1
|
He Z, Uto T, Tanigawa S, Sakao K, Kumamoto T, Xie K, Pan X, Wu S, Yang Y, Komatsu M, Hou D. Fisetin is a selective adenosine triphosphate-competitive inhibitor for mitogen-activated protein kinase kinase 4 to inhibit lipopolysaccharide-stimulated inflammation. Biofactors 2025; 51:e2108. [PMID: 39087587 PMCID: PMC11680972 DOI: 10.1002/biof.2108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
The mitogen-activated protein kinase kinase 4 (MKK4), a member of the MAP kinase kinase family, directly phosphorylates and activates the c-Jun NH2-terminal kinases (JNK), in response to proinflammatory cytokines and cellular stresses. Regulation of the MKK4 activity is considered to be a novel approach for the prevention and treatment of inflammation. The aim of this study was to identify whether fisetin, a potential anti-inflammatory compound, targets MKK4-JNK cascade to inhibit lipopolysaccharide (LPS)-stimulated inflammatory response. RAW264 macrophage pretreated with fisetin following LPS stimulation was used as a cell model to investigate the transactivation and expression of related-inflammatory genes by transient transfection assay, electrophoretic mobility shift assay (EMSA), or enzyme-linked immunosorbent assay (ELISA), and cellular signaling as well as binding of related-signal proteins by Western blot, pull-down assay and kinase assay, and molecular modeling. The transactivation and expression of cyclooxygenase-2 (COX-2) gene as well as prostaglandin E2 (PGE2) secretion induced by LPS were inhibited by fisetin in a dose-dependent manner. Signaling transduction analysis demonstrated that fisetin selectively inhibited MKK4-JNK1/2 signaling to suppress the phosphorylation of transcription factor AP-1 without affecting the NF-κB and Jak2-Stat3 signaling as well as the phosphorylation of Src, Syk, and TAK1. Furthermore, in vitro and ex vivo pull-down assay using cell lysate or purified protein demonstrated that fisetin could bind directly to MKK4. Molecular modeling using the Molecular Operating Environment™ software indicated that fisetin docked into the ATP-binding pocket of MKK4 with a binding energy of -71.75 kcal/mol and formed a 1.70 Å hydrogen bound with Asp247 residue of MKK4. The IC50 of fisetin against MKK4 was estimated as 2.899 μM in the kinase assay, and the ATP-competitive effect was confirmed by ATP titration. Taken together, our data revealed that fisetin is a potent selective ATP-competitive MKK4 inhibitor to suppress MKK4-JNK1/2-AP-1 cascade for inhibiting LPS-induced inflammation.
Collapse
Affiliation(s)
- Ziyu He
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
| | - Takuhiro Uto
- Department of Pharmacy, Faculty of Pharmaceutical SciencesNagasaki International UniversitySaseboJapan
| | - Shunsuke Tanigawa
- Department of Kidney Development, Institute of Molecular Embryology and GeneticsKumamoto UniversityKumamotoJapan
| | - Kozue Sakao
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
- Graduate School of Agriculture, Forestry and FisheriesKagoshima UniversityKagoshimaJapan
| | - Takuma Kumamoto
- Department of Brain & NeurosciencesTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Kun Xie
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and TechnologyHunan Agricultural UniversityChangshaPeople's Republic of China
| | - Xuchi Pan
- Graduate School of Agriculture, Forestry and FisheriesKagoshima UniversityKagoshimaJapan
| | - Shusong Wu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and TechnologyHunan Agricultural UniversityChangshaPeople's Republic of China
| | - Yili Yang
- China Regional Research CentreInternational Centre for Genetic Engineering and BiotechnologyTaizhouPeople's Republic of China
| | - Masaharu Komatsu
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
- Graduate School of Agriculture, Forestry and FisheriesKagoshima UniversityKagoshimaJapan
| | - De‐Xing Hou
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
- Graduate School of Agriculture, Forestry and FisheriesKagoshima UniversityKagoshimaJapan
| |
Collapse
|
2
|
Ren Q, Qu L, Yuan Y, Wang F. Natural Modulators of Key Signaling Pathways in Skin Inflammageing. Clin Cosmet Investig Dermatol 2024; 17:2967-2988. [PMID: 39712942 PMCID: PMC11663375 DOI: 10.2147/ccid.s502252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Low-grade chronic inflammation without obvious infection is defined as "inflammageing" and a key driver of skin ageing. Although the importance of modulating inflammageing for treating skin diseases and restoring cutaneous homeostasis is increasingly being recognized. However, the mechanisms underlying skin inflammageing, particularly those associated with natural treatments, have not been systematically elucidated. This review explores the signaling pathways associated with skin inflammageing, as well as the natural plants and compounds that directly or indirectly target these pathways. Nine signaling pathways and 60 plants/constituents related to skin anti-inflammageing are discussed, exploring plant mechanisms to mitigate skin inflammageing. Common natural plants with anti-inflammageing activity are detailed by active ingredients, mechanisms, therapeutic potential, and quantitative effects on skin inflammageing modulation. This review strengthens our understanding of these botanical ingredients as natural interventions against skin inflammageing and provides directions for future research.
Collapse
Affiliation(s)
- Qianqian Ren
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, People’s Republic of China
| | - Liping Qu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, People’s Republic of China
| | - Yonglei Yuan
- Botanee Research Institute, Shanghai Jiyan Bio-Pharmaceutical Development Co., Ltd., Shanghai, 201702, People’s Republic of China
| | - Feifei Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, People’s Republic of China
| |
Collapse
|
3
|
Elasbali AM, Al-Soud WA, Elfaki EM, Alanazi HH, Alharbi B, Alharethi SH, Anwer K, Mohammad T, Hassan MI. Identification of novel c-Kit inhibitors from natural sources using virtual screening and molecular dynamics simulations. J Biomol Struct Dyn 2024; 42:5982-5994. [PMID: 37403288 DOI: 10.1080/07391102.2023.2231547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/24/2023] [Indexed: 07/06/2023]
Abstract
The Mast/Stem cell growth factor receptor Kit (c-Kit), a Proto-oncogene c-Kit, is a tyrosine-protein kinase involved in cell differentiation, proliferation, migration, and survival. Its role in developing certain cancers, particularly gastrointestinal stromal tumors (GISTs) and acute myeloid leukemia (AML), makes it an attractive therapeutic target. Several small molecule inhibitors targeting c-Kit have been developed and approved for clinical use. Recent studies have focused on identifying and optimizing natural compounds as c-Kit inhibitors employing virtual screening. Still, drug resistance, off-target side effects, and variability in patient response remain significant challenges. From this perspective, phytochemicals could be an important resource for discovering novel c-Kit inhibitors with less toxicity, improved efficacy, and high specificity. This study aimed to uncover possible c-Kit inhibitors by utilizing a structure-based virtual screening of active phytoconstituents from Indian medicinal plants. Through the screening stages, two promising candidates, Anilinonaphthalene and Licoflavonol, were chosen based on their drug-like features and ability to bind to c-Kit. These chosen candidates were subjected to all-atom molecular dynamics (MD) simulations to evaluate their stability and interaction with c-Kit. The selected compounds Anilinonaphthalene from Daucus carota and Licoflavonol from Glycyrrhiza glabra showed their potential to act as selective binding partners of c-Kit. Our results suggest that the identified phytoconstituents could serve as a starting point to develop novel c-Kit inhibitors for developing new and effective therapies against multiple cancers, including GISTs and AML. The use of virtual screening and MD simulations provides a rational approach to discovering potential drug candidates from natural sources.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakakah, Saudi Arabia
- Health Sciences Research Unit, Jouf University, Sakakah, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Science, College of Applied Sciences-Sakaka, Jouf University, Sakakah, Saudi Arabia
| | - Elyasa Mustafa Elfaki
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakakah, Saudi Arabia
| | - Hamad H Alanazi
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakakah, Saudi Arabia
| | - Bandar Alharbi
- Department of Clinical Laboratory, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, Saudi Arabia
| | - Khalid Anwer
- Department of Botany, C. M. Science College, L. N. Mithila University, Darbhanga, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
4
|
Jézéquel YA, Svěrák F, Ramundo A, Orel V, Martínek M, Klán P. Structure-Photoreactivity Relationship Study of Substituted 3-Hydroxyflavones and 3-Hydroxyflavothiones for Improving Carbon Monoxide Photorelease. J Org Chem 2024; 89:4888-4903. [PMID: 38517741 PMCID: PMC11002828 DOI: 10.1021/acs.joc.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024]
Abstract
Carbon monoxide (CO) is notorious for its toxic effects but is also recognized as a gasotransmitter with considerable therapeutic potential. Due to the inherent challenges in its delivery, the utilization of organic CO photoreleasing molecules (photoCORMs) represents an interesting alternative to CO administration characterized by high spatial and temporal precision of release. This paper focused on the design, synthesis, and photophysical and photochemical studies of 20 3-hydroxyflavone (flavonol) and 3-hydroxyflavothione derivatives as photoCORMs. Newly synthesized compounds bearing various electron-donating and electron-withdrawing groups show bathochromically shifted absorption maxima and considerably enhanced CO release yields compared to the parent unsubstituted flavonol, exceeding 0.8 equiv of released CO in derivatives exhibiting excited states with a charge-transfer character. Until now, such outcomes have been limited to flavonol derivatives possessing a π-extended aromatic system. In addition, thione analogs of flavonols, 3-hydroxyflavothiones, show substantial bathochromic shifts of their absorption maxima and enhanced photosensitivity but provide lower yields of CO formation. Our study elucidates in detail the mechanism of CO photorelease from flavonols and flavothiones, utilizing steady-state and time-resolved spectroscopies and photoproduct analyses, with a particular emphasis on unraveling the structure-photoreactivity relationship and understanding competing side processes.
Collapse
Affiliation(s)
- Yann A. Jézéquel
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| | - Filip Svěrák
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Andrea Ramundo
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| | - Vojtěch Orel
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Marek Martínek
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| | - Petr Klán
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| |
Collapse
|
5
|
Boateng ST, Roy T, Agbo ME, Mahmud MA, Banang-Mbeumi S, Chamcheu RCN, Yadav RK, Bramwell M, Pham LK, Dang DD, Jackson KE, Nagalo BM, Hill RA, Efimova T, Fotie J, Chamcheu JC. Multifaceted approach toward mapping out the anticancer properties of small molecules via in vitro evaluation on melanoma and nonmelanoma skin cancer cells, and in silico target fishing. Chem Biol Drug Des 2024; 103:e14418. [PMID: 38230791 DOI: 10.1111/cbdd.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 01/18/2024]
Abstract
Melanoma and nonmelanoma skin cancers are among the most prevalent and most lethal forms of skin cancers. To identify new lead compounds with potential anticancer properties for further optimization, in vitro assays combined with in-silico target fishing and docking have been used to identify and further map out the antiproliferative and potential mode of action of molecules from a small library of compounds previously prepared in our laboratory. From screening these compounds in vitro against A375, SK-MEL-28, A431, and SCC-12 skin cancer cell lines, 35 displayed antiproliferative activities at the micromolar level, with the majority being primarily potent against the A431 and SCC-12 squamous carcinoma cell lines. The most active compounds 11 (A431: IC50 = 5.0 μM, SCC-12: IC50 = 2.9 μM, SKMEL-28: IC50 = 4.9 μM, A375: IC50 = 6.7 μM) and 13 (A431: IC50 = 5.0 μM, SCC-12: IC50 = 3.3 μM, SKMEL-28: IC50 = 13.8 μM, A375: IC50 = 17.1 μM), significantly and dose-dependently induced apoptosis of SCC-12 and SK-MEL-28 cells, as evidenced by the suppression of Bcl-2 and upregulation of Bax, cleaved caspase-3, caspase-9, and PARP protein expression levels. Both agents significantly reduced scratch wound healing, colony formation, and expression levels of deregulated cancer molecular targets including RSK/Akt/ERK1/2 and S6K1. In silico target prediction and docking studies using the SwissTargetPrediction web-based tool suggested that CDK8, CLK4, nuclear receptor ROR, tyrosine protein-kinase Fyn/LCK, ROCK1/2, and PARP, all of which are dysregulated in skin cancers, might be prospective targets for the two most active compounds. Further validation of these targets by western blot analyses, revealed that ROCK/Fyn and its associated Hedgehog (Hh) pathways were downregulated or modulated by the two lead compounds. In aggregate, these results provide a strong framework for further validation of the observed activities and the development of a more comprehensive structure-activity relationship through the preparation and biological evaluation of analogs.
Collapse
Affiliation(s)
- Samuel T Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Mercy E Agbo
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, Louisiana, USA
| | - Md Ashiq Mahmud
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Roxane-Cherille N Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Rajesh K Yadav
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Marion Bramwell
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Long K Pham
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Danny D Dang
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Keith E Jackson
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Science (UAMS), Little Rock, Arkansas, USA
| | - Ronald A Hill
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
| | - Tatiana Efimova
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, Louisiana, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana - Monroe, Monroe, Louisiana, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
6
|
Boateng ST, Roy T, Torrey K, Owunna U, Banang-Mbeumi S, Basnet D, Niedda E, Alexander AD, Hage DE, Atchimnaidu S, Nagalo BM, Aryal D, Findley A, Seeram NP, Efimova T, Sechi M, Hill RA, Ma H, Chamcheu JC, Murru S. Synthesis, in silico modelling, and in vitro biological evaluation of substituted pyrazole derivatives as potential anti-skin cancer, anti-tyrosinase, and antioxidant agents. J Enzyme Inhib Med Chem 2023; 38:2205042. [PMID: 37184042 PMCID: PMC10187093 DOI: 10.1080/14756366.2023.2205042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/16/2023] [Indexed: 05/16/2023] Open
Abstract
Twenty-five azole compounds (P1-P25) were synthesised using regioselective base-metal catalysed and microwave-assisted approaches, fully characterised by high-resolution mass spectrometry (HRMS), nuclear magnetic resonance (NMR), and infrared spectra (IR) analyses, and evaluated for anticancer, anti-tyrosinase, and anti-oxidant activities in silico and in vitro. P25 exhibited potent anticancer activity against cells of four skin cancer (SC) lines, with selectivity for melanoma (A375, SK-Mel-28) or non-melanoma (A431, SCC-12) SC cells over non-cancerous HaCaT-keratinocytes. Clonogenic, scratch-wound, and immunoblotting assay data were consistent with anti-proliferative results, expression profiling therewith implicating intrinsic and extrinsic apoptosis activation. In a mushroom tyrosinase inhibition assay, P14 was most potent among the compounds (half-maximal inhibitory concentration where 50% of cells are dead, IC50 15.9 μM), with activity greater than arbutin and kojic acid. Also, P6 exhibited noteworthy free radical-scavenging activity. Furthermore, in silico docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) simulations predicted prominent-phenotypic actives to engage diverse cancer/hyperpigmentation-related targets with relatively high affinities. Altogether, promising early-stage hits were identified - some with multiple activities - warranting further hit-to-lead optimisation chemistry with further biological evaluations, towards identifying new skin-cancer and skin-pigmentation renormalising agents.
Collapse
Affiliation(s)
- Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Kara Torrey
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Uchechi Owunna
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA, USA
| | - David Basnet
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Eleonora Niedda
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Alexis D. Alexander
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Denzel El Hage
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Siriki Atchimnaidu
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | - Dinesh Aryal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
- Department of Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Monroe, LA, USA
| | - Ann Findley
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Navindra P. Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Tatiana Efimova
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Mario Sechi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Ronald A. Hill
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Siva Murru
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| |
Collapse
|
7
|
Chepeleva LV, Demidov OO, Snizhko AD, Tarasenko DO, Chumak AY, Kolomoitsev OO, Kotliar VM, Gladkov ES, Kyrychenko A, Roshal AD. Binding interactions of hydrophobically-modified flavonols with β-glucosidase: fluorescence spectroscopy and molecular modelling study. RSC Adv 2023; 13:34107-34121. [PMID: 38020002 PMCID: PMC10661682 DOI: 10.1039/d3ra06276g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Natural flavonoids are capable of inhibiting glucosidase activity, so they can be used for treating diabetes mellitus and hypertension. However, molecular-level details of their interactions with glucosidase enzymes remain poorly understood. This paper describes the synthesis and spectral characterization of a series of fluorescent flavonols and their interaction with the β-glucosidase enzyme. To tune flavonol-enzyme interaction modes and affinity, we introduced different polar halogen-containing groups or bulky aromatic/alkyl substituents in the peripheral 2-aryl ring of a flavonol moiety. Using fluorescence spectroscopy methods in combination with molecular docking and molecular dynamics simulations, we examined the binding affinity and identified probe binding patterns, which are critical for steric blockage of the key catalytic residues of the enzyme. Using a fluorescent assay, we demonstrated that the binding of flavonol 2e to β-glucosidase decreased its enzymatic activity up to 3.5 times. In addition, our molecular docking and all-atom molecular dynamics simulations suggest that the probe binding is driven by hydrophobic interactions with aromatic Trp and Tyr residues within the catalytic glycone binding pockets of β-glucosidase. Our study provides a new insight into structure-property relations for flavonol-protein interactions, which govern their enzyme binding, and outlines a framework for a rational design of new flavonol-based potent inhibitors for β-glucosidases.
Collapse
Affiliation(s)
- Liudmyla V Chepeleva
- Institute of Chemistry, V.N. Karazin Kharkiv National University 4 Svobody Sq. Kharkiv 61022 Ukraine
| | - Oleksii O Demidov
- Institute of Chemistry, V.N. Karazin Kharkiv National University 4 Svobody Sq. Kharkiv 61022 Ukraine
| | - Arsenii D Snizhko
- Institute of Chemistry, V.N. Karazin Kharkiv National University 4 Svobody Sq. Kharkiv 61022 Ukraine
| | - Dmytro O Tarasenko
- Institute of Chemistry, V.N. Karazin Kharkiv National University 4 Svobody Sq. Kharkiv 61022 Ukraine
| | - Andrii Y Chumak
- Institute of Chemistry, V.N. Karazin Kharkiv National University 4 Svobody Sq. Kharkiv 61022 Ukraine
| | - Oleksii O Kolomoitsev
- Institute of Chemistry, V.N. Karazin Kharkiv National University 4 Svobody Sq. Kharkiv 61022 Ukraine
| | - Volodymyr M Kotliar
- Institute of Chemistry, V.N. Karazin Kharkiv National University 4 Svobody Sq. Kharkiv 61022 Ukraine
| | - Eugene S Gladkov
- Institute of Chemistry, V.N. Karazin Kharkiv National University 4 Svobody Sq. Kharkiv 61022 Ukraine
- State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine 60 Nauky Ave. Kharkiv 61072 Ukraine
| | - Alexander Kyrychenko
- Institute of Chemistry, V.N. Karazin Kharkiv National University 4 Svobody Sq. Kharkiv 61022 Ukraine
- State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine 60 Nauky Ave. Kharkiv 61072 Ukraine
| | - Alexander D Roshal
- Institute of Chemistry, V.N. Karazin Kharkiv National University 4 Svobody Sq. Kharkiv 61022 Ukraine
| |
Collapse
|
8
|
Kubina R, Krzykawski K, Sokal A, Madej M, Dziedzic A, Kadela-Tomanek M. New Propargyloxy Derivatives of Galangin, Kaempferol and Fisetin-Synthesis, Spectroscopic Analysis and In Vitro Anticancer Activity on Head and Neck Cancer Cells. Cells 2023; 12:2288. [PMID: 37759511 PMCID: PMC10528839 DOI: 10.3390/cells12182288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Head and neck cancer (HNC) therapy is limited; therefore, new solutions are increasingly being sought among flavonoids, which exhibit numerous biological properties, including potential anticancer activity. However, because they are mostly insoluble in water, are unstable and have low bioavailability, they are subjected to chemical modification to obtain new derivatives with better properties. This study aimed to synthesize and analyze new propargyloxy derivatives of galangin, kaempferol and fisetin, and to evaluate their anticancer activity against selected HNC cell lines. The obtained derivatives were assessed by spectroscopic analysis; next, their anticancer activity was evaluated using a flow cytometer and real-time cell analysis. The results showed that only the fisetin derivative was suitable for further analysis, due to the lack of crystal formation of the compound. The fisetin derivative statistically significantly increases the number of cells in the G2/M phase (p < 0.05) and increases cyclin B1 levels. A statistically significant increase in the number of apoptotic cells after being exposed to the tested compound was also observed (p < 0.05). The data indicate that the obtained fisetin derivative exhibits anticancer activity by affecting the cell cycle and increasing apoptosis in selected HNC lines, which suggests its potential use as a new medicinal agent in the future.
Collapse
Affiliation(s)
- Robert Kubina
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medyków Str., 40-752 Katowice, Poland; (K.K.); (M.M.)
| | - Kamil Krzykawski
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medyków Str., 40-752 Katowice, Poland; (K.K.); (M.M.)
| | - Arkadiusz Sokal
- Students Scientific Group of Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland;
| | - Marcel Madej
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medyków Str., 40-752 Katowice, Poland; (K.K.); (M.M.)
| | - Arkadiusz Dziedzic
- Department of Conservative Dentistry with Endodontics, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Monika Kadela-Tomanek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland;
| |
Collapse
|
9
|
Ipe RS, Kumar S, Benny F, Jayan J, Manoharan A, Sudevan ST, George G, Gahtori P, Kim H, Mathew B. A Concise Review of the Recent Structural Explorations of Chromones as MAO-B Inhibitors: Update from 2017 to 2023. Pharmaceuticals (Basel) 2023; 16:1310. [PMID: 37765118 PMCID: PMC10534638 DOI: 10.3390/ph16091310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Monoamine oxidases (MAOs) are a family of flavin adenine dinucleotide-dependent enzymes that catalyze the oxidative deamination of a wide range of endogenous and exogenous amines. Multiple neurological conditions, including Parkinson's disease (PD) and Alzheimer's disease (AD), are closely correlated with altered biogenic amine concentrations in the brain caused by MAO. Toxic byproducts of this oxidative breakdown, including hydrogen peroxide, reactive oxygen species, and ammonia, can cause oxidative damage and mitochondrial dysfunction in brain cells. Certain MAO-B blockers have been recognized as effective treatment options for managing neurological conditions, including AD and PD. There is still a pressing need to find potent therapeutic molecules to fight these disorders. However, the focus of neurodegeneration studies has recently increased, and certain compounds are now in clinical trials. Chromones are promising structures for developing therapeutic compounds, especially in neuronal degeneration. This review focuses on the MAO-B inhibitory potential of several synthesized chromones and their structural activity relationships. Concerning the discovery of a novel class of effective chromone-based selective MAO-B-inhibiting agents, this review offers readers a better understanding of the most recent additions to the literature.
Collapse
Affiliation(s)
- Reshma Susan Ipe
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India; (R.S.I.); (S.K.); (F.B.); (J.J.); (A.M.); (S.T.S.); (G.G.)
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India; (R.S.I.); (S.K.); (F.B.); (J.J.); (A.M.); (S.T.S.); (G.G.)
| | - Feba Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India; (R.S.I.); (S.K.); (F.B.); (J.J.); (A.M.); (S.T.S.); (G.G.)
| | - Jayalakshmi Jayan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India; (R.S.I.); (S.K.); (F.B.); (J.J.); (A.M.); (S.T.S.); (G.G.)
| | - Amritha Manoharan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India; (R.S.I.); (S.K.); (F.B.); (J.J.); (A.M.); (S.T.S.); (G.G.)
| | - Sachitra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India; (R.S.I.); (S.K.); (F.B.); (J.J.); (A.M.); (S.T.S.); (G.G.)
| | - Ginson George
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India; (R.S.I.); (S.K.); (F.B.); (J.J.); (A.M.); (S.T.S.); (G.G.)
| | - Prashant Gahtori
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India;
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India; (R.S.I.); (S.K.); (F.B.); (J.J.); (A.M.); (S.T.S.); (G.G.)
| |
Collapse
|
10
|
Roy T, Boateng ST, Uddin MB, Banang-Mbeumi S, Yadav RK, Bock CR, Folahan JT, Siwe-Noundou X, Walker AL, King JA, Buerger C, Huang S, Chamcheu JC. The PI3K-Akt-mTOR and Associated Signaling Pathways as Molecular Drivers of Immune-Mediated Inflammatory Skin Diseases: Update on Therapeutic Strategy Using Natural and Synthetic Compounds. Cells 2023; 12:1671. [PMID: 37371141 PMCID: PMC10297376 DOI: 10.3390/cells12121671] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The dysregulated phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway has been implicated in various immune-mediated inflammatory and hyperproliferative dermatoses such as acne, atopic dermatitis, alopecia, psoriasis, wounds, and vitiligo, and is associated with poor treatment outcomes. Improved comprehension of the consequences of the dysregulated PI3K/Akt/mTOR pathway in patients with inflammatory dermatoses has resulted in the development of novel therapeutic approaches. Nonetheless, more studies are necessary to validate the regulatory role of this pathway and to create more effective preventive and treatment methods for a wide range of inflammatory skin diseases. Several studies have revealed that certain natural products and synthetic compounds can obstruct the expression/activity of PI3K/Akt/mTOR, underscoring their potential in managing common and persistent skin inflammatory disorders. This review summarizes recent advances in understanding the role of the activated PI3K/Akt/mTOR pathway and associated components in immune-mediated inflammatory dermatoses and discusses the potential of bioactive natural products, synthetic scaffolds, and biologic agents in their prevention and treatment. However, further research is necessary to validate the regulatory role of this pathway and develop more effective therapies for inflammatory skin disorders.
Collapse
Affiliation(s)
- Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Mohammad B. Uddin
- Department of Toxicology and Cancer Biology, Center for Research on Environmental Diseases, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
- Division for Research and Innovation, POHOFI Inc., Madison, WI 53744, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA 71203, USA
| | - Rajesh K. Yadav
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Chelsea R. Bock
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Joy T. Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Pretoria 0208, South Africa;
| | - Anthony L. Walker
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Judy A. King
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA;
- College of Medicine, Belmont University, 900 Belmont Boulevard, Nashville, TN 37212, USA
| | - Claudia Buerger
- Department of Dermatology, Venerology and Allergology, Clinic of the Goethe University, 60590 Frankfurt am Main, Germany;
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA;
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA;
| |
Collapse
|
11
|
Vélez MD, Llano-Ramirez MA, Ramón C, Rojas J, Bedoya C, Arango-Varela S, Santa-González GA, Gil M. Antioxidant capacity and cytotoxic effect of an optimized extract of isabella grape ( Vitis labrusca) on breast cancer cells. Heliyon 2023; 9:e16540. [PMID: 37260897 PMCID: PMC10227348 DOI: 10.1016/j.heliyon.2023.e16540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
The phenolic profile of Isabella grape (Vitis labrusca) offers beneficial properties to human health and makes it a functional food product. In order to better understand the phenolic compounds found in this grape variety and the biological effect they induce on breast cancer cells, an ultrasound-assisted extraction was carried out. During the extraction of polyphenols from Isabella grapes organically grown in Antioquia (Colombia), parameters such as frequency (33 kHz and 40 kHz), time and solvent were optimized to finally obtain a crude extract with antioxidant properties (Oxygen Radical Absorbance Capacity, ORAC: 293.22 ± 34.73 μmol of Trolox/g of sample), associated with a total polyphenol content (TPC) of 43.14 ± 5.00 mg GAE/g sample and a total anthocyanin content composed of 17.69 ± 2.59 mg of malvidin-3-glucoside/100 g of sample. MCF-7 breast cancer cells were treated with different concentrations of the optimized extract, and results show a decrease in cell viability related to mitochondrial membrane depolarization, ROS increase, and chromatin condensation. To determine the possible death induction mechanism, molecular docking was simulated to predict the molecular interactions between the most abundant phenolic compounds in Isabella grape and the main apoptosis-related proteins. The results obtained from in silico and in vitro experiments were consistent with each other, suggesting that the phenolic compounds found in Isabella grape can be considered potential adjuvant chemopreventive agents for the treatment of breast cancer.
Collapse
Affiliation(s)
- M. Daniela Vélez
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - María A. Llano-Ramirez
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - Carolina Ramón
- Química Básica, Aplicada y Ambiente Alquimia, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - Jessica Rojas
- Didáctica y Modelamiento en Ciencias Exactas y Aplicadas (DAVINCI), Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - Carolina Bedoya
- Food Engineering Research Group, Unilasallista Corporación Universitaria, Caldas 055440, Colombia
| | - Sandra Arango-Varela
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - Gloria A. Santa-González
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - Maritza Gil
- Química Básica, Aplicada y Ambiente Alquimia, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| |
Collapse
|
12
|
Qian J, Liao J, Liu Z, Chi Y, Fang Y, Zheng Y, Shao X, Liu B, Cui Y, Guo W, Hu Y, Bao H, Yang P, Chen Q, Li M, Zhang B, Fan X. Reconstruction of the cell pseudo-space from single-cell RNA sequencing data with scSpace. Nat Commun 2023; 14:2484. [PMID: 37120608 PMCID: PMC10148590 DOI: 10.1038/s41467-023-38121-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 04/17/2023] [Indexed: 05/01/2023] Open
Abstract
Tissues are highly complicated with spatial heterogeneity in gene expression. However, the cutting-edge single-cell RNA-seq technology eliminates the spatial information of individual cells, which contributes to the characterization of cell identities. Herein, we propose single-cell spatial position associated co-embeddings (scSpace), an integrative method to identify spatially variable cell subpopulations by reconstructing cells onto a pseudo-space with spatial transcriptome references (Visium, STARmap, Slide-seq, etc.). We benchmark scSpace with both simulated and biological datasets, and demonstrate that scSpace can accurately and robustly identify spatially variated cell subpopulations. When employed to reconstruct the spatial architectures of complex tissue such as the brain cortex, the small intestinal villus, the liver lobule, the kidney, the embryonic heart, and others, scSpace shows promising performance on revealing the pairwise cellular spatial association within single-cell data. The application of scSpace in melanoma and COVID-19 exhibits a broad prospect in the discovery of spatial therapeutic markers.
Collapse
Affiliation(s)
- Jingyang Qian
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, 314102, Jiaxing, China
- National Key Laboratory of Modern Chinese Medicine Innovation and Manufacturing, 310058, Hangzhou, China
| | - Jie Liao
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, 314102, Jiaxing, China.
- National Key Laboratory of Modern Chinese Medicine Innovation and Manufacturing, 310058, Hangzhou, China.
| | - Ziqi Liu
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Ying Chi
- DAMO Academy, Alibaba group, 310052, Hangzhou, China
| | - Yin Fang
- College of Computer Science and Technology, Zhejiang University, 310013, Hangzhou, China
| | - Yanrong Zheng
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Xin Shao
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, 314102, Jiaxing, China
- National Key Laboratory of Modern Chinese Medicine Innovation and Manufacturing, 310058, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, China
| | - Bingqi Liu
- School of Mathematical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yongjin Cui
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, 314102, Jiaxing, China
- National Key Laboratory of Modern Chinese Medicine Innovation and Manufacturing, 310058, Hangzhou, China
| | - Wenbo Guo
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, 314102, Jiaxing, China
- National Key Laboratory of Modern Chinese Medicine Innovation and Manufacturing, 310058, Hangzhou, China
| | - Yining Hu
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
- National Key Laboratory of Modern Chinese Medicine Innovation and Manufacturing, 310058, Hangzhou, China
| | - Hudong Bao
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Penghui Yang
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, 314102, Jiaxing, China
- National Key Laboratory of Modern Chinese Medicine Innovation and Manufacturing, 310058, Hangzhou, China
| | - Qian Chen
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, 314102, Jiaxing, China
- National Key Laboratory of Modern Chinese Medicine Innovation and Manufacturing, 310058, Hangzhou, China
| | - Mingxiao Li
- Institute of Microelectronics of the Chinese Academy of Sciences, 100029, Beijing, China
| | - Bing Zhang
- DAMO Academy, Alibaba group, 310052, Hangzhou, China.
- iMedicine Lab, Alibaba-Zhejiang University Joint Research Center for Future Digital Healthcare, 310058, Hangzhou, China.
- Alibaba Cloud, Alibaba Group, 310052, Hangzhou, China.
| | - Xiaohui Fan
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, 314102, Jiaxing, China.
- National Key Laboratory of Modern Chinese Medicine Innovation and Manufacturing, 310058, Hangzhou, China.
- iMedicine Lab, Alibaba-Zhejiang University Joint Research Center for Future Digital Healthcare, 310058, Hangzhou, China.
| |
Collapse
|
13
|
Roy T, Banang-Mbeumi S, Boateng ST, Ruiz EM, Chamcheu RCN, Kang L, King JA, Walker AL, Nagalo BM, Kousoulas KG, Esnault S, Huang S, Chamcheu JC. Dual targeting of mTOR/IL-17A and autophagy by fisetin alleviates psoriasis-like skin inflammation. Front Immunol 2023; 13:1075804. [PMID: 36741386 PMCID: PMC9889994 DOI: 10.3389/fimmu.2022.1075804] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Psoriasis is a chronic autoimmune inflammatory skin disorder characterized by epidermal hyperplasia and aberrant immune response. In addition to aberrant cytokine production, psoriasis is associated with activation of the Akt/mTOR pathway. mTOR/S6K1 regulates T-lymphocyte activation and migration, keratinocytes proliferation and is upregulated in psoriatic lesions. Several drugs that target Th1/Th17 cytokines or their receptors have been approved for treating psoriasis in humans with variable results necessitating improved therapies. Fisetin, a natural dietary polyphenol with anti-oxidant and anti-proliferative properties, covalently binds mTOR/S6K1. The effects of fisetin on psoriasis and its underlying mechanisms have not been clearly defined. Here, we evaluated the immunomodulatory effects of fisetin on Th1/Th17-cytokine-activated adult human epidermal keratinocytes (HEKa) and anti-CD3/CD28-stimulated inflammatory CD4+ T cells and compared these activities with those of rapamycin (an mTOR inhibitor). Transcriptomic analysis of HEKa revealed 12,713 differentially expressed genes (DEGs) in the fisetin-treated group compared to 7,374 DEGs in the rapamycin-treated group, both individually compared to a cytokine treated group. Gene ontology analysis revealed enriched functional groups related to PI3K/Akt/mTOR signaling pathways, psoriasis, and epidermal development. Using in silico molecular modeling, we observed a high binding affinity of fisetin to IL-17A. In vitro, fisetin significantly inhibited mTOR activity, increased the expression of autophagy markers LC3A/B and Atg5 in HEKa cells and suppressed the secretion of IL-17A by activated CD4+ T lymphocytes or T lymphocytes co-cultured with HEKa. Topical administration of fisetin in an imiquimod (IMQ)-induced mouse psoriasis model exhibited a better effect than rapamycin in reducing psoriasis-like inflammation and Akt/mTOR phosphorylation and promoting keratinocyte differentiation and autophagy in mice skin lesions. Fisetin also significantly inhibited T-lymphocytes and F4/80+ macrophage infiltration into skin. We conclude that fisetin potently inhibits IL-17A and the Akt/mTOR pathway and promotes keratinocyte differentiation and autophagy to alleviate IMQ-induced psoriasis-like disease in mice. Altogether, our findings suggest fisetin as a potential treatment for psoriasis and possibly other inflammatory skin diseases.
Collapse
Affiliation(s)
- Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, United States
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, United States
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA, United States
| | - Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, United States
| | - Emmanuelle M. Ruiz
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Roxane-Cherille N. Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, United States
| | - Lin Kang
- Biomedical Research, Edward Via College of Osteopathic Medicine, Monroe, LA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Judy A. King
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Anthony L. Walker
- School of Clinical Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, United States
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, United States
| | - Konstantin G. Kousoulas
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Stephane Esnault
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, Madison, WI, United States
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, United States
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
14
|
Li H, Roy T, Boateng ST, He H, Liu C, Liu W, Li D, Wu P, Seeram NP, Chamcheu JC, Ma H. Standardized Pomegranate (Pomella ®) and Red Maple (Maplifa ®) Extracts and Their Phenolics Protect Type I Collagen by the Inhibition of Matrix Metalloproteinases, Collagenase, and Collagen Cross-Linking. Molecules 2022; 27:7919. [PMID: 36432019 PMCID: PMC9696304 DOI: 10.3390/molecules27227919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/06/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Phenolics enriched pomegranate fruit (Pomella®) and red maple leaf (Maplifa®) extracts and their major phenolic constituents have demonstrated beneficial skin effects through the protection of human skin keratinocytes from oxidative-stress-induced damage. However, their mechanisms of protection of cutaneous collagen are still unclear. Herein, the collagen protective effects of Pomella® and Maplifa®, and their major bioactive phytochemicals, namely, punicalagin (PA) and ginnalin A (GA), respectively, were evaluated using enzymatic assays including collagenase, anti-glycation and cell-based models as well as computational methods. The importance of the modulatory effects was validated at the protein level for type I collagen and matrix metalloproteinases (MMPs) using human-skin-derived keratinocytes. The synergistic collagenase inhibitory effects upon combinations of Pomella® + Maplifa® and PA + GA at a combination ratio of 1:2 and 1:1, respectively, were evaluated using their combination index (CI; a well-established assessment of synergism). Pomella® (50-400 µg/mL), Maplifa® (100-800 µg/mL), PA (50-400 µM), and GA (50-400 µM) dose-dependently inhibited collagenase activity by 26.3-86.3%, 25.7-94.0%, 26.2-94.0%, and 12.0-98.0%, respectively. The CI of the anti-collagenase activity of Pomella® and Maplifa® ranged from 0.53-0.90, while that of PA and GA (12.5/12.5 and 25/25 µM) ranged from 0.66 and 0.69, respectively, suggesting a synergistic inhibitory effect. Interestingly, in the cell-based assays by Western blotting, Pomella® and Maplifa® reduced the protein expression levels of collagen degradation enzymes (MMPs), while simultaneously increasing that of type I collagen in epidermoid carcinoma A431 cells. This is the first report to show that these extracts exert synergistic collagen protective effects. Taken together, these findings provide molecular insights into the usefulness of Pomella® and Maplifa® or their phenolics as bioactive ingredients for skin care products to slow down aging and enhance skin tone.
Collapse
Affiliation(s)
- Huifang Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Hao He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Chang Liu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Weixi Liu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Navindra P. Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Hang Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
15
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Dong P, Gassler N, Taheri M, Baniahmad A, Dilmaghani NA. A review on the role of cyclin dependent kinases in cancers. Cancer Cell Int 2022; 22:325. [PMID: 36266723 PMCID: PMC9583502 DOI: 10.1186/s12935-022-02747-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
The Cyclin-dependent kinase (CDK) class of serine/threonine kinases has crucial roles in the regulation of cell cycle transition and is mainly involved in the pathogenesis of cancers. The expression of CDKs is controlled by a complex regulatory network comprised of genetic and epigenetic mechanisms, which are dysregulated during the progression of cancer. The abnormal activation of CDKs results in uncontrolled cancer cell proliferation and the induction of cancer stem cell characteristics. The levels of CDKs can be utilized to predict the prognosis and treatment response of cancer patients, and further understanding of the function and underlying mechanisms of CDKs in human tumors would pave the way for future cancer therapies that effectively target CDKs. Defects in the regulation of cell cycle and mutations in the genes coding cell-cycle regulatory proteins lead to unrestrained proliferation of cells leading to formation of tumors. A number of treatment modalities have been designed to combat dysregulation of cell cycle through affecting expression or activity of CDKs. However, effective application of these methods in the clinical settings requires recognition of the role of CDKs in the progression of each type of cancer, their partners, their interactions with signaling pathways and the effects of suppression of these kinases on malignant features. Thus, we designed this literature search to summarize these findings at cellular level, as well as in vivo and clinical levels.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nikolaus Gassler
- Section of Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Harnessing the therapeutic potential of fisetin and its nanoparticles: Journey so far and road ahead. Chem Biol Interact 2022; 356:109869. [DOI: 10.1016/j.cbi.2022.109869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/02/2022] [Accepted: 02/21/2022] [Indexed: 01/19/2023]
|
17
|
Srour AM, Panda SS, Mostafa A, Fayad W, El-Manawaty MA, A. F. Soliman A, Moatasim Y, El Taweel A, Abdelhameed MF, Bekheit MS, Ali MA, Girgis AS. Synthesis of aspirin-curcumin mimic conjugates of potential antitumor and anti-SARS-CoV-2 properties. Bioorg Chem 2021; 117:105466. [PMID: 34775204 PMCID: PMC8566089 DOI: 10.1016/j.bioorg.2021.105466] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/31/2021] [Indexed: 12/16/2022]
Abstract
Series of piperidone-salicylate conjugates were synthesized through the reaction of 3E,5E-bis(arylidene)-4-piperidones with the appropriate acid chloride of acetylsalicylate in the presence of triethylamine. All the synthesized conjugates reveal antiproliferative properties against A431 (squamous skin) cancer cell line with potency higher than that of 5-fluorouracil. Many of the synthesized agents also exhibit promising antiproliferative properties against HCT116 (colon) cancer cell line, of which 5o and 5c are the most effective with 12.9, 9.8 folds potency compared with Sunitinib. Promising activity is also shown against MCF7 (breast) cancer cell line with 1.19, 1.12 folds relative to 5-fluorouracil. PI-flow cytometry of compound 5c supports the arrest of cell cycle at G1-phase. However, compound 5o and Sunitinib arrest the cell cycle at S-phase. The synthesized conjugates can be considered as multi-targeted tyrosine kinase inhibitors due to the promising properties against VEGFR-2 and EGFR in MCF7 and HCT116. CDOCKER studies support the EGFR inhibitory properties. Compounds 5p and 5i possessing thienylidene heterocycle are anti-SARS-CoV-2 with high therapeutic indices. Many of the synthesized agents show enhanced COX-1/2 properties than aspirin with better selectivity index towards COX-2 relative to COX-1. The possible applicability of the potent candidates discovered as antitumor and anti-SARS-CoV-2 is supported by the safe profile against normal (non-cancer, RPE1 and VERO-E6) cells.
Collapse
Affiliation(s)
- Aladdin M. Srour
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Siva S. Panda
- Department of Chemistry & Physics, Augusta University, Augusta, GA 30912, US
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Walid Fayad
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - May A. El-Manawaty
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ahmed A. F. Soliman
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Ahmed El Taweel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | | | - Mohamed S. Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt,Corresponding author
| |
Collapse
|
18
|
Pathania S, Pentikäinen OT, Singh PK. A holistic view on c-Kit in cancer: Structure, signaling, pathophysiology and its inhibitors. Biochim Biophys Acta Rev Cancer 2021; 1876:188631. [PMID: 34606974 DOI: 10.1016/j.bbcan.2021.188631] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022]
Abstract
Receptor tyrosine kinases play an important role in many cellular processes, and their dysregulation leads to diseases, most importantly cancer. One such receptor tyrosine kinase is c-Kit, a type-III receptor tyrosine kinase, which is involved in various intracellular signaling pathways. The role of different mutant isoforms of c-Kit has been established in several types of cancers. Accordingly, promising c-Kit inhibition results have been reported for the treatment of different cancers (e.g., gastrointestinal stromal tumors, melanoma, acute myeloid leukemia, and other tumors). Therefore, lots of effort has been put to target c-Kit for the treatment of cancer. Here, we provide a comprehensive compilation to provide an insight into c-Kit inhibitor discovery. This compilation provides key information regarding the structure, signaling pathways related to c-Kit, and, more importantly, pharmacophores, binding modes, and SAR analysis for almost all small-molecule heterocycles reported for their c-Kit inhibitory activity. This work could be used as a guide in understanding the basic requirements for targeting c-Kit, and how the selectivity and efficacy of the molecules have been achieved till today.
Collapse
Affiliation(s)
- Shelly Pathania
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T. Road, Moga 142001, Punjab, India
| | - Olli T Pentikäinen
- Integrative Physiology and Pharmacology, Institute of Biomedicine, Faculty of Medicine, University of Turku, FI-20520 Turku, Finland
| | - Pankaj Kumar Singh
- Integrative Physiology and Pharmacology, Institute of Biomedicine, Faculty of Medicine, University of Turku, FI-20520 Turku, Finland.
| |
Collapse
|
19
|
Cancer chemopreventive role of fisetin: Regulation of cell signaling pathways in different cancers. Pharmacol Res 2021; 172:105784. [PMID: 34302980 DOI: 10.1016/j.phrs.2021.105784] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/04/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
It is becoming progressively more understandable that pharmaceutical targeting of drug-resistant cancers is challenging because of intra- and inter-tumor heterogeneity. Interestingly, naturally derived bioactive compounds have unique ability to modulate wide-ranging deregulated oncogenic cell signaling pathways. In this review, we have focused on the available evidence related to regulation of PI3K/AKT/mTOR, Wnt/β-catenin, NF-κB and TRAIL/TRAIL-R by fisetin in different cancers. Fisetin has also been shown to inhibit the metastatic spread of cancer cells in tumor-bearing mice. We have also summarized how fisetin regulated autophagy in different cancers. In addition, this review also covers fisetin-mediated regulation of VEGF/VEGFR, EGFR, necroptosis and Hippo pathway. Fisetin has entered into clinical trials particularly in context of COVID19-associated inflammations. Furthermore, fisetin mediated effects are also being tested in clinical trials with reference to osteoarthritis and senescence. These developments will surely pave the way for full-fledge and well-designed clinical trials of fisetin in different cancers. However, we still have to comprehensively analyze and fully unlock pharmacological potential of fisetin against different oncogenic signaling cascades and non-coding RNAs. Fisetin has remarkable potential as chemopreventive agent and future studies must converge on the identification of additional regulatory roles of fisetin for inhibition and prevention of cancers.
Collapse
|
20
|
Identification of new fisetin analogs as kinase inhibitors: Data on synthesis and anti-skin cancer activities evaluation. Data Brief 2021; 35:106858. [PMID: 33665254 PMCID: PMC7907707 DOI: 10.1016/j.dib.2021.106858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 11/23/2022] Open
Abstract
This article contains supplemental datasets of the recently published related research article “Synthesis, Inverse Docking-Assisted Identification and in vitro Biological Characterization of Flavonol-based Analogs of Fisetin as c-Kit, CDK2 and mTOR Inhibitors against Melanoma and Non-melanoma Skin Cancers” by Roy et al., [1]. It provides in-depth data not included in the original co-submission on the biophysical, molecular docking, and biological characterization of newly synthesized flavonol-based analogs of fisetin, a natural dietary small molecule with anticancer and anti-inflammatory properties. These synthetic small molecules were investigated as new, potential single and/or multi-kinase inhibitors of the cyclin-dependent kinase-2 (CDK2), receptor tyrosine kinases (c-KITs), and mammalian targets of rapamycin (mTOR) targets, potentially active against melanoma or non-melanoma skin cancers. Furthermore, this data-in-brief article comprises additional sets of results on several aspects of the properties of the dual and multiple kinase inhibitor compounds’ effects that were not presented in the associated article, including the activated targets that are dysregulated in skin cancers; the effects on markers of apoptosis; on colony formation; and in scratch wound healing assays. The study has identified a panel of novel fisetin analogs that are either single- or multi-kinase inhibitors, which may be further developed as active for the treatment of melanoma and non-melanoma skin cancers. The dataset presented herein will be utilized for additional studies aiming to establish a biological platform to steer for predictive and experimental screening of novel flavonoids and analogs in relevant organoids, humanized animal models and in vivo disease models. The present results should also serve as a key stepping-stone towards enabling target-structure-based design, synthesis and initial testing of novel analogs or derivatives of fisetin. The current study may eventually lead to the development of safe, promising and preclinical candidate entities for treatment of skin and other forms of cancers as well as various other human diseases, which can possibly add to the general armamentarium of promising and safe drugs for health promotion.
Collapse
|