1
|
Henneveld JS, Lucas NT, Bissember AC, Hawkins BC. Dipole-Transmissive 1,3-Dipolar Cycloadditions: Modular, Diversity-Oriented Synthesis of Polycyclic Alkaloid Scaffolds. Org Lett 2025. [PMID: 40405357 DOI: 10.1021/acs.orglett.5c01867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
This report establishes dipole-transmissive 1,3-dipolar cycloaddition methodology that enables the rapid, modular, and diastereoselective construction of privileged alkaloid scaffolds via a diversity-oriented synthetic strategy. In addition to furnishing assorted functionalized pyrrolizidine, indolizidine, quinolizidine, and pyrazoline frameworks from simple building blocks, these tools facilitated formal syntheses of alkaloid natural products isoretronecanol, elaeokanine A, and grandisine D.
Collapse
Affiliation(s)
- Jackson S Henneveld
- Department of Chemistry, University of Otago, Dunedin, Otago 9054, New Zealand
| | - Nigel T Lucas
- Department of Chemistry, University of Otago, Dunedin, Otago 9054, New Zealand
| | - Alex C Bissember
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Bill C Hawkins
- Department of Chemistry, University of Otago, Dunedin, Otago 9054, New Zealand
| |
Collapse
|
2
|
Hasan M, Peshkov AA, Shah SAA, Belyaev A, Lim CK, Wang S, Peshkov VA. Silver(I) triflate-catalyzed post-Ugi synthesis of pyrazolodiazepines. Beilstein J Org Chem 2025; 21:915-925. [PMID: 40357120 PMCID: PMC12067096 DOI: 10.3762/bjoc.21.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
A silver(I) triflate-catalyzed post-Ugi assembly of novel pyrazolo[1,5-a][1,4]diazepine scaffolds is reported offering high yields (up to 98%) under mild conditions. The synthetic sequence involves the Ugi four-component reaction (U4CR) of pyrazole-3-carbaldehydes, primary amines, 3-substituted propiolic acids, and isocyanides, followed by a silver(I) triflate-catalyzed intramolecular heteroannulation of the resulting pyrazole-tethered propargylamides occurring in a 7-endo-dig fashion. The approach is scalable and tolerates a diverse range of substitution patterns.
Collapse
Affiliation(s)
- Muhammad Hasan
- College of Chemistry Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, P.R. China
| | - Anatoly A Peshkov
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Syed Anis Ali Shah
- College of Chemistry Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, P.R. China
| | - Andrey Belyaev
- Department of Chemistry, University of Eastern Finland, FI-80101 Joensuu, Finland
| | - Chang-Keun Lim
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Shunyi Wang
- College of Chemistry Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, P.R. China
| | - Vsevolod A Peshkov
- College of Chemistry Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, P.R. China
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
| |
Collapse
|
3
|
Dhawan B, Alam MS, Hamid H, Yadav A, Akhter G, Dar MJ, Alam O, S Y. Synthesis and biological evaluation of thiourea-tethered benzodiazepinones as anti-proliferative agents targeting JAK-3 kinase. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03853-1. [PMID: 40029384 DOI: 10.1007/s00210-025-03853-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/24/2025] [Indexed: 03/05/2025]
Abstract
Owing to anti-cancer potency of the benzodiazepinone derivatives, the study aims to synthesize a library of thiourea-tethered benzodiazepinone derivatives targeting JAK-3 kinase for anti-breast cancer potency. Test compounds showed favourable in silico interactions with the active site of JAK-3 kinase. Compound 5i demonstrated a significant JAK-3 kinase inhibitory potential of 68.28% and appreciable growth inhibition (72.9%) of MDA-MB-468 (breast cancer cells) as per the anti-proliferative screening done by NCI-USA. In addition, 5i was also found to induce apoptosis moderately by 12.4% in the late apoptosis quadrant and arrested cell cycle at the G2/M phase. The wound healing assay demonstrated the anti-metastatic impact of drug 5i by reducing the migratory potential of MDA-MB-468 cells and was found to be stable within the target protein in the molecular dynamic simulation. All the synthesized compounds exhibited drug-appropriate pharmacokinetic profiles as corroborated by computational ADMET analysis. The study indicates that the synthesized library of benzodiazepinone derivatives is efficacious and compound 5i has emerged as a promising hit candidate, and can be explored further for development of potent JAK-3 kinase inhibitors targeting breast cancer.
Collapse
Affiliation(s)
- Bharti Dhawan
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, 110062, New Delhi, India
| | - Mohammad Sarwar Alam
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, 110062, New Delhi, India.
| | - Hinna Hamid
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, 110062, New Delhi, India.
| | - Anubha Yadav
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Uttar Pradesh, Sector-125, Noida, India
| | - Gowsia Akhter
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, 110062, New Delhi, India
| | - Mohd Jamal Dar
- Cancer Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, 180001, Jammu and Kashmir, India
| | - Ozair Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences and Research, Jamia Hamdard, Hamdard Nagar, 110062, New Delhi, India
| | - Yogisha S
- Skanda Life Sciences, Shree Shaila Bramara, Srigandad Kaval, Bangalore, 560091, India
| |
Collapse
|
4
|
Morcoss MM, Saddik JN, Amin ME, Mohamed FAM, El-Rashedy AA, Almutairi TM, Youssif BGM, Lamie PF. Design, synthesis, antimalarial activity, and in-silico studies of new benzimidazole/pyridine hybrids as dihydrofolate reductase inhibitors. Bioorg Chem 2025; 156:108171. [PMID: 39947799 DOI: 10.1016/j.bioorg.2025.108171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 03/29/2025]
Abstract
Molecular hybridization of substituted 2-phenylbenzimidazole and pyridine moieties afforded a new series of antimalarial targeting compounds 5a-l. They were assessed against both chloroquine resistant -W2 (CR-W2) and chloroquine sensitive-D6 (CS-D6) strains of P. falciparum. Artemisinin and chloroquine were used as standards drugs. Results revealed that compounds 5e, 5j, 5k and 5l were the most effective against CS-D6 P. falciparum strain with IC50 values ranged between 0.019 and 0.056 µM and selectivity index values of 7551.95-13642.10. In addition to 5j and 5k derivatives, another four tested compounds 5c, 5d, 5f and 5g exerted effective antimalarial activity against CR-W2 strain of P. falciparum, their IC50 values were between 0.046 and 0.253 µM with high selectivity index values ranged from 2610.23 to 1024.50. Upon assessing DHFR inhibitory activity of the energetic derivatives, compounds 5j, 5k, and 5e exhibited IC50 values of 0.72, 3.95, and 5.31 µM, respectively, in comparison to the reference medication trimethoprim, which has an IC50 of 13.36 µM. Moreover, molecular dynamic simulations and docking experiments were applied to the most active derivative, 5j, into the catalytic binding site of wild-PfDHFR-TS, were done and showed interesting binding profiles and affinities. Furthermore, in silico physicochemical and pharmacokinetic parameters were predicted.
Collapse
Affiliation(s)
- Martha M Morcoss
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Nahda University Beni-Suef Egypt.
| | | | - Mariam E Amin
- Department of Microbiology and Immunology Faculty of Pharmacy Suez Canal University Egypt
| | - Fatma A M Mohamed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat 77454 Saudi Arabia
| | - Ahmed A El-Rashedy
- Chemistry of Natural and Microbial Products Department, National Research Center (NRC), Egypt
| | - Tahani Mazyad Almutairi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451 Saudi Arabia
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| | - Phoebe F Lamie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 Egypt.
| |
Collapse
|
5
|
Singh P, Nisa K, Mavi R, Yadav S, Kumar R. Recent Progresses in Development of Heterocyclic Compounds for Epilepsy Treatment: Key Research Highlights from 2019-2024. Chem Biodivers 2025; 22:e202401620. [PMID: 39235237 DOI: 10.1002/cbdv.202401620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/06/2024]
Abstract
Epilepsy which is a chronic neurological disorder is characterized by recurrent seizure poses a significant challenge to healthcare professionals worldwide. Most of antiepileptic drugs have serious side effects that might affect the quality of life such as fatigue, dizziness, weight gain and cognitive impairments. In this context, the search for more effective and potential antiepileptic drug candidate has led to a growing interest in the field of synthesis of heterocyclic compounds. This review will focus on the utilization of heterocyclic moieties including imidazole, indole, thiazole, triazine, quinazoline and oxazole which show remarkable anticonvulsant properties. Furthermore, the exploration of various methodologies for the synthesis of heterocyclic anticonvulsant drugs such as green methodologies and microwave assisted protocols have contributed to the development of environment friendly, more efficient and potential approaches. The review will distinguish from previous ones by specifically focusing on innovative synthetic methodologies, including greener methodologies and micro-assisted techniques, that contribute to eco-friendly and environment benign approaches during 2019-2024. In addition to this, the review will focus on the Structure Activity Relationship (SAR) studies of heterocyclic compounds in order to offer insight into the design of next generation antiepileptic drugs with improved efficacy and reduced side effects.
Collapse
Affiliation(s)
- Preeti Singh
- Department of Chemistry, Faculty of Science, Swami Vivekanand Subharti University, Meerut, 250005, U.P. India
| | - Kharu Nisa
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology, Srinagar, 190006, India
| | - Renu Mavi
- Department of Chemistry, Faculty of Science, Swami Vivekanand Subharti University, Meerut, 250005, U.P. India
| | - Soni Yadav
- Department of Chemistry, Faculty of Science, Meerut Institute of Engineering & Technology, Meerut, 250005, India
| | - Ravi Kumar
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology, Srinagar, 190006, India
| |
Collapse
|
6
|
Vargas Mena E, Herrera Giraldo ER, Gómez Castaño JA. Insights into the Silylation of Benzodiazepines Using N, O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA): In Search of Optimal Conditions for Forensic Analysis by GC-MS. Molecules 2024; 29:5884. [PMID: 39769972 PMCID: PMC11678304 DOI: 10.3390/molecules29245884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Silylation is a widely used derivatization technique for the gas chromatographic analysis of benzodiazepines, a class of psychoactive drugs commonly encountered in forensic and biological samples. This study investigated the optimal experimental conditions for the silylation of benzodiazepines using N,O-bis(trimethylsilyl)trifluoroacetamide containing 1% trimethylchlorosilane (BSTFA + 1% TMCS), a widely employed silylating agent. Ten structurally different benzodiazepines, including variations within the classic 1,4-benzodiazepine core and triazolo ring derivatives, were selected to address the effect of structural diversity on silylation. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used to optimize the silylation of benzodiazepines by means of GC-MS analysis. PCA identified key experimental factors influencing silylation efficiency and distinct response patterns of different benzodiazepines. HCA further categorized the benzodiazepines based on their silylation behavior, highlighting the need for tailored derivatization strategies. The results indicated that the BSTFA + 1% TMCS concentration and solvent volume were pivotal for achieving high silylation efficiency, whereas the temperature, reaction time, and catalyst were less critical. The optimized method was successfully applied to 30 real forensic samples, demonstrating its efficacy in detecting and identifying various benzodiazepines, including designer drugs like etizolam. This study provides a foundation for improving drug detection methodologies in forensic toxicology and provides useful insights into the dynamics of benzodiazepine silylation and the use of individualized analysis parameters.
Collapse
Affiliation(s)
- Eleazar Vargas Mena
- Grupo Ciencias Forenses, Laboratorio de Toxicología Regional de Occidente, Instituto Nacional de Medicina Legal y Ciencias Forenses, Avenida de las Américas No 98-25, Pereira 660004, Colombia
| | - Eliana R. Herrera Giraldo
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia, Sede Tunja, Avenida Central del Norte, Boyacá 150003, Colombia;
| | - Jovanny A. Gómez Castaño
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia, Sede Tunja, Avenida Central del Norte, Boyacá 150003, Colombia;
| |
Collapse
|
7
|
Cadle B, Candan FU, Haneef Z, Barton CR, Brock D, Ali I, Shoup J, Karakas C. Antiseizure medication-induced hypersensitivity reactions: Data from a large healthcare system. Seizure 2024; 122:172-178. [PMID: 39454220 DOI: 10.1016/j.seizure.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Data on hypersensitivity reactions (HR) to individual anti-seizure medications (ASMs), and reactions to additional ASMs, is often limited by sample size. This data is vital in helping clinicians identify initial and subsequent ASMs to use in treating persons with epilepsy (PWE). Using a very large dataset, our study attempts to quantify the occurrence of HR across 31 different ASMs. We also attempt to investigate whether certain pairs of ASMs are associated with a higher frequency of HR. METHODS The Slicer-Dicer tool in the Epic electronic medical records system was used to analyze patients seen between 2012 and 2022 at a large healthcare system in Kentucky with recorded exposures to 31 different ASMs. Incidence of HR with these ASMs were identified, both with single drugs or pairs of drugs, as well as incidence of HR stratified by sex and ASM structure. RESULTS A total of 573,571 patients with 967,168 exposures were analyzed. Phenobarbital had the highest rate of HR at 12.9 %. Usage of aromatic ASMs were most associated with patients having HR to other ASMs. HR to 13/31 studied ASMs was more likely to occur in females, while HR was more likely in males with lacosamide. Aromatic ASMs were more likely (p < 0.0001) to be associated with HR compared to non-aromatic ASMs. Carbamazepine and the related drugs oxcarbazepine and eslicarbazepine were associated with the greatest number of drug pairings in which the patient had HR to both medications at any time point. DISCUSSION Our data reveals important patterns in HR to ASMs that may be valuable to clinicians treating PWE. Clinicians should monitor closely for HR when beginning a new ASM in a patient who has taken an aromatic ASM, especially carbamazepine, oxcarbazepine, or eslicarbazepine as well as phenobarbital.
Collapse
Affiliation(s)
- Benjamin Cadle
- Division of Child Neurology, Department of Pediatrics, University of Louisville School of Medicine, KY, 40202, USA.
| | - Feride Un Candan
- Division of Child Neurology, Department of Pediatrics, University of Louisville School of Medicine, KY, 40202, USA
| | - Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Neurology Care Line, VA Medical Center, Houston, TX 77030, USA
| | - Christopher Ryan Barton
- Division of Child Neurology, Department of Pediatrics, University of Louisville School of Medicine, KY, 40202, USA; Norton Children's Neuroscience Institute and Children's Hospital, Louisville, KY 40202, USA
| | - Dylan Brock
- Division of Child Neurology, Department of Pediatrics, University of Louisville School of Medicine, KY, 40202, USA; Norton Children's Neuroscience Institute and Children's Hospital, Louisville, KY 40202, USA
| | - Irfan Ali
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jaime Shoup
- Division of Child Neurology, Department of Pediatrics, University of Louisville School of Medicine, KY, 40202, USA; Norton Children's Neuroscience Institute and Children's Hospital, Louisville, KY 40202, USA
| | - Cemal Karakas
- Division of Child Neurology, Department of Pediatrics, University of Louisville School of Medicine, KY, 40202, USA; Norton Children's Neuroscience Institute and Children's Hospital, Louisville, KY 40202, USA
| |
Collapse
|
8
|
Junkes L, Mendlowicz MV, Shader R, Nardi AE. Leo Sternbach and the benzodiazepines 60 years on: A revolutionary treatment for anxiety disorders. Pharmacol Res 2024; 207:107310. [PMID: 39059612 DOI: 10.1016/j.phrs.2024.107310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Affiliation(s)
- Larissa Junkes
- Institute of Psychiatry (IPUB), Federal University of Rio de Janeiro (UFRJ), Venceslau Brás Avenue, 71, Botafogo, Rio de Janeiro 22290-140, Brazil.
| | - Mauro V Mendlowicz
- Federal Fluminense University (UFF), Marquês de Paraná Avenue, 303, Downtown, Niteroi 24030-215, Brazil
| | - Richard Shader
- Tufts University, Graduate School of Biomedical Sciences, Pharmacology Program, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Antonio E Nardi
- Institute of Psychiatry (IPUB), Federal University of Rio de Janeiro (UFRJ), Venceslau Brás Avenue, 71, Botafogo, Rio de Janeiro 22290-140, Brazil
| |
Collapse
|
9
|
Nachimuthu K, Nallasivam JL. Recent updates on vinyl cyclopropanes, aziridines and oxiranes: access to heterocyclic scaffolds. Org Biomol Chem 2024; 22:4212-4242. [PMID: 38738483 DOI: 10.1039/d4ob00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
This present review delineates the repertoire of vinyl cyclopropanes and their stuctural analogues to accomplish a wide array of oxa-cycles, aza-cycles, and thia-cycles under transition metal catalysis and metal-free approaches from early 2019 to the present date. The generation of electrophilic π-allyl intermediates and 1-3/1-5-dipolarophile chemistry originating from VCPs are always green, step- and atom-economical and sustainable strategies in comparsion with prefunctionalized and/or C-H activation protocols. Here, the strained ring-system extends its applicability by relieving the strain to undergo a ring-expansion reaction to accomplish 5-9 membered carbo- and heterocyclic systems. The availability of chiral ligands in the ring-expansion reaction of VCPs and their analogues has paved the way to realizing asymmetric synthetic transformations.
Collapse
Affiliation(s)
- Kiruthika Nachimuthu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tiruchirappalli-620 015, Tamil Nadu, India.
| | - Jothi Lakshmi Nallasivam
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tiruchirappalli-620 015, Tamil Nadu, India.
| |
Collapse
|
10
|
Ghosh S, Koner M, Kunhiraman AA, Baidya M. Free Amine-Directed Redox Neutral Ruthenium(II) Catalysis toward Regioselective Synthesis of Heterobiaryls. Org Lett 2024; 26:2987-2992. [PMID: 38563803 DOI: 10.1021/acs.orglett.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A regioselective coupling of ortho-heteroaryl anilines and 7-oxabenzonorbornadienes has been developed by leveraging free amine-directed redox-neutral Ru(II) catalysis. This protocol facilitates formal C-2 arylation of the indole moiety under mild conditions to offer valuable heterobiaryls in high yields. The reaction displays a broad substrate generality and scalability and retains efficacy in the presence of diverse pharmacophore scaffolds. Moreover, products bearing a free amine group were successfully employed in Mg(NTf2)2-catalyzed double Michael addition cascade, which led to the synthesis of intricate indole- and pyrrole-fused azaheterocycles.
Collapse
Affiliation(s)
- Suman Ghosh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Mainak Koner
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Anusree A Kunhiraman
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
11
|
Reinker M, Kalinina SA, Kalinin DV. Total synthesis of (±)-auranthine confirmed its refined structure. RSC Adv 2024; 14:1649-1654. [PMID: 38179097 PMCID: PMC10766008 DOI: 10.1039/d3ra07483h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024] Open
Abstract
Auranthine, isolated in 1986 from Penicillium aurantiogriseum, is a fungal benzodiazepine. Through the successful total synthesis of (±)-auranthine, we confirmed the refined structure of natural (-)-auranthine. We established that natural (-)-auranthine is a fused quinazolino benzodiazepine dione 1 featuring an acyclic aliphatic nitrile moiety, thereby disproving the proposed structure 2.
Collapse
Affiliation(s)
- Marie Reinker
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster Corrensstraße 48 Münster 48149 Germany
| | - Svetlana A Kalinina
- Institute of Food Chemistry, University of Münster Corrensstraße 45 Münster 48149 Germany
| | - Dmitrii V Kalinin
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster Corrensstraße 48 Münster 48149 Germany
| |
Collapse
|
12
|
Mohammad Aminzadeh F, Zeynizadeh B. Immobilized nickel boride nanoparticles on magnetic functionalized multi-walled carbon nanotubes: a new nanocomposite for the efficient one-pot synthesis of 1,4-benzodiazepines. NANOSCALE ADVANCES 2023; 5:4499-4520. [PMID: 37638163 PMCID: PMC10448344 DOI: 10.1039/d3na00415e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/22/2023] [Indexed: 08/29/2023]
Abstract
In this study, a new magnetic nanocomposite consisting of Ni2B nanoparticles anchored on magnetic functionalized multi-walled carbon nanotubes (Fe3O4/f-MWCNT/Ni2B) was synthesized and characterized using various techniques such as FT-IR, XRD, FESEM, SEM-based EDX, SEM-based elemental mapping, HRTEM, DLS, SAED, XPS, BET, TGA, and VSM. The as-prepared magnetic nanocomposite was successfully employed for the preparation of bioactive 1,4-benzodiazepines from the three-component reaction of o-phenylenediamine (1), dimedone (2), and different aldehydes (3), in polyethylene glycol 400 (PEG-400) as a solvent at 60 °C. The obtained results demonstrated that the current one-pot three-component protocol offers many advantages, such as good-to-excellent yields within acceptable reaction times, favorable TONs and TOFs, eco-friendliness of the procedure, easy preparation of the nanocomposite, mild reaction conditions, a broad range of products, excellent catalytic activity, green solvent, and reusability of the nanocomposite.
Collapse
|
13
|
Cheremnykh KP, Bryzgalov AO, Baev DS, Borisov SA, Sotnikova YS, Savelyev VA, Tolstikova TG, Sagdullaev SS, Shults EE. Synthesis, Pharmacological Evaluation, and Molecular Modeling of Lappaconitine-1,5-Benzodiazepine Hybrids. Molecules 2023; 28:4234. [PMID: 37241973 PMCID: PMC10223824 DOI: 10.3390/molecules28104234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
Diterpenoid alkaloids, originating from the amination of natural tetracyclic diterpenes, have long interested scientists due to their medicinal uses and infamous toxicity which has limited the clinical application of the native compound. Alkaloid lappaconitine extracted from various Aconitum and Delphinium species has displayed extensive bioactivities and active ongoing research to reduce its adverse effects. A convenient route to construct hybrid molecules containing diterpenoid alkaloid lappaconitine and 3H-1,5-benzodiazepine fragments was proposed. The key stage involved the formation of 5'-alkynone-lappaconitines in situ by acyl Sonogashira coupling of 5'-ethynyllappaconitine, followed by cyclocondensation with o-phenylenediamine. New hybrid compounds showed low toxicity and outstanding analgesic activity in experimental pain models, which depended on the nature of the substituent in the benzodiazepine nucleus. An analogous dependence was also shown for the antiarrhythmic activity in the epinephrine arrhythmia test in vivo. Studies on the isolated atrium have shown that the mechanism of action of the new compounds is included the blockade of beta-adrenergic receptors and potassium channels. Molecular docking analysis was conducted to determine the binding potential of target molecules with the voltage-gated sodium channel NaV1.5. All obtained results provide a basis for future rational modifications of lappaconitine, reducing side effects, while retaining its therapeutic effects.
Collapse
Affiliation(s)
- Kirill P. Cheremnykh
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; (K.P.C.); (A.O.B.); (D.S.B.); (S.A.B.); (Y.S.S.); (V.A.S.); (T.G.T.)
| | - Arkadiy O. Bryzgalov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; (K.P.C.); (A.O.B.); (D.S.B.); (S.A.B.); (Y.S.S.); (V.A.S.); (T.G.T.)
| | - Dmitry S. Baev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; (K.P.C.); (A.O.B.); (D.S.B.); (S.A.B.); (Y.S.S.); (V.A.S.); (T.G.T.)
| | - Sergey A. Borisov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; (K.P.C.); (A.O.B.); (D.S.B.); (S.A.B.); (Y.S.S.); (V.A.S.); (T.G.T.)
| | - Yulia S. Sotnikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; (K.P.C.); (A.O.B.); (D.S.B.); (S.A.B.); (Y.S.S.); (V.A.S.); (T.G.T.)
| | - Victor A. Savelyev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; (K.P.C.); (A.O.B.); (D.S.B.); (S.A.B.); (Y.S.S.); (V.A.S.); (T.G.T.)
| | - Tatyana G. Tolstikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; (K.P.C.); (A.O.B.); (D.S.B.); (S.A.B.); (Y.S.S.); (V.A.S.); (T.G.T.)
| | - Shamansur S. Sagdullaev
- S.Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan;
| | - Elvira E. Shults
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; (K.P.C.); (A.O.B.); (D.S.B.); (S.A.B.); (Y.S.S.); (V.A.S.); (T.G.T.)
| |
Collapse
|
14
|
Teli S, Teli P, Soni S, Sahiba N, Agarwal S. Synthetic aspects of 1,4- and 1,5-benzodiazepines using o-phenylenediamine: a study of past quinquennial. RSC Adv 2023; 13:3694-3714. [PMID: 36756601 PMCID: PMC9890949 DOI: 10.1039/d2ra06045k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Benzodiazepines, seven-membered heterocyclic compounds having two nitrogen atoms at different positions, are ruling scaffolds in the area of pharmaceutical industry. They act as cardinal moieties in organic synthesis as well as in medicinal chemistry. Among the different benzodiazepines, 1,4- and 1,5-benzodiazepines play a far-reaching role in the field of biological activities such as anticonvulsion, anti-anxiety, sedation, and hypnotics. In the past few decades, researchers have conducted a lot of work on these moieties and developed broad, valuable, and significant approaches for their synthesis. In this review article, we recapitulate the systematic synthetic strategies of 1,4- and 1,5-benzodiazepines using o-phenylenediamine as a precursor over the past five years (2018-2022). This article will be helpful for scientists and researchers to examine and explore novel and efficient methods for the synthesis of these biologically active moieties.
Collapse
Affiliation(s)
- Sunita Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Pankaj Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Shivani Soni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Nusrat Sahiba
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Shikha Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| |
Collapse
|
15
|
Nasiriani T, Javanbakht S, Nazeri MT, Farhid H, Khodkari V, Shaabani A. Isocyanide-Based Multicomponent Reactions in Water: Advanced Green Tools for the Synthesis of Heterocyclic Compounds. Top Curr Chem (Cham) 2022; 380:50. [PMID: 36136281 DOI: 10.1007/s41061-022-00403-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/12/2022] [Indexed: 12/01/2022]
Abstract
Reaction rate acceleration using green methods is an intriguing area of research for chemists. In this regard, water as a "green solvent" plays a crucial role in the acceleration of some organic transformations and reveals exclusive selectivity and reactivity in comparison with conventional organic solvents. In particular, multicomponent reactions (MCRs) as sustainable tools lead to the rapid generation of small-molecule libraries in water and aqueous media due to the prominent role of the hydrophobic effect. MCRs, as diversity-oriented synthesis (DOS) methods, have great efficiency with simple operations, atom, pot, and step economy synthesis, and mechanistic beauty. Among diverse classes of MCRs, isocyanide-based multicomponent reactions (I-MCRs), as sustainable and versatile reactions, have gained considerable attention in the synthesis of diverse heterocycle rings, especially in drug design because of the peculiar nature of isocyanide as a particular active reactant. I-MCRs that are performed in water are mild, environmentally friendly, and easily controlled, and have a reduced number of workup, purification, and extraction steps, which fit well with the advantages of "green" chemistry. Performing these powerful organic transformations in water and aqueous media is accompanied by acceleration owing to negative activation volumes, which originate from connecting several reactants together to generate a single product. It should be noted that the combination of MCR strategy and aqueous phase reaction is of growing interest for the development of sustainable synthetic techniques in organic conversions. However, an exclusive account focusing on the recent progress in eco-friendly I-MCRs for the construction of heterocycles in water and aqueous media is particularly lacking. This review highlights the progress of various kinds of I-MCRs in water and aqueous media as benign methods for the efficient construction of vital heterocyclic scaffolds, with a critical discussion of the subject in the period 2000-2021. We hope that this themed collection will be of interest and beneficial for organic and pharmaceutical chemists and will inspire more reaction development in this fascinating field.
Collapse
Affiliation(s)
- Tahereh Nasiriani
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran
| | - Siamak Javanbakht
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran
| | - Mohammad Taghi Nazeri
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran
| | - Hassan Farhid
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran
| | - Vida Khodkari
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran
| | - Ahmad Shaabani
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran. .,Peoples' Friendship University of Russia, RUDN University, 6, Miklukho-Maklaya Street, Moscow, 117198, Russian Federation.
| |
Collapse
|
16
|
Tustumi F. Evaluating the Non-conventional Achalasia Treatment Modalities. Front Med (Lausanne) 2022; 9:941464. [PMID: 35814742 PMCID: PMC9263126 DOI: 10.3389/fmed.2022.941464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Achalasia is a primary esophageal dysmotility disorder. Despite the high volume of studies addressing the conventional treatments for achalasia, few are debated regarding the non-conventional treatments, such as cardiectomy, cardioplasty, endoluminal substances injection (ethanolamine oleate, polidocanol, botulinum toxin), stents, and certain drugs (beta-agonists, anticholinergic, nitrates, calcium channel blockers, and phosphodiesterase inhibitors). Methods A critical review was performed. Results Endoscopic, surgical, and pharmacological treatments were included. A qualitative synthesis was presented. Conclusion Non-conventional therapeutic options for treating achalasia encompass medical, endoscopic, and surgical procedures. Clinicians and patients need to know all the tools for the management of achalasia. However, several currently available studies of non-conventional treatments lack high-quality evidence, and future randomized trials are still needed.
Collapse
Affiliation(s)
- Francisco Tustumi
- Department of Gastroenterology, Universidade de São Paulo, São Paulo, Brazil
- Department of Surgery, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
17
|
Song M, Zhao W, Zhu Y, Liu W, Deng X, Huang Y. Design, Synthesis, and Evaluation of Anticonvulsant Activities of New Triazolopyrimidine Derivatives. Front Chem 2022; 10:925281. [PMID: 35815216 PMCID: PMC9260081 DOI: 10.3389/fchem.2022.925281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
Abstract
Epilepsy, a severe brain disease affecting a large population, is treated mainly by antiepileptic drugs (AEDs). However, toxicity, intolerance, and low efficiency of the available AEDs have prompted the continual attempts in the discovery of new AEDs. In this study, we discovered a skeleton of triazolopyrimidine for the development of new AEDs. The design, synthesis, in vivo anticonvulsant activity evaluation of triazolopyrimidines (3a–3i and 6a–6e), and pyrazolopyrimidines (4a–4i) are reported. We found that most triazolopyrimidines showed anticonvulsive activity in the maximal electroshock (MES) and pentetrazol (PTZ)-induced seizure models. On the contrary, pyrazolopyrimidines (4a–4i) showed weak or no protective effects. Among the tested derivatives, compound 6d, holding a median effective dose (ED50) of 15.8 and 14.1 mg/kg against MES and PTZ-induced seizures, respectively, was found to be the most potent one. Moreover, the protection index (PI) value of 6d was significantly higher than that of the available AEDs such as valproate, carbamazepine, and diazepam. The antiepileptic efficacy of compound 6d was also observed in the 3-mercaptopropionic acid and bicuculline-induced seizure models. Antagonistic effects of flumazenil and 3-MP for the anticonvulsive activity of 6d and also the radioligand-binding assay confirmed the involvement of GABA receptors, at least benzodiazepine (BZD) receptor, in the anticonvulsant activity of compound 6d. The docking study of compounds 4e and 6d with GABAA receptor confirmed and explained their affinity to the BZD receptors.
Collapse
Affiliation(s)
- Mingxia Song
- Medical College, Jinggangshan University, Jiʼan, China
- Jiʼan Key Laboratory of Personalized Drug Research of Neuropsychiatric Diseases, Jiʼan, China
| | - Wennan Zhao
- Medical College, Jinggangshan University, Jiʼan, China
| | - Yangnv Zhu
- Medical College, Jinggangshan University, Jiʼan, China
| | - Wenli Liu
- Medical College, Jinggangshan University, Jiʼan, China
| | - Xianqing Deng
- Medical College, Jinggangshan University, Jiʼan, China
- Jiʼan Key Laboratory of Personalized Drug Research of Neuropsychiatric Diseases, Jiʼan, China
- *Correspondence: Xianqing Deng, ; Yushan Huang,
| | - Yushan Huang
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Xianqing Deng, ; Yushan Huang,
| |
Collapse
|
18
|
Kusuma S, Patil KN, Srinivasappa PM, Chaudhari N, Soni A, Nabgan W, Jadhav AH. Ferrocene anchored activated carbon as a versatile catalyst for the synthesis of 1,5-benzodiazepines via one-pot environmentally benign conditions. RSC Adv 2022; 12:14740-14756. [PMID: 35702231 PMCID: PMC9112409 DOI: 10.1039/d2ra00202g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
1,5-Benzodiazepine is considered as one of the central moieties in the core unit of most drug molecules. Construction of such moieties with a new C–N bond under solvent-free and mild reaction conditions is challenging. Herein, we present a benign protocol for one pot synthesis of 1,5-benzodiazepine derivatives by using ferrocene (FC) supported activated carbon (AC) as a heterogeneous catalyst. The catalyst FC/AC was characterized by several analytical and spectroscopic techniques to reveal its physicochemical properties and for structural confirmation. The synthesized catalyst FC/AC was explored for its catalytic activity in the synthesis of 1,5-benzodiazepines through condensation of o-phenylenediamine (OPDA) and ketones (aromatic and aliphatic) under solvent-free conditions. The robust 10 wt% FC/AC catalyst demonstrated appreciable activity with 99% conversion of diamines and 91% selectivity towards the synthesis of the desired benzodiazepine derivatives under solvent-free conditions at 90 °C in 8 h. Additionally, several reaction parameters such as catalyst loading, reaction temperature, effect of reaction time and effect of different solvents on selectivity were also studied and discussed in-depth. To understand the scope of the reaction, several symmetrical and unsymmetrical ketones along with different substituted diamines were tested with the synthesized catalyst. All prepared reaction products were obtained in good to efficient yields and were isolated and identified as 1,5-benzodiazepines and no side products were observed. The obtained catalyst characterization data and the activity studies suggested that, the synergetic effect occurred due to the uniform dispersion of ferrocene over the AC surface with numerous acidic sites which triggered the reaction of diamine and ketone to form the corresponding benzodiazepine derivative and the same was illustrated in the plausible mechanism. Furthermore, the synthesized catalyst was tested for leaching and recyclability, and the results confirmed that catalyst can be used for up to six consecutive cycles without much loss in the catalytic activity and its morphology which makes the process sustainable and economical for scale-up production. The present method offered several advantages such as an ecofriendly method, excellent yields, sustainable catalytic transformation, easy work-up and isolation of products, and quick recovery of catalyst. 1,5-Benzodiazepine is considered as one of the central moieties in the core unit of most drug molecules.![]()
Collapse
Affiliation(s)
- Suman Kusuma
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus Bangalore 562112 India .,Aragen Life Science Pvt. Ltd. (GVK Bioscience Pvt. Ltd.) Plot No. 284-A(Part) Bengaluru-562106 India
| | - Komal N Patil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus Bangalore 562112 India
| | | | - Nitin Chaudhari
- Department of Chemistry, School of Technology, Pandit Deendayal Energy University Gandhinagar Gujarat 382007 India
| | - Ajay Soni
- Aragen Life Science Pvt. Ltd. (GVK Bioscience Pvt. Ltd.) Plot No. 284-A(Part) Bengaluru-562106 India
| | - Walid Nabgan
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia Johor 81310 Malaysia.,Departament d'Enginyeria Quimica, Universitat Rovira i Virgili Av Paisos Catalans 26 43007 Tarragona Spain
| | - Arvind H Jadhav
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus Bangalore 562112 India
| |
Collapse
|
19
|
Molaei Yielzoleh F, Nikoofar K. Metal-bio functionalized bismuthmagnetite [Fe 3-x Bi x O 4/SiO 2@l-ArgEt 3 +I -/Zn(ii)]: a novel bionanocomposite for the synthesis of 1,2,4,5-tetrahydro-2,4-dioxobenzo[ b][1,4]diazepine malononitriles and malonamides at room temperature and under sonication. RSC Adv 2022; 12:10219-10236. [PMID: 35425005 PMCID: PMC8972908 DOI: 10.1039/d2ra00212d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/13/2022] [Indexed: 12/24/2022] Open
Abstract
In this work, a new magnetized composite of bismuth (Fe3-x Bi x O4) was prepared and functionalized stepwise with silica, triethylargininium iodide ionic liquid, and Zn(ii) to prepare a multi-layered core-shell bio-nanostructure, [Fe3-x Bi x O4/SiO2@l-ArgEt3 +I-/Zn(ii)]. The modified bismuth magnetic amino acid-containing nanocomposite was characterized using several techniques including Fourier-transform infrared (FT-IR), X-ray fluorescence (XRF), vibrating sample magnetometer (VSM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDAX), thermogravimetric/differential scanning calorimetric (TGA/DSC) analysis, X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), and inductively coupled plasma-optical emission spectrometry (ICP-OES). The magnetized bionanocomposite exhibited high catalytic activity for the synthesis of 1,2,4,5-tetrahydro-2,4-dioxobenzo[b][1,4]diazepine malononitriles via five-component reactions between 1,2-phenylenediamines, Meldrum's acid, malononitrile, aldehydes, and isocyanides at room temperature in ethanol. The efficacy of this protocol was also examined to obtain malonamide derivatives via pseudo six-component reactions of 1,4-phenylenediamine, Meldrum's acid, malononitrile, aldehydes, and isocyanides. When the above-mentioned MCRs were repeated under the same conditions with the application of sonication, a notable decrease in the reaction time was observed. The recovery and reusability of the metal-bio functionalized bismuthmagnetite were examined successfully in 3 runs. Furthermore, the characteristics of the recovered Fe3-x Bi x O4/SiO2@l-ArgEt3 +I-/Zn(ii) were investigated though FESEM and EDAX analysis.
Collapse
Affiliation(s)
| | - Kobra Nikoofar
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University Tehran Iran
| |
Collapse
|
20
|
Eyüp Başaran, Haşimi N, Çakmak R, Çınar E. Synthesis, Structural Characterization, and Biological Evaluation of Some Hydrazone Compounds as Potential Antioxidant Agents. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022010058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Samigullina AI, Fayzullin RR, Voronina JK, Murtazina AM, Mamedov VA, Gubaidullin AT. Polymorphism in a benzo[b][1,4]diazepine derivative: Crystal structure, phase behavior and selective influence of solvents. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.03.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Mishra R, Sharma AK, Kumar R, Baweja V, Mothsra P, Singh MK, Yadav SB. Solid support based synthesis of 1,5-benzodiazepines: A mini review. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2021.2024855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ruby Mishra
- Department of Chemistry, Deshbandhu College, University of Delhi, India
| | - Atul Kumar Sharma
- Department of Chemistry, Deshbandhu College, University of Delhi, India
| | - Rajesh Kumar
- Department of Chemistry, R.D.S. College, B.R.A. Bihar University, India
| | - Varsha Baweja
- Department of Zoology, Deshbandhu College, University of Delhi, India
| | - Poonam Mothsra
- Department of Chemistry, Bhagini Nivedita College, University of Delhi, India
| | - Manoj K. Singh
- Rajkiya Engineering College, Banda, Atarra, Uttar Pradesh, India
| | | |
Collapse
|
23
|
Wang M, Yin L, Wen T, Zhang X, Gao J, Wang L. Green Synthesis of 1,5-Benzodiazepines with Multifunctional Groups. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202106028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Chkirate K, Akachar J, Hni B, Hökelek T, Anouar EH, Talbaoui A, Mague JT, Sebbar NK, Ibrahimi A, Essassi EM. Synthesis, spectroscopic characterization, crystal structure, DFT, ESI-MS studies, molecular docking and in vitro antibacterial activity of 1,5-benzodiazepin-2-one derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
26
|
Pal R, Singh K, Khan SA, Chawla P, Kumar B, Akhtar MJ. Reactive metabolites of the anticonvulsant drugs and approaches to minimize the adverse drug reaction. Eur J Med Chem 2021; 226:113890. [PMID: 34628237 DOI: 10.1016/j.ejmech.2021.113890] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 12/22/2022]
Abstract
Several generations of antiepileptic drugs (AEDs) are available in the market for the treatment of seizures, but these are amalgamated with acute to chronic side effects. The most common side effects of AEDs are dose-related, but some are idiosyncratic adverse drug reactions (ADRs) that transpire due to the formation of reactive metabolite (RM) after the bioactivation process. Because of the adverse reactions patients usually discontinue the medication in between the treatment. The AEDs such as valproic acid, lamotrigine, phenytoin etc., can be categorized under such types because they form the RM which may prevail with life-threatening adverse effects or immune-mediated reactions. Hepatotoxicity, teratogenicity, cutaneous hypersensitivity, dizziness, addiction, serum sickness reaction, renal calculi, metabolic acidosis are associated with the metabolites of drugs such as arene oxide, N-desmethyldiazepam, 2-(1-hydroxyethyl)-2-methylsuccinimide, 2-(sulphamoy1acetyl)-phenol, E-2-en-VPA and 4-en-VPA and carbamazepine-10,11-epoxide, etc. The major toxicities are associated with the moieties that are either capable of forming RM or the functional groups may itself be too reactive prior to the metabolism. These functional groups or fragment structures are typically known as structural alerts or toxicophores. Therefore, minimizing the bioactivation potential of lead structures in the early phases of drug discovery by a modification to low-risk drug molecules is a priority for the pharmaceutical companies. Additionally, excellent potency and pharmacokinetic (PK) behaviour help in ensuring that appropriate (low dose) candidate drugs progress into the development phase. The current review discusses about RMs in the anticonvulsant drugs along with their mechanism vis-a-vis research efforts that have been taken to minimize the toxic effects of AEDs therapy.
Collapse
Affiliation(s)
- Rohit Pal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Karanvir Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, PO 620, PC 130, Azaiba, Bousher, Muscat, Oman
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India.
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India; Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, PO 620, PC 130, Azaiba, Bousher, Muscat, Oman.
| |
Collapse
|
27
|
Loftsson T. 1,4-Benzodiazepines: Chemical stability and cyclodextrin solubilization. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Van Den Hauwe R, Elsocht M, Ballet S, Hollanders C. Efficient Synthesis of Polysubstituted 1,5-Benzodiazepinone Dipeptide Mimetics via an Ugi-4CR-Ullmann Condensation Sequence. Synlett 2021. [DOI: 10.1055/a-1545-2860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractAn efficient three-step synthesis towards 3-amino-1,4-benzodiazepin-2-one derivatives is presented. The versatile Ugi-4-component reaction (Ugi-4CR) and Boc deprotection is followed by a ligand-free Ullmann condensation. This protocol allows the rapid construction of a diverse array of substituted 1,5-benzodiazepinones. Since Ugi-based products are typically limited by their ‘inert’ C-terminal amides, the use of a convertible (‘cleavable’) isocyanide was envisaged and resulted in building blocks that can be made SPPS compatible. To demonstrate the potential of this novel synthetic route, the design and preparation of novel phenylurea-1,5-benzodiazepin-4(5H)-one dipeptide mimetics with potential CCK2-antagonist properties is reported.
Collapse
|
29
|
Farooq S, Ngaini Z. Chalcone derived benzoheterodiazepines for medicinal applications:
A Two‐pot
and
one‐pot
synthetic approach. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Saba Farooq
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak Kota Samarahan Malaysia
| | - Zainab Ngaini
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak Kota Samarahan Malaysia
| |
Collapse
|
30
|
Fedorova OV, Titova YA, Ovchinnikova IG. Metal oxides in multicomponent synthesis of heterocycles. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-02997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Mirza‐Aghayan M, Saeedi M, Boukherroub R. Carbon–nitrogen bond formation using modified graphene oxide derivatives decorated with copper complexes and nanoparticles. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Mandana Saeedi
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI) Tehran Iran
| | - Rabah Boukherroub
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR8520 Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts‐de‐France Lille France
| |
Collapse
|
32
|
Ahmadi T, Mohammadi Ziarani G, Masoumian Hoseini SM, Badiei A, Ranjbar MM. Synthesis, characterization, and molecular docking of benzodiazepines in the presence of SrFe12O19 magnetic nanocatalyst. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021; 18:2047-2056. [DOI: 10.1007/s13738-021-02163-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/02/2021] [Indexed: 11/28/2022]
|
33
|
Benzodiazepines: Drugs with Chemical Skeletons Suitable for the Preparation of Metallacycles with Potential Pharmacological Activity. Molecules 2021; 26:molecules26092796. [PMID: 34068533 PMCID: PMC8125983 DOI: 10.3390/molecules26092796] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/02/2022] Open
Abstract
The synthesis of organometallic compounds with potential pharmacological activity has attracted the attention of many research groups, aiming to take advantage of aspects that the presence of the metal-carbon bond can bring to the design of new pharmaceutical drugs. In this context, we have gathered studies reported in the literature in which psychoactive benzodiazepine drugs were used as ligands in the preparation of organometallic and metal complexes and provide details on some of their biological effects. We also highlight that most commonly known benzodiazepine-based drugs display molecular features that allow the preparation of metallacycles via C-H activation. These organometallic compounds merit further attention regarding their potential biological effects, not only in terms of psychoactive drugs but also in the search for drug replacements, for example, for cancer treatments.
Collapse
|
34
|
Farhid H, Khodkari V, Nazeri MT, Javanbakht S, Shaabani A. Multicomponent reactions as a potent tool for the synthesis of benzodiazepines. Org Biomol Chem 2021; 19:3318-3358. [PMID: 33899847 DOI: 10.1039/d0ob02600j] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Benzodiazepines (BZDs), a diverse class of benzofused seven-membered N-heterocycles, display essential pharmacological properties and play vital roles in some biochemical processes. They have mainly been prescribed as potential therapeutic agents, which interestingly represent various biological activities such as anticancer, anxiolytic, antipsychotic, anticonvulsant, antituberculosis, muscle relaxant, and antimicrobial activities. The extensive biological activities of BZDs in various fields have encouraged medicinal chemists to discover and design novel BZD-based scaffolds as potential therapeutic candidates with the favorite biological activity through an efficient protocol. Although certainly valuable and important, conventional synthetic routes to these bicyclic benzene compounds contain methodologies often requiring multistep procedures, which suffer from waste materials generation and lack of sustainability. By contrast, multicomponent reactions (MCRs) have recently advanced as a green synthetic strategy for synthesizing BZDs with the desired scope. In this regard, MCRs, especially Ugi and Ugi-type reactions, efficiently and conveniently supply various complex synthons, which can easily be converted to the BZDs via suitable post-transformations. Also, MCRs, especially Mannich-type reactions, provide speedy and economic approaches for the one-pot and one-step synthesis of BZDs. As a result, various functionalized-BZDs have been achieved by developing mild, efficient, and high-yielding MCR protocols. This review covers all aspects of the synthesis of BZDs with a particular focus on the MCRs as well as the mechanism chemistry of synthetic protocols. The present manuscript opens a new avenue for organic, medicinal, and industrial chemists to design safe, environmentally benign, and economical methods for the synthesis of new and known BZDs.
Collapse
Affiliation(s)
- Hassan Farhid
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Vida Khodkari
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Mohammad Taghi Nazeri
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran. and Peoples' Friendship University of Russia (RUDN University), 6, Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| |
Collapse
|
35
|
Synthesis and biological evaluation of benzodiazepines containing a pentafluorosulfanyl group. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Mazur MO, Zhelavskyi OS, Zviagin EM, Shishkina SV, Musatov VI, Kolosov MA, Shvets EH, Andryushchenko AY, Chebanov VA. Effective microwave-assisted approach to 1,2,3-triazolobenzodiazepinones via tandem Ugi reaction/catalyst-free intramolecular azide-alkyne cycloaddition. Beilstein J Org Chem 2021; 17:678-687. [PMID: 33777243 PMCID: PMC7961865 DOI: 10.3762/bjoc.17.57] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/22/2021] [Indexed: 11/23/2022] Open
Abstract
A novel catalyst-free synthetic approach to 1,2,3-triazolobenzodiazepinones has been developed and optimized. The Ugi reaction of 2-azidobenzaldehyde, various amines, isocyanides, and acids followed by microwave-assisted intramolecular azide-alkyne cycloaddition (IAAC) gave a series of target heterocyclic compounds in moderate to excellent yields. Surprisingly, the normally required ruthenium-based catalysts were found to not affect the IAAC, only making isolation of the target compounds harder while the microwave-assisted catalyst-free conditions were effective for both terminal and non-terminal alkynes.
Collapse
Affiliation(s)
- Maryna O Mazur
- Division of Chemistry of Functional Materials, State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine
- Department of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Oleksii S Zhelavskyi
- Division of Chemistry of Functional Materials, State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine
- Department of Chemistry, University of Michigan – Ann Arbor, 930 North University Ave, Ann Arbor, MI 48109, USA
| | - Eugene M Zviagin
- Division of Chemistry of Functional Materials, State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine
- Department of Chemistry, University of Nebraska – Lincoln, 639 N 12th St, Lincoln, NE 68588, USA
| | - Svitlana V Shishkina
- Division of Chemistry of Functional Materials, State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine
| | - Vladimir I Musatov
- Division of Chemistry of Functional Materials, State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine
| | - Maksim A Kolosov
- Department of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Elena H Shvets
- Department of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| | - Anna Yu Andryushchenko
- Division of Chemistry of Functional Materials, State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine
| | - Valentyn A Chebanov
- Division of Chemistry of Functional Materials, State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61072, Ukraine
- Department of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
| |
Collapse
|
37
|
Design, synthesis, and preliminary pharmacological evaluation of novel thiazolidinone derivatives as potential benzodiazepine agonists. Mol Divers 2021; 26:769-780. [PMID: 33484399 DOI: 10.1007/s11030-021-10182-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022]
Abstract
Thiazolidinones are well-known heterocycles that demonstrate promising biological effects such as anticonvulsant activity. Hybridization of these chemicals with scaffold, which has necessary pharmacophores for binding to the benzodiazepine receptors, can prompt a novel structure possessing extensive anticonvulsant effects. In this study, novel derivatives of thiazolidinone as new benzodiazepine agonists were designed, synthesized, and biologically evaluated. Compound 5h, 4-chloro-2-(2-fluorophenoxy)-N-(4-oxo-2-(p-tolyl)thiazolidin-3-yl)benzamide, exhibited considerable anticonvulsant activity, proper sedative-hypnotic effect, no memory impairment, and no muscle relaxant effect. The pharmacological effects of the designed compounds were antagonized by flumazenil, which confirmed the benzodiazepine receptors' involvement in their biological effects. Based on in silico calculations of ADME properties of our novel compounds, they could be active oral agents potentially. In this study, we designed novel structures by the hybridization of thiazolidinone moiety with scaffold which has necessary pharmacophores for binding to the benzodiazepine receptors. The results are very promising for developing new lead compounds as benzodiazepine agonists possess anticonvulsant effects.
Collapse
|
38
|
Khan I, Ibrar A, Zaib S. Alkynoates as Versatile and Powerful Chemical Tools for the Rapid Assembly of Diverse Heterocycles under Transition-Metal Catalysis: Recent Developments and Challenges. Top Curr Chem (Cham) 2021; 379:3. [PMID: 33398642 DOI: 10.1007/s41061-020-00316-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Heterocycles, heteroaromatics and spirocyclic entities are ubiquitous components of a wide plethora of synthetic drugs, biologically active natural products, marketed pharmaceuticals and agrochemical targets. Recognizing their high proportion in drugs and rich pharmacological potential, these invaluable structural motifs have garnered significant interest, thus enabling the development of efficient catalytic methodologies providing access to architecturally complex and diverse molecules with high atom-economy and low cost. These chemical processes not only allow the formation of diverse heterocycles but also utilize a range of flexible and easily accessible building units in a single operation to discover diversity-oriented synthetic approaches. Alkynoates are significantly important, diverse and powerful building blocks in organic chemistry due to their unique and inherent properties such as the electronic bias on carbon-carbon triple bonds posed by electron-withdrawing groups or the metallic coordination site provided by carbonyl groups. The present review highlights the comprehensive picture of the utility of alkynoates (2007-2019) for the synthesis of various heterocycles (> 50 types) using transition-metal catalysts (Ru, Rh, Pd, Ir, Ag, Au, Pt, Cu, Mn, Fe) in various forms. The valuable function of versatile alkynoates (bearing multifunctional groups) as simple and useful starting materials is explored, thus cyclizing with an array of coupling partners to deliver a broad range of oxygen-, nitrogen-, sulfur-containing heterocycles alongside fused-, and spiro-heterocyclic compounds. In addition, these examples will also focus the scope and reaction limitations, as well as mechanistic investigations into the synthesis of these heterocycles. The biological significance will also be discussed, citing relevant examples of drug molecules highlighting each class of heterocycles. This review summarizes the recent developments in the synthetic methods for the synthesis of various heterocycles using alkynoates as readily available starting materials under transition-metal catalysis.
Collapse
Affiliation(s)
- Imtiaz Khan
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Natural Sciences, The University of Haripur, Haripur, KPK-22620, Pakistan
| | - Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
39
|
Mirhosseini‐Eshkevari B, Zamani F, Ghasemzadeh MA. Environmentally Benign One‐pot Synthesis of Benzo‐Fused Seven‐Membered Heterocyclic Compounds Using UiO‐66 Metal‐Organic Framework as Efficient and Reusable Catalyst. ChemistrySelect 2020. [DOI: 10.1002/slct.202004107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | - Farzad Zamani
- The Institute of Scientific and Industrial Research (ISIR) Osaka University Ibaraki-shi, Osaka 567-0047 Japan
| | | |
Collapse
|
40
|
Velasco‐Rubio Á, Varela JA, Saá C. Recent Advances in Transition‐Metal‐Catalyzed Oxidative Annulations to Benzazepines and Benzodiazepines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000808] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Álvaro Velasco‐Rubio
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Jesús A. Varela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Carlos Saá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
41
|
Abstract
This review is focused on palladium-catalyzed reactions as efficient strategies aimed at the synthesis of different classes of benzodiazepines. Several reaction typologies are reported including hydroamination, amination, C–H arylation, N-arylation, and the Buchwald–Hartwig reaction, depending on the different substrates identified as halogenated starting materials (activated substrates) or unactivated unsaturated systems, which then exploit Pd(0)- or Pd(II)-catalytic species. In particular, the use of the domino reactions, as intra- or intermolecular processes, are reported as an efficient and eco-compatible tool to obtain differently functionalized benzodiazepines. Different domino reaction typologies are the carboamination, aminoarylation, aminoacethoxylation, aminohalogenation, and aminoazidation.
Collapse
|