1
|
Dong R, Li L, Chang H, Song G, Liu S. Study on the mechanisms of defective spermatogenesis induced by TiO 2 NPs based on 3D blood-testis barrier microfluidic chip. Toxicology 2024; 507:153888. [PMID: 39019315 DOI: 10.1016/j.tox.2024.153888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) can reduce sperm number, but the mechanisms of defective spermatogenesis induced by TiO2 NPs have not been studied through cell-cell interactions at present. A kind of biomimetic three-dimensional blood-testis barrier microfluidic chip capable of intercellular communication was constructed with soft lithography techniques, including Sertoli cell (TM4), spermatogonia (GC-1) and vascular endothelial cell units, to study the mechanisms of TiO2 NPs-induced defective spermatogenesis. TM4 and GC-1 cells cultured in TiO2 NPs exposure and control chips were collected for transcriptomics and metabonomics analysis, and key proteins and metabolites in changed biological processes were validated. In TM4 cells, TiO2 NPs suppressed glucose metabolism, especially lactate production, which reduced energy substrate supply for spermatogenesis. TiO2 NPs also decreased the levels of key proteins and metabolites of lactate production. In GC-1 cells, TiO2 NPs disturbed chemokine signaling pathways regulating cell proliferation and interfered with glutathione metabolism. The Cxcl13, Stat3 and p-Stat3 levels and cell proliferation rate were decreased, and the GSR, GPX4 and GSH contents were increased in GC-1 cells in chips under TiO2 NPs treatment. The decrease in energy substrate supply for spermatogenesis and inhibition of spermatogonia proliferation could be the main mechanisms of defective spermatogenesis induced by TiO2 NPs.
Collapse
Affiliation(s)
- Ruoyun Dong
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Li Li
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Hongmei Chang
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Guanling Song
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Sixiu Liu
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
2
|
Ke Y, Ye Y, Wu J, Ma Y, Fang Y, Jiang F, Yu J. Phosphoserine-loaded chitosan membranes promote bone regeneration by activating endogenous stem cells. Front Bioeng Biotechnol 2023; 11:1096532. [PMID: 37034248 PMCID: PMC10076862 DOI: 10.3389/fbioe.2023.1096532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Bone defects that result from trauma, infection, surgery, or congenital malformation can severely affect the quality of life. To address this clinical problem, a phosphoserine-loaded chitosan membrane that consists of chitosan membranes serving as the scaffold support to accommodate endogenous stem cells and phosphoserine is synthesized. The introduction of phosphoserine greatly improves the osteogenic effect of the chitosan membranes via mutual crosslinking using a crosslinker (EDC, 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide). The morphology of PS-CS membranes was shown by scanning electron microscopy (SEM) to have an interconnected porous structure. The incorporation of phosphoserine into chitosan membranes was confirmed by energy dispersive spectrum (EDS), Fourier Transforms Infrared (FTIR), and X-ray diffraction (XRD) spectrum. The CCK8 assay and Live/Dead staining, Hemolysis analysis, and cell adhesion assay demonstrated that PS-CS membranes had good biocompatibility. The osteogenesis-related gene expression of BMSCs was higher in PS-CS membranes than in CS membranes, which was verified by alkaline phosphatase (ALP) activity, immunofluorescence staining, and real-time quantitative PCR (RT-qPCR). Furthermore, micro-CT and histological analysis of rat cranial bone defect demonstrated that PS-CS membranes dramatically stimulated bone regeneration in vivo. Moreover, H&E staining of the main organs (heart, liver, spleen, lung, or kidney) showed no obvious histological abnormalities, revealing that PS-CS membranes were no additional systemic toxicity in vivo. Collectively, PS-CS membranes may be a promising candidate for bone tissue engineering.
Collapse
Affiliation(s)
- Yue Ke
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yu Ye
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Nanjing Medical University, Nanjing, China
| | - Jintao Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yanxia Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yuxin Fang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Nanjing Medical University, Nanjing, China
| | - Fei Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
- Department of General Dentistry, Nanjing Medical University, Nanjing, China
- *Correspondence: Fei Jiang, ; Jinhua Yu,
| | - Jinhua Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
- *Correspondence: Fei Jiang, ; Jinhua Yu,
| |
Collapse
|
3
|
Giannos P, Prokopidis K, Isanejad M, Wright HL. Markers of immune dysregulation in response to the ageing gut: insights from aged murine gut microbiota transplants. BMC Gastroenterol 2022; 22:533. [PMID: 36544093 PMCID: PMC9773626 DOI: 10.1186/s12876-022-02613-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Perturbations in the composition and diversity of the gut microbiota are accompanied by a decline in immune homeostasis during ageing, characterized by chronic low-grade inflammation and enhanced innate immunity. Genetic insights into the interaction between age-related alterations in the gut microbiota and immune function remain largely unexplored. METHODS We investigated publicly available transcriptomic gut profiles of young germ-free mouse hosts transplanted with old donor gut microbiota to identify immune-associated differentially expressed genes (DEGs). Literature screening of the Gene Expression Omnibus and PubMed identified one murine (Mus musculus) gene expression dataset (GSE130026) that included small intestine tissues from young (5-6 weeks old) germ-free mice hosts that were compared following 8 weeks after transplantation with either old (~ 24-month old; n = 5) or young (5-6 weeks old; n = 4) mouse donor gut microbiota. RESULTS A total of 112 differentially expressed genes (DEGs) were identified and used to construct a gut network of encoded proteins, in which DEGs were functionally annotated as being involved in an immune process based on gene ontology. The association between the expression of immune-process DEGs and abundance of immune infiltrates from gene signatures in normal colorectal tissues was estimated from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) project. The analysis revealed a 25-gene signature of immune-associated DEGs and their expression profile was positively correlated with naïve T-cell, effector memory T-cell, central memory T-cell, resident memory T-cell, exhausted T-cell, resting Treg T-cell, effector Treg T-cell and Th1-like colorectal gene signatures. Conclusions These genes may have a potential role as candidate markers of immune dysregulation during gut microbiota ageing. Moreover, these DEGs may provide insights into the altered immune response to microbiota in the ageing gut, including reduced antigen presentation and alterations in cytokine and chemokine production.
Collapse
Affiliation(s)
- Panagiotis Giannos
- Society of Meta-Research and Biomedical Innovation, London, UK.,Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Konstantinos Prokopidis
- Society of Meta-Research and Biomedical Innovation, London, UK.,Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Masoud Isanejad
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Helen L Wright
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
4
|
Huang J, Hwang AYM, Jia Y, Kim B, Iskandar M, Mohammed AI, Cirillo N. Experimental Chemotherapy-Induced Mucositis: A Scoping Review Guiding the Design of Suitable Preclinical Models. Int J Mol Sci 2022; 23:15434. [PMID: 36499758 PMCID: PMC9737148 DOI: 10.3390/ijms232315434] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Mucositis is a common and most debilitating complication associated with the cytotoxicity of chemotherapy. The condition affects the entire alimentary canal from the mouth to the anus and has a significant clinical and economic impact. Although oral and intestinal mucositis can occur concurrently in the same individual, these conditions are often studied independently using organ-specific models that do not mimic human disease. Hence, the purpose of this scoping review was to provide a comprehensive yet systematic overview of the animal models that are utilised in the study of chemotherapy-induced mucositis. A search of PubMed/MEDLINE and Scopus databases was conducted to identify all relevant studies. Multiple phases of filtering were conducted, including deduplication, title/abstract screening, full-text screening, and data extraction. Studies were reported according to the updated Preferred Reporting Items for Systematic reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines. An inter-rater reliability test was conducted using Cohen's Kappa score. After title, abstract, and full-text screening, 251 articles met the inclusion criteria. Seven articles investigated both chemotherapy-induced intestinal and oral mucositis, 198 articles investigated chemotherapy-induced intestinal mucositis, and 46 studies investigated chemotherapy-induced oral mucositis. Among a total of 205 articles on chemotherapy-induced intestinal mucositis, 103 utilised 5-fluorouracil, 34 irinotecan, 16 platinum-based drugs, 33 methotrexate, and 32 other chemotherapeutic agents. Thirteen articles reported the use of a combination of 5-fluorouracil, irinotecan, platinum-based drugs, or methotrexate to induce intestinal mucositis. Among a total of 53 articles on chemotherapy-induced oral mucositis, 50 utilised 5-fluorouracil, 2 irinotecan, 2 methotrexate, 1 topotecan and 1 with other chemotherapeutic drugs. Three articles used a combination of these drugs to induce oral mucositis. Various animal models such as mice, rats, hamsters, piglets, rabbits, and zebrafish were used. The chemotherapeutic agents were introduced at various dosages via three routes of administration. Animals were mainly mice and rats. Unlike intestinal mucositis, most oral mucositis models combined mechanical or chemical irritation with chemotherapy. In conclusion, this extensive assessment of the literature revealed that there was a large variation among studies that reproduce oral and intestinal mucositis in animals. To assist with the design of a suitable preclinical model of chemotherapy-induced alimentary tract mucositis, animal types, routes of administration, dosages, and types of drugs were reported in this study. Further research is required to define an optimal protocol that improves the translatability of findings to humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia
| |
Collapse
|
5
|
Abstract
Chemotherapy-induced gastrointestinal dysfunction is a common occurrence associated with many different classes of chemotherapeutic agents. Gastrointestinal toxicity includes mucositis, diarrhea, and constipation, and can often be a dose-limiting complication, induce cessation of treatment and could be life threatening. The gastrointestinal epithelium is rich in rapidly dividing cells and hence is a prime target for chemotherapeutic drugs. The incidence of gastrointestinal toxicity, including diarrhea and mucositis, is extremely high for a wide array of chemotherapeutic and radiation regimens. In fact, 60%-100% of patients on high-dose chemotherapy suffer from gastrointestinal side effects. Unfortunately, treatment options are limited, and therapy is often restricted to palliative care. Therefore, there is a great unmet therapeutic need for preventing and treating chemotherapy-induced gastrointestinal toxicities in the clinic. In this review, we discuss our current understanding of the mechanisms underlying chemotherapy-induced diarrhea and mucositis, and emerging mechanisms involving the enteric nervous system, smooth muscle cells and enteric immune cells. Recent evidence has also implicated gut dysbiosis in the pathogenesis of not only chemotherapy-induced mucositis and diarrhea, but also chemotherapy-induced peripheral neuropathy. Oxidative stress induced by chemotherapeutic agents results in post-translational modification of ion channels altering neuronal excitability. Thus, investigating how chemotherapy-induced changes in the gut- microbiome axis may lead to gut-related toxicities will be critical in the discovery of new drug targets for mitigating adverse gastrointestinal effects associated with chemotherapy treatment.
Collapse
Affiliation(s)
- Hamid I Akbarali
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States.
| | - Karan H Muchhala
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Donald K Jessup
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Stanley Cheatham
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
6
|
Magalhães TAFM, Souza MOD, Gomes SV, Mendes E Silva R, Martins FDS, Freitas RND, Amaral JFD. Açaí ( Euterpe oleracea Martius) Promotes Jejunal Tissue Regeneration by Enhancing Antioxidant Response in 5-Fluorouracil-Induced Mucositis. Nutr Cancer 2020; 73:523-533. [PMID: 32367766 DOI: 10.1080/01635581.2020.1759659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Intestinal mucositis (IM) caused by antineoplastic chemotherapy is characterized by an important inflammatory process, which may compromise ongoing treatment. Our study aimed to investigate the effect of Açaí (Euterpe oleracea Martius) on the antioxidant response in BALB/c mice pretreated with Açaí pulp (200 g/kg) for 14 day. A group of animals receiving a single intraperitoneal injection of 5-FU (200 mg/kg) were euthanized on day three (D3) or seven (D7) after administration, the distal jejunum was isolated for the analyses of histology, superoxide dismutase (SOD) and catalase (CAT) enzyme activities, and concentration of total sulfhydryl groups (GSH). Seven days after induction, the intake of Açaí by the IM group almost completely regenerated tissue histology. Notably, SOD activity decreased in the MUC + Açaí group (D3). CAT activity reduced on D3 and D7 in the IM groups and Açaí treatment groups, respectively. No change was observed in the total GSH concentration at the tissue level. Our results demonstrated the protective effect of Açaí pulp components on intestinal damage induced by 5-FU, as well as the ability to control the response to oxidative stress, in order to mobilize defense pathways and promote tissue repair.
Collapse
Affiliation(s)
| | | | - Sttefany Viana Gomes
- Nucleus of Research in Biological Sciences, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Raiana Mendes E Silva
- Nucleus of Research in Biological Sciences, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Flaviano Dos Santos Martins
- Departament of Microbiology, Biological Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renata Nascimento de Freitas
- School of Nutrition, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.,Nucleus of Research in Biological Sciences, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | |
Collapse
|
7
|
Song X, Shen Y, Lao Y, Tao Z, Zeng J, Wang J, Wu H. CXCL9 regulates acetaminophen-induced liver injury via CXCR3. Exp Ther Med 2019; 18:4845-4851. [PMID: 31772648 PMCID: PMC6861945 DOI: 10.3892/etm.2019.8122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Drug-induced liver injury has become a serious public health problem. Although the mechanism of acetaminophen (APAP)-induced liver injury has been studied for decades it has not been fully elucidated. In-depth study into the mechanisms underlying APAP-induced liver injury may provide useful information for more effective prevention and treatment. In the present study, the role of C-X-C motif chemokine ligand-9 (CXCL9) in APAP-induced liver injury was investigated thus providing a novel direction for the prevention and treatment of drug hepatitis. A total of 20 fasting male patients ingested APAP tablets at Nanjing First Hospital. In addition, wild type (WT) mice were treated with 250 mg/kg APAP or isodose PBS for 1, 3, 6 and 12 h, respectively. Results from reverse-transcription-quantitative polymerase chain reaction analyses demonstrated that CXCL9 mRNA levels were increased in the blood of patients who took APAP in a fasting state and in the livers of APAP-treated WT mice, compared with their respective controls. Hepatocyte apoptosis in the liver tissue of APAP-treated mice decreased following administration of a CXCL9 neutralizing antibody. Caspase-3, caspase-8 and phosphorylated-AKT (S437) were activated in primary hepatocytes isolated from WT mice following CXCL9 treatment. However, no significant differences in expression of caspase-3, caspase-8 and p-AKT (S437) were detected in hepatocytes isolated from C-X-C motif chemokine receptor 3 (CXCR3)−/− mice following CXCL9 treatment. After CXCL9 administration, WT mice exhibited higher serum levels of aspartate transaminase and increased caspase-3 and caspase-8 activity in liver tissue compared with controls. The same trends were not observed in CXCR3−/− mice. In conclusion, CXCL9 regulated APAP-induced liver injury through stimulation of hepatocyte apoptosis via binding to CXCR3. These findings provide a novel prevention and treatment strategy for DILI.
Collapse
Affiliation(s)
- Xi Song
- Department of General Practice, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yuying Shen
- Department of General Practice, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yiqun Lao
- Department of Infection Management, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Zhen Tao
- Department of Infectious Diseases, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Juan Zeng
- Department of Infection Management, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Jihui Wang
- Department of General Practice, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Huiling Wu
- Department of General Practice, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
8
|
Zhang L, Jin Y, Peng J, Chen W, Lisha L, Lin J. Qingjie Fuzheng Granule attenuates 5-fluorouracil-induced intestinal mucosal damage. Biomed Pharmacother 2019; 118:109223. [PMID: 31325706 DOI: 10.1016/j.biopha.2019.109223] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE 5-Fluorouracil (5-FU)-based chemotherapy often causes several drawbacks including weight loss, diarrhea, myelosuppression, and the intestinal mucositis. This study aimed to evaluate the protective effect of Qingjie Fuzheng Granule (QFG) on 5-FU-induced intestinal mucositis in CT-26 tumor-bearing xenograft mice and investigated the possible molecular mechanism. METHODS Tumor xenograft models of CT-26 cells were generated in BALB/c nude mice, the mice were randomly divided into 4 groups including control, QFG, 5-FU and 5-FU combined QFG groups. The body weight, volume of tumor and diarrhea score of each group were recorded daily. On the fifth day, the blood of mice was collected, the mice were subsequently euthanized and their thymus, spleen, intestine and tumor were removed for the following analysis. RESULTS QFG alleviated severe diarrhea and reversed the decrease in the number of white blood cell including granulocyte and lymphocyte induced by 5-FU. QFG could also significantly improve 5-FU-induced several intestinal mucosal damages, and characterized by integrity villus and crypts, the reduction of necrotic cells. QFG decreased the serum levels of TNF-α, IL-1β, and IL-6 and increased the levels of IL-10. Furthermore, QFG inhibited the cellular apoptosis in the jejunum tissue caused by 5-FU via the increasing Bcl-2 expression and decreasing Bax expression. In addition, QFG promoted the cell proliferation via elevating the expression of Cyclin D1 and CDK4 and reducing p21 expression. Meanwhile, QFG could not further impact on the cell apoptosis and proliferation of tumors caused by 5-FU. CONCLUSION QFG attenuated the intestinal mucositis and diarrhea induced by 5-FU via preventive effect on inflammation and its improvement of the intestinal barrier function, inhibiting cell apoptosis and promoting cell proliferation, and without affecting the 5-FU treatment efficiency. The results suggest that QFG may act as a potential agent against chemotherapy-induced intestinal mucositis.
Collapse
Affiliation(s)
- Ling Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Yiyi Jin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Wujin Chen
- Oncology Department, Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350004, China.
| | - Lu Lisha
- Oncology Department, Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350004, China.
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
9
|
Protective Effect of Cashew Gum (Anacardium occidentale L.) on 5-Fluorouracil-Induced Intestinal Mucositis. Pharmaceuticals (Basel) 2019; 12:ph12020051. [PMID: 30987265 PMCID: PMC6630449 DOI: 10.3390/ph12020051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/27/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Intestinal mucositis is a common complication associated with 5-fluorouracil (5-FU), a chemotherapeutic agent used for cancer treatment. Cashew gum (CG) has been reported as a potent anti-inflammatory agent. In the present study, we aimed to evaluate the effect of CG extracted from the exudate of Anacardium occidentale L. on experimental intestinal mucositis induced by 5-FU. Swiss mice were randomly divided into seven groups: Saline, 5-FU, CG 30, CG 60, CG 90, Celecoxib (CLX), and CLX + CG 90 groups. The weight of mice was measured daily. After treatment, the animals were euthanized and segments of the small intestine were collected to evaluate histopathological alterations (morphometric analysis), levels of malondialdehyde (MDA), myeloperoxidase (MPO), and glutathione (GSH), and immunohistochemical analysis of interleukin 1 beta (IL-1β) and cyclooxygenase-2 (COX-2). 5-FU induced intense weight loss and reduction in villus height compared to the saline group. CG 90 prevented 5-FU-induced histopathological changes and decreased oxidative stress through decrease of MDA levels and increase of GSH concentration. CG attenuated inflammatory process by decreasing MPO activity, intestinal mastocytosis, and COX-2 expression. Our findings suggest that CG at a concentration of 90 mg/kg reverses the effects of 5-FU-induced intestinal mucositis.
Collapse
|
10
|
Medeiros ADC, Azevedo ÍM, Lima ML, Araújo Filho I, Moreira MD. Effects of simvastatin on 5-fluorouracil-induced gastrointestinal mucositis in rats. ACTA ACUST UNITED AC 2018; 45:e1968. [PMID: 30379218 DOI: 10.1590/0100-6991e-20181968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE simvastatin has pleiotropic anti-inflammatory and immunomodulatory effects potentially usefull to prevent chemotherapy-induced gastrointestinal mucositis. Studies on this are scarce. This study aimed to examine the effects of simvastatin on gastric and intestinal mucositis after 5-fluorouracil (5-FU) treatment in rats. METHODS rats weighing 270±18g were divided into two groups. The 5-FU+saline group (5-FU/SAL) rats were treated with 5-FU (50mg/kg) plus 0.9% saline orally (gavage) once daily for five days. The 5-FU+simvastatin (5-FU/SIMV) group was treated with 5-FU (50mg/kg), plus simvastatin (10mg/kg), in the same way. The rats were euthanased on the sixth day, then their stomach and intestine were photographed and removed for exams. Dosages of serum TNF-a, IL-1ß, IL-6 and histopathology were done for stomach and intestine. RESULTS body-weight was significantly lower in rats treated with 5-FU+saline than the weight loss of the 5-FU/SIMV group rats. TNF-a expression was lower in 5-FU/SIMV group (172.6±18pg/ml) than in 5-FU/SAL (347.5±63pg/ml). Serum IL-1b was lower in 5-FU/SAL group (134.5±23pg/ml) than in 5-FU/SIMV (48.3±9pg/ml). Serum IL-6 was 61.8±15pg/ml in 5-FU/SIMV and 129.4±17pg/ml in 5-FU/SAL groups. These differences were significant (p<0.05). Mucosal damage in stomach and jejunum were observed in rats receiving 5-FU alone. In the stomach and jejunum, simvastatin caused significant protective effects against 5-FU-induced mucosal injury. CONCLUSION simvastatin attenuated gastric and intestinal mucositis related to 5-FU therapeutics in animal model. These data encourage forthcoming clinical studies addressing the usefulness of statins in the prevention and treatment of gastrointestinal mucositis.
Collapse
Affiliation(s)
- Aldo da Cunha Medeiros
- Universidade Federal do Rio Grande do Norte, Departamento de Cirurgia, Natal, RN, Brasil
| | - Ítalo Medeiros Azevedo
- Universidade Federal do Rio Grande do Norte, Departamento de Cirurgia, Natal, RN, Brasil
| | - Marília Leite Lima
- Universidade Federal do Rio Grande do Norte, Departamento de Cirurgia, Natal, RN, Brasil
| | - Irami Araújo Filho
- Universidade Federal do Rio Grande do Norte, Departamento de Cirurgia, Natal, RN, Brasil
| | | |
Collapse
|
11
|
Miura T, Mitsunaga S, Ikeda M, Ohno I, Takahashi H, Suzuki H, Irisawa A, Kuwata T, Ochiai A. Characterization of low active ghrelin ratio in patients with advanced pancreatic cancer. Support Care Cancer 2018; 26:3811-3817. [PMID: 29777378 DOI: 10.1007/s00520-018-4248-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/06/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Acyl ghrelin is an orexigenic peptide. Active ghrelin ratio, the ratio of acyl ghrelin to total ghrelin, has an important role in physiological functions and gastrointestinal symptoms. However, low active ghrelin ratio-related characteristics, gastrointestinal symptoms, and chemotherapy-induced gastrointestinal toxicity in patients with advanced pancreatic cancer have not been previously evaluated. The goal of this study was to identify low active ghrelin ratio-related factors in treatment-naïve advanced pancreatic cancer patients. METHODS Patients with treatment-naïve advanced pancreatic cancer were eligible for inclusion in this study. Active ghrelin ratio and clinical parameters of patients were prospectively recorded. Factors correlated with low active ghrelin ratio and survival were analyzed. RESULTS In total, 92 patients were analyzed. Low active ghrelin ratio-related factors were advanced age (P < 0.01), severe appetite loss (P < 0.01), and decreased cholinesterase (P < 0.01). The adverse events of grade 2 or higher anorexia tended to increase in patients with low active ghrelin ratio. However, no differences were found in survival and body composition between low and high active ghrelin ratio groups. CONCLUSIONS Low active ghrelin ratio was related to lack of appetite and low cholinesterase and tended to be related to anorexia grade 2 or higher in patients with treatment-naïve advanced pancreatic cancer.
Collapse
Affiliation(s)
- Tomofumi Miura
- Division of Biomarker Discovery, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Palliative Medicine, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shuichi Mitsunaga
- Division of Biomarker Discovery, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Hospital East, Kashiwa, Japan.
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
- Pathology Division, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| | - Masafumi Ikeda
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Izumi Ohno
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hideaki Takahashi
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hidetaka Suzuki
- Department of Pharmacy, National Cancer Center Hospital East, Kashiwa, Japan
| | - Ai Irisawa
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose, Japan
| | - Takeshi Kuwata
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| | - Atsushi Ochiai
- Pathology Division, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| |
Collapse
|
12
|
Sangild PT, Shen RL, Pontoppidan P, Rathe M. Animal models of chemotherapy-induced mucositis: translational relevance and challenges. Am J Physiol Gastrointest Liver Physiol 2018; 314:G231-G246. [PMID: 29074485 DOI: 10.1152/ajpgi.00204.2017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chemotherapy for cancer patients induces damaging tissue reactions along the epithelium of the gastrointestinal tract (GIT). This chemotherapy-induced mucositis (CIM) is a serious side effect of cytotoxic drugs, and several animal models of CIM have been developed, mainly in rodents and piglets, to help understand the progression of CIM and how to prevent it. Animal models allow highly controlled experimental conditions, detailed organ (e.g., GIT) insights, standardized, clinically relevant treatment regimens, and discovery of new biomarkers. Still, surprisingly few results from animal models have been translated into clinical CIM management and treatments. The results obtained from specific animal models can be difficult to translate to the diverse range of CIM manifestations in patients, which vary according to the antineoplastic drugs, dose, underlying (cancer) disease, and patient characteristics (e.g., age, genetics, and body constitution). Another factor that hinders the direct use of results from animals is inadequate collaboration between basic science and clinical science in relation to CIM. Here, we briefly describe CIM pathophysiology, particularly the basic knowledge that has been obtained from CIM animal models. These model studies have indicated potential new preventive and ameliorating interventions, including supplementation with natural bioactive diets (e.g., milk fractions, colostrum, and plant extracts), nutrients (e.g., polyunsaturated fatty acids, short-chain fatty acids, and glutamine), and growth factor peptides (e.g., transforming growth factor and glucagon-like peptide-2), as well as manipulations of the gut microbiota (e.g., prebiotics, probiotics, and antibiotics). Rodent CIM models allow well-controlled, in-depth studies of animals with or without tumors while pig models more easily make clinically relevant treatment regimens possible. In synergy, animal models of CIM provide the basic physiological understanding and the new ideas for treatment that are required to make competent decisions in clinical practice.
Collapse
Affiliation(s)
- Per T Sangild
- Comparative Pediatrics and Nutrition, University of Copenhagen , Frederiksberg , Denmark.,Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen , Denmark.,Hans Christian Andersen Children's Hospital, Odense University Hospital , Odense , Denmark
| | - René Liang Shen
- Comparative Pediatrics and Nutrition, University of Copenhagen , Frederiksberg , Denmark
| | - Peter Pontoppidan
- Comparative Pediatrics and Nutrition, University of Copenhagen , Frederiksberg , Denmark.,Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen , Denmark
| | - Mathias Rathe
- Hans Christian Andersen Children's Hospital, Odense University Hospital , Odense , Denmark
| |
Collapse
|
13
|
Li HL, Lu L, Wang XS, Qin LY, Wang P, Qiu SP, Wu H, Huang F, Zhang BB, Shi HL, Wu XJ. Alteration of Gut Microbiota and Inflammatory Cytokine/Chemokine Profiles in 5-Fluorouracil Induced Intestinal Mucositis. Front Cell Infect Microbiol 2017; 7:455. [PMID: 29124041 PMCID: PMC5662589 DOI: 10.3389/fcimb.2017.00455] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022] Open
Abstract
Disturbed homeostasis of gut microbiota has been suggested to be closely associated with 5-fluorouracil (5-Fu) induced mucositis. However, current knowledge of the overall profiles of 5-Fu-disturbed gut microbiota is limited, and so far there is no direct convincing evidence proving the causality between 5-Fu-disturbed microbiota and colonic mucositis. In mice, in agreement with previous reports, 5-Fu resulted in severe colonic mucositis indicated by weight loss, diarrhea, bloody stool, shortened colon, and infiltration of inflammatory cells. It significantly changed the profiles of inflammatory cytokines/chemokines in serum and colon. Adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and VE-Cadherin were increased. While tight junction protein occludin was reduced, however, zonula occludens-1 (ZO-1) and junctional adhesion molecule-A (JAM-A) were increased in colonic tissues of 5-Fu treated mice. Meanwhile, inflammation related signaling pathways including NF-κB and mitogen activated protein kinase (MAPKs) in the colon were activated. Further study disclosed that 5-Fu diminished bacterial community richness and diversity, leading to the relative lower abundance of Firmicutes and decreased Firmicutes/Bacteroidetes (F/B) ratio in feces and cecum contents. 5-Fu also reduced the proportion of Proteobacteria, Tenericutes, Cyanobacteria, and Candidate division TM7, but increased that of Verrucomicrobia and Actinobacteria in feces and/or cecum contents. The fecal transplant from healthy mice prevented body weight loss and colon shortening of 5-Fu treated mice. In addition, the fecal transplant from 5-Fu treated mice reduced body weight and colon length of vancomycin-pretreated mice. Taken together, our study demonstrated that gut microbiota was actively involved in the pathological process of 5-Fu induced intestinal mucositis, suggesting potential attenuation of 5-Fu induced intestinal mucositis by manipulating gut microbiota homeostasis.
Collapse
Affiliation(s)
- Hong-Li Li
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lan Lu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Shuang Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Yue Qin
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shui-Ping Qiu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bei-Bei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai-Lian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Jun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Cinausero M, Aprile G, Ermacora P, Basile D, Vitale MG, Fanotto V, Parisi G, Calvetti L, Sonis ST. New Frontiers in the Pathobiology and Treatment of Cancer Regimen-Related Mucosal Injury. Front Pharmacol 2017. [PMID: 28642709 PMCID: PMC5462992 DOI: 10.3389/fphar.2017.00354] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mucositis is a common complication of chemotherapy, radiotherapy and targeted agents. It often affects compliance to anticancer therapies as it frequently causes schedule delays, interruptions or discontinuations of treatment. Moreover, the economic impact related to the management of mucositis is topical and several estimations of additional hospital costs due to this clinical condition have been recently reported. The ability to determine risk factors for mucositis, to early detect its onset, to assess correctly the degree of this toxicity and to plan its multidisciplinary management are all key elements to guarantee the quality of life of patients and to avoid useless dose reduction or interruption of treatment. The pathogenesis of mucositis is multifactorial and it is classily subdivided into oral and gastrointestinal mucositis according to its anatomic presentation. Treatment and patients’ related factors might help in predicting the frequency and the potential degree of symptoms onset. Here we discuss about clinical presentation and pathogenesis of mucositis in relation to different kinds of treatments. Moreover, we focus on therapeutic and prevention strategies, describing past and present management according to international guidelines and the most promising new data about agents potentially able to further improve the treatment of mucositis in the next future.
Collapse
Affiliation(s)
- Marika Cinausero
- Department of Oncology, University and General HospitalUdine, Italy
| | - Giuseppe Aprile
- Department of Oncology, University and General HospitalUdine, Italy.,Department of Oncology, San Bortolo General HospitalVicenza, Italy
| | - Paola Ermacora
- Department of Oncology, University and General HospitalUdine, Italy
| | - Debora Basile
- Department of Oncology, University and General HospitalUdine, Italy
| | - Maria G Vitale
- Department of Oncology, University and General HospitalUdine, Italy
| | | | - Giuseppe Parisi
- Department of Oncology, University and General HospitalUdine, Italy
| | - Lorenzo Calvetti
- Department of Oncology, San Bortolo General HospitalVicenza, Italy
| | - Stephen T Sonis
- Divisions of Oral Medicine, Brigham and Women's Hospital, BostonMA, United States.,Dana-Farber Cancer InstituteBoston, MA, United States.,Biomodels LLC, WatertownMA, United States
| |
Collapse
|
15
|
Luo X, Liang X, Li J, Shi J, Zhang W, Chai W, Wu J, Guo S, Fang G, Zhou X, Zhang J, Xu K, Zeng J, Niu L. The Effects of Irreversible Electroporation on the Colon in a Porcine Model. PLoS One 2016; 11:e0167275. [PMID: 27907057 PMCID: PMC5131963 DOI: 10.1371/journal.pone.0167275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 11/11/2016] [Indexed: 02/07/2023] Open
Abstract
Background and Aim Irreversible electroporation (IRE) is a method of targeted cell ablation which has been suggested as a potential cancer therapy as it leaves structures such as blood vessels and the extracellular matrix intact, thereby allowing the rapid recovery of healthy tissue. Here, we investigated the effects of IRE on the colon in vivo in a porcine model. Methods IRE ablation was performed on the colon walls of 12 female Tibet mini-pigs, creating a total of 24 lesions. Lesions were monitored periodically by endoscopy. The pigs were euthanized 7, 14, 21 or 28 days after IRE ablation and the colons harvested for gross and histological analysis. Sections were stained with hematoxylin and eosin (H&E), Masson’s trichrome (MT) stain and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Results All pigs tolerated the ablation procedure without serious clinical symptoms or complications. There was no evidence of perforation by endoscopy or gross postmortem examination. All lesions were characterized by necrotic cell death with mild inflammation and hyperemia, with a sharp demarcation between ablated and adjacent normal tissue. A fibrous scar was observed in the ablated colon tissue. Histological analysis revealed damage to each layer of the colon. Histopathology findings also showed the preservation of extracellular structures and the recovery of the ablated colon. Conclusions The complete ablation of the target area, its rapid recovery and the lack of posttreatment symptoms suggest that IRE ablation may be a promising therapy for tumors located adjacent to or violating the colon wall.
Collapse
Affiliation(s)
- Xiaomei Luo
- School of Medicine, Jinan University, Guangdong Province, Guangzhou, China
| | - Xianjun Liang
- Department of Gastrointestinal Surgery, Taizhou Central Hospital of Zhejiang Province, Taizhou, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jian Shi
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Wenlong Zhang
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Chai
- Department of Gynecology and Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Jiuping Wu
- Department of Spinal Surgery, Orthopaedic Hospital of the Second Hospital of Jilin University, Changchun, China
| | - Shuai Guo
- Department of Endocrinology, Taizhou Central Hospital of Zhejiang Province, Taizhou, China
| | - Gang Fang
- Department of Surgery and Anesthesia, Fuda Cancer Hospital, Jinan University School of Medicine (Guangzhou Fuda Cancer Hospital), Guangzhou, China
| | - Xulong Zhou
- Department of Pathology, Fuda Cancer Hospital, Jinan University School of Medicine (Guangzhou Fuda Cancer Hospital), Guangzhou, China
| | - Jianhua Zhang
- Department of Endoscopy, Fuda Cancer Hospital, Jinan University School of Medicine (Guangzhou Fuda Cancer Hospital), Guangzhou, China
| | - Kecheng Xu
- Department of Surgery and Anesthesia, Fuda Cancer Hospital, Jinan University School of Medicine (Guangzhou Fuda Cancer Hospital), Guangzhou, China
| | - Jianying Zeng
- Guangzhou Fuda Cancer Institute, Fuda Cancer Hospital, Jinan University School of Medicine (Guangzhou Fuda Cancer Hospital), Guangzhou, China
| | - Lizhi Niu
- Department of Surgery and Anesthesia, Fuda Cancer Hospital, Jinan University School of Medicine (Guangzhou Fuda Cancer Hospital), Guangzhou, China
- * E-mail:
| |
Collapse
|
16
|
Zhan Y, Xu C, Liu Z, Yang Y, Tan S, Yang Y, Jiang J, Liu H, Chen J, Wu B. β-Arrestin1 inhibits chemotherapy-induced intestinal stem cell apoptosis and mucositis. Cell Death Dis 2016; 7:e2229. [PMID: 27195676 PMCID: PMC4917667 DOI: 10.1038/cddis.2016.136] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 02/07/2023]
Abstract
The mechanism of chemotherapy-induced gastrointestinal (GI) syndrome (CIGIS) is still controversial, and it is unclear whether chemotherapy induces intestinal stem cell (ISC) apoptosis. β-Arrestins are regulators and mediators of G protein-coupled receptor signaling in cell apoptosis, division and growth. In this study, we aimed to investigate whether chemotherapy induces ISC apoptosis to contribute to mucositis in CIGIS and whether β-arrestin1 (β-arr1) is involved in this apoptosis. Different chemotherapeutic agents were used to generate a CIGIS model. Lgr5-EGFP-IRES-creERT2+/− knock-in mice were used as a CIGIS model to investigate ISC apoptosis. β-arr1 knockout mice were used to determine whether β-arr1 is involved in the apoptosis in CIGIS. Intestinal histology was performed, the ISC apoptosis was analyzed and the mucosal barrier was examined. The effects of β-arr1 in apoptosis were investigated in the samples from humans and mice as well as in cell lines. Here, we demonstrate that chemotherapy induced intestinal mucositis by promoting crypt cell apoptosis, especially in Lgr5+ stem cells and Paneth cells but not in goblet cells, epithelial cells or vascular endothelial cells. Furthermore, β-arr1 deficiency exacerbated the Lgr5+ stem cell apoptosis, but not Paneth cell apoptosis, in CIGIS. In addition, the data showed that β-arr1 reduced the chemotherapy-induced Lgr5+ stem cell apoptosis by inhibiting endoplasmic reticulum stress-mediated mitochondrial apoptotic signaling. Our study indicates that β-arr1 inhibits chemotherapy-induced ISC apoptosis to alleviate intestinal mucositis in CIGIS.
Collapse
Affiliation(s)
- Y Zhan
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - C Xu
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Z Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Y Yang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - S Tan
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Y Yang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - J Jiang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - H Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - J Chen
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - B Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
17
|
Kwon Y. Mechanism-based management for mucositis: option for treating side effects without compromising the efficacy of cancer therapy. Onco Targets Ther 2016; 9:2007-16. [PMID: 27103826 PMCID: PMC4827894 DOI: 10.2147/ott.s96899] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mucositis is a major side effect induced by chemotherapy and radiotherapy. Although mucositis is a leading cause of morbidity and mortality in cancer patients, management is largely limited to controlling symptoms, and few therapeutic agents are available for treatment. Since mucositis could be inhibited by the modulation of radiotherapy- or chemotherapy-induced pathways independently of cancer treatment, there is an opportunity for the development of more targeted therapies and interventions. This article examined potential therapeutic agents that have been investigated for the prevention and/or inhibition of mucositis induced by conventional chemotherapy and radiotherapy. They can be classified according to their mechanisms of action: scavenging reactive oxygen species, inhibition of specific cytokine production or inflammation, and inhibition of apoptosis. These early events may be good target pathways for preventing the pathogenesis of mucositis. Considering that both cancer therapy and therapeutic agents for mucositis act on both normal and cancer cells, agents that inhibit mucositis should act through mechanisms that selectively protect normal cells without compromising cancer treatment. Therefore, mechanism-based guidance for the treatment of mucositis is critical to prevent risky treatments for cancer patients and to relieve detrimental side effects effectively from cancer therapy.
Collapse
Affiliation(s)
- Youngjoo Kwon
- Department of Food Science and Engineering, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
18
|
Rathe M, Thomassen M, Shen RL, Pontoppidan PE, Husby S, Müller K, Kruse TA, Sangild PT. Chemotherapy Modulates Intestinal Immune Gene Expression Including Surfactant Protein-D and Deleted in Malignant Brain Tumors 1 in Piglets. Chemotherapy 2016; 61:204-16. [DOI: 10.1159/000442938] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022]
Abstract
Background: Information about chemotherapy-induced intestinal gene expression may provide insight into the mechanisms underlying gut toxicity and help identify biomarkers and targets for intervention. Methods: We analyzed jejunal tissue from piglets subjected to two different, clinically relevant chemotherapy regimens: (1) busulfan plus cyclophosphamide (BUCY) and (2) doxorubicin (DOX). Results: Gene expression analysis identified 1,328 differentially expressed genes in the BUCY piglets and 594 in the DOX piglets, compared to controls. Similar changes in expression were found for 137 genes across the BUCY and DOX piglets. Selected genes of potential biological significance with a similar change in expression across the treatments were controlled by real-time polymerase chain reaction. Key innate defense molecules, including surfactant protein-D and deleted in malignant brain tumors 1, were among the upregulated genes for both treatments. Conclusion: In the developing intestine, chemotherapy increases the expression of genes related to innate immune functions involved in surveillance, protection, and homeostasis of mucosal surfaces.
Collapse
|
19
|
Bastos CCC, Ávila PHMD, Filho EXDS, Ávila RID, Batista AC, Fonseca SG, Lima EM, Marreto RN, Mendonça EFD, Valadares MC. Use of Bidens pilosa L. (Asteraceae) and Curcuma longa L. (Zingiberaceae) to treat intestinal mucositis in mice: Toxico-pharmacological evaluations. Toxicol Rep 2015; 3:279-287. [PMID: 28959548 PMCID: PMC5615376 DOI: 10.1016/j.toxrep.2015.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Several studies towards the development of an effective treatment for intestinal mucositis have been reported, since this condition represents a major problem in clinical oncology practice due to cytotoxic effects of chemotherapy. However standardized protocols and universally accepted treatment options are yet to be established. OBJECTIVES Given above, this study evaluated the protective effects of a mucoadhesive formulation containing both Bidens pilosa L. (Asteraceae) (BP) and curcuminoids from Curcuma longa L. (Zingiberaceae) (CL) on intestinal mucositis induced by 5-fluoruoacil (5-FU) in mice. RESULTS As expected, animals only treated with 5-FU (200 mg/kg) showed a significant reduction of 60.3 and 42.4% in villi and crypts size, respectively, when compared to control. On the other hand, the proposed therapeutic/prophylactic treatment with mucoadhesive formulations managed to reduce histopathologic changes in mice bearing mucositis, especially at 125 mg/kg BP + 15 mg/kg CL dose. The formulation promoted an increase of 275.5% and 148.7% for villi and crypts size, respectively. Moreover, chemotherapy-related weight loss was reduced by 7.4% following the treatment. In addition, an increase of 10 and 30.5% in red and white blood cells was observed when compared to 5-FU group. Furthermore, treatments with the mucoadhesive formulation containing BP/CL up modulated Ki-67 and Bcl-2 expression while reduced pro-apoptotic regulator Bax. The formulation also modulated inflammatory response triggered by 5-FU through reduction of 68% of myeloperoxidase activity and a 4-fold increase in anti-inflammatory IL-10 levels. In parallel, the oxidative stress via lipid peroxidation was reduced as indicated by decrease of 63% of malondialdehyde concentrations. Additionally, the new formulation presented low acute oral systemic toxicity, being classified in the category 5 (2000 mg/kg < LD50 < 5000 mg/kg) of the Globally Harmonized Classification System. CONCLUSIONS This study showed an interesting potential of the mucoadhesive formulation of BP/CL for the treatment of 5-FU-induced intestinal mucositis. Given the perspectives for the development of a new medicine, clinical studies are in progress to better understand the protective effects of this innovative formulation in treating mucositis.
Collapse
Affiliation(s)
- Carla Caroline Cunha Bastos
- Laboratório de Farmacologia e Toxicologia Celular-FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Paulo Henrique Marcelino de Ávila
- Laboratório de Farmacologia e Toxicologia Celular-FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Edvande Xavier Dos Santos Filho
- Laboratório de Farmacologia e Toxicologia Celular-FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Renato Ivan de Ávila
- Laboratório de Farmacologia e Toxicologia Celular-FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Aline Carvalho Batista
- Laboratório de Patologia Bucal, Faculdade de Odontologia, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Simone Gonçalves Fonseca
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Eliana Martins Lima
- Laboratório de Tecnologia Farmacêutica-FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Ricardo Neves Marreto
- Laboratório de Tecnologia Farmacêutica-FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | | | - Marize Campos Valadares
- Laboratório de Farmacologia e Toxicologia Celular-FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| |
Collapse
|
20
|
Lu H, Liu H, Wang J, Shen J, Weng S, Han L, Sun T, Qian L, Wu M, Zhu S, Yu Y, Han W, Zhu J, Moldenhauer A. The chemokine CXCL9 exacerbates chemotherapy-induced acute intestinal damage through inhibition of mucosal restitution. J Cancer Res Clin Oncol 2015; 141:983-92. [PMID: 25398650 DOI: 10.1007/s00432-014-1869-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE Acute intestinal damage induced by chemotherapeutic agent is often a dose-limiting factor in clinical cancer therapy. The aim of this study was to investigate the effect of chemokine CXCL9 on the intestinal damage after chemotherapy and explore the therapeutic potential of anti-CXCL9 agents. METHODS In vitro cell proliferation assay was performed with a non-tumorigenic human epithelial cell line MCF10A. Multiple pathway analysis was carried out to explore the pathway that mediated the effect of CXCL9, and the corresponding downstream effector was identified with enzyme-linked immunosorbent assays. Chemotherapy-induced mouse model of intestinal mucositis was prepared by a single injection of the chemotherapeutic agent 5-fluorouracil (5-FU). In vivo expression of cxcl9 and its receptor cxcr3 in intestinal mucosa after chemotherapy was determined by quantitative real-time PCR. Therapeutic treatment with anti-CXCL9 antibodies was investigated to confirm the hypothesis that CXCL9 can contribute to the intestinal epithelium damage induced by chemotherapy. RESULTS CXCL9 inhibited the proliferation of MCF10A cells by activating phosphorylation of p70 ribosomal S6 kinase (p70S6K), which further promotes the secretion of transforming growth factor beta (TGF-β) as the downstream effector. A blockade of phospho-p70S6K with inhibitor abolished the effect of CXCL9 on MCF10A cells and reduced the secretion of TGF-β. The expression levels of cxcl9 and cxcr3 were significantly up-regulated in intestinal mucosa after 5-FU injection. Neutralizing elevated CXCL9 with anti-CXCR9 antibodies successfully enhanced reconstitution of intestinal mucosa and improved the survival rate of mice that received high-dose chemotherapy. CONCLUSIONS CXCL9 inhibits the proliferation of epithelial cells via phosphorylation of p70S6K, resulting in the excretion of TGF-β as downstream mediator. CXCL9/CXCR3 interaction can exacerbate chemotherapeutic agent-induced intestinal damage, and anti-CXCL9 agents are potential novel therapeutic candidates for promoting mucosal restitution.
Collapse
Affiliation(s)
- Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Leocádio PCL, Antunes MM, Teixeira LG, Leonel AJ, Alvarez-Leite JI, Machado DCC, Generoso SV, Cardoso VN, Correia MITD. L-arginine pretreatment reduces intestinal mucositis as induced by 5-FU in mice. Nutr Cancer 2015; 67:486-93. [PMID: 25803482 DOI: 10.1080/01635581.2015.1004730] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Beneficial effects of L-arginine on immune responses and bowel function have been reported. Mucositis is a side effect of chemotherapy treatment that affects approximately 40% of patients. This complication is characterized by inflammation that affects the gastrointestinal tract, increasing permeability and causing abdominal pain, nausea, vomiting, and diarrhea, which worsen the patient's nutritional status and increases morbimortality. The aim of this study was to evaluate the effect of pretreating with 2% L-arginine supplementation in water on mucositis as induced by 5-fluorouracil (5-FU; a single dose of 200 mg/kg body weight) in Swiss male mice. The effect of L-arginine on weight, intestinal permeability, morphology, and the histopathological score of the small intestine (from 0 to 12), oxidative stress, myeloperoxidase (MPO), and N-acetylglucosaminidase (NAG) activities were evaluated. Intestinal length improvement was observed, in addition to the partial recovery of the mucosal architecture. L-arginine attenuated the histopathological score and MPO activity. There was also an improvement in intestinal permeability, despite weight loss after 5-FU administration. In conclusion, L-arginine can positively impact intestinal mucositis by promoting partial mucosal recovery, reducing inflammation and improving intestinal permeability.
Collapse
Affiliation(s)
- Paola C L Leocádio
- a Postgraduate Program in Food Science , Faculty of Pharmacy, UFMG , Belo Horizonte , MG , Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
de Ávila PHM, de Ávila RI, Dos Santos Filho EX, Cunha Bastos CC, Batista AC, Mendonça EF, Serpa RC, Marreto RN, da Cruz AF, Lima EM, Valadares MC. Mucoadhesive formulation of Bidens pilosa L. (Asteraceae) reduces intestinal injury from 5-fluorouracil-induced mucositis in mice. Toxicol Rep 2015; 2:563-573. [PMID: 28962391 PMCID: PMC5598237 DOI: 10.1016/j.toxrep.2015.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal mucositis induced during cancer treatment is considered a serious dose-limiting side effect of chemotherapy and/or radiotherapy. Frequently, interruption of the cancer treatment due to this pathology leads to a reduction in cure rates, increase of treatment costs and decrease life quality of the patient. Natural products such as Bidens pilosa L. (Asteraceae), represent a potential alternative for the treatment of mucositis given its anti-inflammatory properties. In this study, B. pilosa glycolic extract was formulated (BPF) with poloxamer, a mucoadhesive copolymer, was used for treatment of 5-fluorouracil (5-FU)-induced mucositis in mice. As expected, animals only treated with 5-FU (200 mg/kg) presented marked weight loss, reduction of intestinal villi, crypts and muscular layer, which was associated with severe disruption of crypts, edema, inflammatory infiltrate and vacuolization in the intestinal tissue, as compared to the control group and healthy animals only treated with BPF. On the other hand, the treatment of intestinal mucositis-bearing mice with BPF (75, 100 or 125 mg/kg) managed to mitigate clinical and pathologic changes, noticeably at 100 mg/kg. This dose led to the restoration of intestinal proliferative activity through increasing Ki-67 levels; modulated the expression of Bax, Bcl2 and p53 apoptotic markers protecting intestinal cells from cell death. Moreover, this treatment regulated lipid peroxidation and inflammatory infiltration. No acute toxic effects were observed with this formulation. This work demonstrated that BPF was safe and effective against 5-FU-induced intestinal mucositis in mice. Additional studies are already in progress to further characterize the mechanisms involved in the protective effects of this technological formulation toward the development of a new medicine for the prevention and treatment of intestinal injury in patients undergoing chemotherapy/radiotherapy.
Collapse
Affiliation(s)
- Paulo Henrique Marcelino de Ávila
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Renato Ivan de Ávila
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Edvande Xavier Dos Santos Filho
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Carla Caroline Cunha Bastos
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Aline Carvalho Batista
- Departamento de Estomatologia, Faculdade de Odontologia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Raphael Caixeta Serpa
- Laboratório de Tecnologia Farmacêutica - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Ricardo Neves Marreto
- Laboratório de Tecnologia Farmacêutica - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Andrezza Furquim da Cruz
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Eliana Martins Lima
- Laboratório de Tecnologia Farmacêutica - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Marize Campos Valadares
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| |
Collapse
|
23
|
Song MK, Park MY, Sung MK. 5-Fluorouracil-induced changes of intestinal integrity biomarkers in BALB/c mice. J Cancer Prev 2014; 18:322-9. [PMID: 25337561 PMCID: PMC4189444 DOI: 10.15430/jcp.2013.18.4.322] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 11/29/2022] Open
Abstract
Background: Intestinal mucositis is a most frequently occurring toxicity in cancer chemotherapy, and consequent malnutrition reduces tolerance to cancer therapies. Therefore it is important to lessen the severity of mucotitis and to develop complementary agents capable of reducing mucotitis-related symptoms. This study was conducted to determine 5-fluorouracil (5-FU) induced intestinal damage to understand intestinal damages due to chemotherapy and to provide information on biomarkers which can be used to screen complementary agents in future studies. Methods: BALB/c mice were divided into three experimental groups and subjected to the intraperitoneal injection of either 100 mg/kg or 200 mg/kg of 5-FU. The third group was used as PBS controls. Body weights and the consistency of the stools were recorded every day, and the animals were sacrificed on the 7th day post 5-FU administration. The expressions of intestinal tight junction proteins and mRNAs of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) were determined. Results: The body weight of the animals treated with 5-FU was significantly decreased in a dose-dependent manner. However, mice given 100 mg/kg 5-FU rapidly recovered the original body weight. Symptom of diarrhea was also more severe in 200 mg/kg 5-FU treated group than that of the 100 mg/kg 5-FU treated animals. The expressions of occludin and claudin-1, not ZO-1 protein expressions in 200 mg/kg 5-FU treated animals were significantly reduced compared to those of the control group or 100 mg/kg 5-FU group. The expression of Nuclear factor-kappa B p65 (NF-κB p65) protein and TNF-α mRNA were significantly higher in 5-FU treated group compared to those of control group. No difference was observed with IL-1β expression. Conclusions: These results suggested that selected tight junction proteins and inflammatory cytokines are related to 5-FU induced mucositis, and thereby can be used as targets of developing complementary agents.
Collapse
Affiliation(s)
- Min-Kyung Song
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea
| | - Mi-Young Park
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea
| | - Mi-Kyung Sung
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
24
|
Zhan YS, Tan SW, Mao W, Jiang J, Liu HL, Wu B. Chemotherapy mediates intestinal injury via p53/p53 upregulated modulator of apoptosis (PUMA) signaling pathway. J Dig Dis 2014; 15:425-34. [PMID: 24814616 DOI: 10.1111/1751-2980.12157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the potential mechanism and signaling pathway involved in chemotherapy-induced intestinal mucosal injury (CIMI), which is a common physiopathological problem in patients with cancer. METHODS For the in vivo experiment, mice received intraperitoneal injection of 5-fluorouracil (5-FU) at a dose of 75 mg/kg/day for 1, 3 or 5 days. Villus height and crypt depth of the small intestine, cell apoptosis and proliferation were then examined to determine the extent of CIMI. The expressions of Akt, p53, PUMA and p21 were evaluated both in vivo in mice models and in vitro in the IEC-6 and HCT116 cell lines. RESULTS After 5-FU therapy both the intestinal villus height (275.93 μm vs 164.52 μm, P < 0.001) and crypt depth (64.13 μm vs 42.48 μm, P < 0.001) were decreased. The apoptotic index was greatly increased from 0.32% to 15.84% (P < 0.001) and proliferation was suppressed (63.58% vs 39.15%, P < 0.001). Additionally, p53 expression was significantly increased in the intestinal crypt along with the expressions of PUMA and p21. Western blot showed that the administration of 5-FU induced p53/PUMA-mediated apoptosis and upregulated p21 expression to suppress cell proliferation. CONCLUSION Chemotherapy might mediate intestinal injury via p53/PUMA-mediated apoptotic signaling and the suppression of proliferation in response to p21.
Collapse
Affiliation(s)
- Ya Shi Zhan
- Department of Gastroenterology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | |
Collapse
|
25
|
Gao J, Gao J, Qian L, Wang X, Wu M, Zhang Y, Ye H, Zhu S, Yu Y, Han W. Activation of p38-MAPK by CXCL4/CXCR3 axis contributes to p53-dependent intestinal apoptosis initiated by 5-fluorouracil. Cancer Biol Ther 2014; 15:982-91. [PMID: 24800927 DOI: 10.4161/cbt.29114] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chemotherapy-induced mucositis (CIM) is a major does limiting side-effect of chemoagents such as 5-fluorouracil (5-FU). Molecules involved in this disease process are still not fully understood. We proposed that the homeostatically regulated genes during CIM may participate in the disease. A cluster of such genes were previously identified by expression gene-array from the mouse jejunum in 5-FU-induced mucositis model. Here, we report that CXCL4 is such a homeostatically regulated gene and serves as a new target for the antibody treatment of CIM. CXCL4 and its receptor CXCR3 were confirmed at both the gene and protein levels to be homeostatically regulated during 5-FU-induced mucositis. Using of CXCL4 neutralizing monoclonal antibody (CXCL4mab) decreased the incidence, severity, and duration of the chemotherapy-induced diarrhea, the major symptom of CIM, in a 5-FU mouse CIM model. Mechanistically, CXCL4mab reduced the apoptosis of the crypt epithelia by suppression of the 5-FU-induced expression of p53 and Bax through its receptor CXCR3. The downstream signaling pathway of CXCL4 in activation of the epithelial apoptosis was identified in an intestinal epithelial cell line (IEC-6). CXCL4 activated the phosphorylation of p38 MAPK, which mediated the stimulated expression of p53 and Bax, and resulted in the ultimate activation of Caspase-8, -9, and -3. Taken together, activation of CXCL4 expression by 5-FU in mice participates in 5-FU-induced intestinal mucositis through upregulation of p53 via activation of p38-MAPK, and CXCL4mab is potentially beneficial in preventing CIM in the intestinal tract.
Collapse
Affiliation(s)
- Jing Gao
- Laboratory of Regeneromics; School of Pharmacy; Shanghai Jiao Tong University; Shanghai, PR China
| | - Jin Gao
- Laboratory of Regeneromics; School of Pharmacy; Shanghai Jiao Tong University; Shanghai, PR China
| | - Lan Qian
- Laboratory of Regeneromics; School of Pharmacy; Shanghai Jiao Tong University; Shanghai, PR China
| | - Xia Wang
- Laboratory of Regeneromics; School of Pharmacy; Shanghai Jiao Tong University; Shanghai, PR China
| | - Mingyuan Wu
- Laboratory of Regeneromics; School of Pharmacy; Shanghai Jiao Tong University; Shanghai, PR China
| | - Yang Zhang
- Laboratory of Regeneromics; School of Pharmacy; Shanghai Jiao Tong University; Shanghai, PR China
| | - Hao Ye
- Laboratory of Regeneromics; School of Pharmacy; Shanghai Jiao Tong University; Shanghai, PR China
| | - Shunying Zhu
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology; School of Agriculture and Biology; Shanghai Jiao Tong University; Shanghai, PR China
| | - Yan Yu
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology; School of Agriculture and Biology; Shanghai Jiao Tong University; Shanghai, PR China
| | - Wei Han
- Laboratory of Regeneromics; School of Pharmacy; Shanghai Jiao Tong University; Shanghai, PR China
| |
Collapse
|
26
|
Cardani D, Sardi C, La Ferla B, D'Orazio G, Sommariva M, Marcucci F, Olivero D, Tagliabue E, Koepsell H, Nicotra F, Balsari A, Rumio C. Sodium glucose cotransporter 1 ligand BLF501 as a novel tool for management of gastrointestinal mucositis. Mol Cancer 2014; 13:23. [PMID: 24495286 PMCID: PMC3937063 DOI: 10.1186/1476-4598-13-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 01/27/2014] [Indexed: 01/26/2023] Open
Abstract
Background Recent studies demonstrated that engagement of sodium glucose transporter 1 (SGLT-1) by orally administered D-glucose protects the intestinal mucosa from lipopolysaccharide (LPS)-induced injury. We tested whether SGLT-1 engagement might protect the intestinal mucosa from doxorubicin (DXR)- and 5-fluorouracil (5-FU)-induced injury in animal models mimicking acute or chronic mucositis. Methods Mice were treated intraperitoneally with DXR, alone or in combination with 5-FU, and orally with BLF501, a glucose-derived synthetic compound with high affinity for SGLT-1. Intestinal mucosal epithelium integrity was assessed by histological analysis, cellular proliferation assays, real-time PCR gene expression assays and Western blot assays. Student’s t-test (paired two-tailed) and χ2 analyses were used for comparisons between groups. Differences were considered significant at p < 0.05. Results BLF501 administration in mice treated with DXR and/or 5-FU decreased the injuries to the mucosa in terms of epithelial integrity and cellular proliferative ability. Co-treatment with BLF501 led to a normal expression and distribution of both zonula occludens-1 (ZO-1) and beta-catenin, which were underexpressed after treatment with either chemotherapeutic agent alone. BLF501 administration also restored normal expression of caspase-3 and ezrin/radixin/moesin (ERM), which were overexpressed after treatment with DXR and 5-FU. In SGLT1-/- mice, BLF501 had no detectable effects. BLF501 administration in wild-type mice with growing A431 tumors did not modify antitumor activity of DXR. Conclusions BLF501-induced protection of the intestinal mucosa is a promising novel therapeutic approach to reducing the severity of chemotherapy-induced mucositis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Cristiano Rumio
- Department of Pharmacology and Biomolecular Sciences, Università degli Studi di Milano, Via Trentacoste 2, 20133 Milan, Italy.
| |
Collapse
|
27
|
Engström A, Erlandsson A, Delbro D, Wijkander J. Conditioned media from macrophages of M1, but not M2 phenotype, inhibit the proliferation of the colon cancer cell lines HT-29 and CACO-2. Int J Oncol 2013; 44:385-92. [PMID: 24296981 PMCID: PMC3898868 DOI: 10.3892/ijo.2013.2203] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/25/2013] [Indexed: 02/06/2023] Open
Abstract
Solid tumors are infiltrated by stroma cells including macrophages and these cells can affect tumor growth, metastasis and angiogenesis. We have investigated the effects of conditioned media (CM) from different macrophages on the proliferation of the colon cancer cell lines HT-29 and CACO-2. CM from THP-1 macrophages and monocyte-derived human macrophages of the M1 phenotype, but not the M2 phenotype, inhibited proliferation of the tumor cells in a dose-dependent manner. Lipopolysaccaharide and interferon γ was used for differentiation of macrophages towards the M1 phenotype and CM were generated both during differentiation (M1DIFF) and after differentiation (M1). M1 and M1DIFF CM as well as THP-1 macrophage CM resulted in cell cycle arrest in HT-29 cells with a decrease of cells in S phase and an increase in G2/M phase. Treatment of HT-29 cells with M1DIFF, but not M1 or THP-1 macrophage CM, resulted in apoptosis of about 20% of the tumor cells and this was accompanied by lack of recovery of cell growth after removal of CM and subsequent culture in fresh media. A protein array was used to identify cytokines released from M1 and M2 macrophages. Among the cytokines released by M1 macrophages, tumor necrosis factor α and CXCL9 were tested by direct addition to HT-29 cells, but neither affected proliferation. Our results indicate that M1 macrophages inhibit colon cancer cell growth and have the potential of contributing to reducing tumor growth in vivo.
Collapse
Affiliation(s)
| | - Ann Erlandsson
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Dick Delbro
- School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - Jonny Wijkander
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| |
Collapse
|
28
|
Zhang M, Chen JX, Tan JY, Liu XL. Progress towards the development of animal models of chemotherapy-induced gastrointestinal mucositis. Shijie Huaren Xiaohua Zazhi 2012; 20:649-655. [DOI: 10.11569/wcjd.v20.i8.649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of chemotherapy-induced gastrointestinal mucositis is not fully elucidated, which makes it extremely difficult to develop effective interventions. Recently, the use of animal models of chemotherapy-induced gastrointestinal mucositis has led to advances in the understanding of cellular mechanisms and clinical pharmacology of various types of chemotherapy drugs. Tumor-bearing models, non-tumor-bearing models, transgenic models and gene knockout models have been developed to assess the effect of chemotherapy on chemotherapy-induced gastrointestinal mucositis. In this paper, we comprehensively analyze the advantages and disadvantages of various methods for developing chemotherapy-induced gastrointestinal mucositis to provide a reference for the choice of animal models for future research of chemotherapy-associated mucosal toxicity and the underlying mechanisms.
Collapse
|
29
|
Phillips MA, Narayan R, Padath T, Rubinsky B. Irreversible electroporation on the small intestine. Br J Cancer 2012; 106:490-5. [PMID: 22223084 PMCID: PMC3273351 DOI: 10.1038/bjc.2011.582] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/08/2011] [Accepted: 12/08/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Non-thermal irreversible electroporation (NTIRE) has recently been conceived as a new minimally invasive ablation method, using microsecond electric fields to produce nanoscale defects in the cell membrane bilayer and induce cell death while keeping all other molecules, including the extracellular matrix, intact. Here, we present the first in vivo study that examines the effects of NTIRE on the small intestine, an organ whose collateral damage is of particular concern in the anticipated use of NTIRE for treatment of abdominal cancers. METHODS A typical NTIRE electrical protocol was applied directly to the rat small intestine and histological analysis was used to examine the effect of NTIRE over time. RESULTS The application of NTIRE led to complete cell ablation in the targeted tissue, but the animal did not show any physiological effects of the procedure and the intestine showed signs of recovery, developing an epithelial layer 3 days post treatment and regenerating its distinct layers within a week. CONCLUSION Our results indicate that this novel procedure can be used for abdominal cancer treatment while minimising collateral damage to adjacent tissues because of the unique ability of the NTIRE ablation method to target the cell membrane.
Collapse
Affiliation(s)
- M A Phillips
- Department of Mechanical Engineering, University of California-Berkeley, 6124 Etcheverry Hall, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|