1
|
Zheng Y, Li Y, Bai X, Teng M, Tang Y, Zhao S, Ma Z, Liang H, Xie Y, Wan Q. Atomic Engineering and Aggregation Effect to Regulate Synergistically Type I Reactive Oxygen Species of AIE-Active Deep Red/Near Infrared Red Photosensitizer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410816. [PMID: 40033882 DOI: 10.1002/smll.202410816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/18/2025] [Indexed: 03/05/2025]
Abstract
"Molecular science" has long been regarded as the golden rule to guide the design of organic materials' performances in the past many years, but some interesting phenomena of conventional aggregation-caused fluorescence quenching and new aggregation-induced emission reflect that materials' properties would be changed from "molecule" to "aggregate". Therefore, "molecular science" theory faces certain limitations to guide regulating the performance of materials at aggregation. In this work, it is discovered that the photosensitizer's performances contain fluorescence and reactive oxygen species, which could be affected by changing molecular atoms and aggregation form. The introduction of oxygen and selenium atoms could redshift fluorescence and improve reactive oxygen species (ROS) efficiency. In addition to the atomic effect, the ROS efficiency of photosensitizers could be affected after coating a polymeric shell, that is, the production of type II ROS singlet oxygen (1O2) is suppressed, while the type I ROS of superoxide anion (O2 -•) is improved. This work discovers that the fluorescence and ROS efficiency of photosensitizers are relevant to the atomic effect and polymeric aggregation effect, and discussing deeply the influence mechanism, which has important research significance for modulating precisely the performances of photosensitizers and promoting the development of type I photodynamic therapy.
Collapse
Affiliation(s)
- Yaoqiu Zheng
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yin Li
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, School of Physical Education, Jianghan University, Wuhan, 430056, China
| | - Xue Bai
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Muzhou Teng
- Gansu Provincial Maternity and Child-Care Hospital (Gansu Provincial Central Hospital), Lanzhou, Gansu Provincial, 730050, China
| | - Yiwen Tang
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Shuo Zhao
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Zihang Ma
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Hongbo Liang
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yili Xie
- College of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, China
| | - Qing Wan
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| |
Collapse
|
2
|
Chen X, Chen G, Cao S, Ye R, Qiu R, Yang X, Peng Y, Sun H. Benzo-pyrrolidinyl substituted silicon phthalocyanines: A novel two-photon lysosomal nanoprobe for in vitro photodynamic therapy. Photodiagnosis Photodyn Ther 2025; 51:104431. [PMID: 39631637 DOI: 10.1016/j.pdpdt.2024.104431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Lysosomes are pivotal in diverse physiological phenomena, encompassing autophagy, apoptosis, and cellular senescence. The demand for precise tumors treatment has led to the development of specific lysosome-targeting probes capable of elucidating lysosomal dynamics and facilitating targeted cell death. In this research, we report the synthesis and characterization of a novel benzopyrrolidinyl-substituted silicon phthalocyanine (Py-SiPc), designed for selective lysosome labeling and Fluorescence imaging-guided in vitro photodynamic therapy. Furthermore, we encapsulated Py-SiPc within a biocompatible nanocarrier, dipalmitoylphosphatidylethanolamine-polyethylene glycol 2000 (DSPE), to create water-soluble nanoparticles (DSPE@Py-SiPc). These nanoparticles exhibit exceptional lysosome labeling capabilities, as evidenced by bioimaging techniques. Upon exposure to laser irradiation, DSPE@Py-SiPc efficiently induces the production of reactive oxygen species, impairing lysosomal function and triggering lysosomal-mediated cell death. The DSPE@Py-SiPc system emerges as a promising photosensitizer.
Collapse
Affiliation(s)
- Xiuqin Chen
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China; Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Guizhi Chen
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Sitong Cao
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Ruoxin Ye
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Ruoyi Qiu
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Xiangyu Yang
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Yiru Peng
- College of Chemistry & Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China.
| | - Hong Sun
- Department of Pharmacy, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University,Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, PR China.
| |
Collapse
|
3
|
Modi SK, Mohapatra P, Bhatt P, Singh A, Parmar AS, Roy A, Joshi V, Singh MS. Targeting tumor microenvironment with photodynamic nanomedicine. Med Res Rev 2025; 45:66-96. [PMID: 39152568 DOI: 10.1002/med.22072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/20/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
Photodynamic therapy (PDT) is approved for the treatment of certain cancers and precancer lesions. While early Photosensitizers (PS) have found their way to the clinic, research in the last two decades has led to the development of third-generation PS, including photodynamic nanomedicine for improved tumor delivery and minimal systemic or phototoxicity. In terms of nanoparticle design for PDT, we are witnessing a shift from passive to active delivery for improved outcomes with reduced PS dosage. Tumor microenvironment (TME) comprises of a complex and dynamic landscape with myriad potential targets for photodynamic nanocarriers that are surface-modified with ligands. Herein, we review ways to improvise PDT by actively targeting nanoparticles (NPs) to intracellular organelles such as mitochondria or lysosomes and so forth, overcoming the limitations caused by PDT-induced hypoxia, disrupting the blood vascular networks in tumor tissues-vascular targeted PDT (VTP) and targeting immune cells for photoimmunotherapy. We propose that a synergistic outlook will help to address challenges such as deep-seated tumors, metastasis, or relapse and would lead to robust PDT response in patients.
Collapse
Affiliation(s)
- Suraj Kumar Modi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Center of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames, London, UK
| | - Pragyan Mohapatra
- Center for Life Sciences, Mahindra University, Hyderabad, Telangana, India
- Interdisciplinary Center for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| | - Priya Bhatt
- Center for Life Sciences, Mahindra University, Hyderabad, Telangana, India
- Interdisciplinary Center for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| | - Aishleen Singh
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Avanish Singh Parmar
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani Campus, Pilani, Rajasthan, India
| | - Vibhuti Joshi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Center of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Manu Smriti Singh
- Center for Life Sciences, Mahindra University, Hyderabad, Telangana, India
- Interdisciplinary Center for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| |
Collapse
|
4
|
Kong Y, Qin G, Liu Z, Cheng L, Wang C, Wu F, Wu R, Wang Q, Cao D. Novel thiomaleimide-based fluorescent probe with aggregation-induced emission for detecting H 2S. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124922. [PMID: 39096671 DOI: 10.1016/j.saa.2024.124922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
It has been well established that Hydrogen sulfide (H2S) is involved in various pathophysiological processes. Therefore, accurate monitoring H2S levels in vitro or vivo is of great significance in biological systems. Herein, we firstly developed a thiomaleimide-based compound MAL-1 bearing aggregation-induced emission characteristic for selective response toward H2S due to its nucleophilicity. The proposed sensor presented prominent sensitivity and selectivity with low detection limit of 75 nM and pseudo-first-order reaction rate constant of 9.65 × 10-2 s-1, as well as low cytotoxicity which works well in recognizing H2S in real samples and visualizing H2S in living cells. Thus, it could be concluded that the novel thiomaleimide-based probe would be a promising tool for assessing intracellular H2S levels.
Collapse
Affiliation(s)
- Yaqiong Kong
- Engineering Technology Center of Department of Education of Anhui Province, College of Chemistry and Materials Engineering, Chaohu University, Chaohu 238024, PR China
| | - Guoxu Qin
- Engineering Technology Center of Department of Education of Anhui Province, College of Chemistry and Materials Engineering, Chaohu University, Chaohu 238024, PR China
| | - Zhijun Liu
- Engineering Technology Center of Department of Education of Anhui Province, College of Chemistry and Materials Engineering, Chaohu University, Chaohu 238024, PR China
| | - Lehua Cheng
- Engineering Technology Center of Department of Education of Anhui Province, College of Chemistry and Materials Engineering, Chaohu University, Chaohu 238024, PR China
| | - Chunyu Wang
- School of Biological and Environmental Engineering, Chaohu University, Chaohu 238024, PR China
| | - Fengyi Wu
- Engineering Technology Center of Department of Education of Anhui Province, College of Chemistry and Materials Engineering, Chaohu University, Chaohu 238024, PR China
| | - Rong Wu
- Engineering Technology Center of Department of Education of Anhui Province, College of Chemistry and Materials Engineering, Chaohu University, Chaohu 238024, PR China.
| | - Qian Wang
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun 130000, PR China.
| | - Duojun Cao
- Engineering Technology Center of Department of Education of Anhui Province, College of Chemistry and Materials Engineering, Chaohu University, Chaohu 238024, PR China.
| |
Collapse
|
5
|
Oroojalian F, Azizollahi F, Kesharwani P, Sahebkar A. Stimuli-responsive nanotheranostic systems conjugated with AIEgens for advanced cancer bio-imaging and treatment. J Control Release 2024; 373:766-802. [PMID: 39047871 DOI: 10.1016/j.jconrel.2024.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Aggregation-induced emission (AIE) is a unique phenomenon observed in various materials such as organic luminophores, carbon dots (CDs), organic-inorganic nanocomposites, fluorescent dye molecules, and nanoparticles (NPs). These AIE-active materials, or AIEgens, are ideal for balancing multifunctional phototheranostics and energy dissipation. AIE properties can manifest in organic fluorescent probes, rendering them effective for cancer treatment due to their ability to penetrate deeply and provide high therapeutic efficacy. This efficacy is attributed to their high photobleaching thresholds, ability to induce Stokes shifts, and capacity to activate fluorophores. Therefore, the development of innovative AIE-based materials for disease diagnosis and treatment, particularly for cancer, is both important and promising. Recent years have seen successful demonstrations of nanoparticles with AIE properties being used for photodynamic therapy (PDT) and multimodal imaging of tumor cells. These fluorophores have been shown to impact mitochondria and lysosomes, generate reactive oxygen species (ROS), activate the immune system, load and release drugs, and ultimately induce apoptosis in tumor cells. In this review, we examine previous studies on the manufacturing methods and effects of AIEgens on cancer cells, with a theranostic strategy of simultaneous treatment and imaging. We also investigate the factors affecting drug delivery on different cancer cells, including internal stimuli such as pH, ROS, enzymes, and external stimuli like near-infrared (NIR) light and ultrasound waves.
Collapse
Affiliation(s)
- Fatemeh Oroojalian
- Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Fatemeh Azizollahi
- Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Xie X, Sun T, Pan H, Ji D, Xu Z, Gao G, Miao J, Wang L, Zhang Y, Liu J, Ling Y, Su X. Development of Novel β-Carboline/Furylmalononitrile Hybrids as Type I/II Photosensitizers with Chemo-Photodynamic Therapy and Minimal Toxicity. Mol Pharm 2024; 21:3553-3565. [PMID: 38816926 DOI: 10.1021/acs.molpharmaceut.4c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Chemo-photodynamic therapy is a treatment method that combines chemotherapy and photodynamic therapy and has demonstrated significant potential in cancer treatment. However, the development of chemo-photodynamic therapeutic agents with fewer side effects still poses a challenge. Herein, we designed and synthesized a novel series of β-carboline/furylmalononitrile hybrids 10a-i and evaluated their chemo-photodynamic therapeutic effects. Most of the compounds were photodynamically active and exhibited cytotoxic effects in four cancer cells. In particular, 10f possessed type-I/II photodynamic characteristics, and its 1O2 quantum yield increased by 3-fold from pH 7.4 to 4.5. Most interestingly, 10f exhibited robust antiproliferative effects by tumor-selective cytotoxicities and hypoxic-overcoming phototoxicities. In addition, 10f generated intracellular ROS and induced hepatocellular apoptosis, mitochondrial damage, and autophagy. Finally, 10f demonstrated extremely low acute toxicity (LD50 = 1415 mg/kg) and a high tumor-inhibitory rate of 80.5% through chemo-photodynamic dual therapy. Our findings may provide a promising framework for the design of new photosensitizers for chemo-photodynamic therapy.
Collapse
Affiliation(s)
- Xudong Xie
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Tiantian Sun
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Heyu Pan
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Dongliang Ji
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Zhongyuan Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Ge Gao
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Jiefei Miao
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Lei Wang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Yanan Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Ji Liu
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Yong Ling
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Xing Su
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| |
Collapse
|
7
|
Pan Z, Zeng Y, Ye Z, Li Y, Wang Y, Feng Z, Bao Y, Yuan J, Cao G, Dong J, Long W, Lu YJ, Zhang K, He Y, Liu X. Rotor-based image-guided therapy of glioblastoma. J Control Release 2024; 368:650-662. [PMID: 38490374 DOI: 10.1016/j.jconrel.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/20/2023] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Glioblastoma (GBM), deep in the brain, is more challenging to diagnose and treat than other tumors. Such challenges have blocked the development of high-impact therapeutic approaches that combine reliable diagnosis with targeted therapy. Herein, effective cyanine dyes (IRLy) with the near-infrared two region (NIR-II) adsorption and aggregation-induced emission (AIE) have been developed via an "extended conjugation & molecular rotor" strategy for multimodal imaging and phototherapy of deep orthotopic GBM. IRLy was synthesized successfully through a rational molecular rotor modification with stronger penetration, higher signal-to-noise ratio, and a high photothermal conversion efficiency (PCE) up to ∼60%, which can achieve efficient NIR-II photo-response. The multifunctional nanoparticles (Tf-IRLy NPs) were further fabricated to cross the blood-brain barrier (BBB) introducing transferrin (Tf) as a targeting ligand. Tf-IRLy NPs showed high biosafety and good tumor enrichment for GBM in vitro and in vivo, and thus enabled accurate, efficient, and less invasive NIR-II multimodal imaging and photothermal therapy. This versatile Tf-IRLy nanosystem can provide a reference for the efficient, precise and low-invasive multi-synergistic brain targeted photo-theranostics. In addition, the "extended conjugation & molecular rotor" strategy can be used to guide the design of other photothermal agents.
Collapse
Affiliation(s)
- Zhenxing Pan
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaoxun Zeng
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhaoyi Ye
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yushan Li
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yakun Wang
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenzhen Feng
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Bao
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiongpeng Yuan
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Guining Cao
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiapeng Dong
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wei Long
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yu-Jing Lu
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Kun Zhang
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan He
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xujie Liu
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
8
|
Sharma A, Verwilst P, Li M, Ma D, Singh N, Yoo J, Kim Y, Yang Y, Zhu JH, Huang H, Hu XL, He XP, Zeng L, James TD, Peng X, Sessler JL, Kim JS. Theranostic Fluorescent Probes. Chem Rev 2024; 124:2699-2804. [PMID: 38422393 PMCID: PMC11132561 DOI: 10.1021/acs.chemrev.3c00778] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The ability to gain spatiotemporal information, and in some cases achieve spatiotemporal control, in the context of drug delivery makes theranostic fluorescent probes an attractive and intensely investigated research topic. This interest is reflected in the steep rise in publications on the topic that have appeared over the past decade. Theranostic fluorescent probes, in their various incarnations, generally comprise a fluorophore linked to a masked drug, in which the drug is released as the result of certain stimuli, with both intrinsic and extrinsic stimuli being reported. This release is then signaled by the emergence of a fluorescent signal. Importantly, the use of appropriate fluorophores has enabled not only this emerging fluorescence as a spatiotemporal marker for drug delivery but also has provided modalities useful in photodynamic, photothermal, and sonodynamic therapeutic applications. In this review we highlight recent work on theranostic fluorescent probes with a particular focus on probes that are activated in tumor microenvironments. We also summarize efforts to develop probes for other applications, such as neurodegenerative diseases and antibacterials. This review celebrates the diversity of designs reported to date, from discrete small-molecule systems to nanomaterials. Our aim is to provide insights into the potential clinical impact of this still-emerging research direction.
Collapse
Affiliation(s)
- Amit Sharma
- Amity
School of Chemical Sciences, Amity University
Punjab, Sector 82A, Mohali 140 306, India
| | - Peter Verwilst
- Rega
Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Mingle Li
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
| | - Dandan Ma
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nem Singh
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiyoung Yoo
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Yujin Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Ying Yang
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Jing-Hui Zhu
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haiqiao Huang
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xi-Le Hu
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Peng He
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- National
Center for Liver Cancer, the International Cooperation Laboratory
on Signal Transduction, Eastern Hepatobiliary
Surgery Hospital, Shanghai 200438, China
| | - Lintao Zeng
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Xiaojun Peng
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Jonathan L. Sessler
- Department
of Chemistry, The University of Texas at
Austin, Texas 78712-1224, United
States
| | - Jong Seung Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
- TheranoChem Incorporation, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
9
|
Roger M, Bretonnière Y, Trolez Y, Vacher A, Arbouch I, Cornil J, Félix G, De Winter J, Richeter S, Clément S, Gerbier P. Synthesis and Characterization of Tetraphenylethene AIEgen-Based Push-Pull Chromophores for Photothermal Applications: Could the Cycloaddition-Retroelectrocyclization Click Reaction Make Any Molecule Photothermally Active? Int J Mol Sci 2023; 24:ijms24108715. [PMID: 37240061 DOI: 10.3390/ijms24108715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Three new tetraphenylethene (TPE) push-pull chromophores exhibiting strong intramolecular charge transfer (ICT) are described. They were obtained via [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) click reactions on an electron-rich alkyne-tetrafunctionalized TPE (TPE-alkyne) using both 1,1,2,2-tetracyanoethene (TCNE), 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) as electron-deficient alkenes. Only the starting TPE-alkyne displayed significant AIE behavior, whereas for TPE-TCNE, a faint effect was observed, and for TPE-TCNQ and TPE-F4-TCNQ, no fluorescence was observed in any conditions. The main ICT bands that dominate the UV-Visible absorption spectra underwent a pronounced red-shift beyond the near-infrared (NIR) region for TPE-F4-TCNQ. Based on TD-DFT calculations, it was shown that the ICT character shown by the compounds exclusively originated from the clicked moieties independently of the nature of the central molecular platform. Photothermal (PT) studies conducted on both TPE-TCNQ and TPE-F4-TCNQ in the solid state revealed excellent properties, especially for TPE-F4-TCNQ. These results indicated that CA-RE reaction of TCNQ or F4-TCNQ with donor-substituted are promising candidates for PT applications.
Collapse
Affiliation(s)
- Maxime Roger
- ICGM, CNRS UMR 5253, ENSCM, University of Montpellier, 34293 Montpellier, France
| | - Yann Bretonnière
- ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, University of Lyon, 69364 Lyon, France
| | - Yann Trolez
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, University of Rennes, 35065 Rennes, France
| | - Antoine Vacher
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, University of Rennes, 35065 Rennes, France
| | - Imane Arbouch
- Laboratory for Chemistry of Novel Materials, University of Mons-UMONS, 7000 Mons, Belgium
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, University of Mons-UMONS, 7000 Mons, Belgium
| | - Gautier Félix
- ICGM, CNRS UMR 5253, ENSCM, University of Montpellier, 34293 Montpellier, France
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory (S2MOs), University of Mons-UMONS, 7000 Mons, Belgium
| | - Sébastien Richeter
- ICGM, CNRS UMR 5253, ENSCM, University of Montpellier, 34293 Montpellier, France
| | - Sébastien Clément
- ICGM, CNRS UMR 5253, ENSCM, University of Montpellier, 34293 Montpellier, France
| | - Philippe Gerbier
- ICGM, CNRS UMR 5253, ENSCM, University of Montpellier, 34293 Montpellier, France
| |
Collapse
|