1
|
Vergoten G, Bailly C. Interaction of the renin inhibitor aliskiren with the SARS-CoV-2 main protease: a molecular docking study. J Biomol Struct Dyn 2022; 40:12714-12722. [PMID: 34514971 DOI: 10.1080/07391102.2021.1976673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The renin protein is an upstream enzymatic regulator of the renin-aldosterone-angiotensin system (RAAS) essential for the maintenance of blood pressure. The angiotensin-converting enzyme-2 (ACE2) is a major component of the RAAS and a cell surface receptor exploited by the SARS-CoV-2 virus to enter host cells. A recent molecular modeling study has revealed that the direct renin peptide inhibitor remikiren can bind to the catalytic site of SARS-CoV-2 main protease (Mpro). By analogy, we postulated that the non-peptidic drug aliskiren, a more potent renin inhibitor than remikiren and a drug routinely used to treat hypertension, may also be able to interact with Mpro. An in silico comparison of the binding of the two compounds to Mpro indicates that aliskiren (ΔE = -75.9 kcal/mol) can form stable complexes with the main viral protease, binding to the active site, as remikiren (ΔE = -83.2 kcal/mol). The comparison with a panoply of 30 references compounds (mainly antiviral drugs) indicated that remikiren is a potent Mpro binder comparable to drugs like glecaprevir and pibrentasvir (ΔE = -96.5 kcal/mol). The energy of interaction (ΔE) of aliskiren with Mpro is about 10% lower than with remikiren, comparable to that calculated with drugs like velpatasvir and sofosbuvir. A model is proposed to define the drug binding site, with the best binders (including remikiren) penetrating deeply into the site, whereas the less potent binders (including aliskiren) interact more superficially with the protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gérard Vergoten
- Inserm, INFINITE - U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, Lille, France
| | | |
Collapse
|
2
|
Navish AA, Uthayakumar R. An exploration on the topologies of SARS-CoV-2/human protein-protein interaction network. J Biomol Struct Dyn 2022:1-13. [PMID: 35947116 DOI: 10.1080/07391102.2022.2108496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Network biology is an important finding that uncovers the significant elements in viral infection control. Since viruses use the proteins on their surfaces to attach and enter into the host cell, the establishment of virus-host protein interactions is a potent regulator of the global organization of the viral life cycle after virus entry into host cells. In this instance, a topological study on the SARS-CoV-2/Human Protein-Protein Interaction Network (PPIN) evacuates much information about the protein-protein interactions. By making some interruptions to the interaction between proteins and hosts, we can quickly reduce the spread of the disease and get an insight into the target protein for drug development. This paper mainly focused on the graphical and structural complexity of the SARS-CoV-2/Human PPIN. For this purpose, the various primary (distance, radius, diameter, etc…) and advanced levels of graph measures (density, modularity, clustering coefficient, etc…) as well as a few fractal (box dimension, multifractal analysis) and entropy measures have been used. In addition, several graph descriptions and distribution graphs of PPIN offered to gain a thorough understanding of the SARS-CoV-2/Human PPIN. Conclusively, based on our work, we have discovered that PPIN is moderately complex and identified that hiring Nsp8 as a target node will positively affect the PPIN and has pointed out that mathematically found target proteins are matched with already suggested target proteins in the previous survey.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- A A Navish
- Department of Mathematics, The Gandhigram Rural Institute - Deemed to be University, Dindigul, TamilNadu, India
| | - R Uthayakumar
- Department of Mathematics, The Gandhigram Rural Institute - Deemed to be University, Dindigul, TamilNadu, India
| |
Collapse
|
3
|
Ding Z, Chen T, Lan J, Wong G. Application of animal models to compare and contrast the virulence of current and future potential SARS-CoV-2 variants. BIOSAFETY AND HEALTH 2022; 4:154-160. [PMID: 35528630 PMCID: PMC9069976 DOI: 10.1016/j.bsheal.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023] Open
Abstract
Since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified during late 2019, the sustained spread of this pathogen within the human population has caused worldwide disruption with staggering infection rates and death tolls. Due to the accumulation of mutations in SARS-CoV-2, the virus has evolved into many variants, five of which have been listed as variants of concern VOCs by the World Health Organization (WHO). Multiple animal models of SARS-CoV-2 have been developed to evaluate vaccines and drugs and to assess the pathogenicity, transmissibility and antiviral measures of these VOCs. Here, we review the cutting-edge research based on mouse, hamster, ferret and non-human primate models for evaluating SARS-CoV-2 with a focus on the Omicron variant, and highlight the importance of updating vaccines in a timely manner in order to mitigate the negative effects of SARS-CoV-2 infections in the human population.
Collapse
Affiliation(s)
- Zhe Ding
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Tong Chen
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jiaming Lan
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
4
|
Feng Y, Cheng X, Wu S, Mani Saravanan K, Liu W. Hybrid drug-screening strategy identifies potential SARS-CoV-2 cell-entry inhibitors targeting human transmembrane serine protease. Struct Chem 2022; 33:1503-1515. [PMID: 35571866 PMCID: PMC9091140 DOI: 10.1007/s11224-022-01960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022]
Abstract
The spread of coronavirus infectious disease (COVID-19) is associated with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has risked public health more than any other infectious disease. Researchers around the globe use multiple approaches to identify an effective approved drug (drug repurposing) that treats viral infections. Most of the drug repurposing approaches target spike protein or main protease. Here we use transmembrane serine protease 2 (TMPRSS2) as a target that can prevent the virus entry into the cell by interacting with the surface receptors. By hypothesizing that the TMPRSS2 binders may help prevent the virus entry into the cell, we performed a systematic drug screening over the current approved drug database. Furthermore, we screened the Enamine REAL fragments dataset against the TMPRSS2 and presented nine potential drug-like compounds that give us clues about which kinds of groups the pocket prefers to bind, aiding future structure-based drug design for COVID-19. Also, we employ molecular dynamics simulations, binding free energy calculations, and well-tempered metadynamics to validate the obtained candidate drug and fragment list. Our results suggested three potential FDA-approved drugs against human TMPRSS2 as a target. These findings may pave the way for more drugs to be exposed to TMPRSS2, and testing the efficacy of these drugs with biochemical experiments will help improve COVID-19 treatment. Supplementary information The online version contains supplementary material available at 10.1007/s11224-022-01960-w.
Collapse
Affiliation(s)
- Yufei Feng
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048 Guangdong Province China
| | - Xiaoning Cheng
- Central People’s Hospital of Zhanjiang, Zhanjiang, 524045 Guangdong Province China
| | - Shuilong Wu
- Central People’s Hospital of Zhanjiang, Zhanjiang, 524045 Guangdong Province China
| | - Konda Mani Saravanan
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu 600073 India
| | - Wenxin Liu
- Central People’s Hospital of Zhanjiang, Zhanjiang, 524045 Guangdong Province China
| |
Collapse
|
5
|
Sepehri B, Ghavami R, Mahmoudi F, Irani M, Ahmadi R, Moradi D. Identifying SARS-CoV-2 main protease inhibitors by applying the computer screening of a large database of molecules. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:341-356. [PMID: 35502579 DOI: 10.1080/1062936x.2022.2050424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) at the end of 2019 affected global health. Its infection agent was called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Wearing a mask, maintaining social distance, and vaccination are effective ways to prevent infection of SARS-CoV-2, but none of them help infected people. Targeting the enzymes of SARS-CoV-2 is an effective way to stop the replication of the virus in infected people and treat COVID-19 patients. SARS-CoV-2 main protease is a therapeutic target which the inhibition of its enzymatic activity prevents from the replication of SARS-CoV-2. A large database of molecules has been searched to identify new inhibitors for SARS-CoV-2 main protease enzyme. At the first step, ligand screening based on similarity search was used to select similar compounds to known SARS-CoV-2 main protease inhibitors. Then molecules with better predicted pharmacokinetic properties were selected. Structure-based virtual screening based on the application of molecular docking and molecular dynamics simulation methods was used to select more effective inhibitors among selected molecules in previous step. Finally two compounds were considered as SARS-CoV-2 main protease inhibitors.
Collapse
Affiliation(s)
- B Sepehri
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - R Ghavami
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - F Mahmoudi
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - M Irani
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - R Ahmadi
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - D Moradi
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
6
|
Ngwe Tun MM, Toume K, Luvai E, Nwe KM, Mizukami S, Hirayama K, Komatsu K, Morita K. The discovery of herbal drugs and natural compounds as inhibitors of SARS-CoV-2 infection in vitro. J Nat Med 2022; 76:402-409. [PMID: 35006524 PMCID: PMC8743439 DOI: 10.1007/s11418-021-01596-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/14/2021] [Indexed: 01/08/2023]
Abstract
The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in 2019 has led to a global health crisis. Mutations of the SARS-CoV-2 genome have impeded the development of effective therapeutics and vaccines against SARS-CoV-2. Natural products are important for discovering therapeutics to treat the 2019 coronavirus disease (COVID-19). In the present study, we investigated the antiviral activity of herbal drug extracts from Polygala Root, Areca, and Quercus Bark and natural compounds derived from herbal drug such as baicalin and glabridin, with IC50 values of 9.5 µg/ml, 1.2 µg/ml, 5.4 µg/ml, 8.8 µM, and 2.5 µM, respectively, against SARS CoV-2 infection in vitro. Certain herbal drug extracts and natural compounds were found to inhibit viral RNA levels and infectious titers of SARS-CoV-2 in a dose-dependent manner. Furthermore, viral protein analyses showed that herbal drug extracts and natural compounds effectively inhibited SARS-CoV-2 in the various entry treatments. Our study revealed that three herbal drugs are good candidates for further in vivo and clinical studies.
Collapse
Affiliation(s)
- Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki City, 852-8523, Japan.
| | - Kazufumi Toume
- Section of Pharmacognosy, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Elizabeth Luvai
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki City, 852-8523, Japan
| | - Khine Mya Nwe
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki City, 852-8523, Japan
| | - Shusaku Mizukami
- Department of Immune Regulation, Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Kenji Hirayama
- Department of Immune Regulation, Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Katsuko Komatsu
- Section of Pharmacognosy, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki City, 852-8523, Japan.
| |
Collapse
|
7
|
An outlook on potential protein targets of COVID-19 as a druggable site. Mol Biol Rep 2022; 49:10729-10748. [PMID: 35790657 PMCID: PMC9256362 DOI: 10.1007/s11033-022-07724-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/17/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND SARS-CoV-2 which causes COVID-19 disease has started a pandemic episode all over the world infecting millions of people and has created medical and economic crisis. From December 2019, cases originated from Wuhan city and started spreading at an alarming rate and has claimed millions of lives till now. Scientific studies suggested that this virus showed genomic similarity of about 90% with SARS-CoV and is found to be more contagious as compared to SARS-CoV and MERS-CoV. Since the pandemic, virus has undergone constant mutation and few strains have raised public concern like Delta and Omicron variants of SARS-CoV-2. OBJECTIVE This review focuses on the structural features of SARS-CoV-2 proteins and host proteins as well as their mechanism of action. We have also elucidated the repurposed drugs that have shown potency to inhibit these protein targets in combating COVID-19. Moreover, the article discusses the vaccines approved so far and those under clinical trials for their efficacy against COVID-19. CONCLUSION Using cryo-electron microscopy or X-ray diffraction, hundreds of crystallographic data of SARS-CoV-2 proteins have been published including structural and non-structural proteins. These proteins have a significant role at different aspects in the viral machinery and presented themselves as potential target for drug designing and therapeutic interventions. Also, there are few host cell proteins which helps in SARS-CoV-2 entry and proteolytic cleavage required for viral infection.
Collapse
|
8
|
Srour AM, Panda SS, Mostafa A, Fayad W, El-Manawaty MA, A. F. Soliman A, Moatasim Y, El Taweel A, Abdelhameed MF, Bekheit MS, Ali MA, Girgis AS. Synthesis of aspirin-curcumin mimic conjugates of potential antitumor and anti-SARS-CoV-2 properties. Bioorg Chem 2021; 117:105466. [PMID: 34775204 PMCID: PMC8566089 DOI: 10.1016/j.bioorg.2021.105466] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/31/2021] [Indexed: 12/16/2022]
Abstract
Series of piperidone-salicylate conjugates were synthesized through the reaction of 3E,5E-bis(arylidene)-4-piperidones with the appropriate acid chloride of acetylsalicylate in the presence of triethylamine. All the synthesized conjugates reveal antiproliferative properties against A431 (squamous skin) cancer cell line with potency higher than that of 5-fluorouracil. Many of the synthesized agents also exhibit promising antiproliferative properties against HCT116 (colon) cancer cell line, of which 5o and 5c are the most effective with 12.9, 9.8 folds potency compared with Sunitinib. Promising activity is also shown against MCF7 (breast) cancer cell line with 1.19, 1.12 folds relative to 5-fluorouracil. PI-flow cytometry of compound 5c supports the arrest of cell cycle at G1-phase. However, compound 5o and Sunitinib arrest the cell cycle at S-phase. The synthesized conjugates can be considered as multi-targeted tyrosine kinase inhibitors due to the promising properties against VEGFR-2 and EGFR in MCF7 and HCT116. CDOCKER studies support the EGFR inhibitory properties. Compounds 5p and 5i possessing thienylidene heterocycle are anti-SARS-CoV-2 with high therapeutic indices. Many of the synthesized agents show enhanced COX-1/2 properties than aspirin with better selectivity index towards COX-2 relative to COX-1. The possible applicability of the potent candidates discovered as antitumor and anti-SARS-CoV-2 is supported by the safe profile against normal (non-cancer, RPE1 and VERO-E6) cells.
Collapse
Affiliation(s)
- Aladdin M. Srour
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Siva S. Panda
- Department of Chemistry & Physics, Augusta University, Augusta, GA 30912, US
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Walid Fayad
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - May A. El-Manawaty
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ahmed A. F. Soliman
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Ahmed El Taweel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | | | - Mohamed S. Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt,Corresponding author
| |
Collapse
|
9
|
Seliem IA, Girgis AS, Moatasim Y, Kandeil A, Mostafa A, Ali MA, Bekheit MS, Panda SS. New Pyrazine Conjugates: Synthesis, Computational Studies, and Antiviral Properties against SARS-CoV-2. ChemMedChem 2021; 16:3418-3427. [PMID: 34352160 PMCID: PMC8426689 DOI: 10.1002/cmdc.202100476] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/30/2021] [Indexed: 12/23/2022]
Abstract
Currently, limited therapeutic options are available for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We have developed a set of pyrazine-based small molecules. A series of pyrazine conjugates was synthesized by microwave-assisted click chemistry and benzotriazole chemistry. All the synthesized conjugates were screened against the SAR-CoV-2 virus and their cytotoxicity was determined. Computational studies were carried out to validate the biological data. Some of the pyrazine-triazole conjugates (5 d-g) and (S)-N-(1-(benzo[d]thiazol-2-yl)-2-phenylethyl)pyrazine-2-carboxamide 12 i show significant potency against SARS-CoV-2 among the synthesized conjugates. The selectivity index (SI) of potent conjugates indicates significant efficacy compared to the reference drug (Favipiravir).
Collapse
Affiliation(s)
- Israa A. Seliem
- Department of Chemistry and PhysicsAugusta UniversityAugustaGA30912USA
- Department of Pharmaceutical Organic ChemistryFaculty of PharmacyZagazig UniversityZagazig44519Egypt
| | - Adel S. Girgis
- Department of Pesticide ChemistryNational Research CentreDokkiGiza12622Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza VirusesNational Research CentreDokkiGiza12622Egypt
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza VirusesNational Research CentreDokkiGiza12622Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza VirusesNational Research CentreDokkiGiza12622Egypt
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza VirusesNational Research CentreDokkiGiza12622Egypt
| | - Mohamed S. Bekheit
- Department of Pesticide ChemistryNational Research CentreDokkiGiza12622Egypt
| | - Siva S. Panda
- Department of Chemistry and PhysicsAugusta UniversityAugustaGA30912USA
| |
Collapse
|
10
|
Seliem IA, Panda SS, Girgis AS, Moatasim Y, Kandeil A, Mostafa A, Ali MA, Nossier ES, Rasslan F, Srour AM, Sakhuja R, Ibrahim TS, Abdel-Samii ZKM, Al-Mahmoudy AMM. New quinoline-triazole conjugates: Synthesis, and antiviral properties against SARS-CoV-2. Bioorg Chem 2021; 114:105117. [PMID: 34214752 PMCID: PMC8219945 DOI: 10.1016/j.bioorg.2021.105117] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/08/2021] [Accepted: 06/19/2021] [Indexed: 01/25/2023]
Abstract
At present therapeutic options for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are very limited. We designed and synthesized three sets of small molecules using quinoline scaffolds. A series of quinoline conjugates (10a-l, 11a-c, and 12a-e) by incorporating 1,2,3-triazole were synthesized via a modified microwave-assisted click chemistry technique. Among the synthesized conjugates, 4-((1-(2-chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)-6-fluoro-2-(trifluoromethyl)quinoline (10g) and 6-fluoro-4-(2-(1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl)ethoxy)-2-(trifluoromethyl)quinoline (12c) show high potency against SARS-CoV-2. The selectivity index (SI) of compounds 10g and 12c also indicates the significant efficacy compared to the reference drugs.
Collapse
Affiliation(s)
- Israa A Seliem
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Siva S Panda
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA.
| | - Adel S Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Fatma Rasslan
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al Azhar University, Cairo, Egypt
| | - Aladdin M Srour
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, India
| | - Tarek S Ibrahim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Zakaria K M Abdel-Samii
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Amany M M Al-Mahmoudy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
11
|
Dos Santos Nascimento IJ, da Silva-Júnior EF, de Aquino TM. Molecular Modeling Targeting Transmembrane Serine Protease 2 (TMPRSS2) as an Alternative Drug Target Against Coronaviruses. Curr Drug Targets 2021; 23:240-259. [PMID: 34370633 DOI: 10.2174/1389450122666210809090909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Since November 2019, the new Coronavirus disease (COVID-19) caused by the etiological agent SARS-CoV-2 has been responsible for several cases worldwide, becoming pandemic in March 2020. Pharmaceutical industries and academics have joined their efforts to discover new therapies to control the disease, since there are no specific drugs to combat this emerging virus. Thus, several targets have been explored, among them the transmembrane protease serine 2 (TMPRSS2) has gained greater interest in the scientific community. In this context, this review will describe the importance of TMPRSS2 protease and the significant advances in virtual screening focused on discovering new inhibitors. In this review, it was observed that molecular modeling methods could be powerful tools in identifying new molecules against SARS-CoV-2. Thus, this review could be used to guide researchers worldwide to explore the biological and clinical potential of compounds that could be promising drug candidates against SARS-CoV-2, acting by inhibition of TMPRSS2 protein.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Laboratory of Synthesis and Research in Medicinal Chemistry (LSRMEC), Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Laboratory of Synthesis and Research in Medicinal Chemistry (LSRMEC), Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| | - Thiago Mendonça de Aquino
- Laboratory of Synthesis and Research in Medicinal Chemistry (LSRMEC), Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| |
Collapse
|
12
|
Allam AE, Amen Y, Ashour A, Assaf HK, Hassan HA, Abdel-Rahman IM, Sayed AM, Shimizu K. In silico study of natural compounds from sesame against COVID-19 by targeting M pro, PL pro and RdRp. RSC Adv 2021; 11:22398-22408. [PMID: 35480825 PMCID: PMC9034212 DOI: 10.1039/d1ra03937g] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 01/18/2023] Open
Abstract
Natural products and traditional medicine products with known safety profiles are a promising source for the discovery of new drug leads. Natural products as sesame were reported to exhibit potential to protect from COVID-19 disease. In our study, the total methanolic extract of Sesamum indicum L. seeds (sesame) were led to isolation of seven known compounds, five lignan; sesamin 1, sesamolin 2, pinoresinol 3, hydroxymatairesinol 6, spicatolignan 7, together with two simple phenolic compounds; ferulic acid 4 and vanillic acid 5. All isolated compounds were evaluated in silico against three important SARS-CoV-2 protein targets; main protease (Mpro), papain-like protease (PLpro) and RNA-dependent RNA polymerase (RdRp) which possessed crucial role in replication and proliferation of the virus inside the human cell. The results revealed that compound 6 has the high affinity against the three main proteins, specially towards the SARS-CoV-2 Mpro that exceeded the currently used SARS-CoV-2 Mpro inhibitor darunavir as well as, exhibiting a similar binding energy at SARS CoV-2 PLpro when compared with the co-crystallized ligand. This activity continued to include the RdRp as it displayed a comparable docking score with remdesivir. Inferiorly, compounds 1 and 2 showed also similar triple inhibitory effect against the three main proteins while compound 7 exhibited a dual inhibitory effect against SARS CoV-2 PLPro and RdRp. Further molecular dynamic simulation experiments were performed to validate these docking experiments and to calculate their binding free energies (ΔGs). Compounds 1, 2, 3, 6, and 7 showed comparable binding stability inside the active site of each enzyme with ΔG values ranged from -4.9 to -8.8 kcal mol-1. All the compounds were investigated for their ADME and drug likeness properties, which showed acceptable ADME properties and obeying Lipinski's rule of five parameters. It can be concluded that the isolated compounds from sesame lignans could be an alternative source for the development of new natural leads against COVID-19.
Collapse
Affiliation(s)
- Ahmed E Allam
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University Assiut 71524 Egypt
| | - Yhiya Amen
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Ahmed Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Hamdy K Assaf
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University Assiut 71524 Egypt
| | - Heba Ali Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone New Minia City 61111 Egypt
| | - Islam M Abdel-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University New-Minia 61111 Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University Beni-Suef 62513 Egypt
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Fukuoka Japan 819-0395
| |
Collapse
|
13
|
Alhadrami HA, Sayed AM, Hassan HM, Youssif KA, Gaber Y, Moatasim Y, Kutkat O, Mostafa A, Ali MA, Rateb ME, Abdelmohsen UR, Gamaleldin NM. Cnicin as an Anti-SARS-CoV-2: An Integrated In Silico and In Vitro Approach for the Rapid Identification of Potential COVID-19 Therapeutics. Antibiotics (Basel) 2021; 10:542. [PMID: 34066998 PMCID: PMC8150330 DOI: 10.3390/antibiotics10050542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Since the emergence of the SARS-CoV-2 pandemic in 2019, it has remained a significant global threat, especially with the newly evolved variants. Despite the presence of different COVID-19 vaccines, the discovery of proper antiviral therapeutics is an urgent necessity. Nature is considered as a historical trove for drug discovery, especially in global crises. During our efforts to discover potential anti-SARS CoV-2 natural therapeutics, screening our in-house natural products and plant crude extracts library led to the identification of C. benedictus extract as a promising candidate. To find out the main chemical constituents responsible for the extract's antiviral activity, we utilized recently reported SARS CoV-2 structural information in comprehensive in silico investigations (e.g., ensemble docking and physics-based molecular modeling). As a result, we constructed protein-protein and protein-compound interaction networks that suggest cnicin as the most promising anti-SARS CoV-2 hit that might inhibit viral multi-targets. The subsequent in vitro validation confirmed that cnicin could impede the viral replication of SARS CoV-2 in a dose-dependent manner, with an IC50 value of 1.18 µg/mL. Furthermore, drug-like property calculations strongly recommended cnicin for further in vivo and clinical experiments. The present investigation highlighted natural products as crucial and readily available sources for developing antiviral therapeutics. Additionally, it revealed the key contributions of bioinformatics and computer-aided modeling tools in accelerating the discovery rate of potential therapeutics, particularly in emergency times like the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Hani A. Alhadrami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. BOX 80402, Jeddah 21589, Saudi Arabia;
- Molecular Diagnostic Lab, King Abdulaziz University Hospital, King Abdulaziz University, P.O. BOX 80402, Jeddah 21589, Saudi Arabia
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt; (A.M.S.); (H.M.H.)
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt; (A.M.S.); (H.M.H.)
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62513, Egypt
| | - Khayrya A. Youssif
- Department of Pharmacognosy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11865, Egypt;
| | - Yasser Gaber
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt;
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Karak 61710, Jordan
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Centre, Giza 12622, Egypt; (Y.M.); (O.K.); (A.M.); (M.A.A.)
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Centre, Giza 12622, Egypt; (Y.M.); (O.K.); (A.M.); (M.A.A.)
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Centre, Giza 12622, Egypt; (Y.M.); (O.K.); (A.M.); (M.A.A.)
| | - Mohamed Ahmed Ali
- Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Centre, Giza 12622, Egypt; (Y.M.); (O.K.); (A.M.); (M.A.A.)
| | - Mostafa E. Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK;
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Noha M. Gamaleldin
- Department of Microbiology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo 11837, Egypt
| |
Collapse
|
14
|
Al-Karmalawy AA, Dahab MA, Metwaly AM, Elhady SS, Elkaeed EB, Eissa IH, Darwish KM. Molecular Docking and Dynamics Simulation Revealed the Potential Inhibitory Activity of ACEIs Against SARS-CoV-2 Targeting the hACE2 Receptor. Front Chem 2021; 9:661230. [PMID: 34017819 PMCID: PMC8129187 DOI: 10.3389/fchem.2021.661230] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022] Open
Abstract
The rapid and global spread of a new human coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has produced an immediate urgency to discover promising targets for the treatment of COVID-19. Here, we consider drug repurposing as an attractive approach that can facilitate the drug discovery process by repurposing existing pharmaceuticals to treat illnesses other than their primary indications. We review current information concerning the global health issue of COVID-19 including promising approved drugs, e.g., human angiotensin-converting enzyme inhibitors (hACEIs). Besides, we describe computational approaches to be used in drug repurposing and highlight examples of in-silico studies of drug development efforts against SARS-CoV-2. Alacepril and lisinopril were found to interact with human angiotensin-converting enzyme 2 (hACE2), the host entranceway for SARS-CoV-2 spike protein, through exhibiting the most acceptable rmsd_refine values and the best binding affinity through forming a strong hydrogen bond with Asn90, which is assumed to be essential for the activity, as well as significant extra interactions with other receptor-binding residues. Furthermore, molecular dynamics (MD) simulations followed by calculation of the binding free energy were also carried out for the most promising two ligand-pocket complexes from docking studies (alacepril and lisinopril) to clarify some information on their thermodynamic and dynamic properties and confirm the docking results as well. These results we obtained probably provided an excellent lead candidate for the development of therapeutic drugs against COVID-19. Eventually, animal experiments and accurate clinical trials are needed to confirm the potential preventive and treatment effect of these compounds.
Collapse
Affiliation(s)
- Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, Damietta, Egypt
| | - Mohammed A. Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed M. Metwaly
- Pharmacognosy Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
15
|
Dhaundiyal A, Kumari P, Jawalekar SS, Chauhan G, Kalra S, Navik U. Is highly expressed ACE 2 in pregnant women "a curse" in times of COVID-19 pandemic? Life Sci 2020; 264:118676. [PMID: 33129880 PMCID: PMC7598563 DOI: 10.1016/j.lfs.2020.118676] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/14/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE 2) is a membrane-bound enzyme that cleaves angiotensin II (Ang II) into angiotensin (1-7). It also serves as an important binding site for SARS-CoV-2, thereby, facilitating viral entry into target host cells. ACE 2 is abundantly present in the intestine, kidney, heart, lungs, and fetal tissues. Fetal ACE 2 is involved in myocardium growth, lungs and brain development. ACE 2 is highly expressed in pregnant women to compensate preeclampsia by modulating angiotensin (1-7) which binds to the Mas receptor, having vasodilator action and maintain fluid homeostasis. There are reports available on Zika, H1N1 and SARS-CoV where these viruses have shown to produce fetal defects but very little is known about SARS-CoV-2 involvement in pregnancy, but it might have the potential to interact with fetal ACE 2 and enhance COVID-19 transmission to the fetus, leading to fetal morbidity and mortality. This review sheds light on a path of SARS-CoV-2 transmission risk in pregnancy and its possible link with fetal ACE 2.
Collapse
Affiliation(s)
- Ankit Dhaundiyal
- Senior Data Analyst at Private Organization, Gurugram, Haryana 122001,M.S. (Pharma) in Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160 062, India
| | - Puja Kumari
- Principal Research Analyst at Private Organization Jaipur, Rajasthan 302021, M.S. (Pharma) in Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160 062, India
| | - Snehal Sainath Jawalekar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab-160 062, India
| | - Gaurav Chauhan
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849, Monterrey, NL, Mexico
| | - Sourav Kalra
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punj, ab-160 062, India.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Punj, ab-151001, India.
| |
Collapse
|