1
|
Che YH, Wang JF, Shi XF, Ding WP, Xiao ZH, Wu JM, Wang FZ, Zhang S. 8 R-methoxy-9 R-hydroxyl-fumitremorgin C, a new diketopiperazine alkaloid from Haima cold seep-derived fungus Aspergillus fumigatus CYH-5. Nat Prod Res 2025; 39:2197-2202. [PMID: 38099373 DOI: 10.1080/14786419.2023.2294483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 04/09/2025]
Abstract
One novel diketopiperazine derivative 8R-methoxy-9R-hydroxyl-fumitremorgin C (1), together with twelve known compounds, was separated from the fungus Aspergillus fumigatus CYH-5 collected from Haima cold seep. The structures of the compounds were identified by NMR, MS, optical rotation, hydrolysis reaction and comparing with literatures. Among them, compounds 10 and 11 exhibited inhibitory effect against bacteria. Compound 11 showed inhibitory activity on α-glucosidase and compound 8 displayed acetylcholinesterase (AchE) inhibitory activity.
Collapse
Affiliation(s)
- Yi-Hao Che
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Feng Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xue-Feng Shi
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Wen-Ping Ding
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Zhi-Hui Xiao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jia-Min Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fa-Zuo Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
2
|
Zhang K, Ding W, Han C, Long L, Yin H, Yin J. Investigation on taxonomy, secondary metabolites and antibacterial activity of Streptomyces sediminicola sp. nov., a novel marine sediment-derived Actinobacteria. Microb Cell Fact 2024; 23:285. [PMID: 39427194 PMCID: PMC11490992 DOI: 10.1186/s12934-024-02558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Marine actinomycetes, especially Streptomyces, are recognized as excellent producers of diverse and bioactive secondary metabolites on account of the multiplicity of marine habitations and unique ecological conditions, which are yet to be explored in terms of taxonomy, ecology, and functional activity. Isolation, culture and genome analysis of novel species of Streptomyces to explore their potential for discovering bioactive compounds is an important approach in natural product research. RESULTS A marine actinobacteria, designated strain SCSIO 75703 T, was isolated, and the potential for bioactive natural product discovery was evaluated based on genome mining, compound detection, and antimicrobial activity assays. The phylogenetic, phenotypic and chemotaxonomic analyses indicate that strain SCSIO 75703 T represents a novel species in genus Streptomyces, for which the name Streptomyces sediminicola sp. nov. is proposed. Genome analysis revealed the presence of 25 secondary metabolite biosynthetic gene clusters. The screening for antibacterial activity reveals the potential to produce bioactive metabolites, highlighting its value for in-depth exploration of chemical constituents. Seven compounds (1-7) were separated from the fractions guided by antibacterial activities, including three indole alkaloids (1-3), three polyketide derivatives (4-6), and 4-(dimethylamino)benzoic acid (7). These primarily antibacterial components were identified as anthracimycin (4), 2-epi-anthracimycin (5) and β-rubromycin (6), presenting strong antibacterial activities against Gram-positive bacteria with the MIC value ranged from 0.125 to 16 μg/mL. Additionally,, monaprenylindole A (1) and 3-cyanomethyl-6-prenylindole (2) displayed moderate inhibitory activities against α-glucosidase with the IC50 values of 83.27 and 86.21 μg/mL, respectively. CONCLUSION Strain SCSIO 75703 T was isolated from marine sediment and identified as a novel species within the genus Streptomyces. Based on genomic analysis, compounds isolation and bioactivity studies, seven compounds were identified, with anthracimycin and β-rubromycin showing significant biological activity and promising potential for further applications.
Collapse
Affiliation(s)
- Kun Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenping Ding
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Chenghui Han
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, China
| | - Hao Yin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Jianping Yin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, China.
| |
Collapse
|
3
|
Sreedharan SM, Rishi N, Singh R. Microbial Lipopeptides: Properties, Mechanics and Engineering for Novel Lipopeptides. Microbiol Res 2023; 271:127363. [PMID: 36989760 DOI: 10.1016/j.micres.2023.127363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/04/2022] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Microorganisms produce active surface agents called lipopeptides (LPs) which are amphiphilic in nature. They are cyclic or linear compounds and are predominantly isolated from Bacillus and Pseudomonas species. LPs show antimicrobial activity towards various plant pathogens and act by inhibiting the growth of these organisms. Several mechanisms are exhibited by LPs, such as cell membrane disruption, biofilm production, induced systematic resistance, improving plant growth, inhibition of spores, etc., making them suitable as biocontrol agents and highly advantageous for industrial utilization. The biosynthesis of lipopeptides involves large multimodular enzymes referred to as non-ribosomal peptide synthases. These enzymes unveil a broad range of engineering approaches through which lipopeptides can be overproduced and new LPs can be generated asserting high efficacy. Such approaches involve several synthetic biology systems and metabolic engineering techniques such as promotor engineering, enhanced precursor availability, condensation domain engineering, and adenylation domain engineering. Finally, this review provides an update of the applications of lipopeptides in various fields.
Collapse
|
4
|
Investigation on Metabolites in Structure and Biosynthesis from the Deep-Sea Sediment-Derived Actinomycete Janibacter sp. SCSIO 52865. Molecules 2023; 28:molecules28052133. [PMID: 36903380 PMCID: PMC10003874 DOI: 10.3390/molecules28052133] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
For exploring structurally diverse metabolites and uniquely metabolic mechanisms, we systematically investigated the chemical constituents and putative biosynthesis of Janibacter sp. SCSIO 52865 derived from the deep-sea sediment based on the OSMAC strategy, molecular networking tool, in combination with bioinformatic analysis. As a result, one new diketopiperazine (1), along with seven known cyclodipeptides (2-8), trans-cinnamic acid (9), N-phenethylacetamide (10) and five fatty acids (11-15), was isolated from the ethyl acetate extract of SCSIO 52865. Their structures were elucidated by a combination of comprehensive spectroscopic analyses, Marfey's method and GC-MS analysis. Furthermore, the analysis of molecular networking revealed the presence of cyclodipeptides, and compound 1 was produced only under mBHI fermentation condition. Moreover, bioinformatic analysis suggested that compound 1 was closely related to four genes, namely jatA-D, encoding core non-ribosomal peptide synthetase and acetyltransferase.
Collapse
|
5
|
Enhanced production of surfactin using cassava wastewater and hydrophobic inducers: a prospection on new homologues. World J Microbiol Biotechnol 2023; 39:82. [PMID: 36658370 DOI: 10.1007/s11274-023-03529-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Biosurfactants are amphipathic molecules that can be applied in a wide range of areas. The cost of production limits the industrial application of biosurfactants. Nevertheless, the biosurfactant productivity can be easily enhanced by inducers. This work aimed to investigate the effect of hydrophobic inducers on surfactin production by B. subtilis ATCC 6633 using cassava wastewater as low-cost culture medium. The submerged cultivation was carried out at 30 °C, 150 rpm for 72 h. The fermentation parameters used were bacterial growth, consumption of sugars, and surfactin production, including surfactin homologues. The surface tension decreased by 40% after 12 h, when compared to control. Depletion of sugars was observed in all experiments. Palmitic acid led to the highest yield in terms of surfactin production (≈ 1.3 g·L- 1 of pure surfactin). The inducers triggered the production of new surfactin homologues, that represent, potentially, new biological activities.
Collapse
|
6
|
Ding W, Li Y, Tian X, Chen M, Xiao Z, Chen R, Yin H, Zhang S. Investigation on Metabolites in Structural Diversity from The Deep-Sea Sediment-Derived Bacterium Agrococcus sp. SCSIO 52902 and Their Biosynthesis. Mar Drugs 2022; 20:md20070431. [PMID: 35877724 PMCID: PMC9323897 DOI: 10.3390/md20070431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/25/2023] Open
Abstract
Deep-sea sediment-derived bacterium may make full use of self-genes to produce more bioactive metabolites to adapt to extreme environment, resulting in the discovery of novel metabolites with unique structures and metabolic mechanisms. In the paper, we systematically investigated the metabolites in structurally diversity and their biosynthesis from the deep-sea sediment-derived bacterium Agrococcus sp. SCSIO 52902 based on OSMAC strategy, Molecular Networking tool, in combination with bioinformatic analysis. As a result, three new compounds and one new natural product, including 3R-OH-1,6-diene-cyclohexylacetic acid (1), linear tetradepsipeptide (2), N1,N5-di-p-(EE)-coumaroyl-N10-acetylspermidine (3) and furan fatty acid (4), together with nineteen known compounds (5–23) were isolated from the ethyl acetate extract of SCSIO 52902. Their structures were elucidated by comprehensive spectroscopic analysis, single-crystal X-ray diffraction, Marfey’s method and chiral-phase HPLC analysis. Bioinformatic analysis revealed that compounds 1, 3, 9 and 13–22 were closely related to the shikimate pathway, and compound 5 was putatively produced by the OSB pathway instead of the PKS pathway. In addition, the result of cytotoxicity assay showed that compound 5 exhibited weak cytotoxic activity against the HL-60 cell line.
Collapse
Affiliation(s)
- Wenping Ding
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanqun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinpeng Tian
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
| | - Min Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Xiao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
| | - Rouwen Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
| | - Hao Yin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (H.Y.); (S.Z.); Tel.: +86-15919668007 or +86-20-89023103 (H.Y.)
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (H.Y.); (S.Z.); Tel.: +86-15919668007 or +86-20-89023103 (H.Y.)
| |
Collapse
|