1
|
Feng Y, Jiang Y, Yang L, Lu D, Li N, Zhang Q, Yang H, Qin H, Zhang J, Gou X, Jiang F. Interactions and communications in lung tumour microenvironment: chemo/radiotherapy resistance mechanisms and therapeutic targets. J Drug Target 2025; 33:817-836. [PMID: 39815747 DOI: 10.1080/1061186x.2025.2453730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
The lung tumour microenvironment (TME) is composed of various cell types, including cancer cells, stromal and immune cells, as well as extracellular matrix (ECM). These cells and surrounding ECM create a stiff, hypoxic, acidic and immunosuppressive microenvironment that can augment the resistance of lung tumours to different forms of cell death and facilitate invasion and metastasis. This environment can induce chemo/radiotherapy resistance by inducing anti-apoptosis mediators such as phosphoinositide 3-kinase (PI3K)/Akt, signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa B (NF-κB), leading to the exhaustion of antitumor immunity and further resistance to chemo/radiotherapy. In addition, lung tumour cells can resist chemo/radiotherapy by boosting multidrug resistance mechanisms and antioxidant defence systems within cancer cells and other TME components. In this review, we discuss the interactions and communications between these different components of the lung TME and also the effects of hypoxia, immune evasion and ECM remodelling on lung cancer resistance. Finally, we review the current strategies in preclinical and clinical studies, including the inhibition of checkpoint molecules, chemoattractants, cytokines, growth factors and immunosuppressive mediators such as programmed death 1 (PD-1), insulin-like growth factor 2 (IGF-2) for targeting the lung TME to overcome resistance to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Yuan Feng
- Guangxi University of Chinese Medicine, Nanning, China
| | - Ying Jiang
- Department of Neurology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Lin Yang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Danni Lu
- Guangxi University of Chinese Medicine, Nanning, China
| | - Ning Li
- Guangxi University of Chinese Medicine, Nanning, China
| | - Qun Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Haiyan Yang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Huiyuan Qin
- Guangxi University of Chinese Medicine, Nanning, China
| | - Jiaxin Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Xinyun Gou
- Guangxi University of Chinese Medicine, Nanning, China
| | - Feng Jiang
- Science and Technology Department, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
2
|
Liu Q, Song M, Wang Y, Zhang P, Zhang H. CCL20-CCR6 signaling in tumor microenvironment: Functional roles, mechanisms, and immunotherapy targeting. Biochim Biophys Acta Rev Cancer 2025; 1880:189341. [PMID: 40348067 DOI: 10.1016/j.bbcan.2025.189341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 05/01/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Chemokine CC motif ligand 20 (CCL20) is a molecule with immunomodulatory properties that is involved in the regulation of diseases such as chronic inflammation, autoimmune diseases, and cancer. It operates by binding to its specific receptor, CC chemokine receptor type 6 (CCR6), and activating a complex intracellular signaling network. Building on its established role in inflammatory diseases, recent research has expanded our understanding of CCL20 to encompass its critical contributions to the tumor microenvironment (TME), highlighting its significance in cancer progression. Numerous studies have emphasized its prominent role in regulating immune responses. Consequently, Monoclonal antibodies against CCL20 and inhibitors of CCR6 have been successfully developed to block downstream signaling, making the CCL20-CCR6 axis a promising and critical target in the TME. This offers potential immunotherapeutic strategies for cancers. In this review, we summarize the biological consequences of CCL20-CCR6 mediated signaling, its role and mechanisms in the TME, and its potential applications. We suggest that the CCL20-CCR6 axis may be a novel biomarker for tumor diagnosis and prognosis, as well as a therapeutic target in various cancers.
Collapse
Affiliation(s)
- Qi Liu
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Mingyuan Song
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yan Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ping Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Koppensteiner L, Mathieson L, Neilson L, O'Connor RA, Akram AR. IFNγ and TNFα drive an inflammatory secretion profile in cancer-associated fibroblasts from human non-small cell lung cancer. FEBS Lett 2025; 599:713-723. [PMID: 39743376 PMCID: PMC11891421 DOI: 10.1002/1873-3468.15083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 01/04/2025]
Abstract
Cancer-associated fibroblasts (CAFs) are the dominant nonmalignant component of the tumour microenvironment (TME). CAFs demonstrate a high level of inter- and intra-tumour heterogeneity in solid tumours, though the drivers of CAF subpopulations are not fully understood. Here, we demonstrate that non-small cell lung cancer (NSCLC) patient-derived CAFs upregulate the secretion of inflammatory cytokines (IL6, LIF, IL33, GM-CSF, IL1ra) and chemokines (CCL2, CCL3, CCL4, CCL20, CXCL8, CXCL9, CXCL10, CXCL11) in response to in vitro co-culture with anti-CD3/anti-CD28-stimulated peripheral blood mononuclear cells (PBMCs) via IFNγ and TNFα. Furthermore, T-cell-derived IFNγ inhibits CXCL12 secretion by CAFs in vitro. Our results highlight the ability of T-cell effector cytokines to modulate the CAF secretome in NSCLC.
Collapse
Affiliation(s)
- Lilian Koppensteiner
- Centre for Inflammation Research, Institute for Regeneration and RepairUniversity of EdinburghUK
| | - Layla Mathieson
- Centre for Inflammation Research, Institute for Regeneration and RepairUniversity of EdinburghUK
| | - Liam Neilson
- Centre for Inflammation Research, Institute for Regeneration and RepairUniversity of EdinburghUK
| | - Richard A. O'Connor
- Centre for Inflammation Research, Institute for Regeneration and RepairUniversity of EdinburghUK
| | - Ahsan R. Akram
- Centre for Inflammation Research, Institute for Regeneration and RepairUniversity of EdinburghUK
- Cancer Research UK Scotland Centre, Institute of Genetics and CancerThe University of EdinburghUK
| |
Collapse
|
4
|
Pant A, Jain A, Chen Y, Patel K, Saleh L, Tzeng S, Nitta RT, Zhao L, Wu CYJ, Bederson M, Wang WL, Bergsneider BHL, Choi J, Medikonda R, Verma R, Cho KB, Kim LH, Kim JE, Yazigi E, Lee SY, Rajendran S, Rajappa P, Mackall CL, Li G, Tyler B, Brem H, Pardoll DM, Lim M, Jackson CM. The CCR6-CCL20 Axis Promotes Regulatory T-cell Glycolysis and Immunosuppression in Tumors. Cancer Immunol Res 2024; 12:1542-1558. [PMID: 39133127 DOI: 10.1158/2326-6066.cir-24-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
Regulatory T cells (Treg) are important players in the tumor microenvironment. However, the mechanisms behind their immunosuppressive effects are poorly understood. We found that CCR6-CCL20 activity in tumor-infiltrating Tregs is associated with greater glycolytic activity and ablation of Ccr6 reduced glycolysis and lactic acid production while increasing compensatory glutamine metabolism. Immunosuppressive activity toward CD8+ T cells was abrogated in Ccr6-/- Tregs due to reduction in activation-induced glycolysis. Furthermore, Ccr6-/- mice exhibited improved survival across multiple tumor models compared to wild-type mice and Treg and CD8+ T-cell depletion abrogated the improvement. In addition, Ccr6 ablation further promoted the efficacy of anti-PD-1 therapy in a preclinical glioma model. Follow-up knockdown of Ccl20 with siRNA also demonstrated improvement in antitumor efficacy. Our results unveil CCR6 as a marker and regulator of Treg-induced immunosuppression and identify approaches to target the metabolic determinants of Treg immunosuppressive activity.
Collapse
Affiliation(s)
- Ayush Pant
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aanchal Jain
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yiyun Chen
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, California
| | - Kisha Patel
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura Saleh
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stephany Tzeng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Ryan T Nitta
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Liang Zhao
- Department of Oncology and Medicine, Bloomberg-Kimmel Institute for Immunotherapy, the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Caren Yu-Ju Wu
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Maria Bederson
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - William Lee Wang
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, California
| | | | - John Choi
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Ravi Medikonda
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Rohit Verma
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Kwang Bog Cho
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Lily H Kim
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Jennifer E Kim
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eli Yazigi
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Si Yeon Lee
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Sakthi Rajendran
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Prajwal Rajappa
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Crystal L Mackall
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, California
| | - Gordon Li
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Betty Tyler
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Henry Brem
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Drew M Pardoll
- Department of Oncology and Medicine, Bloomberg-Kimmel Institute for Immunotherapy, the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Lim
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Khambholja K, Gehani M, Kothari R, Marulkar S. Prognostic value of tumour-associated regulatory T-cells as a biomarker in non-small cell lung cancer: a systematic review and meta-analysis. Syst Rev 2024; 13:233. [PMID: 39272135 PMCID: PMC11401299 DOI: 10.1186/s13643-024-02642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Tumour, nodes, and metastases (TNM) staging has been deficient in prognosticating in patients suffering from non-small cell lung cancer (NSCLC). To supplement TNM staging, this systematic review and meta-analysis aimed to evaluate the prognostic value of the regulatory T cells (Treg). METHODS A keyword search was conducted in MEDLINE and EMBASE for full-text original human studies from any region published in English during the last 12 years. Eligible for inclusion were studies evaluating the prognostic value of the number of Treg cells in NSCLC except case studies, case series, systematic reviews, and meta-analyses. Two reviewers (one reviewer used an automation tool) independently screened the studies and assessed risk-of-bias using the Quality in Prognosis Studies (QUIPS) tool. Meta-analysis was done for studies reporting significant multivariate hazard ratio (HR). RESULTS Out of 809 retrievals, 24 studies were included in the final review. The low number of Treg cells was found significantly associated with improved overall survival (pooled log OR, 1.646; 95% CI, 1.349, 1.944; p (2-tailed) < .001; SE, 0.1217), improved recurrence-free survival (HR, 1.99; 95% CI, 1.15, 3.46; p = .01), improved progression-free survival (pooled log OR, 2.231; 95% CI, 0.424, 4.038; p (2-tailed) .034; SE, 0.4200), and worse disease-free survival (pooled log OR, 0.992; 95% CI, 0.820, 1.163; p (2-tailed) .009; SE, 0.0135), especially when identified by forkhead box P3 (FOXP3), in any stage or non-metastatic NSCLC. CONCLUSION A low number of Treg cells indicated better survival, suggesting its potential use as a prognostic biomarker in NSCLC. SYSTEMATIC REVIEW REGISTRATION The protocol of this review was prospectively registered on PROSPERO on August 28, 2021, and was assigned the registration number CRD42021270598. The protocol can be accessed from PROSPERO website.
Collapse
Affiliation(s)
- Kapil Khambholja
- Department of Medical Writing, Catalyst Clinical Research, 2528 Independence Blvd, Suite 100, Wilmington, NC, 28412, USA
| | - Manish Gehani
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad, Telangana, 500078, India.
| | - Rushabh Kothari
- Medical Oncology Department, Narayana Multispecialty Hospital, Opposite Police Station, Near Chakudiya Mahadev, Rakhial, Ahmedabad, Gujarat, 380023, India
| | - Sachin Marulkar
- Catalyst Clinical Research, 2528 Independence Blvd, Suite 100, Wilmington, NC, 28412, USA
| |
Collapse
|
6
|
Li Y, Yang W, Liu C, Zhou S, Liu X, Zhang T, Wu L, Li X, Zhang J, Chang E. SFXN1-mediated immune cell infiltration and tumorigenesis in lung adenocarcinoma: A potential therapeutic target. Int Immunopharmacol 2024; 132:111918. [PMID: 38537539 DOI: 10.1016/j.intimp.2024.111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Sideroflexin 1 (SFXN1), a mitochondrial serine transporter implicated in one-carbon metabolism, is a prognostic biomarker in lung adenocarcinoma (LUAD). However, its role in LUAD progression remains elusive. This study aimed to investigate the functional significance of SFXN1 in LUAD and evaluate its potential as a therapeutic target. METHODS We analyzed SFXN1 expression and its diagnostic and prognostic value in LUAD using the Pan-cancer TCGA dataset. In vitro assays (CCK-8, cell cycle, EDU, wound-healing, and transwell) were employed to assess the role of SFXN1, complemented by in vivo experiments. RNA sequencing elucidated SFXN1-mediated cellular functions and potential mechanisms. Bulk RNA-seq and scRNA-seq data from TCGA and GEO were used to investigate the correlation between SFXN1 and the tumor immune microenvironment. RT-qPCR, Western blot, and IHC assays validated SFXN1 expression and its impact on the immune microenvironment in LUAD. RESULTS SFXN1 was upregulated in LUAD tissues and associated with poor prognosis. RNA-seq and scRNA-seq analyses revealed increased SFXN1 expression in tumor cells, accompanied by decreased infiltration of NK and cytotoxic T cells. SFXN1 knockdown significantly reduced cell proliferation and migration, and the inhibition of ERK phosphorylation and CCL20 expression may be the molecular mechanism involved. In vivo, targeting SFXN1 decreased Tregs infiltration and inhibited tumor growth. CONCLUSIONS Our findings suggest that SFXN1 may be a potential therapeutic target for LUAD treatment.
Collapse
Affiliation(s)
- Yanjun Li
- Department of Anaesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Wenke Yang
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Chaojun Liu
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Shengli Zhou
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Tingting Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Lingzhi Wu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faulty of Medicine, Imperial College London, Chelsea and Westminster Hospital, UK
| | - Xinyi Li
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faulty of Medicine, Imperial College London, Chelsea and Westminster Hospital, UK
| | - Jiaqiang Zhang
- Department of Anaesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, China.
| | - Enqiang Chang
- Department of Anaesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, China; Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faulty of Medicine, Imperial College London, Chelsea and Westminster Hospital, UK.
| |
Collapse
|
7
|
Jiang S, Lu H, Pan Y, Yang A, Aikemu A, Li H, Hao R, Huang Q, Qi X, Tao Z, Wu Y, Quan C, Zhou G, Lu Y. Characterization of the distinct immune microenvironments between hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Cancer Lett 2024; 588:216799. [PMID: 38479553 DOI: 10.1016/j.canlet.2024.216799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/06/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
As two major types of primary liver cancers, the tumor immune microenvironment (TIME) of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) have been well studied separately. However, a systemic assessment of the similarities and differences between the TIME of HCC and ICC is still lacking. In this study, we pictured a landscape of combined TIME of HCC and ICC by sequencing and integrating 41 single-cell RNA-seq samples from four different tissue types of both malignancies. We found that T cells in HCC tumors generally exhibit higher levels of immunosuppression and exhaustion than those in ICC tumors. Myeloid cells in HCC and ICC tumors also exhibit distinct phenotypes and may serve as a key factor driving the differences between their TIMEs. Besides, we identified a cluster of EGR1+ macrophages specifically enriched in HCC tumors. Together, our study provides new insights into cellular composition, states and interactions in the TIMEs of HCC and ICC, which could pave the way for the development of future therapeutic targets for liver cancers.
Collapse
Affiliation(s)
- Siao Jiang
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, PR China; School of Life Science, University of Hebei, Baoding City, Hebei Province, PR China
| | - Hao Lu
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Yingwei Pan
- Department of Hepatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Aiqing Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Ainiwaer Aikemu
- College of Xinjiang Uyghur Medicine, Hetian City, Xinjiang Province, PR China
| | - Hao Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Rongjiao Hao
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, PR China; School of Life Science, University of Hebei, Baoding City, Hebei Province, PR China
| | - Qilin Huang
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, PR China; Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, PR China
| | - Xin Qi
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, PR China; Medical College, Guizhou University, Guiyang City, Guizhou Province, PR China
| | - Zongjian Tao
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Yinglong Wu
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Cheng Quan
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, PR China.
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, PR China; School of Life Science, University of Hebei, Baoding City, Hebei Province, PR China; Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, PR China; Medical College, Guizhou University, Guiyang City, Guizhou Province, PR China.
| | - Yiming Lu
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, PR China; School of Life Science, University of Hebei, Baoding City, Hebei Province, PR China.
| |
Collapse
|
8
|
Guo J, Tang B, Fu J, Zhu X, Xie W, Wang N, Ding Z, Song Z, Yang Y, Xu G, Xiao X. High-plex spatial transcriptomic profiling reveals distinct immune components and the HLA class I/DNMT3A/CD8 modulatory axis in mismatch repair-deficient endometrial cancer. Cell Oncol (Dordr) 2024; 47:573-585. [PMID: 37847338 PMCID: PMC11090934 DOI: 10.1007/s13402-023-00885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2023] [Indexed: 10/18/2023] Open
Abstract
PURPOSE Tumors bearing mismatch repair deficiency (MMRd) are characterized by a high load of neoantigens and are believed to trigger immunogenic reactions upon immune checkpoint blockade treatment such as anti-PD-1/PD-L1 therapy. However, the mechanisms are still ill-defined, as multiple cancers with MMRd exhibit variable responses to immune checkpoint inhibitors (ICIs). In endometrial cancer (EC), a distinct tumor microenvironment (TME) exists that may correspond to treatment-related efficacies. We aimed to characterize EC patients with aberrant MMR pathways to identify molecular subtypes predisposed to respond to ICI therapies. METHODS We applied digital spatial profiling, a high-plex spatial transcriptomic approach covering over 1,800 genes, to obtain a highly resolved TME landscape in 45 MMRd-EC patients. We cross-validated multiple biomarkers identified using immunohistochemistry and multiplexed immunofluorescence using in-study and independent cohorts totaling 123 MMRd-EC patients and validated our findings using external TCGA data from microsatellite instability endometrial cancer (MSI-EC) patients. RESULTS High-plex spatial profiling identified a 14-gene signature in the MMRd tumor-enriched regions stratifying tumors into "hot", "intermediate" and "cold" groups according to their distinct immune profiles, a finding highly consistent with the corresponding CD8 + T-cell infiltration status. Our validation studies further corroborated an existing coregulatory network involving HLA class I and DNMT3A potentially bridged through dynamic crosstalk incorporating CCL5. CONCLUSION Our study confirmed the heterogeneous TME status within MMRd-ECs and showed that these ECs can be stratified based on potential biomarkers such as HLA class I, DNMT3A and CD8 in pathological settings for improved ICI therapeutic efficacy in this subset of patients.
Collapse
Affiliation(s)
- Jingjing Guo
- Department of Pathology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Medical and Life Sciences, Chengdu University of TCM, Chengdu, China
| | - Baijie Tang
- Department of Pathology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Fu
- Department of Pathology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuan Zhu
- Department of Pathology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Medical and Life Sciences, Chengdu University of TCM, Chengdu, China
| | - Wenlong Xie
- Department of Pathology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Medical and Life Sciences, Chengdu University of TCM, Chengdu, China
| | - Nan Wang
- Mills Institute for Personalized Cancer Care, Jinan, China
| | - Zhiyong Ding
- Mills Institute for Personalized Cancer Care, Jinan, China
| | - Zhentao Song
- Mills Institute for Personalized Cancer Care, Jinan, China
| | - Yue Yang
- Department of Pathology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Gang Xu
- Department of Pathology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xue Xiao
- Department of Pathology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
9
|
Qin L, Wu J. Targeting anticancer immunity in oral cancer: Drugs, products, and nanoparticles. ENVIRONMENTAL RESEARCH 2023; 239:116751. [PMID: 37507044 DOI: 10.1016/j.envres.2023.116751] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Oral cavity carcinomas are the most frequent malignancies among head and neck malignancies. Oral tumors include not only oral cancer cells with different potency and stemness but also consist of diverse cells, containing anticancer immune cells, stromal and also immunosuppressive cells that influence the immune system reactions. The infiltrated T and natural killer (NK) cells are the substantial tumor-suppressive immune compartments in the tumor. The infiltration of these cells has substantial impacts on the response of tumors to immunotherapy, chemotherapy, and radiotherapy. Nevertheless, cancer cells, stromal cells, and some other compartments like regulatory T cells (Tregs), macrophages, and myeloid-derived suppressor cells (MDSCs) can repress the immune responses against malignant cells. Boosting anticancer immunity by inducing the immune system or repressing the tumor-promoting cells is one of the intriguing approaches for the eradication of malignant cells such as oral cancers. This review aims to concentrate on the secretions and interactions in the oral tumor immune microenvironment. We review targeting tumor stroma, immune system and immunosuppressive interactions in oral tumors. This review will also focus on therapeutic targets and therapeutic agents such as nanoparticles and products with anti-tumor potency that can boost anticancer immunity in oral tumors. We also explain possible future perspectives including delivery of various cells, natural products and drugs by nanoparticles for boosting anticancer immunity in oral tumors.
Collapse
Affiliation(s)
- Liling Qin
- Gezhouba Central Hospital of the Third Clinical Medical College of Three Gorges University, Yichang, Hubei, 443002, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei, 434000, China.
| |
Collapse
|
10
|
Martinez-Espinosa I, Serrato JA, Ortiz-Quintero B. The Role of Exosome-Derived microRNA on Lung Cancer Metastasis Progression. Biomolecules 2023; 13:1574. [PMID: 38002256 PMCID: PMC10669807 DOI: 10.3390/biom13111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
The high mortality from lung cancer is mainly attributed to the presence of metastases at the time of diagnosis. Despite being the leading cause of lung cancer death, the underlying molecular mechanisms driving metastasis progression are still not fully understood. Recent studies suggest that tumor cell exosomes play a significant role in tumor progression through intercellular communication between tumor cells, the microenvironment, and distant organs. Furthermore, evidence shows that exosomes release biologically active components to distant sites and organs, which direct metastasis by preparing metastatic pre-niche and stimulating tumorigenesis. As a result, identifying the active components of exosome cargo has become a critical area of research in recent years. Among these components are microRNAs, which are associated with tumor progression and metastasis in lung cancer. Although research into exosome-derived microRNA (exosomal miRNAs) is still in its early stages, it holds promise as a potential target for lung cancer therapy. Understanding how exosomal microRNAs promote metastasis will provide evidence for developing new targeted treatments. This review summarizes current research on exosomal miRNAs' role in metastasis progression mechanisms, focusing on lung cancer.
Collapse
Affiliation(s)
| | | | - Blanca Ortiz-Quintero
- Department of Molecular Biomedicine and Translational Research, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City CP 14080, Mexico; (I.M.-E.); (J.A.S.)
| |
Collapse
|
11
|
Song P, Wusiman D, Li W, Guo L, Ying J, Gao S, He J. Validating a Macrophage Marker Gene Signature (MMGS) in Lung Adenocarcinoma Prognosis and Response to Immunotherapy. J Immunother 2023; 46:205-215. [PMID: 37220007 DOI: 10.1097/cji.0000000000000477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
Lung adenocarcinoma (LUAD) is the leading cause of cancer-related death worldwide. Tumor-associated macrophages play pivotal roles in the tumor microenvironment (TME) and prognosis of LUAD. We first used single-cell RNA sequencing data to identify macrophage marker genes in LUAD. Univariate, least absolute shrinkage and selection operator and stepwise multivariate Cox regression analyses were conducted to evaluate macrophage marker genes as prognostic factors and to construct the macrophage marker genes signature (MMGS). A novel 8-gene signature was constructed to predict prognosis based on 465 macrophage marker genes identified by an analysis of single-cell RNA sequencing data of LUAD, and was also verified in 4 independent GEO cohorts. The MMGS significantly classified patients into high-risk and low-risk groups in terms of OS. A prognostic nomogram based on independent risk factors was established to predict the 2-, 3- and 5-year survival, which indicated superior accuracy in predicting prognosis. The high-risk group was correlated to higher tumor mutational burden, number of neoantigens, T-cell receptor richness, and lower TIDE, which suggested that high-risk patients were more likely to benefit from immunotherapy. The prediction of the possibility of immunotherapy efficacy was also discussed. Analysis of an immunotherapy cohort further verified that patients with high-risk scores had better immunotherapy responses than low-risk patients. The MMGS is a promising signature for predicting prognosis and effectiveness of immunotherapy in patients with LUAD, and may be helpful for clinical decision-making.
Collapse
Affiliation(s)
- Peng Song
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dilinaer Wusiman
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Baran K, Kordiak J, Jabłoński S, Brzeziańska-Lasota E. Panel of miR-150 and linc00673, regulators of CCR6/CCL20 may serve as non-invasive diagnostic marker of non-small cell lung cancer. Sci Rep 2023; 13:9642. [PMID: 37316552 DOI: 10.1038/s41598-023-36485-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
The C-C motif ligand 20 (CCL20) is a chemokine that specifically binds to the chemokine receptor 6 (CCR6) and the CCL20/CCR6 axis has been implicated in the non-small lung cancer (NSCLC) development and progression. Its expression is regulated by mutual interactions of non-coding RNAs (ncRNAs). This goals of presented study was to evaluate the expression level of CCR6/CCL20 mRNA in NSCLC tissue comparative to selected ncRNAs: miR-150, linc00673. The expression level of the studied ncRNAs was also assessed in serum extracellular vesicles (EVs). Thirty patients (n = 30) were enrolled as the study cohort. Total RNA was isolated from tumor tissue, adjacent macroscopically unchanged tissue and serum EVs. The expression level of studied genes and ncRNAs were estimated based on the qPCR method. Higher expression level of CCL20 mRNA but lower expression level of CCR6 mRNA were observed in tumor in comparison to control tissue. Relative to the smoking status, higher CCL20 (p < 0.05) and CCR6 mRNA (p > 0.05) expression levels were observed in current smokers than in never smokers. In serum EVs the expression level of miR-150 has a negative correlation with AJCC tumor staging, whereas the expression level of linc00673 positively correlated (p > 0.05). The lower expression level of miR-150 and higher expression level of linc00673 in serum EVs were observed in NSCLC patients with lymph nodes metastases (p > 0.05). Regarding the histopathological type, significantly lower expression level of miR-150 and higher expression level of linc00673 were observed in the serum EVs of patients with AC compared to patient with SCC. Our findings revealed that smoking significantly changed the expression level of CCL20 mRNA in NSCLC tissue. Changes in expression levels of miR-150 and linc00673 in the serum EVs of NSCLC patients in relation to presence of lymph node metastases and the stage of cancer development may serve as a non-invasive molecular biomarkers of tumor progression. Furthermore, expression levels of miR-150 and linc00673 may serve as non-intrusive diagnostic biomarkers differentiating adenocarcinoma from squamous cell carcinoma.
Collapse
Affiliation(s)
- Kamila Baran
- Department of Biomedicine and Genetics, Chair of Biology and Medical Microbiology, Medical University of Lodz, Lodz, Poland.
| | - Jacek Kordiak
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz, Lodz, Poland
| | - Sławomir Jabłoński
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz, Lodz, Poland
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Chair of Biology and Medical Microbiology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
13
|
Wu S, Sun Z, Guo Z, Li P, Mao Q, Tang Y, Chen H, Peng H, Wang S, Cao Y. The effectiveness of blood-activating and stasis-transforming traditional Chinese medicines (BAST) in lung cancer progression-a comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116565. [PMID: 37172918 DOI: 10.1016/j.jep.2023.116565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Blood-activating and stasis-transforming traditional Chinese medicines (BAST) are a class of herbs that have the effect of dilating blood vessels and dispersing stagnation. Modern pharmaceutical research has demonstrated that they are capable of improving hemodynamics and micro-flow, resist thrombosis and promote blood flow. BAST contain numerous active ingredients, which can theoretically regulate multiple targets at the same time and have a wide range of pharmacological effects in the treatment of diseases including human cancers. Clinically, BAST have minimal side effects and can be used in combination with Western medicine to improve patients' quality of life, lessen adverse effects and minimize the risk of recurrence and metastasis of cancers. AIM OF THE REVIEW We aimed to summarize the research progression of BAST on lung cancer in the past five years and present a prospect for the future. Particularly, this review further analyzes the effects and molecular mechanisms that BAST inhibit the invasion and metastasis of lung cancer. MATERIALS AND METHODS Relevant studies about BSAT were collected from PubMed and Web of science. RESULTS Lung cancer is one of the malignant tumors with the highest mortality rate. Most patients with lung cancer are diagnosed at an advanced stage and are highly susceptible to metastasis. Recent studies have shown that BAST, a class of traditional Chinese medicine (TCM) with the function of opening veins and dispersing blood stasis, significantly improve hemodynamics and microcirculation, prevent thrombosis and promote blood flow, and thereby inhibiting the invasion and metastasis of lung cancer. In the current review, we analyzed 51 active ingredients extracted from BAST. It was found that BAST and their active ingredients contribute to the prevention of invasion and metastasis of lung cancer through multiple mechanisms, such as regulation of EMT process, specific signaling pathway and metastasis-related genes, tumor blood vessel formation, immune microenvironment and inflammatory response of tumors. CONCLUSIONS BSAT and its active ingredients have showed promising anticancer activity and significantly inhibit the invasion and metastasis of lung cancer. A growing number of studies have realized their potential clinical significance in the therapy of lung cancer, which will provide substantial evidences for the development of new TCM for lung cancer therapy.
Collapse
Affiliation(s)
- Siqi Wu
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhe Sun
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zehuai Guo
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Peiqin Li
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Qianqian Mao
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yang Tang
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Hongyu Chen
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Huiting Peng
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Sisi Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yang Cao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
14
|
Rutihinda C, Haroun R, Saidi NE, Ordoñez JP, Naasri S, Lévesque D, Boisvert FM, Fortier PH, Belzile M, Fradet L, Hubert-Tremblay V, Turgeon GA, Wang CS, Delage P, Rousseau É, Paquette B, Oweida AJ. Inhibition of the CCR6-CCL20 axis prevents regulatory T cell recruitment and sensitizes head and neck squamous cell carcinoma to radiation therapy. Cancer Immunol Immunother 2022; 72:1089-1102. [PMID: 36326893 DOI: 10.1007/s00262-022-03313-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Radioresistance of HNSCCs remains a major challenge for effective tumor control. Combined radiotherapy (RT) and immunotherapy (IT) treatment improved survival for a subset of patients with inflamed tumors or tumors susceptible to RT-induced inflammation. To overcome radioresistance and improve treatment outcomes, an understanding of factors that suppress anti-tumor immunity is necessary. In this regard, regulatory T cells (Tregs) are critical mediators of immune suppression in HNSCCs. In this study, we investigated how radiation modulates Treg infiltration in tumors through the chemokine CCL20. We hypothesized that radiation induces CCL20 secretion resulting in Treg infiltration and suppression of anti-tumor immunity. METHODS Human and mouse HNSCC cell lines with different immune phenotypes were irradiated at doses of 2 or 10 Gy. Conditioned media, RNA and protein were collected for assessment of CCL20. qPCR was used to determine CCL20 gene expression. In vivo, MOC2 cells were implanted into the buccal cavity of mice and the effect of neutralizing CCL20 antibody was determined alone and in combination with RT. Blood samples were collected before and after RT for analysis of CCL20. Tumor samples were analyzed by flow cytometry to determine immune infiltrates, including CD8 T cells and Tregs. Mass-spectrometry was performed to analyze proteomic changes in the tumor microenvironment after anti-CCL20 treatment. RESULTS Cal27 and MOC2 HNSCCs had a gene signature associated with Treg infiltration, whereas SCC9 and MOC1 tumors displayed a gene signature associated with an inflamed TME. In vitro, tumor irradiation at 10 Gy significantly induced CCL20 in Cal27 and MOC2 cells relative to control. The increase in CCL20 was associated with increased Treg migration. Neutralization of CCL20 reversed radiation-induced migration of Treg cells in vitro and decreased intratumoral Tregs in vivo. Furthermore, inhibition of CCL20 resulted in a significant decrease in tumor growth compared to control in MOC2 tumors. This effect was further enhanced after combination with RT compared to either treatment alone. CONCLUSION Our results suggest that radiation promotes CCL20 secretion by tumor cells which is responsible for the attraction of Tregs. Inhibition of the CCR6-CCL20 axis prevents infiltration of Tregs in tumors and suppresses tumor growth resulting in improved response to radiation.
Collapse
Affiliation(s)
- Cleopatra Rutihinda
- Department of Nuclear Medicine and Radiobiology, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ryma Haroun
- Department of Nuclear Medicine and Radiobiology, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nour Elhouda Saidi
- Department of Nuclear Medicine and Radiobiology, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Juan Pablo Ordoñez
- Department of Nuclear Medicine and Radiobiology, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sahar Naasri
- Department of Nuclear Medicine and Radiobiology, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Dominique Lévesque
- Department of Immunology and Cell Biology, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - François-Michel Boisvert
- Department of Immunology and Cell Biology, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre-Hugues Fortier
- Department of Surgery, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mathieu Belzile
- Department of Surgery, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Laurent Fradet
- Department of Surgery, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Vincent Hubert-Tremblay
- Department of Nuclear Medicine and Radiobiology, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guy Anne Turgeon
- Department of Nuclear Medicine and Radiobiology, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Chang Shu Wang
- Department of Nuclear Medicine and Radiobiology, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Patrick Delage
- Department of Nuclear Medicine and Radiobiology, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Étienne Rousseau
- Department of Nuclear Medicine and Radiobiology, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoît Paquette
- Department of Nuclear Medicine and Radiobiology, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ayman J Oweida
- Department of Nuclear Medicine and Radiobiology, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
15
|
Tumor-Associated Regulatory T Cells in Non-Small-Cell Lung Cancer: Current Advances and Future Perspectives. J Immunol Res 2022; 2022:4355386. [PMID: 35497874 PMCID: PMC9054468 DOI: 10.1155/2022/4355386] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is one of the most threatening malignant tumors to human health, with the overall 5-year survival rate being less than 30%. Regulatory T cells (Tregs), a functional subset of T cells, maintain immunologic immunological self-tolerance and homeostasis. Accumulating evidence has uncovered their implicated roles in various cancers in recent years. In NSCLC, they are associated with staging, therapeutic efficacy, and prognosis by infiltrating in tissues and thereby attenuating immunologic anticancer effects in patients. Tumor-associated Tregs display distinct immune signatures in NSCLC compared to thymus-derived Tregs, playing an important role in remodeling the tumor microenvironment (TME). Targeting Tregs has become a novel direction for NSCLC patients, such as disrupting their immune-suppressive functions, blocking their trafficking into tumors, and inhibiting their development and/or activation. This review is aimed at elucidating the molecular mechanisms of tumor-associated Tregs in NSCLC and providing therapeutic targets relevant to Tregs.
Collapse
|
16
|
Multifaceted Roles of Chemokines and Chemokine Receptors in Tumor Immunity. Cancers (Basel) 2021; 13:cancers13236132. [PMID: 34885241 PMCID: PMC8656932 DOI: 10.3390/cancers13236132] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Various immune cells are involved in host immune responses to cancer. T-helper (Th) 1 cells, cytotoxic CD8+ T cells, and natural killer cells are the major effector cells in anti-tumor immunity, whereas cells such as regulatory T cells and myeloid-derived suppressor cells are negatively involved in anti-tumor immunity. Th2 cells and Th17 cells have been shown to have both pro-tumor and anti-tumor activities. The migratory properties of various immune cells are essential for their function and critically regulated by the chemokine superfamily. In this review, we summarize the roles of various immune cells in tumor immunity and their migratory regulation by the chemokine superfamily. We also assess the therapeutic possibilities of targeting chemokines and chemokine receptors in cancer immunotherapy. Abstract Various immune cells are involved in host tumor immune responses. In particular, there are many T cell subsets with different roles in tumor immunity. T-helper (Th) 1 cells are involved in cellular immunity and thus play the major role in host anti-tumor immunity by inducing and activating cytotoxic T lymphocytes (CTLs). On the other hand, Th2 cells are involved in humoral immunity and suppressive to Th1 responses. Regulatory T (Treg) cells negatively regulate immune responses and contribute to immune evasion of tumor cells. Th17 cells are involved in inflammatory responses and may play a role in tumor progression. However, recent studies have also shown that Th17 cells are capable of directly inducting CTLs and thus may promote anti-tumor immunity. Besides these T cell subsets, there are many other innate immune cells such as dendritic cells (DCs), natural killer (NK) cells, and myeloid-derived suppressor cells (MDSCs) that are involved in host immune responses to cancer. The migratory properties of various immune cells are critical for their functions and largely regulated by the chemokine superfamily. Thus, chemokines and chemokine receptors play vital roles in the orchestration of host immune responses to cancer. In this review, we overview the various immune cells involved in host responses to cancer and their migratory properties regulated by the chemokine superfamily. Understanding the roles of chemokines and chemokine receptors in host immune responses to cancer may provide new therapeutic opportunities for cancer immunotherapy.
Collapse
|
17
|
Liu M, Yang J, Xu B, Zhang X. Tumor metastasis: Mechanistic insights and therapeutic interventions. MedComm (Beijing) 2021; 2:587-617. [PMID: 34977870 PMCID: PMC8706758 DOI: 10.1002/mco2.100] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022] Open
Abstract
Cancer metastasis is responsible for the vast majority of cancer-related deaths worldwide. In contrast to numerous discoveries that reveal the detailed mechanisms leading to the formation of the primary tumor, the biological underpinnings of the metastatic disease remain poorly understood. Cancer metastasis is a complex process in which cancer cells escape from the primary tumor, settle, and grow at other parts of the body. Epithelial-mesenchymal transition and anoikis resistance of tumor cells are the main forces to promote metastasis, and multiple components in the tumor microenvironment and their complicated crosstalk with cancer cells are closely involved in distant metastasis. In addition to the three cornerstones of tumor treatment, surgery, chemotherapy, and radiotherapy, novel treatment approaches including targeted therapy and immunotherapy have been established in patients with metastatic cancer. Although the cancer survival rate has been greatly improved over the years, it is still far from satisfactory. In this review, we provided an overview of the metastasis process, summarized the cellular and molecular mechanisms involved in the dissemination and distant metastasis of cancer cells, and reviewed the important advances in interventions for cancer metastasis.
Collapse
Affiliation(s)
- Mengmeng Liu
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jing Yang
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Bushu Xu
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xing Zhang
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
18
|
Garofalo C, De Marco C, Cristiani CM. NK Cells in the Tumor Microenvironment as New Potential Players Mediating Chemotherapy Effects in Metastatic Melanoma. Front Oncol 2021; 11:754541. [PMID: 34712615 PMCID: PMC8547654 DOI: 10.3389/fonc.2021.754541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Until the last decade, chemotherapy was the standard treatment for metastatic cutaneous melanoma, even with poor results. The introduction of immune checkpoints inhibitors (ICIs) radically changed the outcome, increasing 5-year survival from 5% to 60%. However, there is still a large portion of unresponsive patients that would need further therapies. NK cells are skin-resident innate cytotoxic lymphocytes that recognize and kill virus-infected as well as cancer cells thanks to a balance between inhibitory and activating signals delivered by surface molecules expressed by the target. Since NK cells are equipped with cytotoxic machinery but lack of antigen restriction and needing to be primed, they are nowadays gaining attention as an alternative to T cells to be exploited in immunotherapy. However, their usage suffers of the same limitations reported for T cells, that is the loss of immunogenicity by target cells and the difficulty to penetrate and be activated in the suppressive tumor microenvironment (TME). Several evidence showed that chemotherapy used in metastatic melanoma therapy possess immunomodulatory properties that may restore NK cells functions within TME. Here, we will discuss the capability of such chemotherapeutics to: i) up-regulate melanoma cells susceptibility to NK cell-mediated killing, ii) promote NK cells infiltration within TME, iii) target other immune cell subsets that affect NK cells activities. Alongside traditional systemic melanoma chemotherapy, a new pharmacological strategy based on nanocarriers loaded with chemotherapeutics is developing. The use of nanotechnologies represents a very promising approach to improve drug tolerability and effectiveness thanks to the targeted delivery of the therapeutic molecules. Here, we will also discuss the recent developments in using nanocarriers to deliver anti-cancer drugs within the melanoma microenvironment in order to improve chemotherapeutics effects. Overall, we highlight the possibility to use standard chemotherapeutics, possibly delivered by nanosystems, to enhance NK cells anti-tumor cytotoxicity. Combined with immunotherapies targeting NK cells, this may represent a valuable alternative approach to treat those patients that do not respond to current ICIs.
Collapse
Affiliation(s)
- Cinzia Garofalo
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Costanza Maria Cristiani
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
19
|
Olkowska-Truchanowicz J, Sztokfisz-Ignasiak A, Zwierzchowska A, Janiuk I, Dąbrowski F, Korczak-Kowalska G, Barcz E, Bocian K, Malejczyk J. Endometriotic Peritoneal Fluid Stimulates Recruitment of CD4 +CD25 highFOXP3 + Treg Cells. J Clin Med 2021; 10:jcm10173789. [PMID: 34501240 PMCID: PMC8432020 DOI: 10.3390/jcm10173789] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/13/2022] Open
Abstract
Endometriosis is a common gynecological disorder characterized by the presence of endometrial-like tissue outside the uterus. The disease is associated with disturbed local and systemic immunity. It has been reported that the proportion of CD4+CD25highFOXP3+ Treg cells may be significantly increased in the peritoneal fluid of patients with endometriosis. Therefore, the aim of our study was to investigate whether the proportions of Treg cells in the peritoneal cavity of patients with endometriosis are related to the chemotactic and stimulatory activity of the local peritoneal milieu. The peritoneal fluid was collected from 13 women with ovarian endometriosis and 12 control women without the disease. T cell populations were analyzed by flow cytometry, cytokines and chemokines were evaluated using the cytometric bead kit, and cell chemotaxis was studied by cell migration assay. We confirmed that the proportions of Treg cells are increased in the peritoneal fluid of women with endometriosis as compared to the control women. Endometriosis was also associated with elevated concentrations of IL-6, IL-10, and TGF-β1/2 as well as CCL20, CXCL8, CXCL9, and CXCL10. We did not reveal any changes in the proportion of peritoneal Th17 cells and concentrations of IL-17A. Peritoneal Treg cells positively correlated with concentrations of TGF-β, IL-10, and CCL20. Endometriotic peritoneal fluid stimulated chemotaxis of both CD4+ and Treg cells. This chemotactic activity positively correlated with concentrations of CCL20. CCL20 stimulated the migration of Treg cells, and the chemotactic activity of the endometriotic peritoneal fluid was inhibited by neutralizing anti-CCL20 antibodies. These results imply that increased proportions of the peritoneal Treg cells in women with endometriosis may result from attraction and activation by local chemokines and cytokines, especially CCL20 and TGF-β. Since Treg cells contribute to the immunopathogenesis of endometriosis, their chemotaxis and activation may be considered as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Joanna Olkowska-Truchanowicz
- Department of Transplantology and Central Tissue Bank, Center of Biostructure Research, Medical University of Warsaw, 02-004 Warsaw, Poland;
| | - Alicja Sztokfisz-Ignasiak
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, 02-004 Warsaw, Poland; (A.S.-I.); (I.J.)
| | - Aneta Zwierzchowska
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-015 Warsaw, Poland; (A.Z.); (F.D.); (E.B.)
- Department of Obstetrics and Gynecology, Multidisciplinary Hospital Warsaw-Miedzylesie, 04-749 Warsaw, Poland
| | - Izabela Janiuk
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, 02-004 Warsaw, Poland; (A.S.-I.); (I.J.)
| | - Filip Dąbrowski
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-015 Warsaw, Poland; (A.Z.); (F.D.); (E.B.)
- Department of Gynecology and Obstetrics, Medical University of Silesia, 40-055 Katowice, Poland
| | | | - Ewa Barcz
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-015 Warsaw, Poland; (A.Z.); (F.D.); (E.B.)
- Department of Obstetrics and Gynecology, Multidisciplinary Hospital Warsaw-Miedzylesie, 04-749 Warsaw, Poland
| | - Katarzyna Bocian
- Department of Immunology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
- Correspondence: (K.B.); (J.M.)
| | - Jacek Malejczyk
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, 02-004 Warsaw, Poland; (A.S.-I.); (I.J.)
- Laboratory of Experimental Immunology, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Correspondence: (K.B.); (J.M.)
| |
Collapse
|
20
|
De Zutter A, Van Damme J, Struyf S. The Role of Post-Translational Modifications of Chemokines by CD26 in Cancer. Cancers (Basel) 2021; 13:cancers13174247. [PMID: 34503058 PMCID: PMC8428238 DOI: 10.3390/cancers13174247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Chemokines are a large family of small chemotactic cytokines that fulfill a central function in cancer. Both tumor-promoting and -impeding roles have been ascribed to chemokines, which they exert in a direct or indirect manner. An important post-translational modification that regulates chemokine activity is the NH2-terminal truncation by peptidases. CD26 is a dipeptidyl peptidase (DPPIV), which typically clips a NH2-terminal dipeptide from the chemokine. With a certain degree of selectivity in terms of chemokine substrate, CD26 only recognizes chemokines with a penultimate proline or alanine. Chemokines can be protected against CD26 recognition by specific amino acid residues within the chemokine structure, by oligomerization or by binding to cellular glycosaminoglycans (GAGs). Upon truncation, the binding affinity for receptors and GAGs is altered, which influences chemokine function. The consequences of CD26-mediated clipping vary, as unchanged, enhanced, and reduced activities are reported. In tumors, CD26 most likely has the most profound effect on CXCL12 and the interferon (IFN)-inducible CXCR3 ligands, which are converted into receptor antagonists upon truncation. Depending on the tumor type, expression of CD26 is upregulated or downregulated and often results in the preferential generation of the chemokine isoform most favorable for tumor progression. Considering the tight relationship between chemokine sequence and chemokine binding specificity, molecules with the appropriate characteristics can be chemically engineered to provide innovative therapeutic strategies in a cancer setting.
Collapse
|
21
|
Tsuchiya H, Shiota G. Immune evasion by cancer stem cells. Regen Ther 2021; 17:20-33. [PMID: 33778133 PMCID: PMC7966825 DOI: 10.1016/j.reth.2021.02.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor immunity represents a new avenue for cancer therapy. Immune checkpoint inhibitors have successfully improved outcomes in several tumor types. In addition, currently, immune cell-based therapy is also attracting significant attention. However, the clinical efficacy of these treatments requires further improvement. The mechanisms through which cancer cells escape the immune response must be identified and clarified. Cancer stem cells (CSCs) play a central role in multiple aspects of malignant tumors. CSCs can initiate tumors in partially immunocompromised mice, whereas non-CSCs fail to form tumors, suggesting that tumor initiation is a definitive function of CSCs. However, the fact that non-CSCs also initiate tumors in more highly immunocompromised mice suggests that the immune evasion property may be a more fundamental feature of CSCs rather than a tumor-initiating property. In this review, we summarize studies that have elucidated how CSCs evade tumor immunity and create an immunosuppressive milieu with a focus on CSC-specific characteristics and functions. These profound mechanisms provide important clues for the development of novel tumor immunotherapies.
Collapse
Key Words
- ADCC, antibody-dependent cell mediated cytotoxicity
- ALDH, alcohol dehydrogenase
- AML, acute myeloid leukemia
- ARID3B, AT-rich interaction domain-containing protein 3B
- CCR7, C–C motif chemokine receptor 7
- CIK, cytokine-induced killer cell
- CMV, cytomegalovirus
- CSC, cancer stem cell
- CTL, cytotoxic T lymphocytes
- CTLA-4, cytotoxic T-cell-associated antigen-4
- Cancer stem cells
- DC, dendritic cell
- DNMT, DNA methyltransferase
- EMT, epithelial–mesenchymal transition
- ETO, fat mass and obesity associated protein
- EV, extracellular vesicle
- HNSCC, head and neck squamous cell carcinoma
- Immune checkpoints
- Immune evasion
- KDM4, lysine-specific demethylase 4C
- KIR, killer immunoglobulin-like receptor
- LAG3, lymphocyte activation gene 3
- LILR, leukocyte immunoglobulin-like receptor
- LMP, low molecular weight protein
- LOX, lysyl oxidase
- MDSC, myeloid-derived suppressor cell
- MHC, major histocompatibility complex
- MIC, MHC class I polypeptide-related sequence
- NGF, nerve growth factor
- NK cells
- NK, natural killer
- NOD, nonobese diabetic
- NSG, NOD/SCID IL-2 receptor gamma chain null
- OCT4, octamer-binding transcription factor 4
- PD-1, programmed death receptor-1
- PD-L1/2, ligands 1/2
- PI9, protease inhibitor 9
- PSME3, proteasome activator subunit 3
- SCID, severe combined immunodeficient
- SOX2, sex determining region Y-box 2
- T cells
- TAM, tumor-associated macrophage
- TAP, transporter associated with antigen processing
- TCR, T cell receptor
- Treg, regulatory T cell
- ULBP, UL16 binding protein
- uPAR, urokinase-type plasminogen activator receptor
Collapse
Affiliation(s)
- Hiroyuki Tsuchiya
- Division of Medical Genetics and Regenerative Medicine, Department of Genomic Medicine and Regenerative Therapy, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Goshi Shiota
- Division of Medical Genetics and Regenerative Medicine, Department of Genomic Medicine and Regenerative Therapy, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| |
Collapse
|
22
|
Signals of pseudo-starvation unveil the amino acid transporter SLC7A11 as key determinant in the control of Treg cell proliferative potential. Immunity 2021; 54:1543-1560.e6. [PMID: 34004141 DOI: 10.1016/j.immuni.2021.04.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/30/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Human CD4+CD25hiFOXP3+ regulatory T (Treg) cells are key players in the control of immunological self-tolerance and homeostasis. Here, we report that signals of pseudo-starvation reversed human Treg cell in vitro anergy through an integrated transcriptional response, pertaining to proliferation, metabolism, and transmembrane solute carrier transport. At the molecular level, the Treg cell proliferative response was dependent on the induction of the cystine/glutamate antiporter solute carrier (SLC)7A11, whose expression was controlled by the nuclear factor erythroid 2-related factor 2 (NRF2). SLC7A11 induction in Treg cells was impaired in subjects with relapsing-remitting multiple sclerosis (RRMS), an autoimmune disorder associated with reduced Treg cell proliferative capacity. Treatment of RRMS subjects with dimethyl fumarate (DMF) rescued SLC7A11 induction and fully recovered Treg cell expansion. These results suggest a previously unrecognized mechanism that may account for the progressive loss of Treg cells in autoimmunity and unveil SLC7A11 as major target for the rescue of Treg cell proliferation.
Collapse
|
23
|
Ozga AJ, Chow MT, Luster AD. Chemokines and the immune response to cancer. Immunity 2021; 54:859-874. [PMID: 33838745 PMCID: PMC8434759 DOI: 10.1016/j.immuni.2021.01.012] [Citation(s) in RCA: 451] [Impact Index Per Article: 112.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 01/14/2023]
Abstract
Chemokines are chemotactic cytokines that regulate the migration of immune cells. Chemokines function as cues for the coordinated recruitment of immune cells into and out of tissue and also guide the spatial organization and cellular interactions of immune cells within tissues. Chemokines are critical in directing immune cell migration necessary to mount and then deliver an effective anti-tumor immune response; however, chemokines also participate in the generation and recruitment of immune cells that contribute to a pro-tumorigenic microenvironment. Here, we review the role of the chemokine system in anti-tumor and pro-tumor immune responses and discuss how malignant cells and the tumor microenvironment regulate the overall chemokine landscape to shape the type and outcome of immune responses to cancer and cancer treatment.
Collapse
Affiliation(s)
- Aleksandra J Ozga
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Melvyn T. Chow
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew D. Luster
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA,Correspondence:
| |
Collapse
|
24
|
Recruitment and Expansion of Tregs Cells in the Tumor Environment-How to Target Them? Cancers (Basel) 2021; 13:cancers13081850. [PMID: 33924428 PMCID: PMC8069615 DOI: 10.3390/cancers13081850] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The immune response against cancer is generated by effector T cells, among them cytotoxic CD8+ T cells that destroy cancer cells and helper CD4+ T cells that mediate and support the immune response. This antitumor function of T cells is tightly regulated by a particular subset of CD4+ T cells, named regulatory T cells (Tregs), through different mechanisms. Even if the complete inhibition of Tregs would be extremely harmful due to their tolerogenic role in impeding autoimmune diseases in the periphery, the targeted blockade of their accumulation at tumor sites or their targeted depletion represent a major therapeutic challenge. This review focuses on the mechanisms favoring Treg recruitment, expansion and stabilization in the tumor microenvironment and the therapeutic strategies developed to block these mechanisms. Abstract Regulatory T cells (Tregs) are present in a large majority of solid tumors and are mainly associated with a poor prognosis, as their major function is to inhibit the antitumor immune response contributing to immunosuppression. In this review, we will investigate the mechanisms involved in the recruitment, amplification and stability of Tregs in the tumor microenvironment (TME). We will also review the strategies currently developed to inhibit Tregs’ deleterious impact in the TME by either inhibiting their recruitment, blocking their expansion, favoring their plastic transformation into other CD4+ T-cell subsets, blocking their suppressive function or depleting them specifically in the TME to avoid severe deleterious effects associated with Treg neutralization/depletion in the periphery and normal tissues.
Collapse
|
25
|
Liu F, Wu H. CC Chemokine Receptors in Lung Adenocarcinoma: The Inflammation-Related Prognostic Biomarkers and Immunotherapeutic Targets. J Inflamm Res 2021; 14:267-285. [PMID: 33574689 PMCID: PMC7872903 DOI: 10.2147/jir.s278395] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common type of lung cancer with a high incidence and increased mortality. CC chemokine receptors were participating in the modulation of the tumor microenvironment and involved in carcinogenesis and tumor development. However, the potential mechanistic values of CC chemokine receptors as clinical biomarkers and therapeutic targets in LUAD have not been fully clarified. Methodology ONCOMINE, UALCAN, GEPIA, Kaplan-Meier Plotter, SurvExpress, MethSurv, SurvivalMeth, cBioPortal, String, GeneMANIA, DAVID, Metascape, TRRUST, LinkedOmics, and Timer were applied in this work. Results The transcriptional levels of CCR1/10 in LUAD tissues were significantly reduced while the transcriptional levels of CCR3/6/7/8 were significantly elevated, and the expression of CCR1 was the highest in LUAD among these CC chemokine receptors. A significant correlation was found between the expression of CCR2/4/6/7 and the pathological stage of LUAD patients. There were significant associations between CCR2/3/4/5/6/10 expression levels and OS in LUAD, and LUAD patients with high transcriptional levels of CCR3/4 had inferior first-progression survival. In addition, the prognostic values of CC chemokine receptors signature in LUAD were explored in three independent cohorts, the high-risk group displayed unfavorable OS compared with the low-risk group, and the LUAD cases in the high-risk group also suffered inferior RFS than that in the low-risk group. And for the prognostic value of the DNA methylation of CC chemokine receptors, we found 1 CpG of CCR2, 2 CpGs of CCR3, 1 CpG of CCR4, 3 CpGs of CCR6, 3 CpGs of CCR7, 1 CpG of CCR8, and 3 CpGs of CCR9 were significantly associated with prognosis in LUAD patients. However, the DNA methylation signature analysis showed there was no statistically significant association between the high- and low-risk group. For potential mechanism, the neighbor gene networks, interaction analyses, functional enrichment analyses of CC chemokine receptors in LUAD were performed, the transcription factor targets, kinase targets, and miRNA targets of CC chemokine receptors were also identified in LUAD. We also found significant correlations among CC chemokine receptors expression and the infiltration of immune cells, the tumor infiltration levels among LUAD with different somatic copy number alterations of these chemokine receptors were also assessed. Moreover, the Cox proportional hazard model showed that CCR1/2/10, B_cell, CD4_Tcell were significantly related to the clinical outcome of LUAD patients. Conclusion CC chemokine receptors might serve as immunotherapeutic targets and prognostic biomarkers in LUAD.
Collapse
Affiliation(s)
- Fangteng Liu
- Department of Breast Surgery, The Third Hospital of Nanchang, Nanchang, Jiangxi, 330009, People's Republic of China.,Faculty of Medicine, University of Munich, Munich, 80336, Germany
| | - Hengyu Wu
- Department of Breast Surgery, The Third Hospital of Nanchang, Nanchang, Jiangxi, 330009, People's Republic of China
| |
Collapse
|
26
|
Kolb HR, Borcherding N, Zhang W. Understanding and Targeting Human Cancer Regulatory T Cells to Improve Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:229-256. [PMID: 33523451 DOI: 10.1007/978-981-15-6407-9_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regulatory T cells (Tregs) are critical in maintaining immune homeostasis under various pathophysiological conditions. A growing body of evidence demonstrates that Tregs play an important role in cancer progression and that they do so by suppressing cancer-directed immune responses. Tregs have been targeted for destruction by exploiting antibodies against and small-molecule inhibitors of several molecules that are highly expressed in Tregs-including immune checkpoint molecules, chemokine receptors, and metabolites. To date, these strategies have had only limited antitumor efficacy, yet they have also created significant risk of autoimmunity because most of them do not differentiate Tregs in tumors from those in normal tissues. Currently, immune checkpoint inhibitor (ICI)-based cancer immunotherapies have revolutionized cancer treatment, but the resistance to ICI is common and the elevation of Tregs is one of the most important mechanisms. Therapeutic strategies that can selectively eliminate Tregs in the tumor (i.e. therapies that do not run the risk of causing autoimmunity by affecting normal tissue), are urgently needed for the development of cancer immunotherapies. This chapter discusses specific properties of human Tregs under the context of cancer and the various ways to target Treg for cancer immunotherapy.
Collapse
Affiliation(s)
- H Ryan Kolb
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University, St. Louis, MO, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
27
|
Chen J, Liu X, Wu Q, Jiang X, Zeng Z, Li J, Gao Y, Gong Y, Xie C. Systematic Analyses of a Chemokine Family-Based Risk Model Predicting Clinical Outcome and Immunotherapy Response in Lung Adenocarcinoma. Cell Transplant 2021; 30:9636897211055046. [PMID: 34705571 PMCID: PMC8554550 DOI: 10.1177/09636897211055046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022] Open
Abstract
Chemokines exhibited complicated functions in antitumor immunity, with their expression profile and clinical importance of lung adenocarcinoma (LUAD) patients remaining largely undetermined. This study aimed to explore the expression patterns of chemokine family in LUAD and construct a predictive chemokine family-based signature. A total of 497 samples were downloaded from the Cancer Genome Atlas (TCGA) data portal as the training set, and the combination of 4 representative Gene Expression Omnibus (GEO) datasets, including GSE30219, GSE50081, GSE37745, and GSE31210, were utilized as the validation set. A three gene-based signature was constructed using univariate and stepwise multivariate Cox regression analysis, classifying patients into high and low risk groups according to the overall survival. The independent GEO datasets were utilized to validate this signature. Another multivariate analysis revealed that this signature remained an independent prognostic factor in LUAD patients. Furthermore, patients in the low risk group featured immunoactive tumor microenvironment (TME), higher IPS scores and lower TIDE scores, and was regarded as the potential beneficiaries of immunotherapy. Finally, the role of risky CCL20 was validated by immunohistochemistry (IHC), and patients possessed higher CCL20 expression presented shorter overall survival (P = 0.011).
Collapse
Affiliation(s)
- Jiarui Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xingyu Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xueping Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zihang Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiali Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanping Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Korbecki J, Olbromski M, Dzięgiel P. CCL18 in the Progression of Cancer. Int J Mol Sci 2020; 21:ijms21217955. [PMID: 33114763 PMCID: PMC7663205 DOI: 10.3390/ijms21217955] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023] Open
Abstract
A neoplastic tumor consists of cancer cells that interact with each other and non-cancerous cells that support the development of the cancer. One such cell are tumor-associated macrophages (TAMs). These cells secrete many chemokines into the tumor microenvironment, including especially a large amount of CCL18. This chemokine is a marker of the M2 macrophage subset; this is the reason why an increase in the production of CCL18 is associated with the immunosuppressive nature of the tumor microenvironment and an important element of cancer immune evasion. Consequently, elevated levels of CCL18 in the serum and the tumor are connected with a worse prognosis for the patient. This paper shows the importance of CCL18 in neoplastic processes. It includes a description of the signal transduction from PITPNM3 in CCL18-dependent migration, invasion, and epithelial-to-mesenchymal transition (EMT) cancer cells. The importance of CCL18 in angiogenesis has also been described. The paper also describes the effect of CCL18 on the recruitment to the cancer niche and the functioning of cells such as TAMs, regulatory T cells (Treg), cancer-associated fibroblasts (CAFs) and tumor-associated dendritic cells (TADCs). The last part of the paper describes the possibility of using CCL18 as a therapeutic target during anti-cancer therapy.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a St, 50-368 Wrocław, Poland; (M.O.); (P.D.)
- Correspondence: ; Tel.: +48-717-841-354
| | - Mateusz Olbromski
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a St, 50-368 Wrocław, Poland; (M.O.); (P.D.)
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a St, 50-368 Wrocław, Poland; (M.O.); (P.D.)
- Department of Physiotherapy, Wroclaw University School of Physical Education, Ignacego Jana Paderewskiego 35 Av., 51-612 Wroclaw, Poland
| |
Collapse
|
29
|
Korbecki J, Grochans S, Gutowska I, Barczak K, Baranowska-Bosiacka I. CC Chemokines in a Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of Receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 Ligands. Int J Mol Sci 2020; 21:ijms21207619. [PMID: 33076281 PMCID: PMC7590012 DOI: 10.3390/ijms21207619] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
CC chemokines (or β-chemokines) are 28 chemotactic cytokines with an N-terminal CC domain that play an important role in immune system cells, such as CD4+ and CD8+ lymphocytes, dendritic cells, eosinophils, macrophages, monocytes, and NK cells, as well in neoplasia. In this review, we discuss human CC motif chemokine ligands: CCL1, CCL3, CCL4, CCL5, CCL18, CCL19, CCL20, CCL21, CCL25, CCL27, and CCL28 (CC motif chemokine receptor CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 ligands). We present their functioning in human physiology and in neoplasia, including their role in the proliferation, apoptosis resistance, drug resistance, migration, and invasion of cancer cells. We discuss the significance of chemokine receptors in organ-specific metastasis, as well as the influence of each chemokine on the recruitment of various cells to the tumor niche, such as cancer-associated fibroblasts (CAF), Kupffer cells, myeloid-derived suppressor cells (MDSC), osteoclasts, tumor-associated macrophages (TAM), tumor-infiltrating lymphocytes (TIL), and regulatory T cells (Treg). Finally, we show how the effect of the chemokines on vascular endothelial cells and lymphatic endothelial cells leads to angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (S.G.)
| | - Szymon Grochans
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (S.G.)
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (S.G.)
- Correspondence: ; Tel.: +48-914661515
| |
Collapse
|
30
|
Korbecki J, Kojder K, Barczak K, Simińska D, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Hypoxia Alters the Expression of CC Chemokines and CC Chemokine Receptors in a Tumor-A Literature Review. Int J Mol Sci 2020; 21:ijms21165647. [PMID: 32781743 PMCID: PMC7460668 DOI: 10.3390/ijms21165647] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Hypoxia, i.e., oxygen deficiency condition, is one of the most important factors promoting the growth of tumors. Since its effect on the chemokine system is crucial in understanding the changes in the recruitment of cells to a tumor niche, in this review we have gathered all the available data about the impact of hypoxia on β chemokines. In the introduction, we present the chronic (continuous, non-interrupted) and cycling (intermittent, transient) hypoxia together with the mechanisms of activation of hypoxia inducible factors (HIF-1 and HIF-2) and NF-κB. Then we describe the effect of hypoxia on the expression of chemokines with the CC motif: CCL1, CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, CCL11, CCL13, CCL15, CCL16, CCL17, CCL18, CCL19, CCL20, CCL21, CCL22, CCL24, CCL25, CCL26, CCL27, CCL28 together with CC chemokine receptors: CCR1, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10. To better understand the effect of hypoxia on neoplastic processes and changes in the expression of the described proteins, we summarize the available data in a table which shows the effect of individual chemokines on angiogenesis, lymphangiogenesis, and recruitment of eosinophils, myeloid-derived suppressor cells (MDSC), regulatory T cells (Treg), and tumor-associated macrophages (TAM) to a tumor niche.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (D.C.)
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland;
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (D.C.)
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (D.C.)
- Correspondence: ; Tel.: +48-914661515; Fax: +48-914661516
| |
Collapse
|
31
|
Xu ZY, Zhao M, Chen W, Li K, Qin F, Xiang WW, Sun Y, Wei J, Yuan LQ, Li SK, Lin SH. Analysis of prognostic genes in the tumor microenvironment of lung adenocarcinoma. PeerJ 2020; 8:e9530. [PMID: 32775050 PMCID: PMC7382940 DOI: 10.7717/peerj.9530] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Background Prognostic genes in the tumor microenvironment play an important role in immune biological processes and the response of cancer to immunotherapy. Thus, we aimed to assess new biomarkers that are associated with immune/stromal cells in lung adenocarcinomas (LUAD) using the ESTIMATE algorithm, which also significantly affects the prognosis of cancer. Methods The RNA sequencing (RNA-Seq) and clinical data of LUAD were downloaded from the the Cancer Genome Atlas (TCGA ). The immune and stromal scores were calculated for each sample using the ESTIMATE algorithm. The LUAD gene chip expression profile data and the clinical data (GSE37745, GSE11969, and GSE50081) were downloaded from the Gene Expression Omnibus (GEO) for subsequent validation analysis. Differentially expressed genes were calculated between high and low score groups. Univariate Cox regression analysis was performed on differentially expressed genes (DEGs) between the two groups to obtain initial prognosis genes. These were verified by three independent LUAD cohorts from the GEO database. Multivariate Cox regression was used to identify overall survival-related DEGs. UALCAN and the Human Protein Atlas were used to analyze the mRNA /protein expression levels of the target genes. Immune cell infiltration was evaluated using the Tumor Immune Estimation Resource (TIMER) and CIBERSORT methods, and stromal cell infiltration was assessed using xCell. Results In this study, immune scores and stromal scores are significantly associated with the clinical characteristics of LUAD, including T stage, M stage, pathological stage, and overall survival time. 530 DEGs (18 upregulated and 512 downregulated) were found to coexist in the difference analysis with the immune scores and stromal scores subgroup. Univariate Cox regression analysis showed that 286 of the 530 DEGs were survival-related genes (p < 0.05). Of the 286 genes initially identified, nine prognosis-related genes (CSF2RB, ITK, FLT3, CD79A, CCR4, CCR6, DOK2, AMPD1, and IGJ) were validated from three separate LUAD cohorts. In addition, functional analysis of DEGs also showed that various immunoregulatory molecular pathways, including regulation of immune response and the chemokine signaling pathways, were involved. Five genes (CCR6, ITK, CCR4, DOK2, and AMPD1) were identified as independent prognostic indicators of LUAD in specific data sets. The relationship between the expression levels of these genes and immune genes was assessed. We found that CCR6 mRNA and protein expression levels of LUAD were greater than in normal tissues. We evaluated the infiltration of immune cells and stromal cells in groups with high and low levels of expression of CCR6 in the TCGA LUAD cohort. In summary, we found a series of prognosis-related genes that were associated with the LUAD tumor microenvironment.
Collapse
Affiliation(s)
- Zhan-Yu Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mengli Zhao
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenjie Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kun Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fanglu Qin
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei-Wei Xiang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu Sun
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiangbo Wei
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li-Qiang Yuan
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shi-Kang Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sheng-Hua Lin
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
32
|
Pucci P, Venalainen E, Alborelli I, Quagliata L, Hawkes C, Mather R, Romero I, Rigas SH, Wang Y, Crea F. LncRNA HORAS5 promotes taxane resistance in castration-resistant prostate cancer via a BCL2A1-dependent mechanism. Epigenomics 2020; 12:1123-1138. [DOI: 10.2217/epi-2019-0316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Castration-resistant prostate cancer (CRPC) is an incurable malignancy. Long noncoding RNAs (lncRNAs) play key roles in drug resistance. Materials & methods: LncRNA HORAS5 role in cabazitaxel resistance (i.e., cell-count, IC50 and caspase activity) was studied via lentiviral-mediated overexpression and siRNA-based knockdown. Genes expression was analyzed with RNA-sequencing, reverse transcription quantitative PCR (RT-qPCR) and western blot. HORAS5 expression was queried in clinical database. Results: Cabazitaxel increased HORAS5 expression that upregulated BCL2A1, thereby protecting CRPC cells from cabazitaxel-induced apoptosis. BCL2A1 knockdown decreased cell-count and increased apoptosis in CRPC cells. HORAS5-targeting antisense oligonucleotide decreased cabazitaxel IC50. In CRPC clinical samples, HORAS5 expression increased upon taxane treatment. Conclusion: HORAS5 stimulates the expression of BCL2A1 thereby decreasing apoptosis and enhancing cabazitaxel resistance in CRPC cells.
Collapse
Affiliation(s)
- Perla Pucci
- School of Life, Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, Buckinghamshire, MK7 6AA, UK
- Present address: Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Erik Venalainen
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
| | - Ilaria Alborelli
- Institute of Pathology, University Hospital Basel, Basel 4031, Switzerland
| | - Luca Quagliata
- Global Head of Medical Affairs, Clinical NGS & Oncology Division, Life Sciences Solutions, Thermo Fisher Scientific, Baarerstrasse, Switzerland
| | - Cheryl Hawkes
- School of Life, Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, Buckinghamshire, MK7 6AA, UK
| | - Rebecca Mather
- School of Life, Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, Buckinghamshire, MK7 6AA, UK
| | - Ignacio Romero
- School of Life, Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, Buckinghamshire, MK7 6AA, UK
| | - Sushilaben H Rigas
- School of Life, Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, Buckinghamshire, MK7 6AA, UK
| | - Yuzhuo Wang
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Francesco Crea
- School of Life, Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, Buckinghamshire, MK7 6AA, UK
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
33
|
EGFR/Ras-induced CCL20 production modulates the tumour microenvironment. Br J Cancer 2020; 123:942-954. [PMID: 32601464 PMCID: PMC7493992 DOI: 10.1038/s41416-020-0943-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 04/07/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background The activation of the EGFR/Ras-signalling pathway in tumour cells induces a distinct chemokine repertoire, which in turn modulates the tumour microenvironment. Methods The effects of EGFR/Ras on the expression and translation of CCL20 were analysed in a large set of epithelial cancer cell lines and tumour tissues by RT-qPCR and ELISA in vitro. CCL20 production was verified by immunohistochemistry in different tumour tissues and correlated with clinical data. The effects of CCL20 on endothelial cell migration and tumour-associated vascularisation were comprehensively analysed with chemotaxis assays in vitro and in CCR6-deficient mice in vivo. Results Tumours facilitate progression by the EGFR/Ras-induced production of CCL20. Expression of the chemokine CCL20 in tumours correlates with advanced tumour stage, increased lymph node metastasis and decreased survival in patients. Microvascular endothelial cells abundantly express the specific CCL20 receptor CCR6. CCR6 signalling in endothelial cells induces angiogenesis. CCR6-deficient mice show significantly decreased tumour growth and tumour-associated vascularisation. The observed phenotype is dependent on CCR6 deficiency in stromal cells but not within the immune system. Conclusion We propose that the chemokine axis CCL20–CCR6 represents a novel and promising target to interfere with the tumour microenvironment, and opens an innovative multimodal strategy for cancer therapy.
Collapse
|
34
|
Oweida AJ, Darragh L, Phan A, Binder D, Bhatia S, Mueller A, Court BV, Milner D, Raben D, Woessner R, Heasley L, Nemenoff R, Clambey E, Karam SD. STAT3 Modulation of Regulatory T Cells in Response to Radiation Therapy in Head and Neck Cancer. J Natl Cancer Inst 2020; 111:1339-1349. [PMID: 30863843 DOI: 10.1093/jnci/djz036] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/25/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Radioresistance represents a major problem in the treatment of head and neck cancer (HNC) patients. To improve response, understanding tumor microenvironmental factors that contribute to radiation resistance is important. Regulatory T cells (Tregs) are enriched in numerous cancers and can dampen the response to radiation by creating an immune-inhibitory microenvironment. The purpose of this study was to investigate mechanisms of Treg modulation by radiation in HNC. METHODS We utilized an orthotopic mouse model of HNC. Anti-CD25 was used for Treg depletion. Image-guided radiation was delivered to a dose of 10 Gy. Flow cytometry was used to analyze abundance and function of intratumoral immune cells. Enzyme-linked immunosorbent assay was performed to assess secreted factors. For immune-modulating therapies, anti-PD-L1, anti-CTLA-4, and STAT3 antisense oligonucleotide (ASO) were used. All statistical tests were two-sided. RESULTS Treatment with anti-CD25 and radiation led to tumor eradication (57.1%, n = 4 of 7 mice), enhanced T-cell cytotoxicity compared with RT alone (CD4 effector T cells [Teff]: RT group mean = 5.37 [ 0.58] vs RT + αCD25 group mean =10.71 [0.67], P = .005; CD8 Teff: RT group mean = 9.98 [0.81] vs RT + αCD25 group mean =16.88 [2.49], P = .01) and induced tumor antigen-specific memory response (100.0%, n = 4 mice). In contrast, radiation alone or when combined with anti-CTLA4 did not lead to durable tumor control (0.0%, n = 7 mice). STAT3 inhibition in combination with radiation, but not as a single agent, improved tumor growth delay, decreased Tregs, myeloid-derived suppressor cells, and M2 macrophages and enhanced effector T cells and M1 macrophages. Experiments in nude mice inhibited the benefit of STAT3 ASO and radiation. CONCLUSION We propose that STAT3 inhibition is a viable and potent therapeutic target against Tregs. Our data support the design of clinical trials integrating STAT3 ASO in the standard of care for cancer patients receiving radiation.
Collapse
|
35
|
Xie M, Wei J, Xu J. Inducers, Attractors and Modulators of CD4 + Treg Cells in Non-Small-Cell Lung Cancer. Front Immunol 2020; 11:676. [PMID: 32425930 PMCID: PMC7212357 DOI: 10.3389/fimmu.2020.00676] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/26/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer-associated deaths worldwide, with non-small cell-lung cancer (NSCLC) accounting for approximately 80% of cases. Immune escape has been demonstrated to play a key role in the initiation and progression of NSCLC, although the underlying mechanisms are diverse and their puzzling nature is far from being understood. As a critical participant in immune escape, the CD4+ T cell subset of regulatory T (Treg) cells, with their immunosuppressive functions, has been implicated in the occurrence of many types of cancers. Additionally, therapies based on Treg blockade have benefited a portion of cancer patients, including those with NSCLC. Accumulating literature has noted high Treg infiltration in NSCLC tumor tissues, bone marrow, lymph nodes and/or blood; moreover, the tumor milieu is involved in regulating the proliferation, differentiation, recruitment and suppressive functions of Treg cells. Multifarious mechanisms by which CD4+ Treg cells are generated, attracted and modulated in the NSCLC milieu will be discussed in this review.
Collapse
Affiliation(s)
- Mengxiao Xie
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Jia Wei
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Jian Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| |
Collapse
|
36
|
Israr M, DeVoti JA, Lam F, Abramson AL, Steinberg BM, Bonagura VR. Altered Monocyte and Langerhans Cell Innate Immunity in Patients With Recurrent Respiratory Papillomatosis (RRP). Front Immunol 2020; 11:336. [PMID: 32210959 PMCID: PMC7076114 DOI: 10.3389/fimmu.2020.00336] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/11/2020] [Indexed: 12/24/2022] Open
Abstract
The micromilieu within respiratory papillomas supports persistent human papillomavirus (HPV) infection and disease recurrence in patients with recurrent respiratory papillomatosis (RRP). These patients show polarized (TH2-/Treg) adaptive immunity in papillomas and blood, enriched immature Langerhans cell (iLC) numbers, and overexpression of cyclooxygenase-2/prostaglandin E2 (PGE2) in the upper airway. Blood monocyte-derived, and tissue-derived iLCs from RRP patients and controls were now studied to more fully understand innate immune dysregulation in RRP. Patients' monocytes generated fewer iLCs than controls, due to a reduced fraction of classical monocytes that generated most but not all the iLCs. Prostaglandin E2, which was elevated in RRP plasma, reduced monocyte-iLC differentiation from controls to the levels of RRP patients, but had no effect on subsequent iLC maturation. Cytokine/chemokine responses by iLCs from papillomas, foreskin, and abdominal skin differed significantly. Freshly derived tissue iLCs expressed low CCL-1 and high CCL-20 mRNAs and were unresponsive to IL-36γ stimulation. Papilloma iLCs uniquely expressed IL-36γ at baseline and expressed CCL1 when cultured overnight outside their immunosuppressive microenvironment without additional stimulation. We conclude that monocyte/iLC innate immunity is impaired in RRP, in part due to increased PGE2 exposure in vivo. The immunosuppressive papilloma microenvironment likely alters iLC responses, and vice versa, supporting TH2-like/Treg HPV-specific adaptive immunity in RRP.
Collapse
Affiliation(s)
- Mohd Israr
- Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - James A DeVoti
- Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Fung Lam
- Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Allan L Abramson
- Department of Otolaryngology, Long Island Jewish Medical Center, Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, United States
| | - Bettie M Steinberg
- Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Otolaryngology, Long Island Jewish Medical Center, Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, United States
| | - Vincent R Bonagura
- Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Pediatrics, Steven and Alexandra Cohen Children's Medical Center of New York, Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, United States
| |
Collapse
|
37
|
Mempel TR, Marangoni F. Guidance factors orchestrating regulatory T cell positioning in tissues during development, homeostasis, and response. Immunol Rev 2020; 289:129-141. [PMID: 30977195 DOI: 10.1111/imr.12761] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/29/2022]
Abstract
Over their lifetime, regulatory T cells (Treg) recalibrate their expression of trafficking receptors multiple times as they progress through development, respond to immune challenges, or adapt to the requirements of functioning in various non-lymphoid tissue environments. These trafficking receptors, which include chemokine receptors and other G-protein coupled receptors, integrins, as well as selectins and their ligands, enable Treg not only to enter appropriate tissues from the bloodstream via post-capillary venules, but also to navigate these tissues to locally execute their immune-regulatory functions, and finally to seek out the right antigen-presenting cells and interact with these, in part in order to receive the signals that sustain their survival, proliferation, and functional activity, in part in order to execute their immuno-regulatory function by altering antigen presenting cell function. Here, we will review our current knowledge of when and in what ways Treg alter their trafficking properties. We will focus on the chemokine system and try to identify specialized, non-redundant roles of individual receptors as well as similarities and differences to the conventional T cell compartment.
Collapse
Affiliation(s)
- Thorsten R Mempel
- The Center for Immunology and Inflammatory Diseases at Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Francesco Marangoni
- The Center for Immunology and Inflammatory Diseases at Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
38
|
Zhao X, Li Y, Wang X, Wu J, Yuan Y, Lv S, Ren J. Synergistic association of FOXP3+ tumor infiltrating lymphocytes with CCL20 expressions with poor prognosis of primary breast cancer: A retrospective cohort study. Medicine (Baltimore) 2019; 98:e18403. [PMID: 31852159 PMCID: PMC6922488 DOI: 10.1097/md.0000000000018403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Studies have shown that forkhead/winged helix transcription factor P3 (FOXP3) tumor infiltrating lymphocytes (TILs) are intimately associated with invasion and survival of many invasive tumors. The inflammatory chemokine ligand 20 (CCL20) and its receptor CCR6 were found to be associated with tumor prognosis in some studies. Although increases in FOXP3 TILs infiltration and CCL20 expression have been revealed in several malignancies, their correlation in human breast tumors is as yet unclear.Surgically resected samples from 156 patients with invasive breast cancer (BC) were assessed for the expression of FOXP3 and CCL20 by immunohistochemistry. Correlation between their expressions and the association with clinicopathological characteristics and patient's prognosis were studied. Forty pairs of fresh BC and their nontumor adjacent tissues (NATs) in BC were carried out by real-time quantitative PCR (qRT-PCR) to evaluate the correlation between FOXP3 and CCL20 mRNA expression.CCL20 and FOXP3 TILs mRNA expression in tumor tissue demonstrated a high correlation (rs = 0.359, P < .001) in this cohort of breast cancer patients. Both elevated CCL20 expression and FOXP3 TILs infiltration were significantly correlated with high histological grade, positive human epidermal growth factor receptor-2 (HER2), high Ki67 index, and axillary lymph node metastases. Tumors with concomitant high expressions of both markers had the worst prognosis. Multivariate analysis showed that these 2 markers were independent predictors of overall survival. The patients with axillary lymph node metastases with the concomitant CCL20 high expression and increased FOXP3 TILs infiltration had the worst overall survival (OS) (P < .001), In lymph node-negative breast cancer patients, the status of CCL20 and FOXP3 was not related to OS (P = .22).The results suggest that CCL20 and FOXP3 TILs may have synergistic effects, and their upregulated expressions may lead to immune evasion in breast cancer. Combinatorial immunotherapeutic approaches aiming at blocking CCL20 and depleting FOXP3 might improve therapeutic efficacy in breast cancer patients.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines
- Department of Surgical Breast Cancer, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yanping Li
- Department of Surgical Breast Cancer, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Wang
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines
| | - Jiangping Wu
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines
| | - Yanhua Yuan
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines
| | - Shuzhen Lv
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines
- Department of Surgical Breast Cancer, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jun Ren
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines
- Department of Surgery, Duke University Medical Center, Durham, NC, US
| |
Collapse
|
39
|
Wei W, Zhao X, Zhu J, Zhang L, Chen Y, Zhang B, Li Y, Wang M, Zhang Z, Wang C. lncRNA‑u50535 promotes the progression of lung cancer by activating CCL20/ERK signaling. Oncol Rep 2019; 42:1946-1956. [PMID: 31545478 PMCID: PMC6775802 DOI: 10.3892/or.2019.7302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
The ligand/receptor pair C‑C motif chemokine ligand 20 (CCL20)/C‑C motif chemokine receptor 6 (CCR6) is considered to be highly activated in lung cancer and significantly accelerates lung cancer progression through activation of ERK signaling. In addition, it has been shown that long non‑coding RNA‑u50535 (lncRNA‑u50535) upregulates CCL20 expression and facilitates cancer progression in colorectal cancer (CRC). However, the effects of lncRNA‑u50535 in lung cancer progression and whether lncRNA‑u50535 regulates CCL20/CCR6/ERK signaling in lung cancer remain ill‑defined. Therefore, the aim of the present study was to investigate the effects of lncRNA‑u50535 on CCL20/CCR6/ERK signaling in lung cancer progression. The results demonstrated that lncRNA‑u50535 expression was upregulated in lung cancer tissues and cell lines compared with normal tissues and cells. Knockdown of lncRNA‑u50535 decreased lung cancer cell proliferation and migration, induced G0/G1 phase arrest and promoted cell apoptosis. Western blot and luciferase reporter gene assays demonstrated that lncRNA‑u50535 overexpression increased the translation and transcription of CCL20. In addition, knockdown of lncRNA‑u50535 decreased CCL20, CCR6 and p‑ERK levels. The effects of lncRNA‑u50535 on cell proliferation and cell apoptosis were weakened when CCL20 was silenced. Overall, the present study demonstrated that lncRNA‑u50535 may function as an oncogene in lung cancer progression by regulating CCL20/ERK signaling.
Collapse
Affiliation(s)
- Wei Wei
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, P.R. China
| | - Xiaoliang Zhao
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, P.R. China
| | - Jianquan Zhu
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, P.R. China
| | - Lianmin Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, P.R. China
| | - Yulong Chen
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, P.R. China
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, P.R. China
| | - Yue Li
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, P.R. China
| | - Meng Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, P.R. China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, P.R. China
| | - Changli Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, P.R. China
| |
Collapse
|
40
|
TOLEDO AOND, COUTO AMD, MADEIRA MFM, CALDEIRA PC, QUEIROZ-JUNIOR CM, AGUIAR MCFD. Cytokines and chemokines associated with Treg/Th17 response in chronic inflammatory periapical disease. Braz Oral Res 2019; 33:e093. [DOI: 10.1590/1807-3107bor-2019.vol33.0093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/02/2019] [Indexed: 12/23/2022] Open
|
41
|
Yi M, Cai J, Li J, Chen S, Zeng Z, Peng Q, Ban Y, Zhou Y, Li X, Xiong W, Li G, Xiang B. Rediscovery of NF-κB signaling in nasopharyngeal carcinoma: How genetic defects of NF-κB pathway interplay with EBV in driving oncogenesis? J Cell Physiol 2018; 233:5537-5549. [PMID: 29266238 DOI: 10.1002/jcp.26410] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a unique EBV-associated subtype of head and neck cancer, which has the highest incidence in Southern China and eastern South Asia. The interaction between genetic risk factors and environmental challenge, have been considered to contribute to the development of nasopharyngeal carcinogenesis. Constitutive activation of NF-κB signaling has been seen in NPC tissues and is associated with unfavorable prognosis. Recently, several whole exome sequencing study consistently revealed that high frequency mutations of NF-κB pathway negative regulators is common in nasopharyngeal carcinoma, which reinforce the importance of NF-κB driving oncogenesis. This review focuses on the current state of research in role of NF-κB in NPC carcinogenesis. We summarized the newly identified loss of function (LOF) mutations on NF-κB negative regulators leading to it's activation bypass LMP-1 stimulation. We discussed the critical role of NF-κB activation in immortalization and transformation of nasopharygeal epithelium. We also depicted how NF-κB signaling mediated chronic inflammation contribute to persistent EBV infection, immune evasion of EBV infected cells, metabolic reprogramming, and cancer stem cells (CSCs) formation in NPC. Lastly, we discussed the clinical resonance of targeting NF-κB for NPC precise therapy.
Collapse
Affiliation(s)
- Mei Yi
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Department of Dermatology, Xiangya Hospital of Central South University, Changsha, China
| | - Jing Cai
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Junjun Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Shengnan Chen
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhaoyang Zeng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Qian Peng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuanyuan Ban
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ying Zhou
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaoling Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Xiong
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Guiyuan Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Xiang
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
42
|
Sakai K, Maeda S, Yamada Y, Chambers JK, Uchida K, Nakayama H, Yonezawa T, Matsuki N. Association of tumour-infiltrating regulatory T cells with adverse outcomes in dogs with malignant tumours. Vet Comp Oncol 2018; 16:330-336. [DOI: 10.1111/vco.12383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/02/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022]
Affiliation(s)
- K. Sakai
- Department of Veterinary Clinical Pathobiology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - S. Maeda
- Department of Veterinary Clinical Pathobiology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - Y. Yamada
- Department of Veterinary Clinical Pathobiology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - J. K. Chambers
- Department of Veterinary Pathology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - K. Uchida
- Department of Veterinary Pathology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - H. Nakayama
- Department of Veterinary Pathology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - T. Yonezawa
- Department of Veterinary Clinical Pathobiology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - N. Matsuki
- Department of Veterinary Clinical Pathobiology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| |
Collapse
|
43
|
Cattin S, Fellay B, Pradervand S, Trojan A, Ruhstaller T, Rüegg C, Fürstenberger G. Bevacizumab specifically decreases elevated levels of circulating KIT+CD11b+ cells and IL-10 in metastatic breast cancer patients. Oncotarget 2017; 7:11137-50. [PMID: 26840567 PMCID: PMC4905463 DOI: 10.18632/oncotarget.7097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/18/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Whether bevacizumab exerts its anti-tumor properties through systemic effects beyond local inhibition of angiogenesis and how these effects can be monitored in patients, remain largely elusive. To address these questions, we investigated bone marrow-derived cells and cytokines in the peripheral blood of metastatic breast cancer patients undergoing therapy with bevacizumab. METHODS Circulating endothelial cells (CEC), circulating endothelial progenitor (CEP) and circulating CD11b+ cells in metastatic breast cancer patients before and during therapy with paclitaxel alone (n = 11) or in combination with bevacizumab (n = 10) were characterized using flow cytometry, real time PCR and RNASeq. Circulating factors were measured by ELISA. Aged-matched healthy donors were used as baseline controls (n = 12). RESULTS Breast cancer patients had elevated frequencies of CEC, CEP, TIE2+CD11b+ and KIT+CD11b+ cell subsets. CEC decreased during therapy, irrespective of bevacizumab, while TIE2+CD11b+ remained unchanged. KIT+CD11b+ cells decreased in response to paclitaxel with bevacizumab, but not paclitaxel alone. Cancer patients expressed higher mRNA levels of the M2 polarization markers CD163, ARG1 and IL-10 in CD11b+ cells and increased levels of the M2 cytokines IL-10 and CCL20 in plasma. M1 activation markers and cytokines were low or equally expressed in cancer patients compared to healthy donors. Chemotherapy with paclitaxel and bevacizumab, but not with paclitaxel alone, significantly decreased IL-10 mRNA in CD11b+ cells and IL-10 protein in plasma. CONCLUSIONS This pilot study provides evidence of systemic immunomodulatory effects of bevacizumab and identified circulating KIT+CD11b+ cells and IL-10 as candidate biomarkers of bevacizumab activity in metastatic breast cancer patients.
Collapse
Affiliation(s)
- Sarah Cattin
- Department of Medicine, Faculty of Science, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Benoît Fellay
- Central Laboratory, HFR Hôpital Cantonal, CH-1700 Fribourg, Switzerland
| | - Sylvain Pradervand
- Genomic Technologies Facility, Center of Integrative Genomic (CIG), University of Lausanne (UNIL), CH-1015 Lausanne, Switzerland
| | | | - Thomas Ruhstaller
- Breast Center, Kantonsspital St.Gallen, CH-9000 St.Gallen, Switzerland
| | - Curzio Rüegg
- Department of Medicine, Faculty of Science, University of Fribourg, CH-1700 Fribourg, Switzerland
| | | |
Collapse
|
44
|
Human antigen R-regulated CCL20 contributes to osteolytic breast cancer bone metastasis. Sci Rep 2017; 7:9610. [PMID: 28851919 PMCID: PMC5575024 DOI: 10.1038/s41598-017-09040-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/14/2017] [Indexed: 12/19/2022] Open
Abstract
Breast cancer mainly spreads to bone, causing decreased survival of patient. Human antigen R (HuR) and chemokines are important molecules associated with mRNA stability and cell-cell interaction in cancer biology. Here, HuR knockdown inhibited bone metastasis and osteolysis of metastatic breast cancer cells in mice and HuR expression promoted the metastatic ability of cancer cells via CCL20 and GM-CSF. In contrast with the findings for GM-CSF, ELAVL1 and CCL20 expressions were markedly increased in breast tumor tissues and ELAVL1 expression showed a strong positive correlation with CCL20 expression in breast cancer subtypes, particularly the basal-like subtype. Metastasis-free survival and overall survival were decreased in the breast cancer patients with high CCL20 expression. We further confirmed the role of CCL20 in breast cancer bone metastasis. Intraperitoneal administration of anti-CCL20 antibodies inhibited osteolytic breast cancer bone metastasis in mice. Treatment with CCL20 noticeably promoted cell invasion and the secretion of MMP-2/9 in the basal-like triple-negative breast cancer cell lines, not the luminal. Moreover, CCL20 elevated the receptor activator of nuclear factors kappa-B ligand/osteoprotegerin ratio in breast cancer and osteoblastic cells and mediated the crosstalk between these cells. Collectively, HuR-regulated CCL20 may be an attractive therapeutic target for breast cancer bone metastasis.
Collapse
|
45
|
Lee JJ, Kao KC, Chiu YL, Jung CJ, Liu CJ, Cheng SJ, Chang YL, Ko JY, Chia JS. Enrichment of Human CCR6 + Regulatory T Cells with Superior Suppressive Activity in Oral Cancer. THE JOURNAL OF IMMUNOLOGY 2017; 199:467-476. [PMID: 28600287 DOI: 10.4049/jimmunol.1601815] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 05/12/2017] [Indexed: 01/29/2023]
Abstract
Human oral squamous cell carcinoma (OSCC) constitutes an inflammatory microenvironment enriched with chemokines such as CCL20, which promote cancer cell invasion and tumor progression. We found that in OSCC there is a correlation between the expression of CCL20 and FOXP3 mRNA. Therefore, we hypothesized that OSCC may favor the recruitment and retention of regulatory T (Treg) cells that express the CCL20 receptor, CCR6. Interestingly, most (∼60%) peripheral blood Treg cells express CCR6, and CCR6+ Treg cells exhibit an activated effector/memory phenotype. In contrast, a significant portion (>30%) of CCR6- Treg cells were found to be CD45RA+ naive Treg cells. Compared to CCR6- naive or memory Treg cells, CCR6+ Treg cells exhibit stronger suppressive activity and display higher FOXP3 expression along with lower methylation at the Treg-specific demethylated region of the FOXP3 gene. This predominance of CCR6+ Treg cells was also found in the draining lymph nodes and tumor-infiltrating lymphocytes of OSCC patients with early or late clinical staging. Moreover, CCR6+ Treg cells isolated from tumor-infiltrating lymphocytes or draining lymph nodes maintained similar phenotypic and suppressive characteristics ex vivo as did their counterparts isolated from peripheral blood. These results suggest that CCR6 marks activated effector or memory Treg phenotypes with superior suppressive activity in humans.
Collapse
Affiliation(s)
- Jang-Jaer Lee
- Department of Oral Maxillofacial Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Kung-Chi Kao
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yen-Ling Chiu
- Department of Nephrology, Far Eastern Memorial Hospital, Taipei 220, Taiwan.,Graduate Program of Biomedical Informatics, Yuan Ze University, Taoyuan 320, Taiwan
| | - Chiau-Jing Jung
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chung-Ji Liu
- Department of Oral Maxillofacial Surgery, Taipei MacKay Memorial Hospital, Taipei 104, Taiwan
| | - Shih-Jung Cheng
- Department of Oral Maxillofacial Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Yen-Liang Chang
- Department of Otolaryngology, Fu Jen Catholic University College of Medicine, New Taipei City 24205, Taiwan; and
| | - Jenq-Yuh Ko
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Jean-San Chia
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| |
Collapse
|
46
|
Liu W, Wei X, Li L, Wu X, Yan J, Yang H, Song F. CCR4 mediated chemotaxis of regulatory T cells suppress the activation of T cells and NK cells via TGF-β pathway in human non-small cell lung cancer. Biochem Biophys Res Commun 2017; 488:196-203. [PMID: 28487109 DOI: 10.1016/j.bbrc.2017.05.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 05/05/2017] [Indexed: 11/26/2022]
Abstract
C-C chemokine receptor type 4 has been reported to correlate with lung cancer. However, the role of CCR4 in human non-small cell lung cancer patients is not well defined. Here, we demonstrated that increased expression of CCR4 was associated with clinical stage and CCR4 was an independent risk factor for overall survival in NSCLC patients. Moreover, tumor-infiltrating Treg cells were higher expression than matched adjacent tissues in CCR4+ NSCLC. Higher expression of chemokine CCL17 and CCL22 could recruit Treg cells to tumor sites in NSCLC. Treg in TIL exhibit a higher level of suppressive activity on effector T cells than matched adjacent tissues in NSCLC patients. Significant NK cell reduction was observed in tumor regions compared to non-tumor regions. NK cells demonstrated that reduced the killing capacity against target cells and the expression of CD69 + in vitro. The addition of Treg cells from NSCLC patients efficiently inhibited the anti-tumor ability of autologous NK cells. Treatment with anti-TGF-β antibody restored the impaired cytotoxic activity of T cells and NK cells from tumor tissues. Our results indicate that TGF-β plays an important role in impaired Teff cells and NK cells. It will therefore be valuable to develop therapeutic strategies against CCR4 and TGF-β pathway for therapy of NSCLC.
Collapse
Affiliation(s)
- Wei Liu
- Clinical Immunology Laboratory, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Xinyi Wei
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Lin Li
- Clinical Immunology Laboratory, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Xiaobin Wu
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China
| | - Junli Yan
- Clinical Immunology Laboratory, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Hui Yang
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing 400014, PR China
| | - Fangzhou Song
- Department of Biochemistry & Molecular Biology, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Chongqing 400014, PR China.
| |
Collapse
|
47
|
Malhotra J, Jabbour SK, Aisner J. Current state of immunotherapy for non-small cell lung cancer. Transl Lung Cancer Res 2017; 6:196-211. [PMID: 28529902 PMCID: PMC5420529 DOI: 10.21037/tlcr.2017.03.01] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/22/2017] [Indexed: 12/26/2022]
Abstract
Lung cancer is the leading cause of cancer mortality and non-small cell lung cancer (NSCLC) accounts for more than 85% of all lung cancers. Platinum-based doublet chemotherapy is the standard first-line treatment for metastatic NSCLC when genomic testing reveals no targetable alteration such as epidermal growth factor receptor (EGFR) mutations, anaplastic lymphoma kinase (ALK) or ROS1 translocation/re-arrangements. But, chemotherapy produces response rates ranging only between 15-30%. For patients whose disease progresses on first-line chemotherapy, second-line therapy historically consists of taxane-based salvage chemotherapy with a response rate of less than 25%. Recently, immunotherapy with checkpoint inhibitor agents have demonstrated responses in advanced NSCLC, with some patients exhibiting durable responses after discontinuing therapy. In 2015, two immune checkpoint inhibitors targeting programmed cell death-1 (PD-1), nivolumab and pembrolizumab were approved for second-line therapy of NSCLC. In 2016, another checkpoint inhibitor targeting program death-ligand 1 (PD-L1), atezolizumab was approved for the same indication. Moreover, pembrolizumab also received approval in 2016 for first-line NSCLC treatment in patients with high PD-L1 expressing tumors. Immunotherapy for NSCLC has therefore, recently evolved into a true treatment modality with the acceptance of PD-1 and PD-L1 inhibitors as the new standard of care for second-line treatment. However, it is still at the discretion of the treating physician whether to use PD-1 or PD-L1 inhibitor as data to compare these two pathways is lacking. Focus is now also on exploring their role in the adjuvant and consolidation settings for NSCLC as well as on exploring novel combinations combining these agents with chemotherapy or radiation. Research is also needed in the development of predictive and prognostic biomarkers for these agents. While vaccine therapy trials in NSCLC have so far failed to show significant clinical benefit, the demonstration of enhanced immune response in these trials suggest the vaccine therapy needs additional evaluation in combination with other therapeutic modalities especially checkpoint inhibition.
Collapse
Affiliation(s)
- Jyoti Malhotra
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Salma K Jabbour
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Joseph Aisner
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
48
|
Interaction between Treg cells and tumor-associated macrophages in the tumor microenvironment of epithelial ovarian cancer. Oncol Rep 2016; 36:3472-3478. [PMID: 27748885 DOI: 10.3892/or.2016.5136] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/11/2016] [Indexed: 11/05/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy. Inflammatory cells in the EOC microenvironment play a key role in tumor progression. In the present study, we investigated the mechanism of the accumulation of regulatory T cells (Tregs) induced by interleukin-10 (IL-10) derived from tumor-associated macrophages (TAMs) in the EOC microenvironment. The frequency of Tregs and TAMs was detected by immunofluorescence in 40 EOC tissues and 20 benign ovarian tumors, as well as the expression of IL-10 which was assessed by immunohistochemistry. It was found that the frequency of Treg cells and TAMs was significantly higher in the EOC than those in the benign ovarian tumors. The expression of IL-10 was also found to be higher in the EOC than that in the benign tumors. EOC patients with a high frequency of Tregs exhibited a significantly shorter overall survival time compared to those with a low frequency of Tregs. In addition, the expression of IL-10 in ascites and blood serum and the IL-10 released in the co-cultured system supernatants were detected by ELISA. Following CD4+ T-cell co-culturing with macrophages and IL-10, it was observed by flow cytometric analysis that the frequency of Treg cells was increased in the presence of IL-10. It was also established that IL-10 released in the co-cultured supernatants was increased. We also detected the mechanism of Treg cells induced by IL-10 in vivo. The SKOV3 cell tumor volume and weight were much higher in the presence of IL-10 in a mouse subcutaneous model. These data suggest that IL-10 secreted by TAMs increase the frequency of Treg cells through the activation of Foxp3 during T-cell differentiation and promotes tumor progression.
Collapse
|
49
|
Qin A, Coffey DG, Warren EH, Ramnath N. Mechanisms of immune evasion and current status of checkpoint inhibitors in non-small cell lung cancer. Cancer Med 2016; 5:2567-78. [PMID: 27416962 PMCID: PMC5055165 DOI: 10.1002/cam4.819] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/09/2016] [Accepted: 06/14/2016] [Indexed: 12/23/2022] Open
Abstract
In the past several years, immunotherapy has emerged as a viable treatment option for patients with advanced non‐small cell lung cancer (NSCLC) without actionable driver mutations that have progressed on standard chemotherapy. We are also beginning to understand the methods of immune evasion employed by NSCLC which likely contribute to the 20% response rate to immunotherapy. It is also yet unclear what tumor or patient factors predict response to immunotherapy. The objectives of this review are (1) review the immunogenicity of NSCLC (2) describe the mechanisms of immune evasion (3) summarize efforts to target the anti‐program death‐1 (PD‐1) and anti‐program death‐ligand 1(PD‐L1) pathway (4) outline determinants of response to PD‐1/PD‐L1 therapy and (5) discuss potential future areas for research.
Collapse
Affiliation(s)
- Angel Qin
- Division of Hematology and Oncology, Department of Medicine, University of Michigan, Ann Arbor, Michigan.
| | - David G Coffey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Edus H Warren
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Nithya Ramnath
- Division of Hematology and Oncology, Department of Medicine, University of Michigan, Ann Arbor, Michigan.,VA Ann Arbor Health Care System, Ann Arbor, Michigan
| |
Collapse
|