1
|
Han ML, Ma QY, Yang L, Xie QY, Guo JC, Dai HF, Xiao N, Zhao YX. Chemical composition of the endogenous fungus Fusarium sp. L-3 derived from Chinese Qinan agarwood. Nat Prod Res 2025:1-8. [PMID: 40424575 DOI: 10.1080/14786419.2025.2508834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/29/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025]
Abstract
One undescribed compound named fusagarone A (1) and ten secondary metabolites (2-11) were isolated from the endophytic fungus Fusarium sp. L-3 derived from Chinese agarwood 'Qi-Nan'. The structure of 1 was elucidated by NMR spectroscopy as well as HRESIMS data. All compounds were measured for anti-inflammatory, cytotoxicity activity and α-glucosidase inhibitory activities. Among them, compound 11 potently suppressed nitric oxide (NO) production on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages with IC50 value of 4.78 μM. Moreover, compound 11 exhibited potent inhibitory effect on α-glucosidase with IC50 value of 42.88 μM, which was further clarified by means of the enzyme kinetic analysis and molecular docking simulations.
Collapse
Affiliation(s)
- Ming-Li Han
- College of Agriculture, Shandong Agricultural University, Taian, China
- National Key Laboratory for Tropical Crop Breeding & Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, China
| | - Qing-Yun Ma
- National Key Laboratory for Tropical Crop Breeding & Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, China
| | - Li Yang
- National Key Laboratory for Tropical Crop Breeding & Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, China
| | - Qing-Yi Xie
- National Key Laboratory for Tropical Crop Breeding & Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, China
| | - Jiao-Cen Guo
- National Key Laboratory for Tropical Crop Breeding & Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, China
| | - Hao-Fu Dai
- National Key Laboratory for Tropical Crop Breeding & Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, China
| | - Na Xiao
- College of Agriculture, Shandong Agricultural University, Taian, China
| | - You-Xing Zhao
- National Key Laboratory for Tropical Crop Breeding & Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, China
| |
Collapse
|
2
|
Gao Y, Chen J, Liu J, Huang Z, Peng X, Li W, Qin C, Ruan H. Incartrilactones A and B: Two schinortriterpenoids with a 14,15-seco-15,17-cyclolancifoartane skeleton from Schisandra incarnata. PHYTOCHEMISTRY 2025; 231:114342. [PMID: 39613276 DOI: 10.1016/j.phytochem.2024.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
In this study, incartrilactones A (1) and B (2), two previously undescribed schinortriterpenoids (SNTs) possessing an unprecedented 5/5/6/5/7/5-fused hexacyclic skeleton, together with one previously undescribed (3) and one known (4) analogues, were isolated from the stems of Schisandra incarnata Stapf. Their structures with absolute configurations were determined by comprehensive spectroscopic analysis, X-ray crystallography and electronic circular dichroism calculation. Compounds 1 and 2 represent the first class of 14,15-seco-15,17-cyclolancifoartane-type SNTs containing the unusual linkage of ‒C14‒C16‒C13‒C17‒C15. The hypothetical biogenetic pathway of compounds 1 and 2 was postulated. Compounds 1 and 2 exhibited potent α-glucosidase inhibitory activity with IC50 values of 133.1 and 165.3 μM, representing that they were more active than the positive control, acarbose (IC50 = 232.8 μM). Compound 4 showed moderate in vitro immunosuppressive effect against ConA-induced T cell and LPS-induced B cell proliferation, with IC50 values of 35.3 ± 0.9 μM and 24.9 ± 0.6 μM, respectively. The cytotoxicity of compounds 1-4 against three human cancer cell lines was also tested, with no obvious cytotoxicity being observed.
Collapse
Affiliation(s)
- Ying Gao
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan, 430030, China; Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, China
| | - Juan Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan, 430030, China
| | - Junjun Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan, 430030, China
| | - Zijian Huang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan, 430030, China
| | - Xiaogang Peng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan, 430030, China
| | - Wanpeng Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan, 430030, China
| | - Chunlun Qin
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan, 430030, China
| | - Hanli Ruan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan, 430030, China.
| |
Collapse
|
3
|
Guo J, Yang L, Dai L, Ma Q, Yan J, Xie Q, Wu Y, Dai H, Zhao Y. Neuroprotective and antidiabetic lanostane-type triterpenoids from the fruiting bodies of Ganoderma theaecolum. Chin J Nat Med 2025; 23:245-256. [PMID: 39986700 DOI: 10.1016/s1875-5364(25)60828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 02/24/2025]
Abstract
Eight previously undescribed lanostane triterpenoids, including five nortriterpenoids with 26 carbons, ganothenoids A-E (1-5), and three lanostanoids, ganothenoids F-H (6-8), along with 24 known ones (9-32), were isolated from the fruiting bodies of Ganodrma theaecolum. The structures of the novel compounds were elucidated using comprehensive spectroscopic methods, including electronic circular dichroism (ECD) and nuclear magnetic resonance (NMR) calculations. Compounds 1-32 were assessed for their neuroprotective effects against H2O2-induced damage in human neuroblastoma SH-SY5Y cells, as well as their inhibitory activities against protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase. Compound 4 demonstrated the most potent neuroprotective activity against H2O2-induced oxidative stress by suppressing G0/G1 phase cell cycle arrest, reducing reactive oxygen species (ROS) levels, and inhibiting cell apoptosis through modulation of B-cell lymphoma 2 protein (Bcl-2) and Bcl-2 associated X-protein (Bax) protein expression. Compounds 26, 12, and 28 exhibited PTP1B inhibitory activities with IC50 values ranging from 13.92 to 56.94 μmol·L-1, while compound 12 alone displayed significant inhibitory effects on α-glucosidase with an IC50 value of 43.56 μmol·L-1. Additionally, enzyme kinetic analyses and molecular docking simulations were conducted for compounds 26 and 12 with PTP1B and α-glucosidase, respectively.
Collapse
Affiliation(s)
- Jiaocen Guo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Li Yang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Luting Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Qingyun Ma
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jiaoyang Yan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Qingyi Xie
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yougen Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China.
| | - Haofu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Youxing Zhao
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
4
|
Yuan WN, Jin LX, Luo SJ, Yuan MW, Cai ZN, Qin HB. Concise total synthesis of (±)-applanatumol Y. Org Biomol Chem 2025; 23:814-816. [PMID: 39661008 DOI: 10.1039/d4ob01763c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Total synthesis of (±)-applanatumol Y was achieved in 5 steps, featuring a cascade annulation including Michael addition, aldol condensation, and oxy-Michael addition reactions, all promoted by DBU. This approach offers a streamlined and cost-effective route for constructing complex tricyclic frameworks under mild and metal-free conditions.
Collapse
Affiliation(s)
- Wan-Ning Yuan
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China.
| | - Ling-Xin Jin
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China.
| | - Song-Juan Luo
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China.
| | - Ming-Wei Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650504, China
| | - Zhao-Nan Cai
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China.
| | - Hong-Bo Qin
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China.
| |
Collapse
|
5
|
Fei Z, Xu Y, Zhang G, Liu Y, Li H, Chen L. Natural products with potential hypoglycemic activity in T2DM: 2019-2023. PHYTOCHEMISTRY 2024; 223:114130. [PMID: 38714289 DOI: 10.1016/j.phytochem.2024.114130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
As currently the most common metabolic disease, type 2 diabetes mellitus (T2DM) has shown a continuous increase in the number of patients in recent decades. Most anti-T2DM drugs tend to cause some side effects. Given the pathogenesis of T2DM, natural products have emerged as an important source of anti-T2DM drugs. This article reviews natural products with potential hypoglycemic activity from 2019 to 2023. A total of 200 previously natural products were discovered on SciFinder, PubMed and Web of Science. These products were categorized based on their structural frameworks and their biological activities were summarized. Although the mechanisms of action of most compounds are unclear, these compounds could still serve as candidates for the development of lead compounds. Therefore, further structure and activity research of natural products will significantly contribute to the development of potential anti-T2DM drugs.
Collapse
Affiliation(s)
- Zhang Fei
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Guoyu Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
6
|
Zhang JJ, Qin FY, Cheng YX. Insights into Ganoderma fungi meroterpenoids opening a new era of racemic natural products in mushrooms. Med Res Rev 2024; 44:1221-1266. [PMID: 38204140 DOI: 10.1002/med.22006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
Ganoderma meroterpenoids (GMs) containing 688 structures to date were discovered to have multiple remarkable biological activities. 65.6% of meroterpenoids featuring stereogenic centers from Ganoderma species are racemates. Further, GMs from different Ganoderma species seem to have their own characteristics. In this review, a comprehensive summarization of GMs since 2000 is presented, including GM structures, structure corrections, biological activities, physicochemical properties, total synthesis, and proposed biosynthetic pathways. Additionally, we especially discuss the racemic nature, species-related structural distribution, and structure-activity relationship of GMs, which will provide a likely in-house database and shed light on future studies on GMs.
Collapse
Affiliation(s)
- Jiao-Jiao Zhang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Fu-Ying Qin
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Liu YY, Cai D, Tang XP, Cheng YX. Ganoderma lucidum-Derived Meroterpenoids Show Anti-Inflammatory Activity In Vitro. Molecules 2024; 29:1149. [PMID: 38474661 PMCID: PMC10935275 DOI: 10.3390/molecules29051149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Ganoderma lucidum, known as the "herb of spiritual potency", is used for the treatment and prevention of various diseases, but the responsible constituents for its therapeutic effects are largely unknown. For the purpose of obtaining insight into the chemical and biological profiling of meroterpenoids in G. lucidum, various chromatographic approaches were utilized for the title fungus. As a result, six undescribed meroterpenoids, chizhienes A-F (1-6), containing two pairs of enantiomers (4 and 5), were isolated. Their structures were identified using spectroscopic and computational methods. In addition, the anti-inflammatory activities of all the isolates were evaluated by Western blot analysis in LPS-induced macrophage cells (RAW264.7), showing that 1 and 3 could dose dependently inhibit iNOS but not COX-2 expression. Further, 1 and 3 were found to inhibit nitric oxide (NO) production using the Greiss reagent test. The current study will aid in enriching the structural and biological diversity of Ganoderma-derived meroterpenoids.
Collapse
Affiliation(s)
- Yun-Yun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Dan Cai
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xin-Ping Tang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yong-Xian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
8
|
Yang L, Dong GH, Ma QY, Xie QY, Guo JC, Lu JJ, Wu YG, Dai HF, Zhao YX. Lanostane triterpenoids from the fruiting bodies of Ganoderma amboinense. PHYTOCHEMISTRY 2024; 218:113952. [PMID: 38096963 DOI: 10.1016/j.phytochem.2023.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Lanostane-type triterpenoids are the main characteristic constituents in Ganoderma mushrooms. Phytochemical analysis on the ethanol extract of the fruiting bodies of Ganoderma amboinense led to isolation and identification of twelve previously undescribed lanostane triterpenoids (1-12). Their chemical structures were determined by HR-ESI-MS, IR, and NMR spectroscopic analysis, NMR calculation, as well as X-ray crystallography. All isolates were evaluated for the α-glucosidase inhibitory and anti-inflammatory activities. Compounds 1, 5, 6, and 11 showed significant α-glucosidase inhibitory activity with IC50 values ranging from 33.5 μM to 96.0 μM. Moreover, compound 12 showed anti-inflammatory activity with IC50 value of 21.7 ± 2.1 μM.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Guan-Hai Dong
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Qing-Yun Ma
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Qing-Yi Xie
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jiao-Cen Guo
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jia-Ju Lu
- Guizhou Institute of Subtropical Crops, Xingyi, Guizhou, 562400, China
| | - You-Gen Wu
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China.
| | - Hao-Fu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - You-Xing Zhao
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
9
|
Wongkhieo S, Tangmesupphaisan W, Siriwaseree J, Aramsirirujiwet Y, Wiriyajitsomboon P, Kaewgrajang T, Pumloifa S, Paemanee A, Kuaprasert B, Choowongkomon K, Chester AH, Swainson NM. In vitro cholesterol lowering activity of Ganoderma australe mycelia based on mass spectrometry, synchrotron Fourier-transform infrared analysis and liver-spheroid bioactivity. Sci Rep 2023; 13:13619. [PMID: 37604902 PMCID: PMC10442327 DOI: 10.1038/s41598-023-40861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
Mycelia were cultivated from a Thai wild mushroom identified as Ganoderma australe based on polymerase chain reaction (PCR) and morphological analyses. The mycelial extracts were examined for their active ingredients using a liquid chromatography-tandem mass spectrometry (LC‒MS/MS) method. This revealed the presence of lovastatin and tentative compounds including p-coumaric, nicotinamide, gamma-aminobutyric acid, choline, nucleosides, amino acids, and saccharides. The extracts had an inhibitory effect on the activity of HMG-CoA reductase in a concentration-dependent manner. At 2.5 mg/mL, the G. australe extracts did not interfere with the viability of HepG2 spheroids, but their biochemical composition was altered as determined by Fourier-transform infrared (FTIR) spectroscopy. The lipid profile of the spheroids treated with the mycelial extract was distinct from that of the control and the 5 µM lovastatin treatment, corresponding with the production of cholesterol by the spheroids. The mycelia of G. australe increased the percentage of high-density lipoprotein (HDL) production to 71.35 ± 2.74%, compared to the control and lovastatin-treated spheroids (33.26 ± 3.15% and 32.13 ± 3.24%, respectively). This study revealed the superior effect of natural compound mixtures to pure lovastatin, and the potential use of Thailand's wild G. australe as a functional food to prevent or alleviate hypercholesterolemia.
Collapse
Affiliation(s)
- Sudthirak Wongkhieo
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | | | - Jeeraprapa Siriwaseree
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Yaovapa Aramsirirujiwet
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | | | - Tharnrat Kaewgrajang
- Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan Rd, Lat Yao, Chatuchak, Bangkok, 10900, Thailand
| | - Saifa Pumloifa
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Atchara Paemanee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Buabarn Kuaprasert
- Research Facility Department, Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Adrian H Chester
- Heart Science Centre, Magdi Yacoub Institute, Harefield, UK
- National Heart and Lung Institute (NHLI), Imperial College London, London, UK
| | - Napachanok M Swainson
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
10
|
Peng XR, Unsicker SB, Gershenzon J, Qiu MH. Structural diversity, hypothetical biosynthesis, chemical synthesis, and biological activity of Ganoderma meroterpenoids. Nat Prod Rep 2023; 40:1354-1392. [PMID: 37051770 DOI: 10.1039/d3np00006k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Covering: 2018 to 2022Meroterpenoids found in fungal species of the genus Ganoderma and known as Ganoderma meroterpenoids (GMs) are substances composed of a 1,2,4-trisubstituted benzene and a polyunsaturated side chain. These substances have attracted the attention of chemists and pharmacologists due to their diverse structures and significant bioactivity. In this review, we present the structures and possible biosynthesis of representative GMs newly found from 2018 to 2022, as well as chemical synthesis and biological activity of some interesting GMs. We propose for the first time a plausible biosynthetic pathway for GMs, which will certainly motivate further research on the biosynthetic pathway in Ganoderma species, as well as on chemical synthesis of GMs as important bioactive compounds for the purpose of drug development.
Collapse
Affiliation(s)
- Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Sybille B Unsicker
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|
11
|
Saeedi M, Hariri R, Iraji A, Ahmadi A, Mojtabavi S, Golshani S, Faramarzi MA, Akbarzadeh T. Novel N'-substituted benzylidene benzohydrazides linked to 1,2,3-triazoles: potent α-glucosidase inhibitors. Sci Rep 2023; 13:8960. [PMID: 37268722 DOI: 10.1038/s41598-023-36046-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 05/28/2023] [Indexed: 06/04/2023] Open
Abstract
Herein, various N'-substituted benzylidene benzohydrazide-1,2,3-triazoles were designed, synthesized, and screened for their inhibitory activity toward α-glucosidase. The structure of derivatives was confirmed using 1H- and 13C-NMR, FTIR, Mass spectrometry, and elemental analysis. All derivatives exhibited good inhibition with IC50 values in the range of 0.01 to 648.90 µM, compared with acarbose as the positive control (IC50 = 752.10 µM). Among them, compounds 7a and 7h showed significant potency with IC50 values of 0.02 and 0.01 µM, respectively. The kinetic study revealed that they are noncompetitive inhibitors toward α-glucosidase. Also, fluorescence quenching was used to investigate the interaction of three inhibitors 7a, 7d, and 7h, with α-glucosidase. Accordingly, the binding constants, the number of binding sites, and values of thermodynamic parameters were determined for the interaction of candidate compounds toward the enzyme. Finally, the in silico cavity detection plus molecular docking was performed to find the allosteric site and key interactions between synthesized compounds and the target enzyme.
Collapse
Affiliation(s)
- Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roshanak Hariri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Ahmadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran
| | - Shiva Golshani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran
| | - Tahmineh Akbarzadeh
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Ekiz E, Oz E, Abd El-Aty AM, Proestos C, Brennan C, Zeng M, Tomasevic I, Elobeid T, Çadırcı K, Bayrak M, Oz F. Exploring the Potential Medicinal Benefits of Ganoderma lucidum: From Metabolic Disorders to Coronavirus Infections. Foods 2023; 12:1512. [PMID: 37048331 PMCID: PMC10094145 DOI: 10.3390/foods12071512] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Ganoderma lucidum is a medicinal mushroom that has been traditionally used in Chinese medicine for centuries. It has been found to have a wide range of medicinal properties, including antioxidant, anti-inflammatory, and immune-boosting effects. Recent research has focused on the potential benefits of G. lucidum in treating metabolic disorders such as diabetes and obesity, as well as its possible role in preventing and treating infections caused by the coronavirus. Triterpenoids are a major group of bioactive compounds found in G. lucidum, and they have a range of biological activities, including anti-inflammatory and antioxidant properties. These compounds have been found to improve insulin sensitivity and lower blood sugar levels in animal models of diabetes. Additionally, G. lucidum polysaccharides have been found to reduce bodyweight and improve glucose metabolism in animal models of obesity. These polysaccharides can also help to increase the activity of certain white blood cells, which play a critical role in the body's immune response. For coronavirus, some in vitro studies have shown that G. lucidum polysaccharides and triterpenoids have the potential to inhibit coronavirus infection; however, these results have not been validated through clinical trials. Therefore, it would be premature to draw any definitive conclusions about the effectiveness of G. lucidum in preventing or treating coronavirus infections in humans.
Collapse
Affiliation(s)
- Elif Ekiz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum 25240, Türkiye
| | - Emel Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum 25240, Türkiye
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Türkiye
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens Zografou, 15784 Athens, Greece
| | - Charles Brennan
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Riddet Institute, Palmerston North 4442, New Zealand
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, 11000 Belgrade, Serbia
- The German Institute of Food Technologies (DIL) Professor-von-Klitzing-Straße 7, 49610 Quakenbrück, Germany
| | - Tahra Elobeid
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Kenan Çadırcı
- Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Health Sciences University, Erzurum 25240, Türkiye
| | - Muharrem Bayrak
- Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Health Sciences University, Erzurum 25240, Türkiye
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum 25240, Türkiye
| |
Collapse
|
13
|
Sułkowska-Ziaja K, Galanty A, Szewczyk A, Paśko P, Kała K, Apola A, Podolak I, Muszyńska B. Effect of Methyl Jasmonate Elicitation on Triterpene Production and Evaluation of Cytotoxic Activity of Mycelial Culture Extracts of Ganoderma applanatum (Pers.) Pat. PLANTS (BASEL, SWITZERLAND) 2023; 12:294. [PMID: 36679006 PMCID: PMC9867392 DOI: 10.3390/plants12020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Abiotic elicitation, a well-known strategy in mushroom biotechnology, promotes increased accumulation of secondary metabolites in mycelial cultures. The study aimed the effects of methyl jasmonate (MeJA) on the production of triterpenes in submerged cultures of Ganoderma applanatum. Further, the study evaluated the cytotoxic activity of the extract corresponding to the optimal elicitation variant in selected human cancer cell lines as well as the selectivity against normal cells. MeJA was added on days 1, 4, 6, and 8 in the 10-day growth cycle at concentrations of 10, 50, 100, 150, and 200 µM MeJA. The HPLC-DAD was used to analyze the triterpenes. The cytotoxic activity was tested using the MTTFc assay in grouped panels of skin, prostate, and gastrointestinal cancer cells. The results of the quantitative analyses confirmed the stimulating effect of MeJA on the production of ganoderic acid A and ganoderic acid C. The greatest increase in total triterpenes was found on day 6 of the culture cycle compared to the control group-with the concentration of MeJA-150 µM. Compared to the control samples, mycelial culture extract after the most productive elicitation variant showed significant cytotoxic activity against prostate cancer cells and moderate effects on melanoma cells. Ganoderma applanatum mycelial cultures can be proposed as a model to study the dynamics of the accumulation of compounds with therapeutic values through abiotic elicitation.
Collapse
Affiliation(s)
- Katarzyna Sułkowska-Ziaja
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Szewczyk
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Katarzyna Kała
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Apola
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Irma Podolak
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
14
|
Lanostane Triterpenoids and Ergostane Steroids from Ganoderma luteomarginatum and Their Cytotoxicity. Molecules 2022; 27:molecules27206989. [PMID: 36296582 PMCID: PMC9611895 DOI: 10.3390/molecules27206989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022] Open
Abstract
Macrofungus Ganoderma luteomarginatum is one of the main species of Ganoderma fungi distributed in Hainan province of China, the fruiting bodies of which have been widely used in folk as a healthy food to prevent tumors. To explore the potential cytotoxic constituents from G. luteomarginatum, the phytochemical investigation on the ethyl acetate soluble fraction of 95% ethanolic extract from the fruiting bodies of this fungus led to the isolation of twenty-six lanostane triterpenoids (1–26), including three undescribed ones (1–3), together with eight ergostane steroids (27–34). The structures of three new lanostane triterpenoids were elucidated as lanosta-7,9(11)-dien-3β-acetyloxy-24,25-diol (1), lanosta-7,9(11)-dien-3-oxo-24,26-diol-25-methoxy (2), and lanosta-8,20(22)-dien-3,11,23-trioxo-7β,15β-diol-26-oic acid methyl ester (3) by the analysis of 1D, 2D NMR, and HRESIMS spectroscopic data. All isolates were assayed for their cytotoxic activities using three human cancer cell lines (K562, BEL-7402, and SGC-7901) and seven lanostane triterpenoids (1, 2, 7, 13, 18, 22, and 24), and one ergostane steroid (34) showed definite cytotoxicity with IC50 values that ranged from 6.64 to 47.63 μg/mL. Among these cytotoxic lanostane triterpenoids, compounds 2 and 13 showed general cytotoxicity against three human cancer cell lines, while compounds 1 and 18 exhibited significant selective cytotoxicity against K562 cells with IC50 values of 8.59 and 8.82 μg/mL, respectively. Furthermore, the preliminary structure–cytotoxicity relationships was proposed.
Collapse
|
15
|
Zheng M, Pi X, Li H, Cheng S, Su Y, Zhang Y, Man C, Jiang Y. Ganoderma spp. polysaccharides are potential prebiotics: a review. Crit Rev Food Sci Nutr 2022; 64:909-927. [PMID: 35980144 DOI: 10.1080/10408398.2022.2110035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The gut microbiota (GM) is a complex ecosystem that is closely linked to host health. Ganoderma spp. polysaccharides (GPs), a major bioactive component of the fungal genus Ganoderma, can modulate the GM, exhibiting various health effects and prebiotic potential. This review comprehensively concluded the structural features and extraction method of GPs. The mechanism of GPs for anti-obesity, anti-diabetes, anti-inflammatory, and anti-cancer were further evaluated. The simulated gastrointestinal digestion of GPs and the utilization mechanism of host microorganisms were discussed. It was found that the physicochemical properties and biological activities of GPs depend on their structural characteristics (molecular weight, monosaccharide composition, glycosidic bonds, etc.). Their extraction method also affects the structure and bioactivities of polysaccharides. GPs supplementation could increase the relative abundance of beneficial bacteria (e.g. Bacteroides, Parabacteroides, Akkermansia, and Bifidobacterium), while reducing that of pathogenic bacteria (e.g. Aerococcus, Ruminococcus), thus promoting health. Moreover, GPs are resistant to digestion in the stomach and small intestine but are digested in the large intestine. Therefore, GPs can be considered as potential prebiotics. However, further studies should investigate how GPs as prebiotics regulate GM and improve host health.
Collapse
Affiliation(s)
- Miao Zheng
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaowen Pi
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Hongxuan Li
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Shasha Cheng
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yue Su
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yu Zhang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chaoxin Man
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Lab of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
16
|
Zhou L, Akbar S, Wang MX, Chen HP, Liu JK. Tetra-, penta-, and hexa-nor-lanostane triterpenes from the medicinal fungus Ganoderma australe. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:32. [PMID: 35970939 PMCID: PMC9378796 DOI: 10.1007/s13659-022-00356-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Chemical investigation on the medicinal fungus Ganoderma australe led to the identification of ten new nor-lanostane triterpenes, namely two hexa-nor ones, ganoaustratetraenones A (1) and B (2), five penta-nor ones, ganoaustraldehydes A-E (3-7), and three tetra-nor ones ganoaustrenoic acids A-C (8-10). The chemical structures along with the absolute configurations were determined by extensive spectroscopic analysis of 1D & 2D NMR and HRESIMS data. The postulated biosynthesis pathways of these compounds were proposed. Ganoaustraldehydes A (3) and B (4) showed moderate inhibition against nitric oxide production in RAW264.7 macrophage cells with the respective IC50 values of 32.5, 34.2 µM (the IC50 of positive control pyrrolidine dithiocarbamate was 20.0 µM).
Collapse
Affiliation(s)
- Lin Zhou
- School of Pharmaceutical Sciences, South-Central Minzu University, 430074, Wuhan, China
| | - Subiy Akbar
- School of Pharmaceutical Sciences, South-Central Minzu University, 430074, Wuhan, China
| | - Meng-Xi Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, 430074, Wuhan, China
| | - He-Ping Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, 430074, Wuhan, China.
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, 430074, Wuhan, China.
| |
Collapse
|
17
|
Yang L, Kong DX, Xiao N, Ma QY, Xie QY, Guo JC, Ying Deng C, Ma HX, Hua Y, Dai HF, Zhao YX. Antidiabetic lanostane triterpenoids from the fruiting bodies of Ganoderma weberianum. Bioorg Chem 2022; 127:106025. [PMID: 35868103 DOI: 10.1016/j.bioorg.2022.106025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 12/17/2022]
Abstract
Eight previously undescribed lanostane triterpenoids, ganodeweberiols A ∼ H (1-8), together with eighteen known compounds (9-26), were isolated from the fruiting bodies of Ganoderma weberianum. The structures and absolute configurations of the new compounds were determined by extensive spectroscopic analysis, as well as NMR chemical shifts and electronic circular dichroism (ECD) calculations. Compounds 2, 7, 12, and 14 showed significant α-glucosidase inhibitory activity with IC50 values ranging from 35.3 μM ∼ 223.4 μM compared to the positive control acarbose (IC50, 304.6 μM). Kinetic study indicated that the most potent compound 12 was a mixed type inhibitor for α-glucosidase. Molecular docking simulation revealed the interactions of 12 with α-glucosidase. Additionally, Compounds 3 and 6 inhibited glucagon-induced hepatic glucose production in HepG2 cells with EC50 values of 42.0 and 85.9 μM, respectively. Further study revealed that compounds 3 and 6 inhibited hepatic glucose production by suppression glucagon-induced cAMP accumulation. Moreover, compounds 3 and 26 were active against HeLa cell line with IC50 values of 17.0 and 6.8 μM, respectively.
Collapse
Affiliation(s)
- Li Yang
- Hainan Academy of Tropical Agricultural Resource, Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China
| | - De-Xian Kong
- Hainan Academy of Tropical Agricultural Resource, Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Na Xiao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agriculture University, Tai'an, Shandong 271018, China
| | - Qing-Yun Ma
- Hainan Academy of Tropical Agricultural Resource, Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China
| | - Qing-Yi Xie
- Hainan Academy of Tropical Agricultural Resource, Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China
| | - Jiao-Cen Guo
- Hainan Academy of Tropical Agricultural Resource, Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China
| | - Chun Ying Deng
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang 550009, China
| | - Hai-Xia Ma
- Hainan Academy of Tropical Agricultural Resource, Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China
| | - Yan Hua
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Hao-Fu Dai
- Hainan Academy of Tropical Agricultural Resource, Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China.
| | - You-Xing Zhao
- Hainan Academy of Tropical Agricultural Resource, Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China.
| |
Collapse
|
18
|
Zhou L, Guo LL, Isaka M, Li ZH, Chen HP. [20(22) E]-Lanostane Triterpenes from the Fungus Ganoderma australe. J Fungi (Basel) 2022; 8:503. [PMID: 35628758 PMCID: PMC9145439 DOI: 10.3390/jof8050503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/15/2022] Open
Abstract
Twelve new lanostane triterpenoids (1-5, 7-13) were isolated from the fruiting bodies of the fungus Ganoderma australe. The structures of the new compounds were elucidated by extensive 1D and 2D NMR, and HRESIMS spectroscopic analysis. All the triterpenes are featured by 20(22)E configurations which are uncommon in the Ganoderma triterpene family. The absolute configuration of the C-25 of compounds 1, 2, and 6 were determined by the phenylglycine methyl ester (PGME) method. A postulated biosynthetic pathway for compound 1 was discussed. This study opens new insights into the secondary metabolites of the chemically underinvestigated fungus G. australe.
Collapse
Affiliation(s)
- Lin Zhou
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (L.Z.); (L.-L.G.)
| | - Li-Li Guo
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (L.Z.); (L.-L.G.)
| | - Masahiko Isaka
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand;
| | - Zheng-Hui Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (L.Z.); (L.-L.G.)
| | - He-Ping Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (L.Z.); (L.-L.G.)
| |
Collapse
|
19
|
Kong DX, Ma QY, Yang L, Xie QY, Deng CY, Dai HF, Hua Y, Zhao YX. Two lanostane triterpenoids with α-glucosidase inhibitory activity from the fruiting bodies of Ganoderma weberianum. Nat Prod Res 2022:1-7. [PMID: 35289692 DOI: 10.1080/14786419.2022.2050911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A new oxygenated lanostane-type triterpenoid, 20S,24S-epoxy-lanosta-7,9(11)-dien-3β,15α,25R,26-tetraol (1), together with three known compounds (2-4) were isolated from the fruiting bodies of Ganoderma weberianum. Extensive NMR spectrometry and HRESIMS analysis, as well as NMR and ECD calculations elucidated the structure of the new compound. 27-nor-3β-hydroxylanosta-7,9(11),23E-trien-25-one (2) showed superior α-glucosidase inhibitory activity with IC50 value of 122.1 μM to that of positive control acarbose (304.6 μM).
Collapse
Affiliation(s)
- De Xian Kong
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, PR China
| | - Qing Yun Ma
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, PR China
| | - Li Yang
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, PR China
| | - Qing Yi Xie
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, PR China.,Hainan Institute for Tropical Agricultural Resources, CATAS, Haikou, PR China
| | - Chun Ying Deng
- Guizhou institute of biology, Guizhou Academy of Sciences, Guiyang, PR China
| | - Hao Fu Dai
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, PR China
| | - Yan Hua
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, PR China
| | - You Xing Zhao
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, PR China
| |
Collapse
|