medical Sciences Shiraz Iran
- Department of Medicinal Chemistry School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
- Pharmaceutical Sciences Research Center Shiraz University of Medical Science Shiraz Iran
| | - Roghayeh Heiran
- Department of Chemistry Estahban Higher Education Center Estahban 74519 44655
| | - Aliasghar Jarrahpour
- Department of Chemistry College of Sciences Shiraz University Shiraz 71946-84795 Iran
| | - Ahmad Gholami
- Biotechnology Research Center Shiraz University of Medical Sciences Shiraz Iran
- Pharmaceutical Sciences Research Center Shiraz University of Medical Science Shiraz Iran
| | - Zahra Hashemi
- Pharmaceutical Sciences Research Center Shiraz University of Medical Science Shiraz Iran
| | - Aboozar Kazemi
- Pharmaceutical Sciences Research Center Shiraz University of Medical Science Shiraz Iran
| |
Collapse
|
8
|
Novel Morpholine-Bearing Quinoline Derivatives as Potential Cholinesterase Inhibitors: The Influence of Amine, Carbon Linkers and Phenylamino Groups. Int J Mol Sci 2022; 23:ijms231911231. [PMID: 36232533 PMCID: PMC9570490 DOI: 10.3390/ijms231911231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
A series of novel 4-N-phenylaminoquinoline derivatives containing a morpholine group were designed and synthesized, and their anti-cholinesterase activities and ABTS radical-scavenging activities were tested. Among them, compounds 11a, 11g, 11h, 11j, 11l, and 12a had comparable inhibition activities to reference galantamine in AChE. Especially, compound 11g revealed the most potent inhibition on AChE and BChE with IC50 values of 1.94 ± 0.13 μM and 28.37 ± 1.85 μM, respectively. The kinetic analysis demonstrated that both the compounds 11a and 11g acted as mixed-type AChE inhibitors. A further docking comparison between the 11a- and 12a-AChE complexes agreed with the different inhibitory potency observed in experiments. Besides, compounds 11f and 11l showed excellent ABTS radical-scavenging activities, with IC50 values of 9.07 ± 1.34 μM and 6.05 ± 1.17 μM, respectively, which were superior to the control, Trolox (IC50 = 11.03 ± 0.76 μM). It is worth noting that 3-aminoquinoline derivatives 12a–12d exhibited better drug-like properties.
Collapse
|
9
|
Synthesis of hydrazides of heterocyclic amines and their antimicrobial and spasmolytic activity. Saudi Pharm J 2022; 30:1036-1043. [PMID: 35903529 PMCID: PMC9315279 DOI: 10.1016/j.jsps.2022.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
Un unsolvable issue of a significant number increase of drug multi resistant strains of microorganisms including Mycobacterium tuberculosis force researchers for continuous design novel pharmaceuticals. The purpose of the study is the establishment of the correlation between the structure of novel heterocyclic hydrazide derivatives and their biological activity. Several hydrazide derivatives of N-piperidinyl and N-morpholinyl and propionic acids and N-piperidinyl acetic and their derivatives were synthesized via condensation of corresponding esters with hydrazine hydrate.The structure of synthesized compounds were confirmed by the use of FTIR, H1NMR, Mass-spectroscopy and element analysis. Investigation of synthesized substances using PASS software was carried out to predict probability of pharmacological activity in silico. The antibacterial, antifungal and spasmolytic activity as well as acute toxicity of obtained compounds were evaluated in vivo. 2-(N-piperidinyl)acetic acid hydrazide and 2-methyl-3-N-piperidinyl)propanacid hydrazide revealed antibacterial and spasmolytic activities comparable to the model drugs (drotaverin) in vitro study. Synthesized compounds in in vivo experiment showed significantly low acute toxicity (LD50 520–5750 mg/kg) compared to commercially available drugs (streptomicine, ciprofloxacinum and drotaverin LD50 100–215 mg/kg). The structure- activity relationship was established that the increasing of the length of the linker between heterocyclic amine and hydrazide group results in a decrease of antimicrobial activity against studied strains (Escherichia coli, Salmonella typhymurium, Salmonella choleraesuis, Staphylococcus aureus).
Collapse
|
10
|
Recent advancements and developments in search of anti-tuberculosis agents: A quinquennial update and future directions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Song WQ, Liu ML, Li SY, Xiao ZP. Recent Efforts in the Discovery of Urease Inhibitor Identifications. Curr Top Med Chem 2021; 22:95-107. [PMID: 34844543 DOI: 10.2174/1568026621666211129095441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022]
Abstract
Urease is an attractive drug target for designing anti-infective agents against pathogens such as Helicobacter pylori, Proteus mirabilis, and Ureaplasma urealyticum. In the past century, hundreds of medicinal chemists focused their efforts on explorations of urease inhibitors. Despite the FDA's approval of acetohydroxamic acid as a urease inhibitor for the treatment of struvite nephrolithiasis and the widespread use of N-(n-butyl)thiophosphoric triamide as a soil urease inhibitor as nitrogen fertilizer synergists in agriculture, urease inhibitors with high potency and safety are urgently needed. Exploration of novel urease inhibitors has therefore become a hot research topic recently. Herein, inhibitors identified worldwide from 2016 to 2021 have been reviewed. They structurally belong to more than 20 classes of compounds such as urea/thioure analogues, hydroxamic acids, sulfonamides, metal complexes, and triazoles. Some inhibitors showed excellent potency with IC50 values lower than 10 nM, having 10000-fold higher potency than the positive control thiourea.
Collapse
Affiliation(s)
- Wan-Qin Song
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, National Demonstration Center for Experimental Chemistry Education, Jishou University, Jishou 416000. China
| | - Mei-Ling Liu
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, National Demonstration Center for Experimental Chemistry Education, Jishou University, Jishou 416000. China
| | - Su-Ya Li
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, National Demonstration Center for Experimental Chemistry Education, Jishou University, Jishou 416000. China
| | - Zhu-Ping Xiao
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, National Demonstration Center for Experimental Chemistry Education, Jishou University, Jishou 416000. China
| |
Collapse
|
12
|
Mohamadzadeh M, Zarei M. Anticancer activity and evaluation of apoptotic genes expression of 2-azetidinones containing anthraquinone moiety. Mol Divers 2021; 25:2429-2439. [PMID: 32944866 DOI: 10.1007/s11030-020-10142-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/05/2020] [Indexed: 01/07/2023]
Abstract
Nowadays, one of the principal causes of death in the world is cancer. A series of 2-azetidinones containing anthraquinone moiety with various substituents were synthesized using [2 + 2] ketene-imine cycloaddition (Staudinger ketene-imine cycloaddition), and their cytotoxicity against some human cancer and normal cell lines was evaluated. Some of these hybrid compounds showed moderate to significant cytotoxicity against breast carcinoma (MCF7), colon carcinoma (HCT116), prostate carcinoma (PC3), and neuroblastoma (SKNMC) cell lines via MTT assay. Surprisingly, hybrid 4gh with the best anticancer activity demonstrated very good antibacterial and antifungal activities. This compound was selected to study to test on human fibroblast (Hu02) normal cell and comparison with doxorubicin. While 2-azetidinone 4gh represented similar cytotoxicity against cancer cell lines compared to doxorubicin, the 2-azetidinone demonstrated lower cytotoxicity against human fibroblast (Hu02) than doxorubicin. Further real-time PCR investigation displayed the expression of Bcl-xl, KI-67, TPX2 and BAX genes were significantly increased or decreased as desired in the cancer cell lines studied by treatment with doxorubicin or 2-azetidinone-anthraquinone 4gh. Molecular docking studies represented that hybrid 4gh strongly fitted the active site of topoisomerase II (PDB 4G0V) with hydrogen bond and hydrophobic interactions.
Collapse
Affiliation(s)
- Masoud Mohamadzadeh
- Department of Biochemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Maaroof Zarei
- Department of Biochemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
- Department of Chemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas, 71961, Iran.
| |
Collapse
|
13
|
Singh VN, Sharma S. Stereoselective synthesis and characterization of monocyclic
cis‐
β‐lactams containing 5‐methyl‐1,3,4‐thiadiazole‐2‐thiol moiety. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Vedeshwar N. Singh
- Department of Chemistry National Institute of Technology Patna Patna India
| | - Sitaram Sharma
- Department of Chemistry National Institute of Technology Patna Patna India
| |
Collapse
|
14
|
Heiran R, Jarrahpour A, Riazimontazer E, Gholami A, Troudi A, Digiorgio C, Brunel JM, Turos E. Sulfonamide‐β‐lactam Hybrids Incorporating the Piperazine Moiety as Potential Antiinflammatory Agent with Promising Antibacterial Activity. ChemistrySelect 2021. [DOI: 10.1002/slct.202101194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Roghayeh Heiran
- Department of Chemistry Estahban Higher Education Center Estahban 74519 44655 Iran
| | - Aliasghar Jarrahpour
- Department of Chemistry College of Sciences Shiraz University Shiraz 71946-84795 Iran
| | - Elham Riazimontazer
- Biotechnology Research Center Shiraz University of Medical Sciences Shiraz Iran
- Pharmaceutical Sciences Research Center Shiraz University of Medical Science Shiraz Iran
- Department of Medicinal Chemistry School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
| | - Ahmad Gholami
- Biotechnology Research Center Shiraz University of Medical Sciences Shiraz Iran
- Pharmaceutical Sciences Research Center Shiraz University of Medical Science Shiraz Iran
| | - Azza Troudi
- Aix Marseille Univ INSERM, SSA, MCT Marseille France
| | - Carole Digiorgio
- Aix Marseille Université CNRS, IRD, IMBE UMR 7263 Laboratoire de Mutagénèse Environnementale 13385 Marseille France
| | | | - Edward Turos
- Center for Molecular Diversity in Drug Design Discovery, and Delivery Department of Chemistry CHE 205 4202 East Fowler Avenue University of South Florida Tampa Florida 33620 USA
| |
Collapse
|
15
|
Mukhtar SS, Hassan AS, Morsy NM, Hafez TS, Saleh FM, Hassaneen HM. Design, synthesis, molecular prediction and biological evaluation of pyrazole-azomethine conjugates as antimicrobial agents. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1894338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Shorouk S. Mukhtar
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Dokki, Egypt
| | - Ashraf S. Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Dokki, Egypt
| | - Nesrin M. Morsy
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Dokki, Egypt
| | - Taghrid S. Hafez
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Dokki, Egypt
| | - Fatma M. Saleh
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Hamdi M. Hassaneen
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
16
|
Fedoseev SV, Ershov OE. Reaction of 4-Halo-3-hydroxyfuro[3,4-c]pyridin-1(3H)-ones with Morpholine and Thiomorpholine. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021030234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Singh VN, Sharma S. The facile and efficient synthesis of novel monocyclic cis-β-lactam conjugates with a 1-methyl-1 H-imidazole-2-thiol nucleus. NEW J CHEM 2021. [DOI: 10.1039/d1nj03566e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a facile and efficient synthesis of novel monocyclic cis-β-lactam conjugates with a 1-methyl-1H-imidazole-2-thiol nucleus through a ketene-imine [2+2] cycloaddition reaction of acyl chloride and different Schiff bases.
Collapse
Affiliation(s)
- Vedeshwar Narayan Singh
- Department of Chemistry, National Institute of Technology Patna, Ashok Rajpath, Patna-800005, Bihar, India
| | - Sitaram Sharma
- Department of Chemistry, National Institute of Technology Patna, Ashok Rajpath, Patna-800005, Bihar, India
| |
Collapse
|
18
|
Ma Z, Hu X, Li Y, Liang D, Dong Y, Wang B, Li W. Electrochemical oxidative synthesis of 1,3,4-thiadiazoles from isothiocyanates and hydrazones. Org Chem Front 2021. [DOI: 10.1039/d1qo00168j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A metal- and oxidant-free electrosynthesis of 2-amino-1,3,4-thiadiazoles through tandem addition/chemoselective C–S coupling.
Collapse
Affiliation(s)
- Zhongxiao Ma
- School of Chemistry and Chemical Engineering
- Kunming University
- Kunming 650214
- China
| | - Xiao Hu
- School of Chemistry and Chemical Engineering
- Kunming University
- Kunming 650214
- China
| | - Yanni Li
- School of Chemistry and Chemical Engineering
- Kunming University
- Kunming 650214
- China
| | - Deqiang Liang
- School of Chemistry and Chemical Engineering
- Kunming University
- Kunming 650214
- China
| | - Ying Dong
- College of Chemistry
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan 250014
- China
| | - Baoling Wang
- School of Chemistry and Chemical Engineering
- Kunming University
- Kunming 650214
- China
| | - Weili Li
- School of Chemistry and Chemical Engineering
- Kunming University
- Kunming 650214
- China
| |
Collapse
|
19
|
Verma SK, Verma R, Verma S, Vaishnav Y, Tiwari SP, Rakesh KP. Anti-tuberculosis activity and its structure-activity relationship (SAR) studies of oxadiazole derivatives: A key review. Eur J Med Chem 2020; 209:112886. [PMID: 33032083 DOI: 10.1016/j.ejmech.2020.112886] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 09/23/2020] [Indexed: 01/09/2023]
Abstract
With the increasing number of cases of inactive and drug-resistance tuberculosis, there is an urgent need to develop new potent molecules set for fighting this brutal disease. Medicinal chemistry concerns the discovery, the development, the identification, and the interpretation of the mode of action of biologically active compounds at the molecular level. Molecules bearing oxadiazoles are one such class that could be considered to satisfy this need. Oxadiazole regioisomers have been investigated in drug discovery programs for their capacity to go about as powerful linkers and as pharmacophoric highlights. Oxadiazoles can go about as bioisosteric substitutions for the hydrazide moiety which can be found in first-line anti-TB drugs, and some have been likewise answered to cooperate with more current anti-TB targets. This present review summarizes the current innovations of oxadiazole-based derivatives with potential antituberculosis activity and bacteria discussing various aspects of structure-activity relationship (SAR).
Collapse
Affiliation(s)
- Santosh Kumar Verma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, Shaanxi, PR China; Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin University, Yulin, 719000, Shaanxi, PR China
| | - Rameshwari Verma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, Shaanxi, PR China; Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin University, Yulin, 719000, Shaanxi, PR China.
| | - Shekhar Verma
- University College of Pharmacy Raipur, Pt. Deendayal Upadhyay Memorial Health, Sciences and Aayush University of Chhattisgarh, Raipur, 492010, Chhattisgarh, India
| | - Yogesh Vaishnav
- Shri Shankaracharya Technical Campus, Shri Shankaracharya Group of Institutions, Bhilai, 491001, Chhattisgarh, India
| | - S P Tiwari
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, PR China
| | - K P Rakesh
- School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan, 430073, PR China.
| |
Collapse
|
20
|
Development of sulfonamide-based Schiff bases targeting urease inhibition: Synthesis, characterization, inhibitory activity assessment, molecular docking and ADME studies. Bioorg Chem 2020; 102:104057. [DOI: 10.1016/j.bioorg.2020.104057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/04/2020] [Accepted: 06/26/2020] [Indexed: 01/24/2023]
|
21
|
Heiran R, Sepehri S, Jarrahpour A, Digiorgio C, Douafer H, Brunel JM, Gholami A, Riazimontazer E, Turos E. Synthesis, docking and evaluation of in vitro anti-inflammatory activity of novel morpholine capped β-lactam derivatives. Bioorg Chem 2020; 102:104091. [PMID: 32717692 DOI: 10.1016/j.bioorg.2020.104091] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022]
Abstract
This study reports the synthesis and biological investigation of three series of novel monocyclic β-lactam derivatives bearing a morpholine ring substituent on the nitrogen. The resulting β-lactam adducts were synthesized via Staudinger's [2 + 2]-ketene-imine cycloaddition reaction. New synthesized products were fully characterized by spectral data and elemental analyses, and then evaluated for anti-inflammatory activity toward human inducible nitric oxide synthase (iNOS) and cytotoxicity toward HepG2 cell line. The compounds 3e, 3h, 3k, 5c, 5f, 6c, 6d and 6f showed higher activity with anti-inflammatory ratio values of 38, 62, 51, 72, 51, 35, 55 and 99, respectively, in comparison to the reference compound dexamethasone having an anti-inflammatory ratio value of 32. Hence, these compounds can be considered as potent iNOS inhibitors. They also exhibited IC50 values of 0.48 ± 0.04 mM, 0.51 ± 0.01 mM, 0.22 ± 0.02 mM, 0.12 ± 0.00 mM, 0.25 ± 0.05 mM, 0.82 ± 0.07 mM, 0.44 ± 0.04 mM and 0.60 ± 0.04 mM, respectively, in comparison with doxorubicin (IC50 < 0.01 mM) against HepG2 cells, biocompatibility and nontoxic behavior. In silico prediction of drug-likeness characteristic indicated that the compounds are compliant with the Lipinski and Veber rules. Molecular docking experiments showed a good correlation between the experimental activity and the calculated binding affinity to human inducible nitric oxide synthase, the enzymatic target for the anti-inflammatory response.
Collapse
Affiliation(s)
- Roghayeh Heiran
- Department of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran; Department of Chemistry, Estahban Higher Education Center, Estahban, Iran.
| | - Saghi Sepehri
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Aliasghar Jarrahpour
- Department of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran.
| | - Carole Digiorgio
- Aix Marseille Université, CNRS, IRD, IMBE UMR 7263, Laboratoire de Mutagénèse Environnementale, 13385 Marseille, France
| | - Hana Douafer
- Aix Marseille Université, INSERM, SSA, MCT, Marseille, France
| | | | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Riazimontazer
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Edward Turos
- Center for Molecular Diversity in Drug Design, Discovery, and Delivery, Department of Chemistry, CHE 205, 4202 East Fowler Avenue, University of South Florida, Tampa, FL 33620 USA
| |
Collapse
|
22
|
Alisi IO, Uzairu A, Abechi SE. Free radical scavenging mechanism of 1,3,4-oxadiazole derivatives: thermodynamics of O-H and N-H bond cleavage. Heliyon 2020; 6:e03683. [PMID: 32258501 PMCID: PMC7114742 DOI: 10.1016/j.heliyon.2020.e03683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/10/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
The thermodynamics of free radical scavenge of 1,3,4-oxadiazole derivatives towards oxygen-centred free radicals were investigated by the density functional theory (DFT) method in the gas phase and aqueous solution. Three mechanisms of free radical scavenge namely, hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET) were considered. The antioxidant descriptors that characterize these mechanisms such as, bond dissociation enthalpy (BDE), adiabatic ionization potential (AIP), proton dissociation enthalpy (PDE), proton affinity (PA) and electron transfer enthalpy (ETE) were evaluated. The sequence of electron donation as predicted by the HOMO results were in good agreement with the sequence of ETE for the considered molecules at their favoured sites of free radical scavenge. The reaction Gibbs free energy for inactivation of the selected peroxyl radicals, show that 1,3,4-oxadiazole antioxidants are more efficient radical scavengers by HAT and SPLET mechanisms than SET-PT mechanism in vacuum. In aqueous solution, the SET-PT mechanism was observed to be the dominant reaction pathway.
Collapse
Affiliation(s)
| | - Adamu Uzairu
- Department of Chemistry, Ahmadu Bello University Zaria, Kaduna State, Nigeria
| | | |
Collapse
|
23
|
Salehi Ashani R, Azizian H, Sadeghi Alavijeh N, Fathi Vavsari V, Mahernia S, Sheysi N, Biglar M, Amanlou M, Balalaie S. Synthesis, Biological Evaluation and Molecular Docking of Deferasirox and Substituted 1,2,4-Triazole Derivatives as Novel Potent Urease Inhibitors: Proposing Repositioning Candidate. Chem Biodivers 2020; 17:e1900710. [PMID: 32187446 DOI: 10.1002/cbdv.201900710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/16/2020] [Indexed: 01/19/2023]
Abstract
A series of new deferasirox derivatives were synthesized through the reaction of monosubstituted hydrazides with 2-(2-hydroxyphenyl)-4H-benzo[e][1,3]oxazin-4-one. For the first time, deferasirox and some of its derivatives were evaluated for their in vitro inhibitory activity against Jack bean urease. The potencies of the members of this class of compounds are higher than that of acetohydroxamic acid. Two compounds, bearing tetrazole and hydrazine derivatives (bioisoester of carboxylate group), represented the most potent urease inhibitory activity with IC50 values of 1.268 and 3.254 μm, respectively. In silico docking studies were performed to delineate possible binding modes of the compounds with the enzyme, urease. Docking analysis suggests that the synthesized compounds were anchored well in the catalytic site and extending to the entrance of binding pocket and thus restrict the mobility of the flap by interacting with its crucial amino acid residues, CME592 and His593. The overall results of urease inhibition have shown that these target compounds can be further optimized and developed as a lead skeleton for the discovery of novel urease inhibitors.
Collapse
Affiliation(s)
- Razieh Salehi Ashani
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, P.O. Box, 15875-4416, Tehran, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy, International Campus, Iran University of Medical Sciences, P.O. Box, 14665-354, Tehran, Iran
| | - Nahid Sadeghi Alavijeh
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, P.O. Box, 15875-4416, Tehran, Iran
| | - Vaezeh Fathi Vavsari
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, P.O. Box, 15875-4416, Tehran, Iran
| | - Shabnam Mahernia
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, P.O. Box, 14155-6451, Tehran, Iran
| | - Niloofar Sheysi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box, 14155-6451, Tehran, Iran
| | - Mahmood Biglar
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, P.O. Box, 14155-6451, Tehran, Iran
| | - Massoud Amanlou
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, P.O. Box, 14155-6451, Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box, 14155-6451, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, P.O. Box, 15875-4416, Tehran, Iran.,Medical Biology Research Center, Kermanshah University of Medical Sciences, P.O. Box, 67155-1616, Kermanshah, Iran
| |
Collapse
|
24
|
Zhang X, Jia Y. Recent Advances in β-lactam Derivatives as Potential Anticancer Agents. Curr Top Med Chem 2020; 20:1468-1480. [PMID: 32148196 DOI: 10.2174/1568026620666200309161444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 01/26/2023]
Abstract
Cancer, accounts for around 10 million deaths annually, is the second leading cause of death globally. The continuous emergency of drug-resistant cancers and the low specificity of anticancer agents are the main challenges in the control and eradication of cancers, so it is imperative to develop novel anticancer agents. Immense efforts have been made in developing new lead compounds and novel chemotherapeutic strategies for the treatment of various forms of cancers in recent years. β-Lactam derivatives constitute versatile and attractive scaffolds for the drug discovery since these kinds of compounds possess a variety of pharmacological properties, and some of them exhibited promising potency against both drug-sensitive and drug-resistant cancer cell lines. Thus, β-lactam moiety is a useful template for the development of novel anticancer agents. This review will provide an overview of β-lactam derivatives with the potential therapeutic application for the treatment of cancers covering articles published between 2000 and 2020. The mechanisms of action, the critical aspects of design and structureactivity relationships are also discussed.
Collapse
Affiliation(s)
- Xinfen Zhang
- Department of Oncology, Zhuji Affiliated Hospital of Shaoxing University, Zhejiang Province 311800, China
| | - Yanshu Jia
- Chongqing Institute of Engineering, Chongqing 400056, China
| |
Collapse
|
25
|
Mohamadzadeh M, Zarei M, Vessal M. Synthesis, in vitro biological evaluation and in silico molecular docking studies of novel β-lactam-anthraquinone hybrids. Bioorg Chem 2019; 95:103515. [PMID: 31884134 DOI: 10.1016/j.bioorg.2019.103515] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/20/2019] [Accepted: 12/16/2019] [Indexed: 02/09/2023]
Abstract
Schiff bases from 2-aminoanthraquinone have been prepared by reaction with aldehydes and used to prepare novel β-lactam-anthraquinone hybrids via [2+2] ketene-imine cycloaddition (Staudinger reaction) reaction. In vitro antibacterial studies of all synthesized compound were carried out against three gram-positive strains Staphylococcus aureus (Methicillin-resistant strain), Enterococcus faecium (Vancomycin-resistant strain) and Bacillus subtilis, and two gram-negative strains Escherichia coli and Pseudomonas aeruginosa. These compounds were further evaluated for their in vitro antifungal activity against Candida albicans, Aspergillus niger and Trichophyton mentagrophytes. Hybrid compounds showed moderate to excellent antibacterial and antifungal activities. Surprisingly, among the tested compounds, some of them revealed equal antibacterial and antifungal properties and even better than standards. In addition, results demonstrated that the new hybrids are very promising antibacterial agents against resistant strains. Also molecular docking studies were carried out by Autodoc software. Penicillin-binding protein 2a (PDB ID: 1VQQ) from methicillin-resistant Staphylococcus aureus strain used as a target which good binding interactions were observed.
Collapse
Affiliation(s)
- Masoud Mohamadzadeh
- Department of Biochemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Maaroof Zarei
- Department of Chemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas 71961, Iran.
| | - Mahmood Vessal
- Department of Biochemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| |
Collapse
|