1
|
Ji X, Li H, Wu G, Zhang Q, He X, Wu Y, Zong B, Xu X, Liang C, Wang B, Zhang Y, Hu Q, Deng C, Shen L, Chen Z, Bai B, Wang L, Ai J, Zhang L, Zhou H, Sun S, Wang Y, Wang Y, Fan Q, Chen D, Zhou T, Kong X, Lu J. Discovery and Characterization of RP03707: A Highly Potent and Selective KRAS G12D PROTAC. J Med Chem 2025. [PMID: 40338735 DOI: 10.1021/acs.jmedchem.5c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
KRASG12D, the most prevalent oncogenic mutation in KRAS-associated tumors, represents a highly sought-after drug target for cancer treatment. In this study, we explored a KRASG12D protein degradation approach using the PROTAC technology for the treatment of KRASG12D mutant tumors. Through the rational design of the KRASG12D binder and proper selection of the linker and the E3 ligase ligand, we constructed PROTACs and identified RP03707 as a CRBN-involving, highly potent, and selective KRASG12D degrader. RP03707 effectively inhibits tumor cell growth in multiple KRASG12D cell lines. It also exhibits prolonged PK/PD effects and excellent efficacy in mouse CDX models bearing KRASG12D tumors, highlighting its potential for the treatment of KRASG12D-driven tumors in clinical settings.
Collapse
Affiliation(s)
- Xiang Ji
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Huanping Li
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Gang Wu
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Qiguo Zhang
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Xiaolin He
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Yanpeng Wu
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Bin Zong
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Xiaojin Xu
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Chao Liang
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Beibei Wang
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Yuwei Zhang
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Qingyao Hu
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Chao Deng
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Liqiang Shen
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Zijun Chen
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Bing Bai
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Lin Wang
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Jinchao Ai
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Leduo Zhang
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Honggui Zhou
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Shihao Sun
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Yijie Wang
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Youhong Wang
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Qiming Fan
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Dawei Chen
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Tianlun Zhou
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Xianqi Kong
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Jiasheng Lu
- Risen (Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
- School of Life Sciences, Fudan University, Shanghai 200437, China
| |
Collapse
|
2
|
Ge Z, Fan Z, He W, Zhou G, Zhou Y, Zheng M, Zhang S. Recent advances in targeted degradation in the RAS pathway. Future Med Chem 2025; 17:693-708. [PMID: 40065567 PMCID: PMC11938967 DOI: 10.1080/17568919.2025.2476387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/12/2025] [Indexed: 03/26/2025] Open
Abstract
RAS (rat sarcoma) is one of the most frequently mutated gene families in cancer, encoding proteins classified as small GTPases. Mutations in RAS proteins result in abnormal activation of the RAS signaling pathway, a key driver in the initiation and progression of various malignancies. Consequently, targeting RAS proteins and the RAS signaling pathway has become a critical strategy in anticancer therapy. While RAS was historically considered an "undruggable" target, recent breakthroughs have yielded inhibitors specifically targeting KRASG12C and KRASG12D mutations, which have shown clinical efficacy in patients. However, these inhibitors face limitations due to rapid acquired resistance and the toxic effects of combination therapies in clinical settings. Targeted protein degradation (TPD) strategies, such as PROTACs and molecular glues, provide a novel approach by selectively degrading RAS proteins, or their upstream and downstream regulatory factors, to block aberrant signaling pathways. These degraders offer a promising alternative to traditional inhibitors by potentially circumventing resistance and enhancing therapeutic precision. This review discusses recent advancements in RAS pathway degraders, with an emphasis on targeting RAS mutations as well as their upstream regulators and downstream effectors for potential cancer treatments.
Collapse
Affiliation(s)
- Zhiming Ge
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zisheng Fan
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Wei He
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Guizhen Zhou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Yidi Zhou
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingyue Zheng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Sulin Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
3
|
Li Y, Wu Y, Gao S, Sun T, Jiang C. PROTAC delivery in tumor immunotherapy: Where are we and where are we going? J Control Release 2025; 378:116-144. [PMID: 39637991 DOI: 10.1016/j.jconrel.2024.11.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Immunotherapy has emerged as a pioneering therapeutic modality, particularly within the realm of oncology, where Chimeric Antigen Receptor T-cell (CAR-T) therapy has manifested significant efficacy in the treatment of hematological malignancies. Nonetheless, the extension of immunotherapy to solid tumors poses a considerable challenge. This challenge is largely attributed to the intrinsic "cold" characteristics of certain tumors, which are defined by scant T-cell infiltration and a diminished immune response. Additionally, the impediment is exacerbated by the elusive nature of numerous targets within the tumor microenvironment, notably those deemed "undruggable" by small molecule inhibitors. This scenario underscores an acute necessity for the inception of innovative therapeutic strategies aimed at countering the resistance mechanisms underlying immune evasion in cold tumors, thereby amplifying the efficacy of cancer immunotherapy. Among the promising strategies is the deployment of Proteolysis Targeting Chimeras (PROTACs), which facilitate the targeted degradation of proteins. PROTACs present unique advantages and have become indispensable in oncology. However, they concurrently grapple with challenges such as solubility issues, permeability barriers, and the classical Hook effect. Notably, advanced delivery systems have been instrumental in surmounting these obstacles. This review commences with an analysis of the factors contributing to the suboptimal responses to immunotherapy in cold tumors. Subsequently, it delivers a thorough synthesis of immunotherapeutic concepts tailored for these tumors, clarifying the integral role of PROTACs in their management and delineating the trajectory of PROTAC technology from bench-side investigation to clinical utilization, facilitated by drug delivery systems. Ultimately, the review extrapolates the prospective future of this approach, aspiring to present novel insights that could catalyze progress in immunotherapy for the treatment of cold tumors.
Collapse
Affiliation(s)
- Yiyang Li
- Key Laboratory of Smart Drug DeliveryMinistry of Education, Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yike Wu
- Key Laboratory of Smart Drug DeliveryMinistry of Education, Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Sihan Gao
- Key Laboratory of Smart Drug DeliveryMinistry of Education, Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tao Sun
- Key Laboratory of Smart Drug DeliveryMinistry of Education, Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China; Quzhou Fudan Institute, Quzhou 324003, China.
| | - Chen Jiang
- Key Laboratory of Smart Drug DeliveryMinistry of Education, Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Digestive Diseases, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| |
Collapse
|
4
|
Fu MJ, Jin H, Wang SP, Shen L, Liu HM, Liu Y, Zheng YC, Dai XJ. Unleashing the Power of Covalent Drugs for Protein Degradation. Med Res Rev 2025. [PMID: 39834319 DOI: 10.1002/med.22101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/28/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Targeted protein degradation (TPD) has emerged as a significant therapeutic approach for a variety of diseases, including cancer. Advances in TPD techniques, such as molecular glue (MG) and lysosome-dependent strategies, have shown substantial progress since the inception of the first PROTAC in 2001. The PROTAC methodology represents the forefront of TPD technology, with ongoing evaluation in more than 20 clinical trials for the treatment of diverse medical conditions. Two prominent PROTACs, ARV-471 and ARV-110, are currently undergoing phase III and II clinical trials, respectively. Traditional PROTACs are encountering obstacles such as limited binding affinity and a restricted range of E3 ligase ligands for facilitating the protein of interest (POI) degradation. Covalent medicines offer the potential to enhance PROTAC efficacy by enabling the targeting of previously considered "undruggable" shallow binding sites. Strategic alterations allow PROTAC to establish covalent connections with particular target proteins, including Kirsten rat sarcoma viral oncogene homolog (KRAS), Bruton's tyrosine kinase (BTK), epidermal growth factor receptor (EGFR), as well as E3 ligases such as DDB1 and CUL4 associated factor 16 (DCAF16) and Kelch-like ECH-associated protein 1 (Keap1). The concept of covalent degradation has also been utilized in various new forms of degraders, including covalent molecule glue (MG), in-cell click-formed proteolysis targeting chimera (CLIPTAC), HaloPROTAC, lysosome-targeting chimera (LYTAC) and GlueTAC. This review focuses on recent advancements in covalent degraders beyond covalent PROTACs and examines obstacles and future directions pertinent to this field.
Collapse
Affiliation(s)
- Meng-Jie Fu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hang Jin
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shao-Peng Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Liang Shen
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Liu
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xing-Jie Dai
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardio-Cerebrovascular Drug, China Meheco Topfond Pharmaceutical Company, Zhumadian, Henan, China
| |
Collapse
|
5
|
London N. Covalent Proximity Inducers. Chem Rev 2025; 125:326-368. [PMID: 39692621 PMCID: PMC11719315 DOI: 10.1021/acs.chemrev.4c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Molecules that are able to induce proximity between two proteins are finding ever increasing applications in chemical biology and drug discovery. The ability to introduce an electrophile and make such proximity inducers covalent can offer improved properties such as selectivity, potency, duration of action, and reduced molecular size. This concept has been heavily explored in the context of targeted degradation in particular for bivalent molecules, but recently, additional applications are reported in other contexts, as well as for monovalent molecular glues. This is a comprehensive review of reported covalent proximity inducers, aiming to identify common trends and current gaps in their discovery and application.
Collapse
Affiliation(s)
- Nir London
- Department
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
6
|
Luo Z, Lin C, Yu C, Yuan C, Wu W, Xu X, Sun R, Jia Y, Wang Y, Shen J, Wang D, Wang S, Jiang H, Jiang B, Yang X, Xie C. Targeted Degradation of SOS1 Exhibits Potent Anticancer Activity and Overcomes Resistance in KRAS-Mutant Tumors and BCR-ABL-Positive Leukemia. Cancer Res 2025; 85:101-117. [PMID: 39437162 DOI: 10.1158/0008-5472.can-24-1093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/24/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Son of sevenless homolog 1 (SOS1) is an essential guanine nucleotide exchange factor for RAS that also plays a critical role in the activation of the small GTPase RAC mediated by BCR-ABL in leukemogenesis. Despite this, small-molecule inhibitors targeting SOS1 have shown limited efficacy in clinical trials for KRAS-mutant cancers, and their potential as a therapeutic approach for chronic myeloid leukemia (CML) remains largely unexplored. In this study, we developed a potent SOS1 proteolysis targeting chimera (PROTAC) SIAIS562055, which was designed by connecting a CRBN ligand to an analog of the SOS1 inhibitor BI-3406. SIAIS562055 exhibited sustained degradation of SOS1 and inhibition of downstream ERK pathways, resulting in superior antiproliferative activity compared with small-molecule inhibitors. SIAIS562055 also potentiated the activity of both KRAS inhibitors in KRAS-mutant cancers and ABL inhibitors in BCR-ABL-positive CML. In KRAS-mutant xenografts, SIAIS562055 displayed promising antitumor potency as a monotherapy and enhanced ERK inhibition and tumor regression when combined with KRAS inhibitors, overcoming acquired resistance. In CML cells, SIAIS562055 promoted the active uptake of BCR-ABL inhibitors by upregulating the carnitine/organic cation transporter SLC22A4. SIAIS562055 and BCR-ABL inhibitors synergistically enhanced inhibition of ABL phosphorylation and downstream signaling, demonstrating robust antitumor activities in both mouse xenografts and primary samples from patients with CML. In summary, this study suggests that PROTAC-mediated SOS1 degradation represents an effective therapeutic strategy for treating not only KRAS-mutant cancers but also BCR-ABL-harboring leukemia. Significance: The PROTAC SIAIS562055 sustainably degrades SOS1 and inhibits downstream ERK signaling, showing strong antiproliferative activity and synergistic effects with KRAS inhibitors in KRAS-mutant cancers and BCR-ABL inhibitors in chronic myeloid leukemia.
Collapse
MESH Headings
- Humans
- SOS1 Protein/genetics
- SOS1 Protein/metabolism
- SOS1 Protein/antagonists & inhibitors
- Animals
- Mice
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/metabolism
- Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Xenograft Model Antitumor Assays
- Drug Resistance, Neoplasm/drug effects
- Proteolysis/drug effects
- Mutation
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Mice, Nude
- Female
Collapse
Affiliation(s)
- Ziwei Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Chencen Lin
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | | | - Changxian Yuan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | | | - Xiaowei Xu
- Department of Hematology, Shanghai Jiao Tong University School of Medicine Affiliated Shanghai General Hospital, Shanghai, China
| | - Renhong Sun
- Gluetacs Therapeutics (Shanghai) Co., Ltd., Shanghai, China
| | - Yan Jia
- Lingang Laboratory, Shanghai, China
| | - Yafang Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Jie Shen
- Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | - Sinan Wang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Hualiang Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Biao Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Xiaobao Yang
- Gluetacs Therapeutics (Shanghai) Co., Ltd., Shanghai, China
| | - Chengying Xie
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- Lingang Laboratory, Shanghai, China
| |
Collapse
|
7
|
Kidane M, Hoffman RM, Wolfe-Demarco JK, Huang TY, Teng CL, Samanta S, Gonzalez Lira LM, Lin-Jones J, Pallares G, Lamerdin JE, Servant NB, Lee CY, Yang CT, Bernatchez JA. Suite of Biochemical and Cell-Based Assays for the Characterization of Kirsten Rat Sarcoma (KRAS) Inhibitors and Degraders. ACS Pharmacol Transl Sci 2024; 7:3921-3934. [PMID: 39698278 PMCID: PMC11651172 DOI: 10.1021/acsptsci.4c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
KRAS is an important oncogenic driver which is mutated in numerous cancers. Recent advances in the selective targeting of KRAS mutants via small molecule inhibitors and targeted protein degraders have generated an increase in research activity in this area in recent years. As such, there is a need for new assay platforms to profile next generation inhibitors which improve on the potency and selectivity of existing drug candidates, while evading the emergence of resistance. Here, we describe the development of a new panel of biochemical and cell-based assays to evaluate the binding and function of known chemical entities targeting mutant KRAS. Our assay panels generated selectivity profiles and quantitative binding interaction dissociation constants for small molecules and degraders against wild type, G12C, G12D, and G12V KRAS, which were congruent with published data. These assays can be leveraged for additional mutants of interest beyond those described in this study, using both overexpressed cell-free systems and cell-based systems with endogenous protein levels.
Collapse
Affiliation(s)
- Medhanie Kidane
- Research
and Development and Technology Transfer, Eurofins DiscoverX, LLC, 11180 Roselle Street Suite D, San Diego, California 92121, United States
| | - Rene M. Hoffman
- Research
and Development, Eurofins DiscoverX Products,
LLC, 42501 Albrae Street, Fremont, California 94538, United States
| | - Jennifer K. Wolfe-Demarco
- Research
and Development and Technology Transfer, Eurofins DiscoverX, LLC, 11180 Roselle Street Suite D, San Diego, California 92121, United States
| | - Ting-Yu Huang
- Eurofins
Panlabs Discovery Services Taiwan, Ltd., 25 Wugong Sixth Road, Wugu District, New Taipei City 24891, Taiwan
| | - Chi-Ling Teng
- Eurofins
Panlabs Discovery Services Taiwan, Ltd., 25 Wugong Sixth Road, Wugu District, New Taipei City 24891, Taiwan
| | - Saheli Samanta
- Research
and Development, Eurofins DiscoverX Products,
LLC, 42501 Albrae Street, Fremont, California 94538, United States
| | - Luis M. Gonzalez Lira
- Research
and Development and Technology Transfer, Eurofins DiscoverX, LLC, 11180 Roselle Street Suite D, San Diego, California 92121, United States
| | - Jennifer Lin-Jones
- Research
and Development, Eurofins DiscoverX Products,
LLC, 42501 Albrae Street, Fremont, California 94538, United States
| | - Gabriel Pallares
- Research
and Development and Technology Transfer, Eurofins DiscoverX, LLC, 11180 Roselle Street Suite D, San Diego, California 92121, United States
| | - Jane E. Lamerdin
- Research
and Development, Eurofins DiscoverX Products,
LLC, 42501 Albrae Street, Fremont, California 94538, United States
| | - Nicole B. Servant
- Research
and Development and Technology Transfer, Eurofins DiscoverX, LLC, 11180 Roselle Street Suite D, San Diego, California 92121, United States
| | - Chun-Yao Lee
- Eurofins
Panlabs Discovery Services Taiwan, Ltd., 25 Wugong Sixth Road, Wugu District, New Taipei City 24891, Taiwan
| | - Chao-Tsung Yang
- Research
and Development, Eurofins DiscoverX Products,
LLC, 42501 Albrae Street, Fremont, California 94538, United States
| | - Jean A. Bernatchez
- Research
and Development and Technology Transfer, Eurofins DiscoverX, LLC, 11180 Roselle Street Suite D, San Diego, California 92121, United States
| |
Collapse
|
8
|
Li T, Gu C, Zhou C, Mao C, Yang K, Xu J, Lu T, Chen J. Insights into direct KRAS inhibition strategies for cancer treatment. Future Med Chem 2024; 16:2411-2429. [PMID: 39569642 PMCID: PMC11622815 DOI: 10.1080/17568919.2024.2424149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024] Open
Abstract
KRAS is the most commonly mutated isoform in RAS-driven cancers. In the early stage, KRAS was deemed as an "undruggable" cancer target due to the lack of suitable binding pockets. With the development of KRAS inhibitors in recent years, strategies that directly suppress oncogenic KRAS have achieved significant breakthroughs. In this review, we summarize recent advances in direct small-molecule KRAS inhibitors used for cancer therapy, highlighting their medicinal chemistry optimization processes. Moreover, new PROTACs targeting the KRAS mutation are also presented. Additionally, we put forward the challenges and prospects for the development of future KRAS inhibitors.
Collapse
Affiliation(s)
- Tong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chenglei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL32610, United States
| | - Chunqin Mao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines & Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jichao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
9
|
Dong Y, Ma T, Xu T, Feng Z, Li Y, Song L, Yao X, Ashby CR, Hao GF. Characteristic roadmap of linker governs the rational design of PROTACs. Acta Pharm Sin B 2024; 14:4266-4295. [PMID: 39525578 PMCID: PMC11544172 DOI: 10.1016/j.apsb.2024.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/11/2024] [Accepted: 04/02/2024] [Indexed: 11/16/2024] Open
Abstract
Proteolysis targeting chimera (PROTAC) technology represents a groundbreaking development in drug discovery, leveraging the ubiquitin‒proteasome system to specifically degrade proteins responsible for the disease. PROTAC is characterized by its unique heterobifunctional structure, which comprises two functional domains connected by a linker. The linker plays a pivotal role in determining PROTAC's biodegradative efficacy. Advanced and rationally designed functional linkers for PROTAC are under development. Nonetheless, the correlation between linker characteristics and PROTAC efficacy remains under-investigated. Consequently, this study will present a multidisciplinary analysis of PROTAC linkers and their impact on efficacy, thereby guiding the rational design of linkers. We will primarily discuss the structural types and characteristics of PROTAC linkers, and the optimization strategies used for their rational design. Furthermore, we will discuss how factors like linker length, group type, flexibility, and linkage site affect the biodegradation efficiency of PROTACs. We believe that this work will contribute towards the advancement of rational linker design in the PROTAC research area.
Collapse
Affiliation(s)
- Yawen Dong
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Tingting Ma
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Ting Xu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Zhangyan Feng
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Yonggui Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Lingling Song
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Xiaojun Yao
- Faculty of Applied Sciences, Macau Polytechnic University, Macau 999078, China
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, St. John's University, New York, NY 11439, USA
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
10
|
Zhang C, Liu Y, Li G, Yang Z, Han C, Sun X, Sheng C, Ding K, Rao Y. Targeting the undruggables-the power of protein degraders. Sci Bull (Beijing) 2024; 69:1776-1797. [PMID: 38614856 DOI: 10.1016/j.scib.2024.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 04/15/2024]
Abstract
Undruggable targets typically refer to a class of therapeutic targets that are difficult to target through conventional methods or have not yet been targeted, but are of great clinical significance. According to statistics, over 80% of disease-related pathogenic proteins cannot be targeted by current conventional treatment methods. In recent years, with the advancement of basic research and new technologies, the development of various new technologies and mechanisms has brought new perspectives to overcome challenging drug targets. Among them, targeted protein degradation technology is a breakthrough drug development strategy for challenging drug targets. This technology can specifically identify target proteins and directly degrade pathogenic target proteins by utilizing the inherent protein degradation pathways within cells. This new form of drug development includes various types such as proteolysis targeting chimera (PROTAC), molecular glue, lysosome-targeting Chimaera (LYTAC), autophagosome-tethering compound (ATTEC), autophagy-targeting chimera (AUTAC), autophagy-targeting chimera (AUTOTAC), degrader-antibody conjugate (DAC). This article systematically summarizes the application of targeted protein degradation technology in the development of degraders for challenging drug targets. Finally, the article looks forward to the future development direction and application prospects of targeted protein degradation technology.
Collapse
Affiliation(s)
- Chao Zhang
- Changping Laboratory, Beijing 102206, China
| | - Yongbo Liu
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Guangchen Li
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Zhouli Yang
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Chi Han
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Xiuyun Sun
- Changping Laboratory, Beijing 102206, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Yu Rao
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Changping Laboratory, Beijing 102206, China.
| |
Collapse
|
11
|
Kirschner T, Müller MP, Rauh D. Targeting KRAS Diversity: Covalent Modulation of G12X and Beyond in Cancer Therapy. J Med Chem 2024; 67:6044-6051. [PMID: 38621359 DOI: 10.1021/acs.jmedchem.3c02403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The GTPase KRAS acts as a switch in cellular signaling, transitioning between inactive GDP-bound and active GTP-bound states. In about 20% of human cancers, oncogenic RAS mutations disrupt this balance, favoring the active form and promoting proliferative signaling, thus rendering KRAS an appealing target for precision medicine in oncology. In 2013, Shokat and co-workers achieved a groundbreaking feat by covalently targeting a previously undiscovered allosteric pocket (switch II pocket (SWIIP)) of KRASG12C. This breakthrough led to the development and approval of sotorasib (AMG510) and adagrasib (MRTX849), revolutionizing the treatment of KRASG12C-dependent lung cancer. Recent achievements in targeting various KRASG12X mutants, using SWIIP as a key binding pocket, are discussed. Insights from successful KRASG12C targeting informed the design of molecules addressing other mutations, often in a covalent manner. These findings offer promise for innovative approaches in addressing commonly occurring KRAS mutations such as G12D, G12V, G12A, G12S, and G12R in various cancers.
Collapse
Affiliation(s)
- Tonia Kirschner
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für integrierte Wirkstoffforschung (ZIW), 44227 Dortmund, Germany
| | - Matthias P Müller
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für integrierte Wirkstoffforschung (ZIW), 44227 Dortmund, Germany
| | - Daniel Rauh
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für integrierte Wirkstoffforschung (ZIW), 44227 Dortmund, Germany
| |
Collapse
|
12
|
Liang X, Ren H, Han F, Liang R, Zhao J, Liu H. The new direction of drug development: Degradation of undruggable targets through targeting chimera technology. Med Res Rev 2024; 44:632-685. [PMID: 37983964 DOI: 10.1002/med.21992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/13/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Imbalances in protein and noncoding RNA levels in vivo lead to the occurrence of many diseases. In addition to the use of small molecule inhibitors and agonists to restore these imbalances, recently emerged targeted degradation technologies provide a new direction for disease treatment. Targeted degradation technology directly degrades target proteins or RNA by utilizing the inherent degradation pathways, thereby eliminating the functions of pathogenic proteins (or RNA) to treat diseases. Compared with traditional therapies, targeted degradation technology which avoids the principle of traditional inhibitor occupation drive, has higher efficiency and selectivity, and widely expands the range of drug targets. It is one of the most promising and hottest areas for future drug development. Herein, we systematically introduced the in vivo degradation systems applied to degrader design: ubiquitin-proteasome system, lysosomal degradation system, and RNA degradation system. We summarized the development progress, structural characteristics, and limitations of novel chimeric design technologies based on different degradation systems. In addition, due to the lack of clear ligand-binding pockets, about 80% of disease-associated proteins cannot be effectively intervened with through traditional therapies. We deeply elucidated how to use targeted degradation technology to discover and design molecules for representative undruggable targets including transcription factors, small GTPases, and phosphatases. Overall, this review provides a comprehensive and systematic overview of targeted degradation technology-related research advances and a new guidance for the chimeric design of undruggable targets.
Collapse
Affiliation(s)
- Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hairu Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Fengyang Han
- School of Pharmacy, Fudan University, Shanghai, China
| | - Renwen Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiayan Zhao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
13
|
Jiang Z, Li Y, Zhou X, Wen J, Zheng P, Zhu W. Research progress on small molecule inhibitors targeting KRAS G12C with acrylamide structure and the strategies for solving KRAS inhibitor resistance. Bioorg Med Chem 2024; 100:117627. [PMID: 38310752 DOI: 10.1016/j.bmc.2024.117627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
KRAS (Kirsten-RAS) is a highly mutated gene in the RAS (rat sarcoma) gene family that acts as a critical switch in intracellular signaling pathways, regulating cell proliferation, differentiation, and survival. The continuous activation of KRAS protein resulting from mutations leads to the activation of multiple downstream signaling pathways, inducing the development of malignant tumors. Despite the significant role of KRAS in tumorigenesis, targeted drugs against KRAS gene mutations have failed, and KRAS was once considered an undruggable target. The development of KRAS G12C mutant conformational modulators and the introduction of Sotorasib (R&D code: AMG510) have been a breakthrough in this field, with its remarkable clinical outcomes. Consequently, there is now a great number of KRAS G12C mutations. Patent applications for mutant GTPase KRAS G12C inhibitors, which are said to be covalently modified by cysteine codon 12, have been submitted since 2014. This review classifies KRAS G12C inhibitors based on their chemical structure and evaluates their biological properties. Additionally, it discusses the obstacles encountered in KRAS inhibitor research and the corresponding solutions.
Collapse
Affiliation(s)
- Zhiyan Jiang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Yan Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Xin Zhou
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Jie Wen
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China.
| |
Collapse
|
14
|
Yang N, Fan Z, Sun S, Hu X, Mao Y, Jia C, Cai X, Xu T, Li B, Li Y, Han L, Wei T, Qian X, Qin W, Li P, Zheng Z, Li S. Discovery of highly potent and selective KRAS G12C degraders by VHL-recruiting PROTACs for the treatment of tumors with KRAS G12C-Mutation. Eur J Med Chem 2023; 261:115857. [PMID: 37852032 DOI: 10.1016/j.ejmech.2023.115857] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Although several covalent KRASG12C inhibitors have made great progress in the treatment of KRASG12C-mutant cancer, their clinical applications are limited by adaptive resistance, motivating novel therapeutic strategies. Through drug design and structure optimization, a series of highly potent and selective KRASG12C Proteolysis Targeting Chimeras (PROTACs) were developed by incorporating AMG510 and VHL ligand VH032. Among them, degrader YN14 significantly inhibited KRASG12C-dependent cancer cells growth with nanomolar IC50 and DC50 values, and > 95 % maximum degradation (Dmax). Molecular dynamics (MD) simulation showed that YN14 induced a stable KRASG12C: YN14: VHL ternary complex with low binding free energy (ΔG). Notably, YN14 led to tumor regression with tumor growth inhibition (TGI%) rates more than 100 % in the MIA PaCa-2 xenograft model with well-tolerated dose-schedules. We also found that KRASG12C degradation exhibited advantages in overcoming adaptive KRASG12C feedback resistance over KRASG12C inhibition. Furthermore, combination of RTKs, SHP2, or CDK9 inhibitors with YN14 exhibited synergetic efficacy in KRASG12C-mutant cancer cells. Overall, these results demonstrated that YN14 holds exciting prospects for the treatment of tumors with KRASG12C-mutation and boosted efficacy could be achieved for greater clinical applications via drug combination.
Collapse
Affiliation(s)
- Ning Yang
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China
| | - Zhiya Fan
- National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing, 102206, China
| | - Shiyang Sun
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China
| | - Xiaotong Hu
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China
| | - Yaqiu Mao
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China
| | - Changkai Jia
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China
| | - Xu Cai
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China
| | - Tingting Xu
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China
| | - Bingkun Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China
| | - Yi Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China
| | - Luobing Han
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China
| | - Ting Wei
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China
| | - Xiaohong Qian
- National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing, 102206, China
| | - Weijie Qin
- National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing, 102206, China.
| | - Pengyun Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China.
| | - Zhibing Zheng
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China.
| | - Song Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China
| |
Collapse
|
15
|
Huang J, Ma Z, Yang Z, He Z, Bao J, Peng X, Liu Y, Chen T, Cai S, Chen J, Zeng Z. Discovery of Ibrutinib-based BTK PROTACs with in vivo anti-inflammatory efficacy by inhibiting NF-κB activation. Eur J Med Chem 2023; 259:115664. [PMID: 37487306 DOI: 10.1016/j.ejmech.2023.115664] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/15/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
As a critical upstream regulator of nuclear factor-κB (NF-κB) activation, Bruton's tyrosine kinase (BTK) has been identified to be an effective therapeutic target for the treatment of acute or chronic inflammatory diseases. Herein, we describe the design, synthesis and structure-activity-relationship analysis of a novel series of Ibrutinib-based BTK PROTACs by recruiting Cereblon (CRBN) ligase. Among them, compound 15 was identified as the most potent degrader with a DC50 of 3.18 nM, significantly better than the positive control MT802 (DC50 of 63.31 nM). Compound 15 could also degrade BTK protein in Lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and suppress the mRNA expression and secretion of proinflammatory cytokines such as IL-1β and IL-6 by inhibiting NF-κB activation. Furthermore, compound 15 reduced inflammatory responses in a mouse zymosan-induced peritonitis (ZIP) model. Our findings demonstrated for the first time that targeting BTK degradation by PROTACs might be an alternative option for the treatment of inflammatory disorders, and compound 15 represents one of the most efficient BTK PROTACs (DC50 = 3.18 nM; Dmax = 99.90%; near 100% degradation at 8 h) reported so far and could serve as a lead compound for further investigation as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Junli Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zeli Ma
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zichao Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zengzhu He
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jingna Bao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaopeng Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Yao Liu
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ting Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Shumin Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
16
|
Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W, He G. Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. Signal Transduct Target Ther 2023; 8:335. [PMID: 37669923 PMCID: PMC10480221 DOI: 10.1038/s41392-023-01589-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Undruggable proteins are a class of proteins that are often characterized by large, complex structures or functions that are difficult to interfere with using conventional drug design strategies. Targeting such undruggable targets has been considered also a great opportunity for treatment of human diseases and has attracted substantial efforts in the field of medicine. Therefore, in this review, we focus on the recent development of drug discovery targeting "undruggable" proteins and their application in clinic. To make this review well organized, we discuss the design strategies targeting the undruggable proteins, including covalent regulation, allosteric inhibition, protein-protein/DNA interaction inhibition, targeted proteins regulation, nucleic acid-based approach, immunotherapy and others.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
17
|
Liu Y, Xie B, Chen Q. RAS signaling and immune cells: a sinister crosstalk in the tumor microenvironment. J Transl Med 2023; 21:595. [PMID: 37670322 PMCID: PMC10481548 DOI: 10.1186/s12967-023-04486-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023] Open
Abstract
The rat sarcoma virus (RAS) gene is the most commonly mutated oncogene in cancer, with about 19% of cancer patients carrying RAS mutations. Studies on the interaction between RAS mutation and tumor immune microenvironment (TIM) have been flourishing in recent years. More and more evidence has proved that RAS signals regulate immune cells' recruitment, activation, and differentiation while assisting tumor cells to evade immune surveillance. This review concluded the direct and indirect treatment strategies for RAS mutations. In addition, we updated the underlying mechanisms by which RAS signaling modulated immune infiltration and immune escape. Finally, we discussed advances in RAS-targeted immunotherapies, including cancer vaccines and adoptive cell therapies, with a particular focus on combination strategies with personalized therapy and great potential to achieve lasting clinical benefits.
Collapse
Affiliation(s)
- Yongting Liu
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Bin Xie
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Chen
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
18
|
Zhou X, Ji Y, Zhou J. Multiple Strategies to Develop Small Molecular KRAS Directly Bound Inhibitors. Molecules 2023; 28:molecules28083615. [PMID: 37110848 PMCID: PMC10146153 DOI: 10.3390/molecules28083615] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
KRAS gene mutation is widespread in tumors and plays an important role in various malignancies. Targeting KRAS mutations is regarded as the "holy grail" of targeted cancer therapies. Recently, multiple strategies, including covalent binding strategy, targeted protein degradation strategy, targeting protein and protein interaction strategy, salt bridge strategy, and multivalent strategy, have been adopted to develop KRAS direct inhibitors for anti-cancer therapy. Various KRAS-directed inhibitors have been developed, including the FDA-approved drugs sotorasib and adagrasib, KRAS-G12D inhibitor MRTX1133, and KRAS-G12V inhibitor JAB-23000, etc. The different strategies greatly promote the development of KRAS inhibitors. Herein, the strategies are summarized, which would shed light on the drug discovery for both KRAS and other "undruggable" targets.
Collapse
Affiliation(s)
- Xile Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Yang Ji
- Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Jinming Zhou
- Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| |
Collapse
|
19
|
Harwood SJ, Smith CR, Lawson JD, Ketcham JM. Selected Approaches to Disrupting Protein-Protein Interactions within the MAPK/RAS Pathway. Int J Mol Sci 2023; 24:ijms24087373. [PMID: 37108538 PMCID: PMC10139024 DOI: 10.3390/ijms24087373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Within the MAPK/RAS pathway, there exists a plethora of protein-protein interactions (PPIs). For many years, scientists have focused efforts on drugging KRAS and its effectors in hopes to provide much needed therapies for patients with KRAS-mutant driven cancers. In this review, we focus on recent strategies to inhibit RAS-signaling via disrupting PPIs associated with SOS1, RAF, PDEδ, Grb2, and RAS.
Collapse
Affiliation(s)
| | | | - J David Lawson
- Mirati Therapeutics, 3545 Cray Court, San Diego, CA 92121, USA
| | - John M Ketcham
- Mirati Therapeutics, 3545 Cray Court, San Diego, CA 92121, USA
| |
Collapse
|
20
|
Khan S, Budamagunta V, Zhou D. Targeting KRAS in pancreatic cancer: Emerging therapeutic strategies. Adv Cancer Res 2023; 159:145-184. [PMID: 37268395 DOI: 10.1016/bs.acr.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
KRAS, a predominant member of the RAS family, is the most frequently mutated oncogene in human pancreatic cancer (∼95% of cases). Mutations in KRAS lead to its constitutive activation and activation of its downstream signaling pathways such as RAF/MEK/ERK and PI3K/AKT/mTOR that promote cell proliferation and provide apoptosis evasion capabilities to cancer cells. KRAS had been considered 'undruggable' until the discovery of the first covalent inhibitor targeting the G12C mutation. While G12C mutations are frequently found in non-small cell lung cancer, these are relatively rare in pancreatic cancer. On the other hand, pancreatic cancer harbors other KRAS mutations such as G12D and G12V. The inhibitors targeting G12D mutation (such as MRTX1133) have been recently developed, whereas those targeting other mutations are still lacking. Unfortunately, KRAS inhibitor monotherapy-associated resistance hinders their therapeutic efficacy. Therefore, various combination strategies have been tested and some yielded promising results, such as combinations with receptor tyrosine kinase, SHP2, or SOS1 inhibitors. In addition, we recently demonstrated that the combination of sotorasib with DT2216 (a BCL-XL-selective degrader) synergistically inhibits G12C-mutated pancreatic cancer cell growth in vitro and in vivo. This is in part because KRAS-targeted therapies induce cell cycle arrest and cellular senescence, which contributes to therapeutic resistance, while their combination with DT2216 can more effectively induce apoptosis. Similar combination strategies may also work for G12D inhibitors in pancreatic cancer. This chapter will review KRAS biochemistry, signaling pathways, different mutations, emerging KRAS-targeted therapies, and combination strategies. Finally, we discuss challenges associated with KRAS targeting and future directions, emphasizing pancreatic cancer.
Collapse
Affiliation(s)
- Sajid Khan
- Department of Biochemistry & Structural Biology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.
| | - Vivekananda Budamagunta
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Daohong Zhou
- Department of Biochemistry & Structural Biology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.
| |
Collapse
|
21
|
Wang H, Chi L, Yu F, Dai H, Gao C, Si X, Wang Z, Liu L, Zheng J, Shan L, Liu H, Zhang Q. Annual review of KRAS inhibitors in 2022. Eur J Med Chem 2023; 249:115124. [PMID: 36680986 DOI: 10.1016/j.ejmech.2023.115124] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/17/2023]
Abstract
Kirsten rat sarcoma viral (KRAS) oncogene is the most commonly mutated isoform of RAS, accounting for 85% of RAS-driven human cancers. KRAS functioning as a signaling hub participates in multiple cellular signaling pathways and regulates a variety of critical processes such as cell proliferation, differentiation, growth, metabolism and migration. Over the past decades, KRAS oncoprotein has been considered as an "undruggable" target due to its smooth surface and high GTP/GDP affinity. The breakthrough in directly targeting G12C mutated-KRAS and recently approved covalent KRASG12C inhibitors sotorasib and adagrasib broke the myth of KRAS undruggable and confirmed the directly targeting KRAS as one of the most promising strategies for the treatment of cancers. Targeting KRASG12C successfully enriched the understanding of KRAS and brought opportunities for the development of inhibitors to directly target other KRAS mutations. With the stage now set for a new era in the treatment of KRAS-driven cancers, the development of KRAS inhibitors also enters a booming epoch. In this review, we overviewed the research progress of KRAS inhibitors with the potential to treat cancers covering articles published in 2022. The design strategies, discovery processes, structure-activity relationship (SAR) studies, cocrystal structure analysis as well as in vitro and in vivo activity were highlighted with the aim of providing updated sight to accelerate the further development of more potent inhibitors targeting various mutated-KRAS with favorable drug-like properties.
Collapse
Affiliation(s)
- Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Lingling Chi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Fuqiang Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Honglin Dai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Chao Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Xiaojie Si
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Zhengjie Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Limin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Jiaxin Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Lihong Shan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450052, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China.
| | - Qiurong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China.
| |
Collapse
|
22
|
Eliminating oncogenic RAS: back to the future at the drawing board. Biochem Soc Trans 2023; 51:447-456. [PMID: 36688434 PMCID: PMC9987992 DOI: 10.1042/bst20221343] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/24/2023]
Abstract
RAS drug development has made enormous strides in the past ten years, with the first direct KRAS inhibitor being approved in 2021. However, despite the clinical success of covalent KRAS-G12C inhibitors, we are immediately confronted with resistances as commonly found with targeted drugs. Previously believed to be undruggable due to its lack of obvious druggable pockets, a couple of new approaches to hit this much feared oncogene have now been carved out. We here concisely review these approaches to directly target four druggable sites of RAS from various angles. Our analysis focuses on the lessons learnt during the development of allele-specific covalent and non-covalent RAS inhibitors, the potential of macromolecular binders to facilitate the discovery and validation of targetable sites on RAS and finally an outlook on a future that may engage more small molecule binders to become drugs. We foresee that the latter could happen mainly in two ways: First, non-covalent small molecule inhibitors may be derived from the development of covalent binders. Second, reversible small molecule binders could be utilized for novel targeting modalities, such as degraders of RAS. Provided that degraders eliminate RAS by recruiting differentially expressed E3-ligases, this approach could enable unprecedented tissue- or developmental stage-specific destruction of RAS with potential advantages for on-target toxicity. We conclude that novel creative ideas continue to be important to exterminate RAS in cancer and other RAS pathway-driven diseases, such as RASopathies.
Collapse
|
23
|
Li D, Yu D, Li Y, Yang R. A bibliometric analysis of PROTAC from 2001 to 2021. Eur J Med Chem 2022; 244:114838. [DOI: 10.1016/j.ejmech.2022.114838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022]
|
24
|
Sun Z, Deng B, Yang Z, Mai R, Huang J, Ma Z, Chen T, Chen J. Discovery of pomalidomide-based PROTACs for selective degradation of histone deacetylase 8. Eur J Med Chem 2022; 239:114544. [PMID: 35759908 DOI: 10.1016/j.ejmech.2022.114544] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
Abstract
Overexpression of histone deacetylase 8 (HDAC8) is associated with various diseases such as cancer. Thus, compounds that can modulate HDAC8 levels have therapeutic potential for these diseases. Based on the proteolysis targeting chimera (PROTAC) strategy, we designed and synthesized a series of HDAC8 degraders by tethering an HDAC6/8 dual inhibitor with pomalidomide (a cereblon ligand). Among them, compound ZQ-23 exhibited significant and selective degradation of HDAC8 with DC50 of 147 nM and Dmax of 93%, and exhibited no effects on HDAC1 and HDAC3. Interestingly, we found that the degradation of target protein started at ∼2 h after treatment with ZQ-23 and the maximal degradation effect was achieved at 10 h. The HDAC8 level was partially recovered within 24 h. In addition, ZQ-23 had no degrading effects on HDAC1 and HDAC3 at all concentrations, but could dose-dependently increase the levels of acetylated SMC-3 (HDAC8 substrate). Mechanism study demonstrated that ZQ-23 degraded HDAC8 through the ubiquitin-protease pathway, rather than lysosome system. Collectively, these results suggest that ZQ-23 represents a novel PROTAC-based HDAC8 degrader worthy of further investigation.
Collapse
Affiliation(s)
- Zhiqiang Sun
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Bulian Deng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Zichao Yang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Ruiyao Mai
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Junli Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Zeli Ma
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ting Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China; Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
25
|
He M, Cao C, Ni Z, Liu Y, Song P, Hao S, He Y, Sun X, Rao Y. PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduct Target Ther 2022; 7:181. [PMID: 35680848 PMCID: PMC9178337 DOI: 10.1038/s41392-022-00999-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
PROteolysis TArgeting Chimeras (PROTACs) technology is a new protein-degradation strategy that has emerged in recent years. It uses bifunctional small molecules to induce the ubiquitination and degradation of target proteins through the ubiquitin-proteasome system. PROTACs can not only be used as potential clinical treatments for diseases such as cancer, immune disorders, viral infections, and neurodegenerative diseases, but also provide unique chemical knockdown tools for biological research in a catalytic, reversible, and rapid manner. In 2019, our group published a review article "PROTACs: great opportunities for academia and industry" in the journal, summarizing the representative compounds of PROTACs reported before the end of 2019. In the past 2 years, the entire field of protein degradation has experienced rapid development, including not only a large increase in the number of research papers on protein-degradation technology but also a rapid increase in the number of small-molecule degraders that have entered the clinical and will enter the clinical stage. In addition to PROTAC and molecular glue technology, other new degradation technologies are also developing rapidly. In this article, we mainly summarize and review the representative PROTACs of related targets published in 2020-2021 to present to researchers the exciting developments in the field of protein degradation. The problems that need to be solved in this field will also be briefly introduced.
Collapse
Affiliation(s)
- Ming He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Chaoguo Cao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, P. R. China
| | - Zhihao Ni
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yongbo Liu
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Peilu Song
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Shuang Hao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yuna He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Xiuyun Sun
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yu Rao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China.
- School of Pharmaceutical Sciences, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
26
|
Wu Y, Zhang J, Zhu X, Zhang Y. Developing PROteolysis TArgeting Chimeras (PROTACs) for hematologic malignancies. Cancer Lett 2022; 544:215808. [DOI: 10.1016/j.canlet.2022.215808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022]
|