1
|
Liu Y, Liu X, Pan C. Advances in Factors Affecting ALDH2 Activity and its Mechanisms. Cardiovasc Toxicol 2024; 24:1428-1438. [PMID: 39365551 DOI: 10.1007/s12012-024-09923-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 10/05/2024]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme primarily involved in the detoxification of alcohol-derived aldehyde and endogenous toxic aldehydes. It exhibits widespread expression across various organs and exerts a broad and significant impact on diverse acute cardiovascular diseases, including acute coronary syndrome, acute aortic dissection, hypoxic pulmonary hypertension, and heart failure. The ALDH2 rs671 variant represents the most prevalent genetic variant in East Asian populations, with carriage rates ranging from 30 to 50% among the Chinese population. Given its widespread presence in the body, the wide range of diseases it affects, and its high rate of variation, it can serve as a crucial tool for the precise prevention and treatment of acute cardiovascular diseases, while offering individualized medication guidance. This review aims to provide a comprehensive overview of the latest advancements in factors affecting ALDH2 activity, encompassing post-transcriptional modifications, modulators of ALDH2, and relevant clinical drugs.
Collapse
Affiliation(s)
- Yun Liu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xuemei Liu
- Department of Nephrology, The Fifth People's Hospital of Jinan, Jinan, 250022, China
| | - Chang Pan
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China.
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, 250012, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China.
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
2
|
Guo Y, Zhang T, Wang X, Zhang J, Miao W, Li QX, Fan Y. Toxic effects of the insecticide tolfenpyrad on zebrafish embryos: Cardiac toxicity and mitochondrial damage. ENVIRONMENTAL TOXICOLOGY 2024; 39:2583-2595. [PMID: 38205909 DOI: 10.1002/tox.24133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Tolfenpyrad, a highly effective and broad-spectrum insecticide and acaricide extensively utilized in agriculture, presents a potential hazard to nontarget organisms. This study was designed to explore the toxic mechanisms of tolfenpyrad on zebrafish embryos. Between 24 and 96 h after exposure of the fertilized embryos to tolfenpyrad at concentrations ranging from 0.001 to 0.016 mg/L (96 h-LC50 = 0.017 mg/L), lethal effects were apparent, accompanied with notable anomalies including pericardial edema, increased pericardial area, diminished heart rate, and an elongated distance between the venous sinus and the arterial bulb. Tolfenpyrad elicited noteworthy alterations in the expression of genes pertinent to cardiac development and apoptosis, with the most pronounced changes observed in the cardiac development-related genes of bone morphogenetic protein 2b (bmp2b) and p53 upregulated modulator of apoptosis (puma). The findings underscore that tolfenpyrad induces severe cardiac toxicity and mitochondrial damage in zebrafish embryos. This data is imperative for a comprehensive assessment of tolfenpyrad risks to aquatic ecosystems, particularly considering the limited knowledge regarding its detrimental impact on aquatic vertebrates.
Collapse
Affiliation(s)
- Yuzhao Guo
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Taiyu Zhang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Xinyu Wang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Jie Zhang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yongmei Fan
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| |
Collapse
|
3
|
Zhang J, Guo Y, Zhao X, Pang J, Pan C, Wang J, Wei S, Yu X, Zhang C, Chen Y, Yin H, Xu F. The role of aldehyde dehydrogenase 2 in cardiovascular disease. Nat Rev Cardiol 2023; 20:495-509. [PMID: 36781974 DOI: 10.1038/s41569-023-00839-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/15/2023]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme involved in the detoxification of alcohol-derived acetaldehyde and endogenous aldehydes. The inactivating ALDH2 rs671 polymorphism, present in up to 8% of the global population and in up to 50% of the East Asian population, is associated with increased risk of cardiovascular conditions such as coronary artery disease, alcohol-induced cardiac dysfunction, pulmonary arterial hypertension, heart failure and drug-induced cardiotoxicity. Although numerous studies have attributed an accumulation of aldehydes (secondary to alcohol consumption, ischaemia or elevated oxidative stress) to an increased risk of cardiovascular disease (CVD), this accumulation alone does not explain the emerging protective role of ALDH2 rs671 against ageing-related cardiac dysfunction and the development of aortic aneurysm or dissection. ALDH2 can also modulate risk factors associated with atherosclerosis, such as cholesterol biosynthesis and HDL biogenesis in hepatocytes and foam cell formation and efferocytosis in macrophages, via non-enzymatic pathways. In this Review, we summarize the basic biology and the clinical relevance of the enzymatic and non-enzymatic, tissue-specific roles of ALDH2 in CVD, and discuss the future directions in the research and development of therapeutic strategies targeting ALDH2. A thorough understanding of the complex roles of ALDH2 in CVD will improve the diagnosis, management and prognosis of patients with CVD who harbour the ALDH2 rs671 polymorphism.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Yunyun Guo
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Xiangkai Zhao
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Jiaojiao Pang
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Chang Pan
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Jiali Wang
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Shujian Wei
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Shandong, China
| | - Cheng Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China
- Department of Cardiology, Qilu Hospital of Shandong University, Shandong, China
| | - Yuguo Chen
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China.
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China.
| | - Huiyong Yin
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China.
| | - Feng Xu
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Shandong, China.
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Shandong, China.
| |
Collapse
|
4
|
Jin J, Chang RS, Xu S, Xia G, Wong JMJ, Fang Y, Jia P, Ding X. Aldehyde Dehydrogenase 2 Ameliorates LPS-Induced Acute Kidney Injury through Detoxification of 4-HNE and Suppression of the MAPK Pathway. J Immunol Res 2023; 2023:5513507. [PMID: 37064008 PMCID: PMC10101750 DOI: 10.1155/2023/5513507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 04/18/2023] Open
Abstract
Lipopolysaccharide (LPS)-induced septic acute kidney injury (AKI) is determined as a devastating organ dysfunction elicited by an inappropriate response to infection with high morbidity and mortality rates. Previous evidence has illustrated an indispensable role of mitochondrial aldehyde dehydrogenase 2 (ALDH2) in the pathogenesis of sepsis-induced multiorgan abnormalities. Specifically, this study investigated the potential role of ALDH2 in sepsis-induced AKI. After LPS administration, we observed a significant decline in renal function, increased inflammatory cytokines, oxidative stress, 4-hydroxy-2-nonenal (4-HNE) accumulation, and apoptosis via MAPK activation in ALDH2-/- mice; in contrast, pretreatment with Alda-1 (an ALDH2 activator) alleviated the LPS-induced dysfunctions in mice. Moreover, in vitro analysis revealed that ALDH2 overexpression in mouse tubular epithelial cells (mTECs) improved the inflammatory response, oxidative stress, 4-HNE accumulation, and apoptosis via MAPK inhibition, whereas ALDH2 knockdown in mTECs aggravated these parameters via MAPK activation. Therefore, ALDH2 may protect against LPS-induced septic AKI by suppressing 4-HNE/MAPK pathway.
Collapse
Affiliation(s)
- Jifu Jin
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rebecca Suchi Chang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Sujuan Xu
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Nephrology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guang Xia
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jennifer Ming Jen Wong
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ping Jia
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Gao J, Hao Y, Piao X, Gu X. Aldehyde Dehydrogenase 2 as a Therapeutic Target in Oxidative Stress-Related Diseases: Post-Translational Modifications Deserve More Attention. Int J Mol Sci 2022; 23:ijms23052682. [PMID: 35269824 PMCID: PMC8910853 DOI: 10.3390/ijms23052682] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) has both dehydrogenase and esterase activity; its dehydrogenase activity is closely related to the metabolism of aldehydes produced under oxidative stress (OS). In this review, we recapitulate the enzyme activity of ALDH2 in combination with its protein structure, summarize and show the main mechanisms of ALDH2 participating in metabolism of aldehydes in vivo as comprehensively as possible; we also integrate the key regulatory mechanisms of ALDH2 participating in a variety of physiological and pathological processes related to OS, including tissue and organ fibrosis, apoptosis, aging, and nerve injury-related diseases. On this basis, the regulatory effects and application prospects of activators, inhibitors, and protein post-translational modifications (PTMs, such as phosphorylation, acetylation, S-nitrosylation, nitration, ubiquitination, and glycosylation) on ALDH2 are discussed and prospected. Herein, we aimed to lay a foundation for further research into the mechanism of ALDH2 in oxidative stress-related disease and provide a basis for better use of the ALDH2 function in research and the clinic.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (Y.H.)
| | - Yue Hao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (Y.H.)
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (Y.H.)
- Correspondence:
| |
Collapse
|
6
|
Tsai HY, Hsu YJ, Lu CY, Tsai MC, Hung WC, Chen PC, Wang JC, Hsu LA, Yeh YH, Chu P, Tsai SH. Pharmacological Activation Of Aldehyde Dehydrogenase 2 Protects Against Heatstroke-Induced Acute Lung Injury by Modulating Oxidative Stress and Endothelial Dysfunction. Front Immunol 2021; 12:740562. [PMID: 34764958 PMCID: PMC8576434 DOI: 10.3389/fimmu.2021.740562] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Heatstroke (HS) can cause acute lung injury (ALI). Heat stress induces inflammation and apoptosis via reactive oxygen species (ROS) and endogenous reactive aldehydes. Endothelial dysfunction also plays a crucial role in HS-induced ALI. Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme that detoxifies aldehydes such as 4-hydroxy-2-nonenal (4-HNE) protein adducts. A single point mutation in ALDH2 at E487K (ALDH2*2) intrinsically lowers the activity of ALDH2. Alda-1, an ALDH2 activator, attenuates the formation of 4-HNE protein adducts and ROS in several disease models. We hypothesized that ALDH2 can protect against heat stress-induced vascular inflammation and the accumulation of ROS and toxic aldehydes. Homozygous ALDH2*2 knock-in (KI) mice on a C57BL/6J background and C57BL/6J mice were used for the animal experiments. Human umbilical vein endothelial cells (HUVECs) were used for the in vitro experiment. The mice were directly subjected to whole-body heating (WBH, 42°C) for 1 h at 80% relative humidity. Alda-1 (16 mg/kg) was administered intraperitoneally prior to WBH. The severity of ALI was assessed by analyzing the protein levels and cell counts in the bronchoalveolar lavage fluid, the wet/dry ratio and histology. ALDH2*2 KI mice were susceptible to HS-induced ALI in vivo. Silencing ALDH2 induced 4-HNE and ROS accumulation in HUVECs subjected to heat stress. Alda-1 attenuated the heat stress-induced activation of inflammatory pathways, senescence and apoptosis in HUVECs. The lung homogenates of mice pretreated with Alda-1 exhibited significantly elevated ALDH2 activity and decreased ROS accumulation after WBH. Alda-1 significantly decreased the WBH-induced accumulation of 4-HNE and p65 and p38 activation. Here, we demonstrated the crucial roles of ALDH2 in protecting against heat stress-induced ROS production and vascular inflammation and preserving the viability of ECs. The activation of ALDH2 by Alda-1 attenuates WBH-induced ALI in vivo.
Collapse
Affiliation(s)
- Hsiao-Ya Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Center for the Prevention and Treatment of Heat Stroke, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Yo Lu
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Wan-Chu Hung
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Po-Chuan Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jen-Chun Wang
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lung-An Hsu
- Cardiovascular Department, Chang-Gung Memorial Hospital and School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang-Gung Memorial Hospital and School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Pauling Chu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Center for the Prevention and Treatment of Heat Stroke, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
7
|
Sun X, Gao R, Li W, Zhao Y, Yang H, Chen H, Jiang H, Dong Z, Hu J, Liu J, Zou Y, Sun A, Ge J. Alda-1 treatment promotes the therapeutic effect of mitochondrial transplantation for myocardial ischemia-reperfusion injury. Bioact Mater 2021; 6:2058-2069. [PMID: 33511307 PMCID: PMC7809100 DOI: 10.1016/j.bioactmat.2020.12.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial damage is a critical driver in myocardial ischemia-reperfusion (I/R) injury and can be alleviated via the mitochondrial transplantation. The efficiency of mitochondrial transplantation is determined by mitochondrial vitality. Because aldehyde dehydrogenase 2 (ALDH2) has a key role in regulating mitochondrial homeostasis, we aimed to investigate its potential therapeutic effects on mitochondrial transplantation via the use of ALDH2 activator, Alda-1. Our present study demonstrated that time-dependent internalization of exogenous mitochondria by cardiomyocytes along with ATP production were significantly increased in response to mitochondrial transplantation. Furthermore, Alda-1 treatment remarkably promoted the oxygen consumption rate and baseline mechanical function of cardiomyocytes caused by mitochondrial transplantation. Mitochondrial transplantation inhibited cardiomyocyte apoptosis induced by the hypoxia-reoxygenation exposure, independent of Alda-1 treatment. However, promotion of the mechanical function of cardiomyocytes exposed to hypoxia-reoxygenation treatment was only observed after mitochondrial Alda-1 treatment and transplantation. By using a myocardial I/R mouse model, our results revealed that transplantation of Alda-1-treated mitochondria into mouse myocardial tissues limited the infarction size after I/R injury, which was at least in part due to increased mitochondrial potential-mediated fusion. In conclusion, ALDH2 activation in mitochondrial transplantation shows great potential for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Xiaolei Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Rifeng Gao
- Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Wenjia Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yongchao Zhao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Heng Yang
- The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Hang Chen
- Heart Center of Fujian Province, Union Hospital, Fujian Medical University, 29 Xin-Quan Road, Fuzhou, 350001, China
| | - Hao Jiang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhen Dong
- Institute of Biomedical Science, Fudan University, Shanghai, 200032, China
| | - Jingjing Hu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jin Liu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Institute of Biomedical Science, Fudan University, Shanghai, 200032, China
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Institute of Biomedical Science, Fudan University, Shanghai, 200032, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Institute of Biomedical Science, Fudan University, Shanghai, 200032, China
| |
Collapse
|
8
|
Xin L, Gao J, Lin H, Qu Y, Shang C, Wang Y, Lu Y, Cui X. Regulatory Mechanisms of Baicalin in Cardiovascular Diseases: A Review. Front Pharmacol 2020; 11:583200. [PMID: 33224035 PMCID: PMC7667240 DOI: 10.3389/fphar.2020.583200] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular diseases (CVDs) is the leading cause of high morbidity and mortality worldwide, which emphasizes the urgent necessity to develop new pharmacotherapies. In eastern countries, traditional Chinese medicine Scutellaria baicalensis Georgi has been used clinically for thousands of years. Baicalin is one of the main active ingredients extracted from Chinese herbal medicine S. baicalensis. Emerging evidence has established that baicalin improves chronic inflammation, immune imbalance, disturbances in lipid metabolism, apoptosis and oxidative stress. Thereby it offers beneficial roles against the initiation and progression of CVDs such as atherosclerosis, hypertension, myocardial infarction and reperfusion, and heart failure. In this review, we summarize the pharmacological features and relevant mechanisms by which baicalin regulates CVDs in the hope to reveal its application for CVDs prevention and/or therapy.
Collapse
Affiliation(s)
- Laiyun Xin
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jialiang Gao
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongchen Lin
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Qu
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chang Shang
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuling Wang
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingdong Lu
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangning Cui
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Aldehyde Dehydrogenase 2 Ameliorates Chronic Alcohol Consumption-Induced Atrial Fibrillation through Detoxification of 4-HNE. Int J Mol Sci 2020; 21:ijms21186678. [PMID: 32932651 PMCID: PMC7555032 DOI: 10.3390/ijms21186678] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is an enzyme that detoxifies reactive oxygen species (ROS)-generated aldehyde adducts such as 4-hydroxy-trans-2-nonenal (4-HNE). Previous meta-analyses have shown an increase in the risk of atrial fibrillation (AF) in patients with chronic alcohol consumption. ALDH2*2, a common dysfunctional polymorphism in the ALDH2 gene, has been linked to an increased risk of cancer and heart disease. We tested the effect of ALDH2 deficiency on alcohol-induced AF in a murine model of chronic-binge ethanol feeding, with ALDH2*2 knock-in (KI) mice generated by a CRISPR/CAS9 system. In addition, right atrial appendages were obtained from eight patients with AF undergoing open heart surgery. The results showed that burst atrial pacing induced a greater susceptibility to AF in ALDH2*2 KI mice exposed to chronic ethanol intoxication than in wild-type mice, resulting from a higher degree of 4-HNE accumulation and collagen deposition in their atria. Alda-1 attenuated transforming growth factor beta 1 (TGF-β1) expression and collagen deposition in the atria and reduced AF inducibility. Patients with AF and the ALDH2*2 allele exhibited greater oxidative stress and substrate remodeling in their atria than non-carriers. In conclusion, ALDH2 deficiency may increase the risk of chronic alcohol and tachypacing-induced AF through the accumulation of 4-HNE and increased ROS production.
Collapse
|
10
|
Tsai SH, Hsu LA, Tsai HY, Yeh YH, Lu CY, Chen PC, Wang JC, Chiu YL, Lin CY, Hsu YJ. Aldehyde dehydrogenase 2 protects against abdominal aortic aneurysm formation by reducing reactive oxygen species, vascular inflammation, and apoptosis of vascular smooth muscle cells. FASEB J 2020; 34:9498-9511. [PMID: 32463165 DOI: 10.1096/fj.201902550rrr] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022]
Abstract
Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is an enzyme that detoxifies aldehydes by converting them to carboxylic acids. ALDH2 deficiency is known to increase oxidative stress. Increased oxidative stress plays a pivotal role in abdominal aortic aneurysm (AAA) pathogenesis. Reactive oxygen species (ROS) promote degradation of the extracellular matrix (ECM) and vascular smooth muscle cell (VSMC) apoptosis. Reducing oxidative stress by an ALDH2 activator could have therapeutic potential for limiting AAA development. We hypothesized that ALDH2 deficiency could increase the risk for AAA by decreasing ROS elimination and that an ALDH2 activator could provide an alternative option for AAA treatment. The National Center for Biotechnology (NCBI) Gene Expression Omnibus (GEO) database was used. Human aortic smooth muscle cells (HASMCs) were used for the in vitro experiments. Gene-targeted ALDH2*2 KI knock-in mice on a C57BL/6J background and apolipoprotein E knockout (ApoE KO) mice were obtained. An animal model of AAA was constructed using osmotic minipumps to deliver 1000 ng/kg/min angiotensin II (AngII) for 28 days. Patients with AAA had significantly lower ALDH2 expression levels than normal subjects. ALDH2*2 KI mice were susceptible to AngII administration, exhibiting significantly increased AAA incidence rates and increased aortic diameters. Alda-1, an ALDH2 activator, reduced AngII-induced ROS production, NF-kB activation, and apoptosis in HASMCs. Alda-1 attenuated AngII-induced aneurysm formation and decreased aortic expansion in ApoE KO mice. We concluded that ALDH2 deficiency is associated with the development of AAAs in humans and a murine disease model. ALDH2 deficiency increases susceptibility to AngII-induced AAA formation by attenuating anti-ROS effects and increasing VSMC apoptosis and vascular inflammation. Alda-1 was shown to attenuate the progression of experimental AAA in a murine model.
Collapse
Affiliation(s)
- Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Lung-An Hsu
- Cardiovascular Department, Chang-Gung Memorial Hospital and School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Hsiao-Ya Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang-Gung Memorial Hospital and School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Cheng-Yo Lu
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Chuan Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jen-Chun Wang
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yuan Lin
- Department of Surgery, Division of Cardiovascular surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
11
|
Aldehyde Dehydrogenase 2 and Heart Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:89-106. [PMID: 31368099 DOI: 10.1007/978-981-13-6260-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Heart failure (HF) is a structural or functional cardiac abnormal syndrome characterized with series of symptoms and signs such as breathlessness, fatigue, pulmonary crackles, and peripheral edema. Being a terminal phase of most myocardial lesions, HF has become a leading cause of mobility and mortality worldwide, associated with heavy clinical burden and economic costs affecting over 23 million people [14]. There is an increase to 5.5% with systolic dysfunction and an increase to 36.0% with diastolic dysfunction in people 60 years or older [85]. The costs accompanied with heart failure stand 2-3% of the total healthcare system expenditure in high-income countries and are expected to increase >2-fold in the next 2 decades [34].
Collapse
|
12
|
Cao R, Wang W, Fang T, Ye H, Hu J, Gao Q. [Activation of aldehyde dehydrogenase 2 alleviates H 2O 2-induced injury in cardiomyocytes]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 38:938-942. [PMID: 30187866 DOI: 10.3969/j.issn.1673-4254.2018.08.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the changes of aldehyde dehydrogenase 2 (ALDH2) expression in H 2O 2inducedcardiomyocytes oxidative stress injury. METHODS Cultured H9C2 cardiomyocytes were exposed to H 2O 2-inducedoxidative stress and the effects of the ALDH2 agonist Alda-1 and ALDH2 inhibitor Daidzin were tested on the stress level ofthe exposed cells. MTT colorimetric assay was used to assess the cell viability after the treatments. The oxidative stress level inthe myocardial cells was detected using DHE fluorescence staining, and the activity and protein level of ALDH2 were detectedwith spectrophotometry and Western blotting. RESULTS Compared with normal control cells, Alda-1 treatment did notsignificantly affect the cell viability, oxidative stress level, or ALDH2 activity and protein level. H 2O 2 exposure significantlylowered the cell activity and ALDH2 activity and protein expression and increased the oxidative stress level; Alda-1 treatmentobvious antagonized the effects of H 2O 2. Blocking ALDH2 with Daidzin produced similar effects to H 2O 2 exposure on theviability, oxidative stress level, and ALDH2 activity and expression in the myocardial cells. CONCLUSIONS H 2O 2 exposure lowersthe activity and reduces the protein expression of ALDH2 in cardiomyocyte H9C2 cells, and activation of ALDH2 can alleviateH 2O 2-induced oxidative stress in the cells.
Collapse
Affiliation(s)
- Ruiping Cao
- Department of Physiology, Bengbu Medical College, Bengbu 233030, China
| | - Wenlian Wang
- Department of Respiratory and Critical Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Tingting Fang
- Department of Physiology, Bengbu Medical College, Bengbu 233030, China
| | - Hongwei Ye
- Department of Physiology, Bengbu Medical College, Bengbu 233030, China
| | - Jie Hu
- Department of Physiology, Bengbu Medical College, Bengbu 233030, China
| | - Qin Gao
- Department of Physiology, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
13
|
Zhai L, Ning ZW, Huang T, Wen B, Liao CH, Lin CY, Zhao L, Xiao HT, Bian ZX. Cyclocarya paliurus Leaves Tea Improves Dyslipidemia in Diabetic Mice: A Lipidomics-Based Network Pharmacology Study. Front Pharmacol 2018; 9:973. [PMID: 30210345 PMCID: PMC6121037 DOI: 10.3389/fphar.2018.00973] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/06/2018] [Indexed: 01/20/2023] Open
Abstract
Hyperlipidemia and hepatic steatosis afflict over 75% of patients with type 2 diabetes, causing diabetic dyslipidemia. Cyclocarya paliurus (CP) leaf is a herbal tea which has long been consumed by the Chinese population, particularly people suffering from obesity and diabetes. CP appears to exhibit a hypolipidemic effect in lipid loaded mice (Kurihara et al., 2003), although the detailed mechanisms and active ingredients for this hypolipidemic effect have not yet been answered. In this study, we investigated the beneficial effects of CP and predicted the mechanisms by utilizing lipidomics, serum-pharmacochemistry and network pharmacology approaches. Our results revealed that serum and hepatic levels of total triglyceride (TG), total cholesterol (T-CHO), low-density lipoproteins (LDL) and high-density lipoproteins (HDL), as well as 30 lipids including cholesterol ester (CE), diglyceride (DG), phosphatidylethanolamine (PE), phosphatidylcholine (PC), and sphingomyelin (SM) in CP-treated mice were improved in comparison with untreated diabetic mice. In parallel, 14 phytochemical compounds of CP were determined in mice serum after CP administration. Mechanistically, the network pharmacology analysis revealed the predicted targets of CP’s active ingredients ALOX12, APP, BCL2, CYP2C9, PTPN1 and linked lipidome targets PLD2, PLA2G(s), and PI3K(s) families could be responsible for the CP effects on diabetic dyslipidemia. In conclusion, this study revealed the beneficial effects of CP on diabetic dyslipidemia are achieved by reducing accumulation of hepatic lipid droplets and regulating circulatory lipids in diabetic mice, possibly through PI3K signaling and MAPK signaling pathways.
Work flow of the evaluation of the effects and mechanisms of Cyclocarya paliurus leaves tea on dyslipidemia in diabetic mice. ![]()
Collapse
Affiliation(s)
- Lixiang Zhai
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Zi-Wan Ning
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Tao Huang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Bo Wen
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Shenzhen Research Institute and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Cheng-Hui Liao
- Shenzhen Research Institute and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Cheng-Yuan Lin
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Ling Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Hai-Tao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Shenzhen Research Institute and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| |
Collapse
|
14
|
Ding S, Wang M, Fang S, Xu H, Fan H, Tian Y, Zhai Y, Lu S, Qi X, Wei F, Sun G, Sun X. D-dencichine Regulates Thrombopoiesis by Promoting Megakaryocyte Adhesion, Migration and Proplatelet Formation. Front Pharmacol 2018; 9:297. [PMID: 29666579 PMCID: PMC5891617 DOI: 10.3389/fphar.2018.00297] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 03/15/2018] [Indexed: 01/09/2023] Open
Abstract
Life-threatening chemotherapy-induced thrombocytopenia can increase the risk of bleeding due to a dramatic low platelet count, which may limit or delay treatment schedules in cancer patients. The pressing need for the rapid alleviation of the symptoms of thrombocytopenia has prompted us to search for novel highly effective and safe thrombopoietic agents. Pharmacological investigations have indicated that dencichine can prevent and treat blood loss and increase the number of platelets. On the basis of the neurotoxicity of dencichine, D-dencichine is artificially synthesized in the laboratory. Our initial results showed that D-dencichine had potential to elevate peripheral platelet levels in mice with carboplatin-induced thrombocytopenia. However, the mechanisms of D-dencichine on thrombopoiesis have been poorly understood. In this study, we found that sequential administration of D-dencichine had a distinct ability to elevate numbers of reticulated platelets, and did not alter their clearance. Moreover, we demonstrated that D-dencichine was able to modulate the return of hematopoietic factors to normal levels, including thrombopoietin and IL-6. However, subsequent analysis revealed that D-dencichine treatment had no direct effects on megakaryocytes proliferation, differentiation, and polyploidization. Further in vitro studies, we demonstrated for the first time that D-dencichine significantly stimulated megakaryocyte adhesion, migration, and proplatelet formation in a dose-dependent manner through extracellular regulated protein kinases1/2 (ERK1/2) and v-akt murine thymoma viral oncogene homolog (AKT) signaling pathways. This study sufficiently characterized the role of the effects of D-dencichine treatment on the regulation of thrombopoiesis and provided a promising avenue for CIT treating.
Collapse
Affiliation(s)
- Shilan Ding
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Song Fang
- Kunming Shenghuo Pharmaceutical Group Co., Ltd., Kunming, China
| | - Huibo Xu
- Academy of Chinese Medical Sciences of Jilin Province, Jilin, China
| | - Huiting Fan
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Tian
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yadong Zhai
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Shan Lu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xin Qi
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fei Wei
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
15
|
Münzel T, Daiber A. The potential of aldehyde dehydrogenase 2 as a therapeutic target in cardiovascular disease. Expert Opin Ther Targets 2018; 22:217-231. [PMID: 29431026 DOI: 10.1080/14728222.2018.1439922] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Mitochondrial aldehyde dehydrogenase (ALDH-2) plays a major role in the ethanol detoxification pathway by removing acetaldehyde. Therefore, ALDH-2 inhibitors such as disulfiram represent the first therapeutic targeting of ALDH-2 for alcoholism therapy. Areas covered: Recently, ALDH-2 was identified as an essential bioactivating enzyme of the anti-ischemic organic nitrate nitroglycerin, bringing ALDH-2 again into the focus of clinical interest. Mechanistic studies on the nitroglycerin bioactivation process revealed that during bioconversion of nitroglycerin and in the presence of reactive oxygen and nitrogen species the active site thiols of ALDH-2 are oxidized and the enzyme activity is lost. Thus, ALDH-2 activity represents a useful marker for cardiovascular oxidative stress, a concept, which has been meanwhile supported by a number of animal disease models. Mechanistic studies on the protective role of ALDH-2 in different disease processes identified the detoxification of 4-hydroxynonenal by ALDH-2 as a fundamental process of cardiovascular, cerebral and antioxidant protection. Expert opinion: The most recent therapeutic exploitation of ALDH-2 includes activators of the enzyme such as Alda-1 but also cell-based therapies (ALDH-bright cells) that deserve further clinical characterization in the future.
Collapse
Affiliation(s)
- Thomas Münzel
- a Center for Cardiology, Cardiology 1 , Medical Center of the Johannes Gutenberg University , Mainz , Germany.,b Center for Thrombosis and Hemostasis (CTH) , Medical Center of the Johannes Gutenberg University , Mainz , Germany.,c Partner Site Rhine-Main , German Center for Cardiovascular Research (DZHK) , Mainz , Germany
| | - Andreas Daiber
- a Center for Cardiology, Cardiology 1 , Medical Center of the Johannes Gutenberg University , Mainz , Germany.,b Center for Thrombosis and Hemostasis (CTH) , Medical Center of the Johannes Gutenberg University , Mainz , Germany.,c Partner Site Rhine-Main , German Center for Cardiovascular Research (DZHK) , Mainz , Germany
| |
Collapse
|
16
|
Jiang WB, Zhao W, Chen H, Wu YY, Wang Y, Fu GS, Yang XJ. Baicalin protects H9c2 cardiomyocytes against hypoxia/reoxygenation-induced apoptosis and oxidative stress through activation of mitochondrial aldehyde dehydrogenase 2. Clin Exp Pharmacol Physiol 2017; 45:303-311. [PMID: 29047162 DOI: 10.1111/1440-1681.12876] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 11/28/2022]
Abstract
Baicalin, a flavonoid glycoside separated from Scutellaria baicalensis, has cardioprotection against ischaemia/reperfusion (I/R) injury. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is considered as an endogenous protective mechanism against I/R injury depending on its anti-oxidant and anti-apoptotic characteristics. The present study demonstrates whether ALDH2 contributes to the cardioprotection of baicalin against hypoxia/reoxygenation (H/R)-inudced H9c2 cardiomyocytes injury. Our results observed that H/R treatment resulted in a significant decrease in cells viability and obvious increases in caspase-3 activity and apoptosis rate in H9c2 cells, while these alterations were evidently reversed by baicalin pretreatment. Simultaneously, baicalin mitigated H/R-induced the decreases in the levels of ALDH2 mRNA and protein as well as the activity of ALDH2 in H9c2 cells. However, we found that daidzin, an ALDH2 antagonist, remarkably attenuated baicalin-elicited inhibitory action on H/R-induced the downregulation of cells viability and Bcl-2 protein expression, and the upregulations of caspase-3 activity, apoptosis rate, cytochrome c and Bax proteins expressions in H9c2 cells. In addition, baicalin reversed H/R-induced oxidative stress as evidenced by the downregulation of malondialdehyde (MAD) and 4-hydroxy aldehydes (4-HNE) levels, the inhibition of endogenous reactive oxygen species (ROS) generation, and the downregulation of superoxide dismutase (SOD) activity induced by H/R treatment, while these effects were also blocked by daidzin. Furthermore, we found that Alda-1, an ALDH2 agonist, also abolished H/R-induced cytotoxicity, apoptosis, and oxidative stress, indicating that ALDH2 mediated H/R-induced H9c2 cell injury. Overall, these results suggested that baicalin prevents H/R-induced apoptosis and oxidative stress through enhancing ALDH activity and expression in H9c2 cardiomyocytes.
Collapse
Affiliation(s)
- Wen-Bin Jiang
- Department of Cardiology, the First Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China.,Department of Cardiology, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Wei Zhao
- Department of Cardiology, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Hao Chen
- Department of Cardiology, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - You-Yang Wu
- Department of Cardiology, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Yi Wang
- Department of Cardiology, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Guo-Sheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiang-Jun Yang
- Department of Cardiology, the First Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
17
|
Effect of ALDH2 on High Glucose-Induced Cardiac Fibroblast Oxidative Stress, Apoptosis, and Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9257967. [PMID: 29129988 PMCID: PMC5654254 DOI: 10.1155/2017/9257967] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/16/2017] [Accepted: 09/11/2017] [Indexed: 11/22/2022]
Abstract
Our study aimed firstly to observe whether ALDH2 was expressed in neonate rat cardiac fibroblasts, then to investigate the effect of activation of ALDH2 on oxidative stress, apoptosis, and fibrosis when cardiac fibroblasts were subjected to high glucose intervention. Cultured cardiac fibroblasts were randomly divided into normal (NG), NG + Alda-1, high glucose (HG), HG + Alda-1, HG + Alda-1 + daidzin, HG + daidzin, and hypertonic groups. Double-label immunofluorescence staining, RT-PCR, and Western blot revealed ALDH2 was expressed in cardiac fibroblasts. Compared with NG, ALDH2 activity and protein expression were reduced, and cardiac fibroblast proliferation, ROS releasing, 4-HNE protein expression, collagen type I and III at mRNA levels, and the apoptosis rate were increased in HG group. While in HG + Alda-1 group, with the increases of ALDH2 activity and protein expression, the cardiac fibroblast proliferation and ROS releasing were decreased, and 4-HNE protein expression, collagen type I and III at mRNA levels, and apoptosis rate were reduced compared with HG group. When treated with daidzin in HG + Alda-1 group, the protective effects were inhibited. Our findings suggested that ALDH2 is expressed in neonate rat cardiac fibroblasts; activation of ALDH2 decreases the HG-induced apoptosis and fibrosis through inhibition of oxidative stress.
Collapse
|
18
|
Dovrolis N, Kolios G, Spyrou G, Maroulakou I. Laying in silico pipelines for drug repositioning: a paradigm in ensemble analysis for neurodegenerative diseases. Drug Discov Today 2017; 22:805-813. [PMID: 28363518 DOI: 10.1016/j.drudis.2017.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/17/2017] [Accepted: 03/21/2017] [Indexed: 12/22/2022]
Abstract
When faced with time- and money-consuming problems, new practices in pharmaceutical R&D arose when trying to alleviate them. Drug repositioning has great promise and when combined with today's computational power and intelligence it becomes more precise and potent. This work showcases current approaches of creating a computational pipeline for drug repositioning, along with an extensive example of how researchers can influence therapeutic approaches and further understanding, through either single or multiple disease studies. This paradigm is based on three neurodegenerative diseases with pathophysiological similarities. It is our goal to provide the readers with all the information needed to enrich their research and note expectations along the way.
Collapse
Affiliation(s)
- Nikolas Dovrolis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Greece
| | - George Kolios
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Greece
| | - George Spyrou
- Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, Cyprus
| | - Ioanna Maroulakou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Greece.
| |
Collapse
|
19
|
Wang S, Zhang F, Zhao G, Cheng Y, Wu T, Wu B, Zhang YE. Mitochondrial PKC-ε deficiency promotes I/R-mediated myocardial injury via GSK3β-dependent mitochondrial permeability transition pore opening. J Cell Mol Med 2017; 21:2009-2021. [PMID: 28266127 PMCID: PMC5571523 DOI: 10.1111/jcmm.13121] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 01/05/2017] [Indexed: 11/29/2022] Open
Abstract
Mitochondrial fission is critically involved in cardiomyocyte apoptosis, which has been considered as one of the leading causes of ischaemia/reperfusion (I/R)‐induced myocardial injury. In our previous works, we demonstrate that aldehyde dehydrogenase‐2 (ALDH2) deficiency aggravates cardiomyocyte apoptosis and cardiac dysfunction. The aim of this study was to elucidate whether ALDH2 deficiency promotes mitochondrial injury and cardiomyocyte death in response to I/R stress and the underlying mechanism. I/R injury was induced by aortic cross‐clamping for 45 min. followed by unclamping for 24 hrs in ALDH2 knockout (ALDH2−/−) and wild‐type (WT) mice. Then myocardial infarct size, cell apoptosis and cardiac function were examined. The protein kinase C (PKC) isoform expressions and their mitochondrial translocation, the activity of dynamin‐related protein 1 (Drp1), caspase9 and caspase3 were determined by Western blot. The effects of N‐acetylcysteine (NAC) or PKC‐δ shRNA treatment on glycogen synthase kinase‐3β (GSK‐3β) activity and mitochondrial permeability transition pore (mPTP) opening were also detected. The results showed that ALDH2−/− mice exhibited increased myocardial infarct size and cardiomyocyte apoptosis, enhanced levels of cleaved caspase9, caspase3 and phosphorylated Drp1. Mitochondrial PKC‐ε translocation was lower in ALDH2−/− mice than in WT mice, and PKC‐δ was the opposite. Further data showed that mitochondrial PKC isoform ratio was regulated by cellular reactive oxygen species (ROS) level, which could be reversed by NAC pre‐treatment under I/R injury. In addition, PKC‐ε inhibition caused activation of caspase9, caspase3 and Drp1Ser616 in response to I/R stress. Importantly, expression of phosphorylated GSK‐3β (inactive form) was lower in ALDH2−/− mice than in WT mice, and both were increased by NAC pre‐treatment. I/R‐induced mitochondrial translocation of GSK‐3β was inhibited by PKC‐δ shRNA or NAC pre‐treatment. In addition, mitochondrial membrane potential (∆Ψm) was reduced in ALDH2−/− mice after I/R, which was partly reversed by the GSK‐3β inhibitor (SB216763) or PKC‐δ shRNA. Collectively, our data provide the evidence that abnormal PKC‐ε/PKC‐δ ratio promotes the activation of Drp1 signalling, caspase cascades and GSK‐3β‐dependent mPTP opening, which results in mitochondrial injury‐triggered cardiomyocyte apoptosis and myocardial dysfuction in ALDH2−/− mice following I/R stress.
Collapse
Affiliation(s)
- Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gang Zhao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Cheng
- Heart Centre of Zhengzhou Ninth People's Hospital, Zhengzhou, Henan, China
| | - Ting Wu
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Bing Wu
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - You-En Zhang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
20
|
Liu XZ, Sun X, Shen KP, Jin WJ, Fu ZY, Tao HR, Xu ZX. Aldehyde dehydrogenase 2 overexpression inhibits neuronal apoptosis after spinal cord ischemia/reperfusion injury. Neural Regen Res 2017; 12:1166-1171. [PMID: 28852401 PMCID: PMC5558498 DOI: 10.4103/1673-5374.211198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is an important factor in inhibiting oxidative stress and has been shown to protect against renal ischemia/reperfusion injury. Therefore, we hypothesized that ALDH2 could reduce spinal cord ischemia/reperfusion injury. Spinal cord ischemia/reperfusion injury was induced in rats using the modified Zivin's method of clamping the abdominal aorta. After successful model establishment, the agonist group was administered a daily consumption of 2.5% alcohol. At 7 days post-surgery, the Basso, Beattie, and Bresnahan score significantly increased in the agonist group compared with the spinal cord ischemia/reperfusion injury group. ALDH2 expression also significantly increased and the number of apoptotic cells significantly decreased in the agonist group than in the spinal cord ischemia/reperfusion injury group. Correlation analysis revealed that ALDH2 expression negatively correlated with the percentage of TUNEL-positive cells (r = −0.485, P < 0.01). In summary, increased ALDH2 expression protected the rat spinal cord against ischemia/reperfusion injury by inhibiting apoptosis.
Collapse
Affiliation(s)
- Xing-Zhen Liu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Sun
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kang-Ping Shen
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Jie Jin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Yi Fu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Rong Tao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Xing Xu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Sadiq S, Crowley TM, Charchar FJ, Sanigorski A, Lewandowski PA. MicroRNAs in a hypertrophic heart: from foetal life to adulthood. Biol Rev Camb Philos Soc 2016; 92:1314-1331. [DOI: 10.1111/brv.12283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Shahzad Sadiq
- School of Medicine, Faculty of Health; Deakin University; 75 Pigdons Road Waurn Ponds Victoria 3216 Australia
| | - Tamsyn M. Crowley
- School of Medicine, Faculty of Health; Deakin University; 75 Pigdons Road Waurn Ponds Victoria 3216 Australia
| | - Fadi J. Charchar
- School of Health Sciences; Faculty of Science and Technology, Federation University; Ballarat Victoria 3353 Australia
| | - Andrew Sanigorski
- School of Medicine, Faculty of Health; Deakin University; 75 Pigdons Road Waurn Ponds Victoria 3216 Australia
| | - Paul A. Lewandowski
- School of Medicine, Faculty of Health; Deakin University; 75 Pigdons Road Waurn Ponds Victoria 3216 Australia
| |
Collapse
|
22
|
Zhong Z, Ye S, Xiong Y, Wu L, Zhang M, Fan X, Li L, Fu Z, Wang H, Chen M, Yan X, Huang W, Ko DSC, Wang Y, Ye Q. Decreased expression of mitochondrial aldehyde dehydrogenase-2 induces liver injury via activation of the mitogen-activated protein kinase pathway. Transpl Int 2015; 29:98-107. [PMID: 26404764 DOI: 10.1111/tri.12675] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/31/2015] [Accepted: 08/20/2015] [Indexed: 12/18/2022]
Abstract
The aim of this study was to determine the role of ALDH2 in the injury of liver from brain-dead donors. Using brain-dead rabbit model and hypoxia model, levels of ALDH2 and apoptosis in tissues and cell lines were determined by Western blot, flow cytometry (FCM), and transferase (TdT)-mediated biotin-16-dUTP nick-end labeling (TUNEL) assays. After the expression of ALDH2 during hypoxia had been inhibited or activated, the accumulations of 4-hydroxynonenal (4-HNE) and molecules involved in mitogen-activated protein kinase (MAPK) signaling pathway were analyzed using ELISA kit and Western blot. The low expression of phosphorylated ALDH2 in liver was time-dependent in the brain-dead rabbit model. Immunohistochemistry showed ALDH2 was primarily located in endothelial, and the rates of cell apoptosis in the donation after brain-death (DBD) rabbit groups significantly increased with time. Following the treatment of inhibitor of ALDH2, daidzein, in combination with hypoxia for 8 h, the apoptosis rate and the levels of 4-HNE, P-JNK, and cleaved caspase-3 significantly increased in contrast to that in hypoxic HUVECs; however, they all decreased after treatment with Alda-1 and hypoxia compared with that in hypoxic HUVECs (P < 0.05). Instead, the levels of P-P38, P-ERK, P-JNK, and cleaved caspase-3 decreased and the ratio of bcl-2/bax increased with ad-ALDH2 (10(6) pfu/ml) in combination with hypoxia for 8 h, which significantly alleviated in contrast to that in hypoxic HUVECs. We found low expression of ALDH2 and high rates of apoptosis in the livers of brain-dead donor rabbits. Furthermore, decreased ALDH2 led to apoptosis in HUVECs through MAPK pathway.
Collapse
Affiliation(s)
- Zibiao Zhong
- Wuhan University, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan Hubei, China
| | - Shaojun Ye
- Wuhan University, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan Hubei, China
| | - Yan Xiong
- Wuhan University, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan Hubei, China
| | - Lianxi Wu
- Jianghan District Center for Disease Control and Prevention, Wuhan Hubei, China
| | - Meng Zhang
- Wuhan University, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan Hubei, China
| | - Xiaoli Fan
- Wuhan University, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan Hubei, China
| | - Ling Li
- Wuhan University, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan Hubei, China
| | - Zhen Fu
- The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China
| | - Huanglei Wang
- Wuhan University, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan Hubei, China
| | - Mingyun Chen
- Wuhan University, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan Hubei, China
| | - Xiaomin Yan
- Wuhan University, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan Hubei, China
| | - Wei Huang
- Wuhan University, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan Hubei, China
| | - Dicken Shiu-Chung Ko
- Massachusetts General Hospital, Department of Urology, Harvard Medical School, Boston, MA, USA
| | - Yanfeng Wang
- Wuhan University, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan Hubei, China
| | - Qifa Ye
- Wuhan University, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan Hubei, China.,The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China
| |
Collapse
|
23
|
Liu X, Sun X, Liao H, Dong Z, Zhao J, Zhu H, Wang P, Shen L, Xu L, Ma X, Shen C, Fan F, Wang C, Hu K, Zou Y, Ge J, Ren J, Sun A. Mitochondrial Aldehyde Dehydrogenase 2 Regulates Revascularization in Chronic Ischemia: Potential Impact on the Development of Coronary Collateral Circulation. Arterioscler Thromb Vasc Biol 2015; 35:2196-206. [PMID: 26315408 DOI: 10.1161/atvbaha.115.306012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/30/2015] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Revascularization is an essential process to compensate for cardiac underperfusion and, therefore, preserves cardiac function in the face of chronic ischemic injury. Recent evidence suggested a vital role of aldehyde dehydrogenase 2 (ALDH2) in cardiac protection after ischemia. This study was designed to determine whether ALDH2 regulates chronic ischemia-induced angiogenesis and to explore the underlying mechanism involved. Moreover, the clinical impact of the ALDH2 mutant allele on the development of coronary collateral circulation (CCC) was evaluated. APPROACH AND RESULTS Mice limb ischemia was performed. Compared with wild-type, ALDH2 deletion significantly reduced perfusion recovery, small artery and capillary density, and increased muscle atrophy in this ischemic model. In vitro, ALDH2-knockdown reduced proliferation, migration and hypoxia triggered endothelial tube formation of endothelial cells, the effects of which were restored by ALDH2 transfection. Further examination revealed that ALDH2 regulated angiogenesis possibly through hypoxia-inducible factor-1α/vascular endothelial growth factor pathways. To further discern the role of ALDH2 deficiency in the function of bone marrow stem/progenitor cells, cross bone marrow transplantation was performed between wild-type and ALDH2-knockout mice. However, there was no significant improvement for wild-type bone marrow transplantation into knockout mice. ALDH2 genotyping was screened in 139 patients with chronic total occlusion recruited to Zhongshan Hospital (2011.10-2014.4). Patients with poor CCC (Rentrop 0-1; n=51) exhibited a higher frequency of the AA genotype than those with enriched CCC (Rentrop 2-3; n=88; 11.76% versus 1.14%; P=0 0.01). However, the AA group displayed less enriched CCC frequency in Logistic regression model when compared with the GG group (odds ratio=0.08; 95% confidence interval, 0.009-0.701; P=0 0.026). Furthermore, serum vascular endothelial growth factor level tended to be lower in patients with ALDH2 mutation. CONCLUSIONS This study demonstrated that ALDH2 possesses an intrinsic capacity to regulate angiogenesis via hypoxia-inducible factor-1α and vascular endothelial growth factor. Patients with ALDH2-deficient genotype displayed a higher risk of developing poor CCC. Therapeutic individualization based on ALDH2 allele distribution may thus improve the therapeutic benefit, especially in the East Asian decedents.
Collapse
Affiliation(s)
- Xiangwei Liu
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (X.L., H.Z., P.W., L.S., L.X., C.S., F.F., C.W., K.H., Y.Z., J.G., J.R., A.S.), Institute of Biomedical Science (X.S., L.X., X.M., Y.Z., J.G., A.S.), Department of Cardiology, Huashan Hospital (Z.D.), Fudan University, Shanghai, P.R. China; Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie (X.L., J.R.); Dongfang Hospital, Tongji University, Shanghai, P.R. China (H.L.); and Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China (J.Z.)
| | - Xiaolei Sun
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (X.L., H.Z., P.W., L.S., L.X., C.S., F.F., C.W., K.H., Y.Z., J.G., J.R., A.S.), Institute of Biomedical Science (X.S., L.X., X.M., Y.Z., J.G., A.S.), Department of Cardiology, Huashan Hospital (Z.D.), Fudan University, Shanghai, P.R. China; Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie (X.L., J.R.); Dongfang Hospital, Tongji University, Shanghai, P.R. China (H.L.); and Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China (J.Z.)
| | - Hua Liao
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (X.L., H.Z., P.W., L.S., L.X., C.S., F.F., C.W., K.H., Y.Z., J.G., J.R., A.S.), Institute of Biomedical Science (X.S., L.X., X.M., Y.Z., J.G., A.S.), Department of Cardiology, Huashan Hospital (Z.D.), Fudan University, Shanghai, P.R. China; Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie (X.L., J.R.); Dongfang Hospital, Tongji University, Shanghai, P.R. China (H.L.); and Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China (J.Z.)
| | - Zhen Dong
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (X.L., H.Z., P.W., L.S., L.X., C.S., F.F., C.W., K.H., Y.Z., J.G., J.R., A.S.), Institute of Biomedical Science (X.S., L.X., X.M., Y.Z., J.G., A.S.), Department of Cardiology, Huashan Hospital (Z.D.), Fudan University, Shanghai, P.R. China; Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie (X.L., J.R.); Dongfang Hospital, Tongji University, Shanghai, P.R. China (H.L.); and Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China (J.Z.)
| | - Jingjing Zhao
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (X.L., H.Z., P.W., L.S., L.X., C.S., F.F., C.W., K.H., Y.Z., J.G., J.R., A.S.), Institute of Biomedical Science (X.S., L.X., X.M., Y.Z., J.G., A.S.), Department of Cardiology, Huashan Hospital (Z.D.), Fudan University, Shanghai, P.R. China; Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie (X.L., J.R.); Dongfang Hospital, Tongji University, Shanghai, P.R. China (H.L.); and Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China (J.Z.)
| | - Hong Zhu
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (X.L., H.Z., P.W., L.S., L.X., C.S., F.F., C.W., K.H., Y.Z., J.G., J.R., A.S.), Institute of Biomedical Science (X.S., L.X., X.M., Y.Z., J.G., A.S.), Department of Cardiology, Huashan Hospital (Z.D.), Fudan University, Shanghai, P.R. China; Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie (X.L., J.R.); Dongfang Hospital, Tongji University, Shanghai, P.R. China (H.L.); and Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China (J.Z.)
| | - Peng Wang
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (X.L., H.Z., P.W., L.S., L.X., C.S., F.F., C.W., K.H., Y.Z., J.G., J.R., A.S.), Institute of Biomedical Science (X.S., L.X., X.M., Y.Z., J.G., A.S.), Department of Cardiology, Huashan Hospital (Z.D.), Fudan University, Shanghai, P.R. China; Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie (X.L., J.R.); Dongfang Hospital, Tongji University, Shanghai, P.R. China (H.L.); and Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China (J.Z.)
| | - Li Shen
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (X.L., H.Z., P.W., L.S., L.X., C.S., F.F., C.W., K.H., Y.Z., J.G., J.R., A.S.), Institute of Biomedical Science (X.S., L.X., X.M., Y.Z., J.G., A.S.), Department of Cardiology, Huashan Hospital (Z.D.), Fudan University, Shanghai, P.R. China; Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie (X.L., J.R.); Dongfang Hospital, Tongji University, Shanghai, P.R. China (H.L.); and Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China (J.Z.)
| | - Lei Xu
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (X.L., H.Z., P.W., L.S., L.X., C.S., F.F., C.W., K.H., Y.Z., J.G., J.R., A.S.), Institute of Biomedical Science (X.S., L.X., X.M., Y.Z., J.G., A.S.), Department of Cardiology, Huashan Hospital (Z.D.), Fudan University, Shanghai, P.R. China; Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie (X.L., J.R.); Dongfang Hospital, Tongji University, Shanghai, P.R. China (H.L.); and Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China (J.Z.)
| | - Xin Ma
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (X.L., H.Z., P.W., L.S., L.X., C.S., F.F., C.W., K.H., Y.Z., J.G., J.R., A.S.), Institute of Biomedical Science (X.S., L.X., X.M., Y.Z., J.G., A.S.), Department of Cardiology, Huashan Hospital (Z.D.), Fudan University, Shanghai, P.R. China; Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie (X.L., J.R.); Dongfang Hospital, Tongji University, Shanghai, P.R. China (H.L.); and Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China (J.Z.)
| | - Cheng Shen
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (X.L., H.Z., P.W., L.S., L.X., C.S., F.F., C.W., K.H., Y.Z., J.G., J.R., A.S.), Institute of Biomedical Science (X.S., L.X., X.M., Y.Z., J.G., A.S.), Department of Cardiology, Huashan Hospital (Z.D.), Fudan University, Shanghai, P.R. China; Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie (X.L., J.R.); Dongfang Hospital, Tongji University, Shanghai, P.R. China (H.L.); and Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China (J.Z.)
| | - Fan Fan
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (X.L., H.Z., P.W., L.S., L.X., C.S., F.F., C.W., K.H., Y.Z., J.G., J.R., A.S.), Institute of Biomedical Science (X.S., L.X., X.M., Y.Z., J.G., A.S.), Department of Cardiology, Huashan Hospital (Z.D.), Fudan University, Shanghai, P.R. China; Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie (X.L., J.R.); Dongfang Hospital, Tongji University, Shanghai, P.R. China (H.L.); and Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China (J.Z.)
| | - Cong Wang
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (X.L., H.Z., P.W., L.S., L.X., C.S., F.F., C.W., K.H., Y.Z., J.G., J.R., A.S.), Institute of Biomedical Science (X.S., L.X., X.M., Y.Z., J.G., A.S.), Department of Cardiology, Huashan Hospital (Z.D.), Fudan University, Shanghai, P.R. China; Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie (X.L., J.R.); Dongfang Hospital, Tongji University, Shanghai, P.R. China (H.L.); and Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China (J.Z.)
| | - Kai Hu
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (X.L., H.Z., P.W., L.S., L.X., C.S., F.F., C.W., K.H., Y.Z., J.G., J.R., A.S.), Institute of Biomedical Science (X.S., L.X., X.M., Y.Z., J.G., A.S.), Department of Cardiology, Huashan Hospital (Z.D.), Fudan University, Shanghai, P.R. China; Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie (X.L., J.R.); Dongfang Hospital, Tongji University, Shanghai, P.R. China (H.L.); and Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China (J.Z.)
| | - Yunzeng Zou
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (X.L., H.Z., P.W., L.S., L.X., C.S., F.F., C.W., K.H., Y.Z., J.G., J.R., A.S.), Institute of Biomedical Science (X.S., L.X., X.M., Y.Z., J.G., A.S.), Department of Cardiology, Huashan Hospital (Z.D.), Fudan University, Shanghai, P.R. China; Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie (X.L., J.R.); Dongfang Hospital, Tongji University, Shanghai, P.R. China (H.L.); and Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China (J.Z.)
| | - Junbo Ge
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (X.L., H.Z., P.W., L.S., L.X., C.S., F.F., C.W., K.H., Y.Z., J.G., J.R., A.S.), Institute of Biomedical Science (X.S., L.X., X.M., Y.Z., J.G., A.S.), Department of Cardiology, Huashan Hospital (Z.D.), Fudan University, Shanghai, P.R. China; Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie (X.L., J.R.); Dongfang Hospital, Tongji University, Shanghai, P.R. China (H.L.); and Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China (J.Z.)
| | - Jun Ren
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (X.L., H.Z., P.W., L.S., L.X., C.S., F.F., C.W., K.H., Y.Z., J.G., J.R., A.S.), Institute of Biomedical Science (X.S., L.X., X.M., Y.Z., J.G., A.S.), Department of Cardiology, Huashan Hospital (Z.D.), Fudan University, Shanghai, P.R. China; Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie (X.L., J.R.); Dongfang Hospital, Tongji University, Shanghai, P.R. China (H.L.); and Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China (J.Z.)
| | - Aijun Sun
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (X.L., H.Z., P.W., L.S., L.X., C.S., F.F., C.W., K.H., Y.Z., J.G., J.R., A.S.), Institute of Biomedical Science (X.S., L.X., X.M., Y.Z., J.G., A.S.), Department of Cardiology, Huashan Hospital (Z.D.), Fudan University, Shanghai, P.R. China; Center for Cardiovascular Research and Alternative Medicine, School of Pharmacy, University of Wyoming College of Health Sciences, Laramie (X.L., J.R.); Dongfang Hospital, Tongji University, Shanghai, P.R. China (H.L.); and Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China (J.Z.).
| |
Collapse
|
24
|
Aberrant hypermethylation of aldehyde dehydrogenase 2 promoter upstream sequence in rats with experimental myocardial infarction. BIOMED RESEARCH INTERNATIONAL 2015; 2015:503692. [PMID: 25629048 PMCID: PMC4299765 DOI: 10.1155/2015/503692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/13/2014] [Accepted: 11/20/2014] [Indexed: 12/31/2022]
Abstract
Background. Aldehyde dehydrogenase 2 (ALDH2) plays a crucial role in myocardial protection against ischemia. Downregulation of ALDH2 was evidenced after myocardial infarction and the underlying mechanism is not fully understood. DNA methylation can regulate gene transcription in epigenetic level. We thus hypothesized that DNA methylation may affect ALDH2 expression in myocardial infarction (MI). Methods. MI was induced in Sprague-Dawley rats. MI border zone tissues were harvested at 1st week, 2nd week, and 3rd week after MI. Bisulfite sequencing PCR (BSP) was performed to detect the methylation levels of ALDH2 core promoter. Sequenom MassARRAY platform (MassARRAY) was used to examine the methylation levels of ALDH2 promoter upstream sequence. ALDH2 protein and mRNA expression were assayed by Western blot and real-time PCR, respectively. Results. Compared with Sham group, ALDH2 protein and mRNA expression of MI groups was significantly downregulated. Compared with Sham group, DNA methylation level of CpG sites in ALDH2 promoter upstream sequence was significantly higher in MI groups in a time-dependent manner (CpG1, CpG2, and CpG7, P < 0.01). DNA methylation did not affect ALDH2 core promoter sequence during the progress of MI. No significant difference was detected in DNA methylation level of ALDH2 promoter upstream sequence among MI groups. Conclusion. Aberrant hypermethylation of CpG sites in ALDH2 promoter upstream sequence is associated with myocardial ischemia injury and may partly result in ALDH2 downregulation after MI.
Collapse
|
25
|
Hu Y, Yan JB, Zheng MZ, Song XH, Wang LL, Shen YL, Chen YY. Mitochondrial aldehyde dehydrogenase activity protects against lipopolysaccharide‑induced cardiac dysfunction in rats. Mol Med Rep 2014; 11:1509-15. [PMID: 25351957 DOI: 10.3892/mmr.2014.2803] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 09/18/2014] [Indexed: 11/05/2022] Open
Abstract
Myocardial dysfunction in sepsis is associated with an increased risk of mortality. The mitochondrial aldehyde dehydrogenase (ALDH2) enzyme is crucial for protecting the heart from ischemic injury. The aim of the present study was to determine the role of ALDH2 in cardiac dysfunction induced by lipopolysaccharide (LPS). Male rats were treated intraperitoneally with LPS, and their stroke volume and cardiac output were evaluated using an M‑mode echocardiograph. The expression levels and activity of ALDH2, nitric oxide content and inducible nitric oxide synthase (iNOS) activity, and the opening of the mitochondrial permeability transition pore (MPTP) were also evaluated. Treatment with LPS (5, 10, or 20 mg/kg) resulted in a steady decrease in cardiac output and stroke volume. The ALDH2 activity was decreased in a dose‑dependent manner; however, the ALDH2 protein expression levels remained unchanged. Alda‑1, a specific activator of ALDH2, increased the activity of ALDH2 and lessened LPS‑induced cardiac dysfunction. A marked opening of the MPTP was observed 12 h following treatment with LPS, which was prevented by Alda‑1. The improvement in cardiac function in response to treatment with Alda‑1, was partially prevented by treatment with the MPTP inhibitor atractyloside. LPS treatment induced an increase in iNOS activation and inhibition of ALDH2 activity. The iNOS selective inhibitor, aminoguanidine, partially reversed the LPS‑induced ALDH2 activity decrease and MPTP opening. These results indicate that ALDH2 activity may have a role in protecting against LPS‑induced cardiac dysfunction. The potential mechanism may involve inhibition of MPTP opening and iNOS expression.
Collapse
Affiliation(s)
- Ying Hu
- Department of Ultrasonography, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jin-Bin Yan
- Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Ming-Zhi Zheng
- Department of Pharmacology, Zhejiang Medical College, Hangzhou, Zhejiang 310053, P.R. China
| | - Xing-Hui Song
- Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Lin-Lin Wang
- Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Yue-Liang Shen
- Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Ying-Ying Chen
- Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
26
|
Wang S, Gong H, Jiang G, Ye Y, Wu J, You J, Zhang G, Sun A, Komuro I, Ge J, Zou Y. Src is required for mechanical stretch-induced cardiomyocyte hypertrophy through angiotensin II type 1 receptor-dependent β-arrestin2 pathways. PLoS One 2014; 9:e92926. [PMID: 24699426 PMCID: PMC3974699 DOI: 10.1371/journal.pone.0092926] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 02/26/2014] [Indexed: 01/14/2023] Open
Abstract
Angiotensin II (AngII) type 1 receptor (AT1-R) can be activated by mechanical stress (MS) without the involvement of AngII during the development of cardiomyocyte hypertrophy, in which G protein-independent pathways are critically involved. Although β-arrestin2-biased signaling has been speculated, little is known about how AT1-R/β-arrestin2 leads to ERK1/2 activation. Here, we present a novel mechanism by which Src kinase mediates AT1-R/β-arrestin2-dependent ERK1/2 phosphorylation in response to MS. Differing from stimulation by AngII, MS-triggered ERK1/2 phosphorylation is neither suppressed by overexpression of RGS4 (the negative regulator of the G-protein coupling signal) nor by inhibition of Gαq downstream protein kinase C (PKC) with GF109203X. The release of inositol 1,4,5-triphosphate (IP3) is increased by AngII but not by MS. These results collectively suggest that MS-induced ERK1/2 activation through AT1-R might be independent of G-protein coupling. Moreover, either knockdown of β-arrestin2 or overexpression of a dominant negative mutant of β-arrestin2 prevents MS-induced activation of ERK1/2. We further identifies a relationship between Src, a non-receptor tyrosine kinase and β-arrestin2 using analyses of co-immunoprecipitation and immunofluorescence after MS stimulation. Furthermore, MS-, but not AngII-induced ERK1/2 phosphorylation is attenuated by Src inhibition, which also significantly improves pressure overload-induced cardiac hypertrophy and dysfunction in mice lacking AngII. Finally, MS-induced Src activation and hypertrophic response are abolished by candesartan but not by valsartan whereas AngII-induced responses can be abrogated by both blockers. Our results suggest that Src plays a critical role in MS-induced cardiomyocyte hypertrophy through β-arrestin2-associated angiotensin II type 1 receptor signaling.
Collapse
MESH Headings
- Angiotensinogen/physiology
- Animals
- Animals, Newborn
- Arrestins/genetics
- Arrestins/metabolism
- Blotting, Western
- Cardiomegaly/metabolism
- Cardiomegaly/pathology
- Cells, Cultured
- Echocardiography
- Immunoenzyme Techniques
- Immunoprecipitation
- Inositol 1,4,5-Trisphosphate/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Phosphorylation
- RNA, Messenger/genetics
- Rats
- Real-Time Polymerase Chain Reaction
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Stress, Mechanical
- beta-Arrestins
- src-Family Kinases/genetics
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Hui Gong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Guoliang Jiang
- Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Yong Ye
- Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Jian Wu
- Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Jieyun You
- Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Guoping Zhang
- Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Issei Komuro
- Department of Cardiovascular Medicine, the University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Institutes of Biomedical Science, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Activation of ALDH2 with ethanol attenuates diabetes induced myocardial injury in rats. Food Chem Toxicol 2013; 56:419-24. [DOI: 10.1016/j.fct.2013.02.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 11/20/2022]
|
28
|
Wang S, Sun A, Li L, Zhao G, Jia J, Wang K, Ge J, Zou Y. Up-regulation of BMP-2 antagonizes TGF-β1/ROCK-enhanced cardiac fibrotic signalling through activation of Smurf1/Smad6 complex. J Cell Mol Med 2013; 16:2301-10. [PMID: 22283839 PMCID: PMC3823423 DOI: 10.1111/j.1582-4934.2012.01538.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rho-associated kinase (ROCK) plays a critical role in pressure overload-induced left ventricular remodelling. However, the underlying mechanism remains unclear. Here, we reported that TGF-β1-induced ROCK elevation suppressed BMP-2 level and strengthened fibrotic response. Exogenous BMP-2 supply effectively attenuated TGF-β1 signalling pathway through Smad6-Smurf-1 complex activation. In vitro cultured cardiomyocytes, mechanical stretch up-regulated cardiac TGF-β1, TGF-β1-dependent ROCK and down-regulated BMP-2, but BMP-2 level could be reversed through blocking TGF-β1 receptor by SB-431542 or inhibition of ROCK by Y-27632. TGF-β1 could also activate ROCK and suppress endogenous BMP-2 level in a dose-dependent manner. Knock-down BMP-2 enhanced TGF-β1-mediated PKC-δ and Smad3 signalling cascades. In contrast, treatment with Y-27632 or SB-431542, respectively suppressed ROCK-dependent PKC-δ and Smad3 activation, but BMP-2 was only up-regulated by Y-27632. In addition, BMP-2 silencing abolished the effect of Y-27632, but not SB-431542 on suppression of TGF-β1 pathway. Further experiments showed that Smad6 Smurf1 interaction were required for BMP-2-evoked antagonizing effects. Smad6 overexpression attenuated TGF-β1-induced activation of PKC-δ and Smad3, promoted TGF-β RI degradation in BMP-2 knock-down cardiomyocytes, and could be abolished after knocking-down Smurf-1, in which Smad6/Smurf1 complex formation was critically involved. In vivo data showed that pressure overload-induced collagen deposition was attenuated, cardiac function was improved and TGF-β1-dependent activation of PKC-δ and Smad3 was reduced after 2 weeks treatment with rhBMP-2(0.5 mg/kg) or Y-27632 (10 mg/kg) in mice that underwent surgical transverse aortic constriction. In conclusion, we propose that BMP-2, as a novel fibrosis antagonizing cytokine, may have potential beneficial effect in attenuating pressure overload-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Koppaka V, Thompson DC, Chen Y, Ellermann M, Nicolaou KC, Juvonen RO, Petersen D, Deitrich RA, Hurley TD, Vasiliou V. Aldehyde dehydrogenase inhibitors: a comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol Rev 2012; 64:520-39. [PMID: 22544865 PMCID: PMC3400832 DOI: 10.1124/pr.111.005538] [Citation(s) in RCA: 423] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aldehyde dehydrogenases (ALDHs) belong to a superfamily of enzymes that play a key role in the metabolism of aldehydes of both endogenous and exogenous derivation. The human ALDH superfamily comprises 19 isozymes that possess important physiological and toxicological functions. The ALDH1A subfamily plays a pivotal role in embryogenesis and development by mediating retinoic acid signaling. ALDH2, as a key enzyme that oxidizes acetaldehyde, is crucial for alcohol metabolism. ALDH1A1 and ALDH3A1 are lens and corneal crystallins, which are essential elements of the cellular defense mechanism against ultraviolet radiation-induced damage in ocular tissues. Many ALDH isozymes are important in oxidizing reactive aldehydes derived from lipid peroxidation and thereby help maintain cellular homeostasis. Increased expression and activity of ALDH isozymes have been reported in various human cancers and are associated with cancer relapse. As a direct consequence of their significant physiological and toxicological roles, inhibitors of the ALDH enzymes have been developed to treat human diseases. This review summarizes known ALDH inhibitors, their mechanisms of action, isozyme selectivity, potency, and clinical uses. The purpose of this review is to 1) establish the current status of pharmacological inhibition of the ALDHs, 2) provide a rationale for the continued development of ALDH isozyme-selective inhibitors, and 3) identify the challenges and potential therapeutic rewards associated with the creation of such agents.
Collapse
Affiliation(s)
- Vindhya Koppaka
- Department of Pharmaceutical Sciences, University of Colorado Denver, 12850 East Montview Blvd., Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Azad N, Iyer AKV, Wang L, Liu Y, Lu Y, Rojanasakul Y. Reactive oxygen species-mediated p38 MAPK regulates carbon nanotube-induced fibrogenic and angiogenic responses. Nanotoxicology 2012; 7:157-68. [PMID: 22263913 DOI: 10.3109/17435390.2011.647929] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) are fibrous nanoparticles that are being used widely for various applications including drug delivery. SWCNTs are currently under special attention for possible cytotoxicity. Recent reports suggest that exposure to nanoparticles leads to pulmonary fibrosis. We report that SWCNT-mediated interplay of fibrogenic and angiogenic regulators leads to increased angiogenesis, which is a novel finding that furthers the understanding of SWCNT-induced cytotoxicity. SWCNTs induce fibrogenesis through reactive oxygen species-regulated phosphorylation of p38 mitogen-activated protein kinase (MAPK). Activation of p38 MAPK by SWCNTs led to the induction of transforming growth factor (TGF)-β1 as well as vascular endothelial growth factor (VEGF). Both TGF-β1 and VEGF contributed significantly to the fibroproliferative and collagen-inducing effects of SWCNTs. Interestingly, a positive feedback loop was observed between TGF-β1 and VEGF. This interplay of fibrogenic and angiogenic mediators led to increased angiogenesis in response to SWCNTs. Overall this study reveals key signalling molecules involved in SWCNT-induced fibrogenesis and angiogenesis.
Collapse
Affiliation(s)
- Neelam Azad
- Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, USA
| | | | | | | | | | | |
Collapse
|