1
|
Sarfraz M, Abida, Eltaib L, Asdaq SMB, Guetat A, Alzahrani AK, Alanazi SS, Aaghaz S, Singla N, Imran M. Overcoming chemoresistance and radio resistance in prostate cancer: The emergent role of non-coding RNAs. Pathol Res Pract 2024; 255:155179. [PMID: 38320439 DOI: 10.1016/j.prp.2024.155179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
Prostate cancer (PCa) continues to be a major health concern worldwide, with its resistance to chemotherapy and radiation therapy presenting major hurdles in successful treatment. While patients with localized prostate cancer generally have a good survival rate, those with metastatic prostate cancer often face a grim prognosis, even with aggressive treatments using various methods. The high mortality rate in severe cases is largely due to the lack of treatment options that can offer lasting results, especially considering the significant genetic diversity found in tumors at the genomic level. This comprehensive review examines the intricate molecular mechanisms governing resistance in PCa, emphasising the pivotal contributions of non-coding RNAs (ncRNAs). We delve into the diverse roles of microRNAs, long ncRNAs, and other non-coding elements as critical regulators of key cellular processes involved in CR & RR. The review emphasizes the diagnostic potential of ncRNAs as predictive biomarkers for treatment response, offering insights into patient stratification and personalized therapeutic approaches. Additionally, we explore the therapeutic implications of targeting ncRNAs to overcome CR & RR, highlighting innovative strategies to restore treatment sensitivity. By synthesizing current knowledge, this review not only provides a comprehension of the chemical basis of resistance in PCa but also identifies gaps in knowledge, paving the way for future research directions. Ultimately, this exploration of ncRNA perspectives offers a roadmap for advancing precision medicine in PCa, potentially transforming therapeutic paradigms and improving outcomes for patients facing the challenges of treatment resistance.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain 64141, United Arab Emirates
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Lina Eltaib
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | | | - Arbi Guetat
- Department of Biological Sciences, College of Sciences, Northern Border University, Arar 73213, Saudi Arabia
| | - A Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Medical Applied Science, Northern Border University, Arar 91431, Saudi Arabia
| | | | - Shams Aaghaz
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Neelam Singla
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia.
| |
Collapse
|
2
|
Samson JS, Parvathi VD. Prospects of microRNAs as therapeutic biomarkers in non-small cell lung cancer. Med Oncol 2023; 40:345. [PMID: 37922117 DOI: 10.1007/s12032-023-02212-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/06/2023] [Indexed: 11/05/2023]
Abstract
Lung Cancer, the second most common cancer worldwide, remains the leading cause of cancer-related deaths, contemporarily. More than 85% of identified lung cancer cases are comprised of non-small-cell lung carcinoma (NSCLC). Despite the best advancements in the realm of NSCLC therapy, the five-year survival period of NSCLC patients remains unchanged. Underlying complex molecular heterogeneity, delay in early detection resulting in progression of the disease to its advanced stage and acquired resistance of NSCLC cells during therapy have posed additional challenges for circumventing the discrepancies in treatment strategy. microRNAs (miRNAs) are a class of non-coding RNAs, identified as molecules playing an indispensable role in tumorigenesis & progression and metastasis of several cancers, including NSCLC, either by possessing tumor suppressor or by oncogenic functions. As observed across several studies, miRNA dysregulation has been recognised as a causative mechanism behind NSCLC tumorigenesis. In this review, we discuss the role of miRNAs in NSCLC tumor progression caused by their dysregulation, thereby stating their potential therapeutic application in NSCLC as therapeutic biomarkers. We have also highlighted the recent findings of some of the most widely studied tumor suppressor (miR-486, miR-7 miR-34), and oncogene miRNAs (miR-21, miR-224, miR-135b) that can be further explored for its therapeutic potentialities in the management of NSCLC.
Collapse
Affiliation(s)
- Jennifer Sally Samson
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, 1, Mount Poonamallee Road, Sri Ramachandra Nagar, Chennai, Tamil Nadu, 600116, India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, 1, Mount Poonamallee Road, Sri Ramachandra Nagar, Chennai, Tamil Nadu, 600116, India.
| |
Collapse
|
3
|
Hashemi M, Khosroshahi EM, Chegini MK, Abedi M, Matinahmadi A, Hosnarody YSD, Rezaei M, Saghari Y, Fattah E, Abdi S, Entezari M, Nabavi N, Rashidi M, Raesi R, Taheriazam A. miRNAs and exosomal miRNAs in lung cancer: New emerging players in tumor progression and therapy response. Pathol Res Pract 2023; 251:154906. [PMID: 37939448 DOI: 10.1016/j.prp.2023.154906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Non-coding RNAs have shown key roles in cancer and among them, short RNA molecules are known as microRNAs (miRNAs). These molecules have length less than 25 nucleotides and suppress translation and expression. The functional miRNAs are produced in cytoplasm. Lung cancer is a devastating disease that its mortality and morbidity have undergone an increase in recent years. Aggressive behavior leads to undesirable prognosis and tumors demonstrate abnormal proliferation and invasion. In the present review, miRNA functions in lung cancer is described. miRNAs reduce/increase proliferation and metastasis. They modulate cell death and proliferation. Overexpression of oncogenic miRNAs facilitates drug resistance and radio-resistance in lung cancer. Tumor microenvironment components including macrophages and cancer-associated fibroblasts demonstrate interactions with miRNAs in lung cancer. Other factors such as HIF-1α, lncRNAs and circRNAs modulate miRNA expression. miRNAs have also value in the diagnosis of lung cancer. Understanding such interactions can pave the way for developing novel therapeutics in near future for lung cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Kalhor Chegini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Abedi
- Department of Pathology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Yasaman Sotodeh Dokht Hosnarody
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdi Rezaei
- Faculty of Medicine, Shahed University, Tehran, Iran
| | - Yalda Saghari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Eisa Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Abdi
- Department of Physics, Safadasht Branch, Islamic Azad university, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Yan H, Tang S, Tang S, Zhang J, Guo H, Qin C, Hu H, Zhong C, Yang L, Zhu Y, Zhou H. miRNAs in anti-cancer drug resistance of non-small cell lung cancer: Recent advances and future potential. Front Pharmacol 2022; 13:949566. [PMID: 36386184 PMCID: PMC9640411 DOI: 10.3389/fphar.2022.949566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/12/2022] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors worldwide. Clinical success is suboptimal owing to late diagnosis, limited treatment options, high recurrence rates, and the development of drug resistance. MicroRNAs (miRNAs), a range of small endogenous non-coding RNAs that are 22 nucleotides in length, have emerged as one of the most important players in cancer initiation and progression in recent decades. Current evidence has revealed the pivotal roles of miRNAs in regulating cell proliferation, migration, invasion, and metastasis in NSCLC. Recently, several studies have demonstrated that miRNAs are strongly associated with resistance to anti-cancer drugs, ranging from traditional chemotherapeutic and immunotherapy drugs to anti-vascular drugs, and even during radiotherapy. In this review, we briefly introduce the mechanism of miRNA dysregulation and resistance to anti-tumor therapy in NSCLC, and summarize the role of miRNAs in the malignant process of NSCLC. We then discuss studies of resistance-related miRNAs in chemotherapy, radiotherapy, targeted therapy, immunotherapy, and anti-vascular therapy in NSCLC. Finally, we will explore the application prospects of miRNA, an emerging small molecule, for future anti-tumor therapy. This review is the first to summarize the latest research progress on miRNAs in anti-cancer drug resistance based on drug classification, and to discuss their potential clinical applications.
Collapse
Affiliation(s)
- Hang Yan
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
| | - Shengjie Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Shoujun Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Jun Zhang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
| | - Haiyang Guo
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Chengdu University of TCM, Chengdu, China
| | - Chao Qin
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
| | - Haiyang Hu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
| | - Chuan Zhong
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Li Yang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Yunhe Zhu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- *Correspondence: Yunhe Zhu, ; Haining Zhou,
| | - Haining Zhou
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Zunyi Medical University, Zunyi, China
- Graduate School, Institute of Surgery, Chengdu University of TCM, Chengdu, China
- *Correspondence: Yunhe Zhu, ; Haining Zhou,
| |
Collapse
|
5
|
Wu GJ, Ren K, He M, Xu JX, Li ZQ, Bo D, Xue Q. SNX20 Expression Correlates with Immune Cell Infiltration and Can Predict Prognosis in Lung Adenocarcinoma. Int J Gen Med 2021; 14:7599-7611. [PMID: 34764676 PMCID: PMC8575493 DOI: 10.2147/ijgm.s337198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/20/2021] [Indexed: 11/28/2022] Open
Abstract
Background Sorting nexin-20 (SNX20) is a member of the sorting nexin family of proteins. It plays a crucial role in the regulation of innate immunity. However, the prognostic risk, potential mechanisms, immunotherapy, and other functions of SNX20 in lung adenocarcinoma (LUAD) remain unclear. Methods We analyzed and validated the expression and prognostic role of SNX20 in LUAD through a combination of The Cancer Genome Atlas, Gene Expression Omnibus, Oncomine, TIMER, and Human Protein Atlas databases. Further, we analyzed the correlation between SNX20 expression and clinical characteristics of LUAD, and the prognostic value of SNX20 in LUAD was evaluated. Using fitted SNX20 expression and other clinical parameters, a predictive model with predictive performance for the overall survival of patients with LUAD was constructed. The potential biological function of SNX20 in LUAD was explored using gene set enrichment analysis. In addition, we analyzed the correlation between SNX20 expression and the immune microenvironment and survival. Results SNX20 was downregulated in most cancer types, was associated with poor prognosis in LUAD and could be an independent prognostic factor for patients with LUAD. The predictive model developed by us had good predictive power for determining the overall survival of patients with LUAD. Biofunctional analysis revealed that genes co-expressed with SNX20 mainly promoted the immune process and inhibited the cell proliferation process in LUAD. We observed that high expression of SNX20 was accompanied by a better immune microenvironment and survival in patients with LUAD. Furthermore, the LUAD immune response was elevated with an increase in SNX20 expression. Finally, we found that SNX20 expression was significantly associated with various tumor-infiltrating immune cells, and it was widely involved in regulating various immune molecules in LUAD and affecting immune infiltration in the tumor microenvironment. Conclusion Our results suggested that SNX20 is a potential immune-related biomarker and therapeutic target associated with the prognosis of patients with LUAD. This provided a new strategy for the development of immunotherapeutic and prognostic markers in LUAD.
Collapse
Affiliation(s)
- Gu Jie Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Kuan Ren
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Min He
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jian Xun Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Zhen Qing Li
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Ding Bo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Qun Xue
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| |
Collapse
|
6
|
Ni Q, Zhang Y, Tao R, Li X, Zhu J. MicroRNA-95-3p serves as a contributor to cisplatin resistance in human gastric cancer cells by targeting EMP1/PI3K/AKT signaling. Aging (Albany NY) 2021; 13:8665-8687. [PMID: 33714198 PMCID: PMC8034895 DOI: 10.18632/aging.202679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are thought to be involved in the development of cisplatin (DDP) resistance in gastric cancer (GC). Using RNA sequencing analysis (RNA-seq), we found that miR-95-3p is associated with DDP resistance in GC. We discovered that miR-95-3p is highly expressed in DDP-resistant GC tissues and cell lines (SGC7901/DDP and AGS/DDP). Furthermore, results from the BrdU and MTT assays indicated that miR-95-3p promotes GC cell proliferation. Additionally, data from transwell chamber assay, wound healing test and in vivo experiments illustrated that miR-95-3p can effectively promote invasion, migration and tumorigenic capacity, respectively, of DDP-resistant GC cells. Subsequently, results from dual luciferase assay and qRT-PCR collectively indicated that EMP1 is a target of miR-95-3p with inhibitory function through suppression of the EMT process and drug-resistance proteins. Furthermore, PI3K/AKT was identified as a downstream pathway of miR-95-3p, which promotes DDP resistance in GC. In summary, miR-95-3p helped develop DDP-resistance through down-regulation of EMP1 and increasing phosphorylation of the PI3K/Akt pathway in GC.
Collapse
Affiliation(s)
- Qingfeng Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Yan Zhang
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Ran Tao
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Xiaolong Li
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Jianwei Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| |
Collapse
|
7
|
miRNA as promising theragnostic biomarkers for predicting radioresistance in cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2020; 157:103183. [PMID: 33310279 DOI: 10.1016/j.critrevonc.2020.103183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
Radioresistance remains as an obstacle in cancer treatment. This systematic review and meta-analysis aimed to evaluate the association between the expression of miRNAs and responses to radiotherapy and the prognosis of different tumors. In total, 77 miRNAs in 19 cancer types were studied, in which 24 miRNAs were upregulated and 58 miRNAs were downregulated in cancer patients. Five miRNAs were differentially expressed. Moreover, 75 miRNAs were found to be related to radioresistance, while 5 were observed to be related to radiosensitivity. The pooled HR and 95 % confidence interval for the combined studies was 1.135 (0.819-1.574; P-value = 0.4). The HR values of the subgroup analysis for miR-21 (HR = 2.344; 95 % CI: 1.927-2.850; P-value = 0.000), nasopharyngeal carcinoma (HR = 0.448; 95 % CI: 0.265-0.760; P = 0.003) and breast cancer (HR = 1.131; 95 % CI: 0.311-4.109; P = .85) were obtained. Our results highlighted that across the published literature, miRNAs can modulate tumor radioresistance or sensitivity by affecting radiation-related signaling pathways. It seems that miRNAs could be considered as a theragnostic biomarker to predict and monitor clinical response to radiotherapy. Thus, the prediction of radioresistance in malignant patients will improve radiotherapy outcomes and radiotherapeutic resistance.
Collapse
|
8
|
Fan L, Li L, Huang C, Huang S, Deng J, Xiong J. Increased SNX20 and PD-L1 Levels Can Predict the Clinical Response to PD-1 Inhibitors in Lung Adenocarcinoma. Onco Targets Ther 2020; 13:10075-10085. [PMID: 33116590 PMCID: PMC7555289 DOI: 10.2147/ott.s262909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Programmed death ligand 1 (PD-L1) is widely used for predicting immune checkpoint inhibitors but has a limited effect on predicting clinical response. The aim of this study was to examine the prognostic value and PD-1 inhibitor therapeutic efficiency of SNX20 in lung adenocarcinoma. Methods We evaluated the mRNA and protein expression levels of SNX20 and PD-L1 and confirmed their predictive role in clinical response to anti-PD-1 therapy in 56 patients with advanced, refractory lung adenocarcinoma treated with PD-1 inhibitors. The expression of SNX family in different cancer types and the relationship between SNX20 and immune cells were evaluated in TCGA. The protein expression levels of SNX20, PD-L1 in 56 lung adenocarcinoma tissues were evaluated by immunohistochemistry. Results SNX20 mRNA expression has the strongest relationship with CD8a of the sorting nexin (SNX) family in lung adenocarcinoma and is strongly correlated with immune infiltration levels in 30 cancer types, especially in lung adenocarcinoma. A positive correlation between SNX20 and PD-L1 was found based on immunohistochemical data (Pearson’s r=0.3731 and p=0.0466). SNX20 and PD-L1 were also observed to have a significant positive correlation at the mRNA level. According to the receiver operating characteristic (ROC) curve, the best expression differentiation score of SNX20 and PD-L1 between responder versus non-responders in patients with lung adenocarcinoma using PD-1 inhibitors is 5. In univariate logistic regression analysis, both SNX20 (odds ratio [OR]=3.778, p=0.019) and PD-L1 (OR=5.727, p=0.004) expression levels are significant predictors of clinical response in the PD-1 inhibitor responder group, and SNX20 (OR=3.575, p=0.038) and PD-L1 (OR=5.484, p=0.007) are also predictors of the response to PD-1 inhibitors in the multivariate analysis. High SNX20/high PD-L1 expression group had longer overall survival than patients with high SNX20/low PD-L1 expression group or low SNX20/high PD-L1 expression group (p=0.013) and patients with low SNX20/low PD-L1 expression group (p=0.01). Conclusion SNX20 expression can be a promising predictor for therapeutic decision-making and treatment response assessment regarding PD-1 inhibitors, and special attention is required for the subgroup of patients with lung adenocarcinoma whose tumors express both high SNX20 and PD-L1.
Collapse
Affiliation(s)
- Linwei Fan
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Li Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Chunye Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Shanshan Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| |
Collapse
|
9
|
Yang L, Tan W, Yang X, You Y, Wang J, Wen G, Zhong J. Sorting nexins: A novel promising therapy target for cancerous/neoplastic diseases. J Cell Physiol 2020; 236:3317-3335. [PMID: 33090492 DOI: 10.1002/jcp.30093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022]
Abstract
Sorting nexins (SNXs) are a diverse group of cytoplasmic- and membrane-associated phosphoinositide-binding proteins containing the PX domain proteins. The function of SNX proteins in regulating intracellular protein trafficking consists of endocytosis, endosomal sorting, and endosomal signaling. Dysfunctions of SNX proteins are demonstrated to be involved in several cancerous/neoplastic diseases. Here, we review the accumulated evidence of the molecular structure and biological function of SNX proteins and discuss the regulatory role of SNX proteins in distinct cancerous/neoplastic diseases. SNX family proteins may be a valuable potential biomarker and therapeutic strategy for diagnostics and treatment of cancerous/neoplastic diseases.
Collapse
Affiliation(s)
- Lu Yang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Weihua Tan
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
- Emergency Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xinzhi Yang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Yong You
- Research Lab of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jing Wang
- Research Lab of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Gebo Wen
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jing Zhong
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
10
|
Starzyńska T, Karczmarski J, Paziewska A, Kulecka M, Kuśnierz K, Żeber-Lubecka N, Ambrożkiewicz F, Mikula M, Kos-Kudła B, Ostrowski J. Differences between Well-Differentiated Neuroendocrine Tumors and Ductal Adenocarcinomas of the Pancreas Assessed by Multi-Omics Profiling. Int J Mol Sci 2020; 21:E4470. [PMID: 32586046 PMCID: PMC7352720 DOI: 10.3390/ijms21124470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Most pancreatic neuroendocrine tumors (PNETs) are indolent, while pancreatic ductal adenocarcinomas (PDACs) are particularly aggressive. To elucidate the basis for this difference and to establish the biomarkers, by using the deep sequencing, we analyzed somatic variants across coding regions of 409 cancer genes and measured mRNA/miRNA expression in nine PNETs, eight PDACs, and four intestinal neuroendocrine tumors (INETs). There were 153 unique somatic variants considered pathogenic or likely pathogenic, found in 50, 57, and 24 genes in PDACs, PNETs, and INETs, respectively. Ten and 11 genes contained a pathogenic mutation in at least one sample of all tumor types and in PDACs and PNETs, respectively, while 28, 34, and 11 genes were found to be mutated exclusively in PDACs, PNETs, and INETs, respectively. The mRNA and miRNA transcriptomes of PDACs and NETs were distinct: from 54 to 1659 differentially expressed mRNAs and from 117 to 250 differentially expressed miRNAs exhibited high discrimination ability and resulted in models with an area under the receiver operating characteristics curve (AUC-ROC) >0.9 for both miRNA and mRNA. Given the miRNAs high stability, we proposed exploring that class of RNA as new pancreatic tumor biomarkers.
Collapse
Affiliation(s)
- Teresa Starzyńska
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland;
| | - Jakub Karczmarski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
| | - Agnieszka Paziewska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| | - Maria Kulecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| | - Katarzyna Kuśnierz
- Department of Gastrointestinal Surgery, Medical University of Silesia, 40-514 Katowice, Poland;
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| | - Filip Ambrożkiewicz
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, ENETS Center of Excelence, Department of Pathophysiology and Endocrinology, Medical University of Silesia, 40-514 Katowice, Poland;
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.K.); (A.P.); (M.K.); (F.A.); (M.M.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
| |
Collapse
|
11
|
Yang J, Asico LD, Beitelshees AL, Feranil JB, Wang X, Jones JE, Armando I, Cuevas SG, Schwartz GL, Gums JG, Chapman AB, Turner ST, Boerwinkle E, Cooper-DeHoff RM, Johnson JA, Felder RA, Weinman EJ, Zeng C, Jose PA, Villar VAM. Sorting nexin 1 loss results in increased oxidative stress and hypertension. FASEB J 2020; 34:7941-7957. [PMID: 32293069 DOI: 10.1096/fj.201902448r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/13/2020] [Accepted: 03/28/2020] [Indexed: 12/13/2022]
Abstract
Acute renal depletion of sorting nexin 1 (SNX1) in mice results in blunted natriuretic response and hypertension due to impaired dopamine D5 receptor (D5 R) activity. We elucidated the molecular mechanisms for these phenotypes in Snx1-/- mice. These mice had increased renal expressions of angiotensin II type 1 receptor (AT1 R), NADPH oxidase (NOX) subunits, D5 R, and NaCl cotransporter. Basal reactive oxygen species (ROS), NOX activity, and blood pressure (BP) were also higher in Snx1-/- mice, which were normalized by apocynin, a drug that prevents NOX assembly. Renal proximal tubule (RPT) cells from hypertensive (HT) Euro-American males had deficient SNX1 activity, impaired D5 R endocytosis, and increased ROS compared with cells from normotensive (NT) Euro-American males. siRNA-mediated depletion of SNX1 in RPT cells from NT subjects led to a blunting of D5 R agonist-induced increase in cAMP production and decrease in Na+ transport, effects that were normalized by over-expression of SNX1. Among HT African-Americans, three of the 12 single nucleotide polymorphisms interrogated for the SNX1 gene were associated with a decrease in systolic BP in response to hydrochlorothiazide (HCTZ). The results illustrate a new paradigm for the development of hypertension and imply that the trafficking protein SNX1 may be a crucial determinant for hypertension and response to antihypertensive therapy.
Collapse
Affiliation(s)
- Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Laureano D Asico
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Amber L Beitelshees
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jun B Feranil
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaoyan Wang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - John E Jones
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ines Armando
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Santiago G Cuevas
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Gary L Schwartz
- Division of Nephrology and Hypertension, Department of Internal Medicine, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - John G Gums
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL, USA.,Department of Community Health and Family Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Arlene B Chapman
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Stephen T Turner
- Division of Nephrology and Hypertension, Department of Internal Medicine, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eric Boerwinkle
- Human Genetics and Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Rhonda M Cooper-DeHoff
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Julie A Johnson
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Robin A Felder
- Department of Pathology, The University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Edward J Weinman
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,The Department of Veterans Affairs, Baltimore, MD, USA
| | - Chunyu Zeng
- Department of Cardiology, Fujian Heart Medical Center, Fujian Medical University Union Hospital, Fujian, P.R.China.,Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Pedro A Jose
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Van Anthony M Villar
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
12
|
Du M, Zhuang Y, Tan P, Yu Z, Zhang X, Wang A. microRNA-95 knockdown inhibits epithelial-mesenchymal transition and cancer stem cell phenotype in gastric cancer cells through MAPK pathway by upregulating DUSP5. J Cell Physiol 2020; 235:944-956. [PMID: 31309567 DOI: 10.1002/jcp.29010] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
This study investigated the role of microRNA-95 (miR-95) in gastric cancer (GC) and to elucidate the underlying mechanism. Initially, bioinformatic prediction was used to predict the differentially expressed genes and related miRNAs in GC. miR-95 and DUSP5 expression was altered in GC cell line (MGC803) to evaluate their respective effects on the epithelial-mesenchymal transition (EMT) process, cellular processes (cell proliferation, migration, invasion, cell cycle, and apoptosis), cancer stem cell (CSC) phenotype, as well as tumor growth ability. It was further predicted in bioinformatic prediction and verified in GC tissue and cell line experiments that miR-95 was highly expressed in GC. miR-95 negatively regulated DUSP5, which resulted in the MAPK pathway activation. Inhibited miR-95 or overexpressed DUSP5 was observed to inhibit the levels of CSC markers (CD133, CD44, ALDH1, and Lgr5), highlighting the inhibitory role in the CSC phenotype. More important, evidence was obtained demonstrating that miR-95 knockdown or DUSP5 upregulation exerted an inhibitory effect on the EMT process, cellular processes, and tumor growth. Together these results, miR-95 knockdown inhibited GC development via DUSP5-dependent MAPK pathway.
Collapse
Affiliation(s)
- Mei Du
- Department of Oncology, Linyi People's Hospital, Linyi, China
| | - Yuan Zhuang
- Histology and Embryology Teaching and Research Section, Shandong Medical College, Linyi, China
| | - Peng Tan
- Internal Medicine Teaching and Research Section, Shandong Medical College, Linyi, China
| | - Zongbu Yu
- Department of Gastroenterology, Linyi People's Hospital, Linyi, China
| | - Xiutian Zhang
- Department of Gastroenterology, Linyi People's Hospital, Linyi, China
| | - Aihua Wang
- Department of Gastroenterology, Linyi People's Hospital, Linyi, China
| |
Collapse
|
13
|
Razdan A, de Souza P, Roberts TL. Role of MicroRNAs in Treatment Response in Prostate Cancer. Curr Cancer Drug Targets 2019; 18:929-944. [PMID: 29644941 PMCID: PMC6463399 DOI: 10.2174/1568009618666180315160125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 12/16/2022]
Abstract
Prostate cancer (PCa) is the most common non-skin cancer in men worldwide, resulting in significant mortality and morbidity. Depending on the grade and stage of the cancer, patients may be given radiation therapy, hormonal therapy, or chemotherapy. However, more than half of these patients develop resistance to treatment, leading to disease progression and metastases, often with lethal consequences. MicroRNAs (miRNAs) are short, non-coding RNAs, which regulate numerous physiological as well as pathological processes, including cancer. miRNAs mediate their regulatory effect predominately by binding to the 3'-untranslated region (UTR) of their target mRNAs. In this review, we will describe the mechanisms by which miRNAs mediate resistance to radiation and drug therapy (i.e. hormone therapy and chemotherapy) in PCa, including control of apoptosis, cell growth and proliferation, autophagy, epithelial-to-mesenchymal transition (EMT), invasion and metastasis, and cancer stem cells (CSCs). Furthermore, we will discuss the utility of circulating miRNAs isolated from different body fluids of prostate cancer patients as non-invasive biomarkers of cancer detection, disease progression, and therapy response. Finally, we will shortlist the candidate miRNAs, which may have a role in drug and radioresistance, that could potentially be used as predictive biomarkers of treatment response.
Collapse
Affiliation(s)
- Anshuli Razdan
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.,Centre for Oncology Education and Research Translation (CONCERT), Liverpool, New South Wales, Australia
| | - Paul de Souza
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.,Centre for Oncology Education and Research Translation (CONCERT), Liverpool, New South Wales, Australia.,School of Medicine, The University of New South Wales, Sydney, New South Wales, Australia.,Department of Medical Oncology, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Tara Laurine Roberts
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.,Centre for Oncology Education and Research Translation (CONCERT), Liverpool, New South Wales, Australia.,School of Medicine, The University of New South Wales, Sydney, New South Wales, Australia.,The University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Liu B, Wang Z, Cheng S, Du L, Yin Y, Yang Z, Zhou J. miR‑379 inhibits cell proliferation and epithelial‑mesenchymal transition by targeting CHUK through the NF‑κB pathway in non‑small cell lung cancer. Mol Med Rep 2019; 20:1418-1428. [PMID: 31173238 DOI: 10.3892/mmr.2019.10362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 03/29/2019] [Indexed: 11/05/2022] Open
Abstract
An increasing body of evidence has demonstrated that microRNA (miR) deregulation serves pivotal roles in tumor progression and metastasis. However, the function of miR‑379 in lung cancer remains understudied, particularly in non‑small cell lung cancer (NSCLC). Bioinformatics and luciferase reporter analyses confirmed that conserved helix‑loop‑helix ubiquitous kinase (CHUK) is a target of miR‑379, which may directly bind to the 3'‑untranslated region of CHUK and significantly downregulate its expression in NSCLC cells. Transwell assays were used to evaluate the role of miR‑379 in cell migration and invasion, and western blotting was used to address the association between miR‑379 and epithelial‑mesenchymal markers, including E‑cadherin, cytokeratin and Vimentin. In the present study, miR‑379 expression in NSCLC tissues and cell lines was downregulated, which may be associated with the poor survival of patients with NSCLC. miR‑379 may act as a tumor suppressor in NSCLC, potentially by suppressing cell growth and proliferation, delaying G1‑S transition, enhancing cell apoptosis and suppressing NSCLC cell migration and invasion. Furthermore, it was also observed that CHUK may function as an oncogene, and downregulation of CHUK induced by miR‑379 may partially rescue the malignant characteristics of tumors, indicating that miR‑379 may be suppressed in tumorigenesis. The overexpression of miR‑379 may prevent the growth of NSCLC tumors via CHUK suppression and the downstream nuclear factor‑κB pathway. The results of the present study demonstrated that miR‑379 may act as a tumor suppressor, and may constitute a potential biomarker and a promising therapeutic agent for the treatment for NSCLC.
Collapse
Affiliation(s)
- Bin Liu
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin 300000, P.R. China
| | - Zheng Wang
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin 300000, P.R. China
| | - Shizhao Cheng
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin 300000, P.R. China
| | - Lin Du
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin 300000, P.R. China
| | - Yan Yin
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin 300000, P.R. China
| | - Zhen Yang
- Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Jingmin Zhou
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin 300000, P.R. China
| |
Collapse
|
15
|
Wang N, Zhang T. Downregulation of MicroRNA-135 Promotes Sensitivity of Non-Small Cell Lung Cancer to Gefitinib by Targeting TRIM16. Oncol Res 2018; 26:1005-1014. [PMID: 29295721 PMCID: PMC7844745 DOI: 10.3727/096504017x15144755633680] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Personalized treatment targeting the epidermal growth factor receptor (EGFR) may be a promising new treatment of non-small cell lung cancer (NSCLC). Gefitinib, a tyrosine kinase inhibitor, is the first drug for NSCLC, which unfortunately easily leads to drug resistance. Our study aimed to explore the functional role of microRNA (miR)-135 in the sensitivity to gefitinib of NSCLC cells. Expression of miR-135 in normal cells and NSCLC cells was assessed, followed by the effects of abnormally expressed miR-135 on cell viability, migration, invasion, apoptosis, sensitivity to gefitinib, and the expression levels of adhesion molecules and programmed death ligand 1 (PD-L1) in H1650 and H1975 cells. Next, the possible target gene of miR-135 was screened and verified. Finally, the potential involvement of the JAK/STAT signaling pathway was investigated. Expression of miR-135 was upregulated in NSCLC cells, and miR-135 silencing repressed cell viability, migration, and invasion, but increased cell apoptosis and sensitivity to gefitinib. E-cadherin and β-catenin were significantly upregulated, but PD-L1 was downregulated by the silencing of miR-135. Subsequently, tripartite-motif (TRIM) 16 was screened and verified to be a target gene of miR-135, and miR-135 suppression was shown to function through upregulation of TRIM16 expression. Phosphorylated levels of the key kinases in the JAK/STAT pathway were reduced by silencing miR-135 by targeting TRIM16. In conclusion, miR-135 acted as a tumor promoter, and its suppression could improve sensitivity to gefitinib by targeting TRIM16 and inhibition of the JAK/STAT pathway.
Collapse
Affiliation(s)
- Ning Wang
- *Department of Thoracic Surgery, Shengli Oilfield Central Hospital, Dongying, P.R. China
| | - Tingting Zhang
- †Department of Oncology, Shengli Oilfield Central Hospital, Dongying, P.R. China
| |
Collapse
|
16
|
Arakaki AKS, Pan WA, Trejo J. GPCRs in Cancer: Protease-Activated Receptors, Endocytic Adaptors and Signaling. Int J Mol Sci 2018; 19:ijms19071886. [PMID: 29954076 PMCID: PMC6073120 DOI: 10.3390/ijms19071886] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 01/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a large diverse family of cell surface signaling receptors implicated in various types of cancers. Several studies indicate that GPCRs control many aspects of cancer progression including tumor growth, invasion, migration, survival and metastasis. While it is known that GPCR activity can be altered in cancer through aberrant overexpression, gain-of-function activating mutations, and increased production and secretion of agonists, the precise mechanisms of how GPCRs contribute to cancer progression remains elusive. Protease-activated receptors (PARs) are a unique class of GPCRs implicated in cancer. PARs are a subfamily of GPCRs comprised of four members that are irreversibly activated by proteolytic cleavage induced by various proteases generated in the tumor microenvironment. Given the unusual proteolytic irreversible activation of PARs, expression of receptors at the cell surface is a key feature that influences signaling responses and is exquisitely controlled by endocytic adaptor proteins. Here, we discuss new survey data from the Cancer Genome Atlas and the Genotype-Tissue Expression projects analysis of expression of all PAR family member expression in human tumor samples as well as the role and function of the endocytic sorting machinery that controls PAR expression and signaling of PARs in normal cells and in cancer.
Collapse
Affiliation(s)
- Aleena K S Arakaki
- Biomedical Sciences Graduate Program, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA.
- Department of Pharmacology, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA.
| | - Wen-An Pan
- Department of Pharmacology, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA.
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA.
| |
Collapse
|
17
|
Stępień EŁ, Durak-Kozica M, Kamińska A, Targosz-Korecka M, Libera M, Tylko G, Opalińska A, Kapusta M, Solnica B, Georgescu A, Costa MC, Czyżewska-Buczyńska A, Witkiewicz W, Małecki MT, Enguita FJ. Circulating ectosomes: Determination of angiogenic microRNAs in type 2 diabetes. Am J Cancer Res 2018; 8:3874-3890. [PMID: 30083267 PMCID: PMC6071541 DOI: 10.7150/thno.23334] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 05/03/2018] [Indexed: 12/30/2022] Open
Abstract
Ectosomes (Ects) are a subpopulation of extracellular vesicles formed by the process of plasma membrane shedding. In the present study, we profiled ectosome-specific microRNAs (miRNAs) in patients with type 2 diabetes mellitus (T2DM) and analyzed their pro- and anti-angiogenic potential. Methods: We used different approaches for detecting and enumerating Ects, including atomic force microscopy, cryogenic transmission electron microscopy, and nanoparticle tracking analysis. Furthermore, we used bioinformatics tools to analyze functional data obtained from specific miRNA enrichment signatures during angiogenesis and vasculature development. Results: Levels of miR-193b-3p, miR-199a-3p, miR-20a-3p, miR-26b-5p, miR-30b-5p, miR-30c-5p, miR-374a-5p, miR-409-3p, and miR-95-3p were significantly different between Ects obtained from patients with T2DM and those obtained from healthy controls. Conclusion: Our results showed differences in the abundance of pro- and anti-angiogenic miRNAs in Ects of patients with T2DM, and are suggestive of mechanisms underlying the development of vascular complications due to impaired angiogenesis in such patients.
Collapse
|
18
|
Zhan XY, Zhang Y, Zhai E, Zhu QY, He Y. Sorting nexin-1 is a candidate tumor suppressor and potential prognostic marker in gastric cancer. PeerJ 2018; 6:e4829. [PMID: 29868263 PMCID: PMC5983015 DOI: 10.7717/peerj.4829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
Sorting nexin-1 (SNX1) is an important functional protein in cell endocytosis, efflux, protein sorting, cell signal transduction, etc; however, the expression, the role and clinical relevance of SNX1 have not been investigated in gastric cancer (GC). In this study, we first performed a bioinformatics investigation using the data obtained from The Cancer Genome Atlas (TCGA) database. The result showed that SNX1 mRNA levels were significantly lower in GC tissues than in paracancerous tissues. In a study of 150 cases of GC, including 60 cases with paired paracancerous and cancer tissues and 90 cases with detailed follow-up information, SNX1 expression was analyzed by immunohistochemistry. Our study on paired paracancerous and cancer tissues showed that SNX1 protein expression remarkably decreased in GC tissues (50/60, 83.33%). A study on 90 patients with detailed follow-up information showed that tumors with higher SNX1 protein level were correlated with better clinicopathologic stages (p = 0.0285), nodal status (p = 0.0286), smaller tumor sizes (p = 0.0294) and a better survival rate in patients with GC (p = 0.0245). Univariate analysis of the 90 patients with GC showed that low-level SNX1 was significantly correlated with decreased overall survival of GC patients (p = 0.008), and associated with a relatively higher cumulative hazard of death. Exogenous expression of SNX1 inhibited the growth, migration, invasion and promoted the apoptosis and enhanced the sensitivity of GC cells to the chemotherapeutic drug 5-Fluorouracil (5-Fu) in vitro, while knockdown of SNX1 by short hairpin RNA (shRNA) significantly promoted the growth, migration, invasion and reduced the apoptosis and the sensitivity of GC cells to 5-Fu. SNX1 also showed to influence the levels of epithelial-mesenchymal transition markers including Vimentin, Snail, and E-cadherin in GC cells in vitro. Taken together, we propose here that SNX1 serves as a tumor suppressor and prognostic marker that reduces tumor cell malignancy for GC.
Collapse
Affiliation(s)
- Xiao-Yong Zhan
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangzhou KingMed Center for Clinical Laboratory, Guangzhou, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yaqiong Zhang
- Guangzhou KingMed Center for Clinical Laboratory, Guangzhou, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Ertao Zhai
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing-Yi Zhu
- Guangzhou KingMed Center for Clinical Laboratory, Guangzhou, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yulong He
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Turashvili G, Lightbody ED, Tyryshkin K, SenGupta SK, Elliott BE, Madarnas Y, Ghaffari A, Day A, Nicol CJB. Novel prognostic and predictive microRNA targets for triple-negative breast cancer. FASEB J 2018; 32:fj201800120R. [PMID: 29812973 DOI: 10.1096/fj.201800120r] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Triple-negative breast cancers (TNBCs) account for ∼25% of all invasive carcinomas and represent a large subset of aggressive, high-grade tumors. Despite current research focused on understanding the genetic landscape of TNBCs, reliable prognostic and predictive biomarkers remain limited. Although dysregulated microRNAs (miRNAs) have emerged as key players in many cancer types, the role of miRNAs in TNBC disease progression is unclear. We performed miRNA profiling of 51 TNBCs by next-generation sequencing to reveal differentially expressed miRNAs. A total of 228 miRNAs were identified. Three miRNAs (miR-224-5p, miR-375, and miR-205-5p) separated the tumors based on basal status. Six miRNAs (high let-7d-3p, miR-203b-5p, and miR-324-5p; low miR-30a-3p, miR-30a-5p, and miR-199a-5p) were significantly associated with decreased overall survival (OS) and 5 miRNAs (high let-7d-3p; low miR-30a-3p, miR-30a-5p, miR-30c-5p, and miR-128-3p) with decreased relapse-free survival (RFS). On multivariate analysis, high expression of let-7d-3p and low expression of miR-30a were independent predictors of decreased OS and RFS. High expression of miR-95-3p was significantly associated with decreased OS and RFS in patients treated with anthracycline-based chemotherapy. Five miRNAs (let-7d-3p, miR-30a-3p, miR-30c-5p, miR-128-3p, and miR-95-3p) were validated by quantitative RT-PCR. Our findings unveil novel prognostic and predictive miRNA targets for TNBC, including a miRNA signature that predicts patient response to anthracycline-based chemotherapy. This may improve clinical management and/or lead to the development of novel therapies.-Turashvili, G., Lightbody, E. D., Tyryshkin, K., SenGupta, S. K., Elliott, B. E., Madarnas, Y., Ghaffari, A., Day, A., Nicol, C. J. B. Novel prognostic and predictive microRNA targets for triple-negative breast cancer.
Collapse
Affiliation(s)
- Gulisa Turashvili
- Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Department of Pathology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth D Lightbody
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Kathrin Tyryshkin
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Sandip K SenGupta
- Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Bruce E Elliott
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | | | - Abdi Ghaffari
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Andrew Day
- Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Christopher J B Nicol
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
20
|
Sonea L, Buse M, Gulei D, Onaciu A, Simon I, Braicu C, Berindan-Neagoe I. Decoding the Emerging Patterns Exhibited in Non-coding RNAs Characteristic of Lung Cancer with Regard to their Clinical Significance. Curr Genomics 2018; 19:258-278. [PMID: 29755289 PMCID: PMC5930448 DOI: 10.2174/1389202918666171005100124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 07/14/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022] Open
Abstract
Lung cancer continues to be the leading topic concerning global mortality rate caused by can-cer; it needs to be further investigated to reduce these dramatic unfavorable statistic data. Non-coding RNAs (ncRNAs) have been shown to be important cellular regulatory factors and the alteration of their expression levels has become correlated to extensive number of pathologies. Specifically, their expres-sion profiles are correlated with development and progression of lung cancer, generating great interest for further investigation. This review focuses on the complex role of non-coding RNAs, namely miR-NAs, piwi-interacting RNAs, small nucleolar RNAs, long non-coding RNAs and circular RNAs in the process of developing novel biomarkers for diagnostic and prognostic factors that can then be utilized for personalized therapies toward this devastating disease. To support the concept of personalized medi-cine, we will focus on the roles of miRNAs in lung cancer tumorigenesis, their use as diagnostic and prognostic biomarkers and their application for patient therapy.
Collapse
Affiliation(s)
- Laura Sonea
- MEDFUTURE - Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihail Buse
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- MEDFUTURE - Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca Onaciu
- MEDFUTURE - Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioan Simon
- Surgery Department IV, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Surgery Department, Romanian Railway (CF) University Hospital, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- MEDFUTURE - Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, "Prof. Dr. Ion Chiricuta" The Oncology Institute, Republicii Street, No. 34-36, 401015, Cluj-Napoca, Romania
| |
Collapse
|
21
|
MicroRNA-95 promotes myogenic differentiation by down-regulation of aminoacyl-tRNA synthase complex-interacting multifunctional protein 2. Oncotarget 2017; 8:111356-111368. [PMID: 29340059 PMCID: PMC5762327 DOI: 10.18632/oncotarget.22796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
Abstract
MicroRNA-95 (miR-95) is well known for its ability to promote the proliferation of a variety of cancer cells, but its function in skeletal muscle development has not been reported so far. Our laboratory has recently generated genetically engineered Meishan pigs containing a loss-of-function myostatin (MSTN) mutant (MSTN-/-). These MSTN-/- pigs grow and develop normally but show clear double muscle phenotype as observed in Belgian cattle. We observed that the expression of miR-95 was up-regulated in the longissimus dorsi from MSTN-/- Meishan pigs at day 65 during embryo development. In this study, we investigated the role of miR-95 in the myogenic differentiation using a murine myoblast cell line C2C12. Our results revealed that miR-95 may play a very important role in regulating the expression of myogenic differentiation marker genes myosin heavy chain (MHC) and myogenin. By use of bioinformatical analysis and luciferase reporter gene assay, aminoacyl-tRNA synthase complex-interacting multifunctional protein 2 (AIMP2) gene was identified as a miR-95 target gene involved in myogenic differentiation. Our results indicated that higher miR-95 expression level leads to lower level of AIMP2 protein expression. When the endogenous expression of AIMP2 is inhibited by siRNA, the expression levels of myogenic differentiation marker genes MHC and myogenin increased, implying that AIMP2 negatively regulates myogenic differentiation. Taken together, it is likely that miR-95 promotes myogenic differentiation in C2C12 myoblasts and may play a positive functional role in skeletal muscle development by down regulating the expression of AIMP2 at protein level.
Collapse
|
22
|
Jitsukawa S, Kamekura R, Kawata K, Ito F, Sato A, Matsumiya H, Nagaya T, Yamashita K, Kubo T, Kikuchi T, Sato N, Hasegawa T, Kiyonari H, Mukumoto Y, Takano KI, Himi T, Ichimiya S. Loss of sorting nexin 5 stabilizes internalized growth factor receptors to promote thyroid cancer progression. J Pathol 2017; 243:342-353. [PMID: 28771744 DOI: 10.1002/path.4951] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 07/11/2017] [Accepted: 07/28/2017] [Indexed: 12/19/2022]
Abstract
Thyroid carcinoma is the most common endocrine malignancy and its prevalence has recently been increasing worldwide. We previously reported that the level of sorting nexin 5 (Snx5), an endosomal translocator, is preferentially decreased during the progression of well-differentiated thyroid carcinoma into poorly differentiated carcinoma. To address the functional role of Snx5 in the development and progression of thyroid carcinoma, we established Snx5-deficient (Snx5-/- ) mice. In comparison to wild-type (Snx5+/+ ) mice, Snx5-/- mice showed enlarged thyroid glands that consisted of thyrocytes with large irregular-shaped vacuoles. Snx5-/- thyrocytes exhibited a higher growth potential and higher sensitivity to thyroid-stimulating hormone (TSH). A high content of early endosomes enriched with TSH receptors was found in Snx5-/- thyrocytes, suggesting that loss of Snx5 caused retention of the TSH receptor (TSHR) in response to TSH. Similar data were found for internalized EGF in primary thyrocytes. The increased TSH sensitivities in Snx5-/- thyrocytes were also confirmed by results showing that Snx5-/- mice steadily developed thyroid tumors with high metastatic potential under high TSH. Furthermore, a thyroid cancer model using carcinogen and an anti-thyroidal agent revealed that Snx5-/- mice developed metastasizing thyroid tumors with activation of MAP kinase and AKT pathways, which are postulated to be major pathways of malignant progression of human thyroid carcinoma. Our results suggest that thyrocytes require Snx5 to lessen tumorigenic signaling driven by TSH, which is a major risk factor for thyroid carcinoma. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sumito Jitsukawa
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryuta Kamekura
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koji Kawata
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Fumie Ito
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akinori Sato
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Matsumiya
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomonori Nagaya
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keiji Yamashita
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Terufumi Kubo
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomoki Kikuchi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tadashi Hasegawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Yoshiko Mukumoto
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Ken-Ichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuo Himi
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shingo Ichimiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
23
|
Wang T, Cai Z, Hong G, Zheng G, Huang Y, Zhang S, Dai J. MicroRNA‑21 increases cell viability and suppresses cellular apoptosis in non‑small cell lung cancer by regulating the PI3K/Akt signaling pathway. Mol Med Rep 2017; 16:6506-6511. [PMID: 28901419 PMCID: PMC5865818 DOI: 10.3892/mmr.2017.7440] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 03/30/2017] [Indexed: 11/23/2022] Open
Abstract
MicroRNA (miRNA/miR), a type of non‑coding RNA molecule, is able to inhibit the expression of target genes at multiple stagess. There are 800‑1,000 known miRNAs in the human genome, which serve important roles in cell proliferation, differentiation, apoptosis and migration. Previous studies have demonstrated that the expression of miR‑21 is upregulated in numerous types of malignant tumor, and that miR‑21 participates in the occurrence and development of tumors via complex regulatory mechanisms. The present study aimed to investigate the association between miR‑21 expression, cell viability and apoptosis in a lung cancer cell line, and to elucidate the potential mechanisms. miR‑21 or small interfering RNA against miR‑21 were transfected into A549 non‑small cell lung cancer cells. The mRNA expression of miR‑21 was confirmed. Cell viability and apoptosis were examined using MTT and flow cytometric assays, respectively. The expression of certain apoptosis‑associated proteins was detected by western blotting. The results of the present study demonstrated that miR‑21 was able to increase the proliferation of A549 cells by inhibiting cellular apoptosis. miR‑21 inhibited apoptosis by modulating the activation of the phosphatidylinositol 3‑kinase/Rac‑α serine/threonine protein kinase (Akt) pathway in A549 cells. Correspondingly, inhibition of Akt decreased the apoptosis of A549 cells in miR‑21 siRNA‑treated cells. Therefore, the results of the present study demonstrated that miR‑21 increased cell viability by inhibiting apoptosis, through regulation of Akt activation. The present study demonstrated that miR‑21 may be involved in the progression of lung cancer and may be a novel therapeutic target for the disease.
Collapse
Affiliation(s)
- Tao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Fujian Medical University, Xiamen, Fujian 361003, P.R. China
| | - Zhenyu Cai
- Department of Anesthesiology, The First Affiliated Hospital of Xiamen University, Fujian Medical University, Xiamen, Fujian 361003, P.R. China
| | - Guolin Hong
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Fujian Medical University, Xiamen, Fujian 361003, P.R. China
| | - Gangsen Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Fujian Medical University, Xiamen, Fujian 361003, P.R. China
| | - Yu Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Fujian Medical University, Xiamen, Fujian 361003, P.R. China
| | - Shun Zhang
- Stem Cell and Regenerative Medicine Laboratory, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Jinhua Dai
- Department of Clinical Laboratory, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
24
|
Wu Z, Li Y, Zhang G. Downregulation of microRNA-301a inhibited proliferation, migration and invasion of non-small cell lung cancer by directly targeting DLC1. Oncol Lett 2017; 14:6017-6023. [PMID: 29113240 PMCID: PMC5661386 DOI: 10.3892/ol.2017.6990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/01/2017] [Indexed: 12/20/2022] Open
Abstract
Increasing evidence has indicated that the abnormal expression of microRNAs contributes to tumorigenesis and tumor development. Understanding the roles of microRNAs in non-small cell lung cancer (NSCLC) might provide valuable information for therapeutic strategies in the therapy for patients with NSCLC. In the present study, significant upregulation of microRNA (miR)-301a was observed in NSCLC tissues and cell lines compared with normal adjacent tissues and a normal human bronchial epithelial cell line. The inhibition of miR-301a suppressed proliferation, migration and invasion of NSCLC cells. Functional analyses indicated that DLC1 was a direct target of miR-301a in NSCLC. Inhibiting miR-301a expression decreased DLC1 expression at mRNA and protein levels. Moreover, DLC1 knockdown partially reversed the inhibition of proliferation, migration and invasion induced by miR-301a knockdown in NSCLC cells. Therefore, these findings may provide novel insights into the molecular mechanisms of miR-301a in proliferation, migration and invasion of NSCLC cells. The findings also indicated that miR-301a may act as a novel potential therapeutic target for patients with NSCLC.
Collapse
Affiliation(s)
- Zhuyu Wu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China.,Department of Respiratory Medicine, Luohe Central Hospital, Luohe, Henan 462000, P.R. China
| | - Yaojun Li
- Department of Respiratory Medicine, Luohe Central Hospital, Luohe, Henan 462000, P.R. China
| | - Guojun Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
25
|
Differential expression profile of miRNAs in porcine muscle and adipose tissue during development. Gene 2017; 618:49-56. [DOI: 10.1016/j.gene.2017.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/20/2017] [Accepted: 04/07/2017] [Indexed: 12/25/2022]
|
26
|
Arechaga-Ocampo E, Lopez-Camarillo C, Villegas-Sepulveda N, Gonzalez-De la Rosa CH, Perez-Añorve IX, Roldan-Perez R, Flores-Perez A, Peña-Curiel O, Angeles-Zaragoza O, Rangel Corona R, Gonzalez-Barrios JA, Bonilla-Moreno R, Del Moral-Hernandez O, Herrera LA, Garcia-Carranca A. Tumor suppressor miR-29c regulates radioresistance in lung cancer cells. Tumour Biol 2017; 39:1010428317695010. [PMID: 28345453 DOI: 10.1177/1010428317695010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Radiotherapy is an important treatment option for non-small cell lung carcinoma patients. Despite the appropriate use of radiotherapy, radioresistance is a biological behavior of cancer cells that limits the efficacy of this treatment. Deregulation of microRNAs contributes to the molecular mechanism underlying resistance to radiotherapy in cancer cells. Although the functional roles of microRNAs have been well described in lung cancer, their functional roles in radioresistance are largely unclear. In this study, we established a non-small cell lung carcinoma Calu-1 radioresistant cell line by continuous exposure to therapeutic doses of ionizing radiation as a model to investigate radioresistance-associated microRNAs. Our data show that 50 microRNAs were differentially expressed in Calu-1 radioresistant cells (16 upregulated and 34 downregulated); furthermore, well-known and novel microRNAs associated with resistance to radiotherapy were identified. Gene ontology and enrichment analysis indicated that modulated microRNAs might regulate signal transduction, cell survival, and apoptosis. Accordingly, Calu-1 radioresistant cells were refractory to radiation by increasing cell survival and reducing the apoptotic response. Among deregulated microRNAs, miR-29c was significantly suppressed. Reestablishment of miR-29c expression in Calu-1 radioresistant cells overcomes the radioresistance through the activation of apoptosis and downregulation of Bcl-2 and Mcl-1 target genes. Analysis of The Cancer Genome Atlas revealed that miR-29c is also suppressed in tumor samples of non-small cell lung carcinoma patients. Notably, we found that low miR-29c levels correlated with shorter relapse-free survival of non-small cell lung carcinoma patients treated with radiotherapy. Together, these results indicate a new role of miR-29c in radioresistance, highlighting their potential as a novel biomarker for outcomes of radiotherapy in lung cancer.
Collapse
Affiliation(s)
- Elena Arechaga-Ocampo
- 1 Departamento de Ciencias Naturales, Universidad Autonoma Metropolitana, Unidad Cuajimalpa, Mexico City, Mexico
| | - Cesar Lopez-Camarillo
- 2 Posgrado en Ciencias Genomicas, Universidad Autonoma de la Ciudad de Mexico, Mexico City, Mexico
| | - Nicolas Villegas-Sepulveda
- 3 Departamento de Biomedicina Molecular, Centro de Investigacion y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | | | - Isidro X Perez-Añorve
- 1 Departamento de Ciencias Naturales, Universidad Autonoma Metropolitana, Unidad Cuajimalpa, Mexico City, Mexico
| | - Reynalda Roldan-Perez
- 1 Departamento de Ciencias Naturales, Universidad Autonoma Metropolitana, Unidad Cuajimalpa, Mexico City, Mexico
| | - Ali Flores-Perez
- 2 Posgrado en Ciencias Genomicas, Universidad Autonoma de la Ciudad de Mexico, Mexico City, Mexico
| | - Omar Peña-Curiel
- 4 Departamento de Oncología Medica, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | | | - Rosalva Rangel Corona
- 6 Laboratorio de Oncologia Celular, UMIEZ, FES Zaragoza, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | | | - Raul Bonilla-Moreno
- 3 Departamento de Biomedicina Molecular, Centro de Investigacion y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Oscar Del Moral-Hernandez
- 8 Laboratorio de Biomedicina Molecular, Unidad Academica de Ciencias Quimico Biologicas, Universidad Autonoma de Guerrero, Chilpancingo, Mexico
| | - Luis A Herrera
- 9 Unidad de Investigacion Biomedica en Cancer, Instituto Nacional de Cancerologia and Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | - Alejandro Garcia-Carranca
- 10 Laboratorio de Virus y Cancer, Unidad de Investigacion Biomedica en Cancer, Instituto Nacional de Cancerologia and Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| |
Collapse
|
27
|
Zhao X, Li X, Ren Q, Tian J, Chen J. Calycosin induces apoptosis in colorectal cancer cells, through modulating the ERβ/MiR-95 and IGF-1R, PI3K/Akt signaling pathways. Gene 2016; 591:123-128. [DOI: 10.1016/j.gene.2016.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/31/2016] [Accepted: 07/05/2016] [Indexed: 12/20/2022]
|
28
|
Wu BL, Wang D, Bai WJ, Zhang F, Zhao X, Yi Y, Zhang T, Shen WJ, Li EM, Xu LY, Xu JZ. An integrative framework to identify cell death-related microRNAs in esophageal squamous cell carcinoma. Oncotarget 2016; 7:56758-56766. [PMID: 27462775 PMCID: PMC5302951 DOI: 10.18632/oncotarget.10779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 07/06/2016] [Indexed: 02/05/2023] Open
Abstract
Cell death is a critical biological process involved in many important functions, and defects in this system are usually linked with numerous human diseases including cancers. Esophageal squamous cell carcinoma is one of the most chemo- and biological therapy resistant cancers. Based on knowledge repository and four miRNAs profiling data, we proposed a general framework to hunt for cell death miRNAs in a context dependent manner. We predicted 12 candidate miRNAs from hundreds of others. Follow-up experimental verification of 7 miRNAs indicated at least 3 miRNAs (MIR20b, MIR498 and MIR196) were involved in both apoptosis and autophagy processes. These results indicated miRNAs intimately connected the two cell death modules in esophageal squamous cell carcinoma. This integrative framework can also be easily extended to identify miRNAs in other key cellular signaling pathways or may find conditional specific miRNAs in other cancer types.
Collapse
Affiliation(s)
- Bing-Li Wu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Dong Wang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Wen-Jing Bai
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Fan Zhang
- Department of Bioinformatics, Shantou University Medical College, Shantou 515041, China
| | - Xing Zhao
- Department of Bioinformatics, Shantou University Medical College, Shantou 515041, China
| | - Ying Yi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Ting Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Wen-Jun Shen
- Department of Bioinformatics, Shantou University Medical College, Shantou 515041, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Jian-Zhen Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Department of Bioinformatics, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
29
|
Hwang SJ, Lee HW, Kim HR, Song HJ, Lee DH, Lee H, Shin CH, Joung JG, Kim DH, Joo KM, Kim HH. Overexpression of microRNA-95-3p suppresses brain metastasis of lung adenocarcinoma through downregulation of cyclin D1. Oncotarget 2016; 6:20434-48. [PMID: 25971210 PMCID: PMC4653016 DOI: 10.18632/oncotarget.3886] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/25/2015] [Indexed: 12/18/2022] Open
Abstract
Despite great efforts to improve survival rates, the prognosis of lung cancer patients is still very poor, mainly due to high invasiveness. We developed brain metastatic PC14PE6/LvBr4 cells through intracardiac injection of lung adenocarcinoma PC14PE6 cells. Western blot and RT-qPCR analyses revealed that PC14PE6/LvBr4 cells had mesenchymal characteristics and higher invasiveness than PC14PE6 cells. We found that cyclin D1 was upregulated, miR-95-3p was inversely downregulated, and pri-miR-95 and its host gene, ABLIM2, were consistently decreased in PC14PE6/LvBr4 cells. MiR-95-3p suppressed cyclin D1 expression through direct binding to the 3′ UTR of cyclin D1 mRNA and suppressed invasiveness, proliferation, and clonogenicity of PC14PE6/LvBr4 cells. Ectopic cyclin D1 reversed miR-95-3p-mediated inhibition of invasiveness and clonogenicity, demonstrating cyclin D1 downregulation is involved in function of miR-95-3p. Using bioluminescence imaging, we found that miR-95-3p suppressed orthotopic tumorigenicity and brain metastasis in vivo and increased overall survival and brain metastasis-free survival. Consistent with in vitro metastatic cells, the levels of miR-95-3p, pri-miR-95, and ABLIM2 mRNA were decreased in brain metastatic tissues compared with lung cancer tissues and higher cyclin D1 expression was involved in poor prognosis. Taken together, our results demonstrate that miR-95- 3p is a potential therapeutic target for brain metastasis of lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Su Jin Hwang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Hye Won Lee
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Ree Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Hye Jin Song
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Dong Heon Lee
- Department of Neurosurgery, Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hong Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Chang Hoon Shin
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Je-Gun Joung
- Translational Bioinformatics Laboratory, Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Duk-Hwan Kim
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Center for Genome Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyeung Min Joo
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea.,Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hyeon Ho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea.,Samsung Biomedical Research Institute, Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
30
|
Bian Z, Feng Y, Xue Y, Hu Y, Wang Q, Zhou L, Liu Z, Zhang J, Yin Y, Gu B, Huang Z. Down-regulation of SNX1 predicts poor prognosis and contributes to drug resistance in colorectal cancer. Tumour Biol 2016; 37:6619-6625. [PMID: 26643894 DOI: 10.1007/s13277-015-3814-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/20/2015] [Indexed: 01/18/2023] Open
Abstract
As a potential tumor suppressor, the detailed clinical application value of sorting nexin 1 (SNX1) has not been elucidated in colorectal cancer (CRC). The aim of the present study was to evaluate the expression of SNX1 in CRC tissues and to determine its correlation with clinicopathologic characteristics and its impact on patient's prognosis. We detected the expression of SNX1 mRNA in 72 CRC patients and SNX1 protein in 237 CRC patients by real-time polymerase chain reaction (RT-PCR) and immunohistochemical staining, respectively. Relationship between the expression of SNX1 and various clinicopathological features in these patients was evaluated. Both the mRNA and protein expression of SNX1 were remarkably decreased in CRC tissues compared with paired non-cancerous tissues, and the down-regulation of SNX1 protein was strongly associated with poor differentiation and poor overall survival (OS) rate of CRC patients. Ectopic SNX1 expression repressed CRC cell growth and promoted tumor sensitivity to most commonly used chemotherapeutic drugs (oxaliplatin and 5-Fluorouracil). In conclusion, overexpression of SNX1 may serve as a new therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Zehua Bian
- Wuxi Oncology Institute, The Affiliated Hospital of Jiangnan University, 200 Huihe Road, Wuxi, Jiangsu, 214062, China
| | - Yuyang Feng
- Wuxi Oncology Institute, The Affiliated Hospital of Jiangnan University, 200 Huihe Road, Wuxi, Jiangsu, 214062, China
| | - Yao Xue
- Wuxi Oncology Institute, The Affiliated Hospital of Jiangnan University, 200 Huihe Road, Wuxi, Jiangsu, 214062, China
| | - Yaling Hu
- Wuxi Oncology Institute, The Affiliated Hospital of Jiangnan University, 200 Huihe Road, Wuxi, Jiangsu, 214062, China
| | - Qifeng Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Leyuan Zhou
- Wuxi Oncology Institute, The Affiliated Hospital of Jiangnan University, 200 Huihe Road, Wuxi, Jiangsu, 214062, China
| | - Zhihui Liu
- Wuxi Oncology Institute, The Affiliated Hospital of Jiangnan University, 200 Huihe Road, Wuxi, Jiangsu, 214062, China
| | - Jiwei Zhang
- Wuxi Oncology Institute, The Affiliated Hospital of Jiangnan University, 200 Huihe Road, Wuxi, Jiangsu, 214062, China
| | - Yuan Yin
- Wuxi Oncology Institute, The Affiliated Hospital of Jiangnan University, 200 Huihe Road, Wuxi, Jiangsu, 214062, China
| | - Bing Gu
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China
- Medical Technology Institute of Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China
| | - Zhaohui Huang
- Wuxi Oncology Institute, The Affiliated Hospital of Jiangnan University, 200 Huihe Road, Wuxi, Jiangsu, 214062, China.
| |
Collapse
|
31
|
Fanini F, Fabbri M. MicroRNAs and cancer resistance: A new molecular plot. Clin Pharmacol Ther 2016; 99:485-93. [DOI: 10.1002/cpt.353] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/11/2016] [Indexed: 12/15/2022]
Affiliation(s)
- F Fanini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l. IRCCS; Unit of Gene Therapy; Meldola (FC) Italy
| | - M Fabbri
- Departments of Pediatrics and Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases and the Saban Research Institute; Children's Hospital Los Angeles; Los Angeles California USA
| |
Collapse
|
32
|
Examining the effect of gene reduction in miR-95 and enhanced radiosensitivity in non-small cell lung cancer. Cancer Gene Ther 2016; 23:66-71. [DOI: 10.1038/cgt.2016.2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/19/2016] [Accepted: 01/27/2016] [Indexed: 12/25/2022]
|
33
|
Chen J, Sun D, Chu H, Gong Z, Zhang C, Gong B, Li Y, Li N, Jiang L. Screening of differential microRNA expression in gastric signet ring cell carcinoma and gastric adenocarcinoma and target gene prediction. Oncol Rep 2015; 33:2963-2971. [PMID: 25964059 DOI: 10.3892/or.2015.3935] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/10/2015] [Indexed: 01/15/2023] Open
Abstract
Gastric signet ring cell carcinoma (GSRCC) is a unique pathological type of gastric carcinoma that is extremely invasive and has a poor prognosis after diagnosis. The expression of microRNAs has been closely linked to the carcinogenesis of gastric cancer and has been considered as a powerful prognostic marker. Distinctive expression of miRNAs in GSRCC was investigated in the present study. Samples of GSRCC were compared to that of intestinal gastric adenocarcinoma using Agilent microarray technique, and two differentially expressed miRNAs were identified, hsa-miR-665 and hsa-miR‑95. qRT-PCR verification showed downregulation of both miRNAs in signet ring cell carcinoma and upregulation in gastric adenocarcinoma, which was not consistent with the results obtained by the microarray. Target gene prediction using online databases conferred two strong candidate genes, GLI2 and PLCG1. GO/KO analysis of these two genes showed close correlations with carcinogenesis and chemoresistance. It was concluded that hsa-miR-665 and hsa-miR-95 were downregulated in GSRCC but upregulated in intestinal gastric adenocarcinoma, and the relatively differential expression of the miRNAs negatively controlling their target genes could be closely related to the high invasive metastasis and chemoresistance of GSRCC.
Collapse
Affiliation(s)
- Jian Chen
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Di Sun
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Hongjin Chu
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Zhaohua Gong
- Department of Oncology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Chenglin Zhang
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Benjiao Gong
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yan Li
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Ning Li
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Lixin Jiang
- Department of Gastrointestinal Surgery, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
34
|
Zhang J, Zhang C, Hu L, He Y, Shi Z, Tang S, Chen Y. Abnormal Expression of miR-21 and miR-95 in Cancer Stem-Like Cells is Associated with Radioresistance of Lung Cancer. Cancer Invest 2015; 33:165-71. [PMID: 25831148 DOI: 10.3109/07357907.2015.1019676] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study demonstrated that miR-21 and miR-95 expression were significantly higher in the ALDH1(+)CD133(+)subpopulation than in the ALDH1(-)CD133(-) subpopulation of lung cancer cells. Combined delivery of anti-miR-21 and anti-miR-95 by calcium phosphate nanoparticles significantly inhibited tumor growth in a xenograft tumor model and sensitized radiotherapy. The anti-miRNAs significantly reduced miR-21 and miR-95 levels, increased PTEN, SNX1, and SGPP1 protein expression, but reduced Akt Ser(473) and Thr(308) phosphorylation. ALDH1(+)CD133(+) subpopulation of NSCLC tumor cells confers radioresistance due to high expression of miR-21 and miR-95. Targeting inhibition of miR-21 and miR-95 can inhibit tumor growth through elevating PTEN, SNX1, and SGPP1 expression and inhibiting Akt phosphorylation.
Collapse
Affiliation(s)
- Jinghui Zhang
- 1Central South University School of Nursing , Changsha, Hunan , China
| | | | | | | | | | | | | |
Collapse
|
35
|
A non-conserved miRNA regulates lysosomal function and impacts on a human lysosomal storage disorder. Nat Commun 2014; 5:5840. [PMID: 25524633 DOI: 10.1038/ncomms6840] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 11/13/2014] [Indexed: 12/18/2022] Open
Abstract
Sulfatases are key enzymatic regulators of sulfate homeostasis with several biological functions including degradation of glycosaminoglycans (GAGs) and other macromolecules in lysosomes. In a severe lysosomal storage disorder, multiple sulfatase deficiency (MSD), global sulfatase activity is deficient due to mutations in the sulfatase-modifying factor 1 (SUMF1) gene, encoding the essential activator of all sulfatases. We identify a novel regulatory layer of sulfate metabolism mediated by a microRNA. miR-95 depletes SUMF1 protein levels and suppresses sulfatase activity, causing the disruption of proteoglycan catabolism and lysosomal function. This blocks autophagy-mediated degradation, causing cytoplasmic accumulation of autophagosomes and autophagic substrates. By targeting miR-95 in cells from MSD patients, we can effectively increase residual SUMF1 expression, allowing for reactivation of sulfatase activity and increased clearance of sulfated GAGs. The identification of this regulatory mechanism opens the opportunity for a unique therapeutic approach in MSD patients where the need for exogenous enzyme replacement is circumvented.
Collapse
|
36
|
Jiang J, Lv X, Fan L, Huang G, Zhan Y, Wang M, Lu H. MicroRNA-27b suppresses growth and invasion of NSCLC cells by targeting Sp1. Tumour Biol 2014; 35:10019-23. [PMID: 25012245 DOI: 10.1007/s13277-014-2294-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 06/30/2014] [Indexed: 11/30/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the major cause of cancer death worldwide. Increasing evidence shows that microRNAs (miRNAs), evolutionally conserved non-coding RNAs, are widely involved in the development and progression of NSCLC. Aberrant alteration of miRNAs expression has been implicated in NSCLC initiation and progression. Herein, we studied the role of miR-27b in NSCLC cells. We found that miR-27b was significantly decreased in several NSCLC cell lines. Forced overexpression of miR-27 inhibited both the growth and invasion of NSCLC cells. Furthermore, we identified Sp1 transcription factor (Sp1) as a target of miR-27b in NSCLC cells. Moreover, we found that miR-27 suppressed growth and invasion of NSCLC cells partially by targeting Sp1. Our data indicate that miR-27b may play a critical role in the development of NSCLC.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Oncology, The Central Hospital of Wuhan, 430014, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|