1
|
De Wilt L, Sobocki BK, Jansen G, Tabeian H, de Jong S, Peters GJ, Kruyt F. Mechanisms underlying reversed TRAIL sensitivity in acquired bortezomib-resistant non-small cell lung cancer cells. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:12. [PMID: 38835345 PMCID: PMC11149110 DOI: 10.20517/cdr.2024.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 06/06/2024]
Abstract
Aim: The therapeutic targeting of the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) death receptors in cancer, including non-small cell lung cancer (NSCLC), is a widely studied approach for tumor selective apoptotic cell death therapy. However, apoptosis resistance is often encountered. The main aim of this study was to investigate the apoptotic mechanism underlying TRAIL sensitivity in three bortezomib (BTZ)-resistant NSCLC variants, combining induction of both the intrinsic and extrinsic pathways. Methods: Sensitivity to TRAIL in BTZ-resistant variants was determined using a tetrazolium (MTT) and a clonogenic assay. A RT-qPCR profiling mRNA array was used to determine apoptosis pathway-specific gene expression. The expression of these proteins was determined through ELISA assays and western Blotting, while apoptosis (sub-G1) and cytokine expression were determined using flow cytometry. Apoptotic genes were silenced by specific siRNAs. Lipid rafts were isolated with fractional ultracentrifugation. Results: A549BTZR (BTZ-resistant) cells were sensitive to TRAIL in contrast to parental A549 cells, which are resistant to TRAIL. TRAIL-sensitive H460 cells remained equally sensitive for TRAIL as H460BTZR. In A549BTZR cells, we identified an increased mRNA expression of TNFRSF11B [osteoprotegerin (OPG)] and caspase-1, -4 and -5 mRNAs involved in cytokine activation and immunogenic cell death. Although the OPG, interleukin-6 (IL-6), and interleukin-8 (IL-8) protein levels were markedly enhanced (122-, 103-, and 11-fold, respectively) in the A549BTZR cells, this was not sufficient to trigger TRAIL-induced apoptosis in the parental A549 cells. Regarding the extrinsic apoptotic pathway, the A549BTZR cells showed TRAIL-R1-dependent TRAIL sensitivity. The shift of TRAIL-R1 from non-lipid into lipid rafts enhanced TRAIL-induced apoptosis. In the intrinsic apoptotic pathway, a strong increase in the mRNA and protein levels of the anti-apoptotic myeloid leukemia cell differentiation protein (Mcl-1) and B-cell leukemia/lymphoma 2 (Bcl-2) was found, whereas the B-cell lymphoma-extra large (Bcl-xL) expression was reduced. However, the stable overexpression of Bcl-xL in the A549BTZR cells did not reverse the TRAIL sensitivity in the A549BTZR cells, but silencing of the BH3 Interacting Domain Death Agonist (BID) protein demonstrated the importance of the intrinsic apoptotic pathway, regardless of Bcl-xL. Conclusion: In summary, increased sensitivity to TRAIL-R1 seems predominantly related to the relocalization into lipid rafts and increased extrinsic and intrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Leonie De Wilt
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUMC, Vrije Universiteit Amsterdam, Amsterdam 1007MB, the Netherlands
- Authors contributed equally
| | - Bartosz Kamil Sobocki
- Department of Biochemistry, Medical University of Gdańsk, Gdańsk 80-210, Poland
- Authors contributed equally
| | - Gerrit Jansen
- Department of Rheumatology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Hessan Tabeian
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUMC, Vrije Universiteit Amsterdam, Amsterdam 1007MB, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Godefridus J. Peters
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUMC, Vrije Universiteit Amsterdam, Amsterdam 1007MB, the Netherlands
- Department of Biochemistry, Medical University of Gdańsk, Gdańsk 80-210, Poland
| | - Frank Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| |
Collapse
|
2
|
Lin NC, Shih YH, Chiu KC, Li PJ, Yang HW, Lan WC, Hsia SM, Wang TH, Shieh TM. Association of rs9679162 Genetic Polymorphism and Aberrant Expression of Polypeptide N-Acetylgalactosaminyltransferase 14 (GALNT14) in Head and Neck Cancer. Cancers (Basel) 2022; 14:cancers14174217. [PMID: 36077753 PMCID: PMC9454803 DOI: 10.3390/cancers14174217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Neoadjuvant chemotherapy was performed before surgery. Because the tumor itself and the surrounding vascular bed were not damaged, the chemotherapy we performed could have good drug delivery. After the operation, the volume of the tumor can be reduced to facilitate surgery or radiotherapy. However, neoadjuvant chemotherapy also delays the patient’s time to receive main therapy. The physician must make sure that it has a good response and does not allow disease progression in the patient during neoadjuvant chemotherapy. Therefore, predicting the treatment response of neoadjuvant chemotherapy can shorten the treatment time, reduce the harm of chemotherapy side effects, and avoid the occurrence of drug resistance. The results of this study showed that GALNT14-rs9679162 and mRNA expression were associated with post-treatment survival in head and neck cancer. It can be used as an indicator to predict the treatment response of neoadjuvant chemotherapy. Abstract The polypeptide N-Acetylgalactosaminyltransferase 14 (GALNT14) rs9679162 and mRNA expression were associated with treatment outcome in various cancers. However, the relation of GALNT14 and head and neck cancer were nuclear. A total of 199 patients with head and neck squamous cell carcinoma (HNSCC) were collected in this study, including oral SCC (OSCC), oropharyngeal SCC (OPSCC), laryngeal SCC (LSCC), and others. The DNA and RNA of cancer tissues were extracted using the TRI Reagent method. The rs9679162 was analyzed using polymerase chain reaction (PCR) and sequencing methods in 199 DNA specimens, and the mRNA expression was analyzed using quantitative reverse transcription PCR (RT-qPCR) methods in 68 paired RNA specimens of non-cancerous matched tissues (NCMT) and tumor tissues. The results showed that the genotype of TT, TG, and GG appeared at 30%, 44%, and 26%, respectively. Non-TT genotype or G alleotype were associated with alcohol, betel nut, and cigarette using among patients with OSCC, and it also affected the treatment and survival of patients with OSCC and LSCC. High GALNT14 mRNA expression levels increased lymphatic metastasis of patients with HNSCC, and treatment and survival in patients with OPSCC. Overall, the GALNT14-rs9679162 genotype and mRNA expression level can be used as indicators of HNSCC treatment prognosis.
Collapse
Affiliation(s)
- Nan-Chin Lin
- Department of Oral and Maxillofacial Surgery, Show Chwan Memorial Hospital, Changhua 500009, Taiwan
- Department of Oral and Maxillofacial Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan
| | - Kuo-Chou Chiu
- Division of Oral Diagnosis and Family Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Po-Jung Li
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Hui-Wu Yang
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Wan-Chen Lan
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan
- Correspondence: (S.-M.H.); (T.-M.S.); Tel.: +886-4-2205-3366 (ext. 2316) (T.-M.S.)
| | - Tong-Hong Wang
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33305, Taiwan
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
- Correspondence: (S.-M.H.); (T.-M.S.); Tel.: +886-4-2205-3366 (ext. 2316) (T.-M.S.)
| |
Collapse
|
3
|
Liao M, Qin R, Huang W, Zhu HP, Peng F, Han B, Liu B. Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. J Hematol Oncol 2022; 15:44. [PMID: 35414025 PMCID: PMC9006445 DOI: 10.1186/s13045-022-01260-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of human breast cancer with one of the worst prognoses, with no targeted therapeutic strategies currently available. Regulated cell death (RCD), also known as programmed cell death (PCD), has been widely reported to have numerous links to the progression and therapy of many types of human cancer. Of note, RCD can be divided into numerous different subroutines, including autophagy-dependent cell death, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis and anoikis. More recently, targeting the subroutines of RCD with small-molecule compounds has been emerging as a promising therapeutic strategy, which has rapidly progressed in the treatment of TNBC. Therefore, in this review, we focus on summarizing the molecular mechanisms of the above-mentioned seven major RCD subroutines related to TNBC and the latest progress of small-molecule compounds targeting different RCD subroutines. Moreover, we further discuss the combined strategies of one drug (e.g., narciclasine) or more drugs (e.g., torin-1 combined with chloroquine) to achieve the therapeutic potential on TNBC by regulating RCD subroutines. More importantly, we demonstrate several small-molecule compounds (e.g., ONC201 and NCT03733119) by targeting the subroutines of RCD in TNBC clinical trials. Taken together, these findings will provide a clue on illuminating more actionable low-hanging-fruit druggable targets and candidate small-molecule drugs for potential RCD-related TNBC therapies.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Fu Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Razeghian E, Suksatan W, Sulaiman Rahman H, Bokov DO, Abdelbasset WK, Hassanzadeh A, Marofi F, Yazdanifar M, Jarahian M. Harnessing TRAIL-Induced Apoptosis Pathway for Cancer Immunotherapy and Associated Challenges. Front Immunol 2021; 12:699746. [PMID: 34489946 PMCID: PMC8417882 DOI: 10.3389/fimmu.2021.699746] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/05/2021] [Indexed: 01/04/2023] Open
Abstract
The immune cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted rapidly evolving attention as a cancer treatment modality because of its competence to selectively eliminate tumor cells without instigating toxicity in vivo. TRAIL has revealed encouraging promise in preclinical reports in animal models as a cancer treatment option; however, the foremost constraint of the TRAIL therapy is the advancement of TRAIL resistance through a myriad of mechanisms in tumor cells. Investigations have documented that improvement of the expression of anti-apoptotic proteins and survival or proliferation involved signaling pathways concurrently suppressing the expression of pro-apoptotic proteins along with down-regulation of expression of TRAILR1 and TRAILR2, also known as death receptor 4 and 5 (DR4/5) are reliable for tumor cells resistance to TRAIL. Therefore, it seems that the development of a therapeutic approach for overcoming TRAIL resistance is of paramount importance. Studies currently have shown that combined treatment with anti-tumor agents, ranging from synthetic agents to natural products, and TRAIL could result in induction of apoptosis in TRAIL-resistant cells. Also, human mesenchymal stem/stromal cells (MSCs) engineered to generate and deliver TRAIL can provide both targeted and continued delivery of this apoptosis-inducing cytokine. Similarly, nanoparticle (NPs)-based TRAIL delivery offers novel platforms to defeat barricades to TRAIL therapeutic delivery. In the current review, we will focus on underlying mechanisms contributed to inducing resistance to TRAIL in tumor cells, and also discuss recent findings concerning the therapeutic efficacy of combined treatment of TRAIL with other antitumor compounds, and also TRAIL-delivery using human MSCs and NPs to overcome tumor cells resistance to TRAIL.
Collapse
Affiliation(s)
- Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Suleimanyah, Suleimanyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Iraq
| | - Dmitry O. Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
5
|
Retroactivity induced operating regime transition in an enzymatic futile cycle. PLoS One 2021; 16:e0250830. [PMID: 33930059 PMCID: PMC8087108 DOI: 10.1371/journal.pone.0250830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/14/2021] [Indexed: 11/19/2022] Open
Abstract
Activated phosphorylation-dephosphorylation biochemical reaction cycles are a class of enzymatic futile cycles. A futile cycle such as a single MAPK cascade governed by two underlying enzymatic reactions permits Hyperbolic (H), Signal transducing (ST), Threshold-hyperbolic (TH) and Ultrasensitive (U) operating regimes that characterize input-output behaviour. Retroactive signalling caused by load due to sequestration of phosphorylated or unphosphorylated form of the substrate in a single enzymatic cascade without explicit feedback can introduce two-way communication, a feature not possible otherwise. We systematically characterize the operating regimes of a futile cycle subject to retroactivity in either of the substrate forms. We demonstrate that increasing retroactivity strength, which quantifies the downstream load, can trigger five possible regime transitions. Retroactivity strength is a reflection of the fraction of the substrate sequestered by its downstream target. Remarkably, the minimum required retroactivity strength to evidence any sequestration triggered regime transition demands 23% of the substrate bound to its downstream target. This minimum retroactivity strength corresponds to the transition of the dose-response curve from ST to H regime. We show that modulation of the saturation and unsaturation levels of the enzymatic reactions by retroactivity is the fundamental mechanism governing operating regime transition.
Collapse
|
6
|
Kielbik M, Szulc-Kielbik I, Klink M. Impact of Selected Signaling Proteins on SNAIL 1 and SNAIL 2 Expression in Ovarian Cancer Cell Lines in Relation to Cells' Cisplatin Resistance and EMT Markers Level. Int J Mol Sci 2021; 22:ijms22020980. [PMID: 33478150 PMCID: PMC7835952 DOI: 10.3390/ijms22020980] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
It has been increasingly recognized that SNAIL1 and SNAIL2, as major EMT-inducers, might also be involved in drug resistance of cancer cells. We sought to determine a relation between SNAIL1/2, E-cadherin and N-cadherin expression, as well as ovarian cancer cells’ resistance to cisplatin and EMT markers’ level. Thus, four ovarian cancer cell lines, were used: A2780, A2780cis, SK-OV-3 and OVCAR-3. We assessed the impact of ERK1/2, AKT and STAT3 proteins (chosen by the profiling activity of over 40 signaling proteins) on SNAIL1/2 expression, along with E-cadherin and N-cadherin levels. We showed that expression of SNAIL1 and N-cadherin are the highest in cisplatin-resistant A2780cis and SK-OV-3 cells, while high SNAIL2 and E-cadherin levels were observed in cisplatin-sensitive A2780 cells. The highest E-cadherin level was noticed in OVCAR-3 cells. SNAIL1/2 expression was dependent on ERK1/2 activity in cisplatin-resistant and potentially invasive SK-OV-3 and OVCAR-3 cells. STAT-3 regulates expression of SNAIL1/2 and leads to the so-called “cadherin switch” in cancer cells, independently of their chemoresistance. In conclusion, SNAIL1, but not SNAIL2, seems to be involved in ovarian cancer cells’ cisplatin resistance. STAT3 is a universal factor determining the expression of SNAIL1/2 in ovarian cancer cells regardless of their chemoresitance or invasive capabilities.
Collapse
|
7
|
Singh D, Tewari M, Singh S, Narayan G. Revisiting the role of TRAIL/TRAIL-R in cancer biology and therapy. Future Oncol 2021; 17:581-596. [PMID: 33401962 DOI: 10.2217/fon-2020-0727] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF superfamily, can induce apoptosis in cancer cells, sparing normal cells when bound to its associated death receptors (DR4/DR5). This unique mechanism makes TRAIL a potential anticancer therapeutic agent. However, clinical trials of recombinant TRAIL protein and TRAIL receptor agonist monoclonal antibodies have shown disappointing results due to its short half-life, poor pharmacokinetics and the resistance of the cancer cells. This review summarizes TRAIL-induced apoptotic and survival pathways as well as mechanisms leading to apoptotic resistance. Recent development of methods to overcome cancer cell resistance to TRAIL-induced apoptosis, such as protein modification, combination therapy and TRAIL-based gene therapy, appear promising. We also discuss the challenges and opportunities in the development of TRAIL-based therapies for the treatment of human cancers.
Collapse
Affiliation(s)
- Deepika Singh
- Department of Molecular & Human Genetics, Cancer Genetics Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mallika Tewari
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sunita Singh
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Gopeshwar Narayan
- Department of Molecular & Human Genetics, Cancer Genetics Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
8
|
Cardoso Alves L, Corazza N, Micheau O, Krebs P. The multifaceted role of TRAIL signaling in cancer and immunity. FEBS J 2020; 288:5530-5554. [PMID: 33215853 DOI: 10.1111/febs.15637] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that can lead to the induction of apoptosis in tumor or infected cells. However, activation of TRAIL signaling may also trigger nonapoptotic pathways in cancer and in nontransformed cells, that is, immune cells. Here, we review the current knowledge on noncanonical TRAIL signaling. The biological outcomes of TRAIL signaling in immune and malignant cells are presented and explained, with a focus on the role of TRAIL for natural killer (NK) cell function. Furthermore, we highlight the technical difficulties in dissecting the precise molecular mechanisms involved in the switch between apoptotic and nonapoptotic TRAIL signaling. Finally, we discuss the consequences thereof for a therapeutic manipulation of TRAIL in cancer and possible approaches to bypass these difficulties.
Collapse
Affiliation(s)
| | - Nadia Corazza
- Institute of Pathology, University of Bern, Switzerland
| | - Olivier Micheau
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
| | | |
Collapse
|
9
|
Tianma Gouteng Decoction Exerts Cardiovascular Protection by Upregulating OPG and TRAIL in Spontaneously Hypertensive Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3439191. [PMID: 33133215 PMCID: PMC7593748 DOI: 10.1155/2020/3439191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/29/2020] [Accepted: 10/10/2020] [Indexed: 11/24/2022]
Abstract
Tianma Gouteng Decoction (TGD) is widely used in traditional Chinese medicine for the treatment of hypertension and its related complications, but its mechanisms remain incompletely defined. We now aim to assess the protective effect of TGD against cardiovascular damage and to investigate its characteristics and underlying mechanisms. Blood pressure was determined in TGD-treated spontaneously hypertensive rats (SHR) by noninvasive measurements. Echocardiography was performed to assess cardiac function and structure and sirius red staining to evaluate cardiac fibrosis, and the degree of vascular remodeling was evaluated. Additionally, vasoconstriction and relaxation factor expression changes were examined by means of ELISA. Protein expression changes were verified by western blot. Compared with untreated SHR, TGD-treated SHR exhibited cardiovascular traits more akin to those of the normotensive Wistar Kyoto (WKY) rats. That is, they had lower diastolic blood pressure, systolic blood pressure and mean BP, and increased expression of vasodilation factor. We also found that TGD reduces ventricular and vascular remodeling and improves cardiac function in SHR. Finally, we tested the antiapoptosis effect TGD exerts in SHR, ostensibly by upregulating the expression of OPG, TRAIL, and death receptor 5 (DR5) and downregulating caspases 8, 7, and 3. TRAIL may also exert antiapoptotic and prosurvival effects by upregulating AKT expression. Therefore, TGD may reverse cardiovascular remodeling in SHR by upregulating the expression of OPG and TRAIL, upregulating AKT, and inhibiting apoptosis, at least in part. For the first time, we have shown that OPG and TRAIL play complimentary cardioprotective roles in SHR.
Collapse
|
10
|
Liu C, Li Z, Xu L, Shi Y, Zhang X, Shi S, Hou K, Fan Y, Li C, Wang X, Zhou L, Liu Y, Qu X, Che X. GALNT6 promotes breast cancer metastasis by increasing mucin-type O-glycosylation of α2M. Aging (Albany NY) 2020; 12:11794-11811. [PMID: 32559179 PMCID: PMC7343513 DOI: 10.18632/aging.103349] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 05/14/2020] [Indexed: 01/22/2023]
Abstract
Breast cancer is the most lethal malignancy in women. N-acetylgalactosaminyltransferase 6 (GALNT6) is an enzyme which mediates the initial step of mucin-type O-glycosylation, and has been reported to be involved in mammary carcinogenesis. However, the molecular mechanism of GALNT6 in breast cancer metastasis has not been fully explored. In this study, based on online database analyses and tissue microarrays, the overall survival (OS) of breast cancer patients with high expression of GALNT6 was found to be shorter than those with low expression of GALNT6. Also, high GALNT6 expression was positively correlated with advanced pN stage and pTNM stage. GALNT6 was shown to be able to promote the migration and invasion of breast cancer cells, and enhance the level of mucin-type O-glycosylation of substrates in the supernatants of breast cancer cells. Qualitative mucin-type glycosylomics analysis identified α2M as a novel substrate of GALNT6. Further investigation showed that GALNT6 increased O-glycosylation of α2M, and the following activation of the downstream PI3K/Akt signaling pathway was involved in the promotion of migration and invasion of breast cancer cells. This study identified a new substrate of GALNT6 and provides novel understanding of the role of GALNT6 in promoting metastasis and poor prognosis in breast cancer.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Breast/pathology
- Breast/surgery
- Breast Neoplasms/diagnosis
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Breast Neoplasms/surgery
- Breast Neoplasms, Male/diagnosis
- Breast Neoplasms, Male/mortality
- Breast Neoplasms, Male/pathology
- Breast Neoplasms, Male/surgery
- Carcinoma, Ductal, Breast/diagnosis
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/secondary
- Carcinoma, Ductal, Breast/surgery
- Cell Line, Tumor
- Datasets as Topic
- Female
- Follow-Up Studies
- Glycosylation
- Humans
- Kaplan-Meier Estimate
- Male
- Mastectomy
- Middle Aged
- N-Acetylgalactosaminyltransferases/metabolism
- Neoplasm Metastasis/pathology
- Neoplasm Staging
- Phosphatidylinositol 3-Kinases/metabolism
- Prognosis
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
- Tissue Array Analysis
- alpha-Macroglobulins/metabolism
- Polypeptide N-acetylgalactosaminyltransferase
Collapse
Affiliation(s)
- Chang Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Department of Internal Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Lu Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yu Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaojie Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Sha Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yibo Fan
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaoxun Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Lu Zhou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
11
|
Hummitzsch L, Albrecht M, Zitta K, Hess K, Parczany K, Rusch R, Cremer J, Steinfath M, Haneya A, Faendrich F, Berndt R. Human monocytes subjected to ischaemia/reperfusion inhibit angiogenesis and wound healing in vitro. Cell Prolif 2020; 53:e12753. [PMID: 31957193 PMCID: PMC7048205 DOI: 10.1111/cpr.12753] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/15/2019] [Accepted: 12/13/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES The sequence of initial tissue ischaemia and consecutive blood flow restoration leads to ischaemia/reperfusion (I/R) injury, which is typically characterized by a specific inflammatory response. Migrating monocytes seem to mediate the immune response in ischaemic tissues and influence detrimental as well as regenerative effects during I/R injury. MATERIALS AND METHODS To clarify the role of classical monocytes in I/R injury, isolated human monocytes were subjected to I/R in vitro (3 hours ischaemia followed by 24 hours of reperfusion). Cellular resilience, monocyte differentiation, cytokine secretion, as well as influence on endothelial tube formation, migration and cell recovery were investigated. RESULTS We show that I/R supported an enhanced resilience of monocytes and induced intracellular phosphorylation of the prosurvival molecules Erk1/2 and Akt. FACS analysis showed no major alteration in monocyte subtype differentiation and surface marker expression under I/R. Further, our experiments revealed that I/R changes the cytokine secretion pattern, release of angiogenesis associated proteins and MMP-9 activity in supernatants of monocytes exposed to I/R. Supernatants from monocytes subjected to I/R attenuated endothelial tube formation as indicator for angiogenesis as well as endothelial cell migration and recovery. CONCLUSION In summary, monocytes showed no significant change in cellular integrity and monocyte subtype after I/R. Functionally, monocytes might have a rather detrimental influence during the initial phase of I/R, suppressing endothelial cell migration and neoangiogenesis.
Collapse
Affiliation(s)
- Lars Hummitzsch
- Department of Anesthesiology and Intensive Care MedicineUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care MedicineUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Karina Zitta
- Department of Anesthesiology and Intensive Care MedicineUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Katharina Hess
- Institute of NeuropathologyUniversity Hospital MuensterMuensterGermany
| | - Kerstin Parczany
- Department of Anesthesiology and Intensive Care MedicineUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - René Rusch
- Department of Cardiovascular SurgeryUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Jochen Cremer
- Department of Cardiovascular SurgeryUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Markus Steinfath
- Department of Anesthesiology and Intensive Care MedicineUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Assad Haneya
- Department of Cardiovascular SurgeryUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Fred Faendrich
- Department of Applied Cell TherapyUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Rouven Berndt
- Department of Cardiovascular SurgeryUniversity Hospital of Schleswig‐HolsteinKielGermany
| |
Collapse
|
12
|
Wong YL, Lautenschläger I, Zitta K, Hummitzsch L, Parczany K, Steinfath M, Weiler N, Albrecht M. Effects of hydroxyethyl starch (HES 130/0.42) on endothelial and epithelial permeability in vitro. Toxicol In Vitro 2019; 60:36-43. [PMID: 31059770 DOI: 10.1016/j.tiv.2019.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/18/2019] [Accepted: 05/02/2019] [Indexed: 01/22/2023]
Abstract
Hydroxyethyl starch (HES) is employed to sustain normovolemia in patients. Using a perfused organ model, we recently showed that HES impairs the intestinal barrier which is constituted of endothelial and epithelial cell layers. However, the target cells and molecular actions of HES in the intestine are mainly unknown. Employing a model of human endothelial (HUVEC) and intestinal epithelial cells (Caco-2), we investigated the impact of HES, albumin and HES/albumin on cellular integrity/permeability and evaluated underlying molecular mechanisms. Monolayers of HUVEC and Caco-2 were cultured with HES (3%), albumin (3%) or HES/albumin (1.5%/1.5%). Integrity and permeability of the cell layers were evaluated by FITC-dextran transfer, measurements of cell detachment, vitality, cell volume, LDH release and caspase-3/7 activity. Cellular mechanisms were analyzed by Westernblotting for P-akt, P-erk, claudin-3 and I-FABP. HES application resulted in higher numbers of non-adherent/floating HUVEC cells (P<0.05) but did not change vitality or cell volume. Both, HES and HES/albumin increased the permeability of HUVEC monolayers (P<0.001), while LDH release, caspase-3/7 activity, akt/erk phosphorylation and claudin-3 expression were not affected. HES and HES/albumin did not change any of the parameters in cultures of Caco-2 cells. HES is able to disturb the integrity of the endothelial but not the epithelial barrier in vitro. HES effects are unrelated to cell damage and apoptosis but may involve reduced cell-cell or cell-matrix adhesion.
Collapse
Affiliation(s)
- Yuk Lung Wong
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center, Schleswig-Holstein, Kiel, Germany.
| | - Ingmar Lautenschläger
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center, Schleswig-Holstein, Kiel, Germany
| | - Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center, Schleswig-Holstein, Kiel, Germany
| | - Lars Hummitzsch
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center, Schleswig-Holstein, Kiel, Germany
| | - Kerstin Parczany
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center, Schleswig-Holstein, Kiel, Germany
| | - Markus Steinfath
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center, Schleswig-Holstein, Kiel, Germany
| | - Norbert Weiler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center, Schleswig-Holstein, Kiel, Germany
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center, Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
13
|
Zhao Z, Li L, Du P, Ma L, Zhang W, Zheng L, Lan B, Zhang B, Ma F, Xu B, Zhan Q, Song Y. Transcriptional Downregulation of miR-4306 serves as a New Therapeutic Target for Triple Negative Breast Cancer. Theranostics 2019; 9:1401-1416. [PMID: 30867840 PMCID: PMC6401504 DOI: 10.7150/thno.30701] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/23/2018] [Indexed: 12/31/2022] Open
Abstract
Rationale: Triple-negative breast cancer (TNBC) is characterized by the absence of estrogen receptor alpha (ER-α), human epidermal growth factor receptor 2 (HER2) and progesterone receptor (PR) expression, but the effect of lacking the three factors on TNBC is unclear. Whether loss of the three factors contributes to deregulate genes that participate in the progress of TNBC remains unknown. Methods: We performed microRNA arrays and comprehensive analysis to screen for miRNAs that are transcriptionally regulated by ER-α, HER2 and PR. Functional assays and molecular mechanism studies were used to investigate the role of miR-4306 in TNBC. An orthotopic mouse model of TNBC was used to evaluate the therapeutic potential of a cholesterol-conjugated miR-4306 mimic. Results: We found that miR-4306 is transcriptionally regulated by ER-α, HER2 and PR, and the downregulation of miR-4306 in TNBC is caused by the loss of ER-α, HER2 and PR. Clinically, low miR-4306 expression is strongly associated with lymph node metastasis and poor survival for TNBC. Upregulation of miR-4306 greatly suppresses TNBC cell proliferation, migration and invasion and abrogates angiogenesis and lymphangiogenesis in vitro. According to in vivo models, miR-4306 overexpression considerably inhibits TNBC growth, lung metastasis, angiogenesis and lymph node metastasis. Mechanistic analyses indicate that miR-4306 directly targets SIX1/Cdc42/VEGFA to inactivate the signaling pathways mediated by SIX1/Cdc42/VEGFA. Finally, the orthotopic mouse model of TNBC reveals that miR-4306 mimic can be used for TNBC treatment in combination with cisplatin. Conclusions: Our findings suggest that miR-4306 acts as a tumor suppressor in TNBC and is a potential therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Li
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Peina Du
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Liying Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Weimin Zhang
- Laboratory of Molecular Oncology, Peking University Cancer Hospital, Beijing 100142, China
| | - Leilei Zheng
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bo Lan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bailin Zhang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bo Xu
- Breast Cancer Center and the Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Laboratory of Molecular Oncology, Peking University Cancer Hospital, Beijing 100142, China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
14
|
Xie Y, Jin P, Sun X, Jiao T, Zhang Y, Li Y, Sun M. SIX1 is upregulated in gastric cancer and regulates proliferation and invasion by targeting the ERK pathway and promoting epithelial-mesenchymal transition. Cell Biochem Funct 2018; 36:413-419. [PMID: 30379332 DOI: 10.1002/cbf.3361] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/29/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022]
Abstract
Sine oculis homeobox homologue 1 (SIX1) is a Six class homeobox gene conserved throughout many species. It has been reported to act as an oncogene and is overexpressed in many cancers. However, the function and regulatory mechanism of SIX1 in gastric cancer (GC) remains unclear. In our study, we detected protein levels of SIX1 via immunohistochemistry (IHC) and its proliferation and invasion effects via CCK8 and transwell assays. Additionally, expression of cyclin D1, MMP2, p-ERK, and EMT-related proteins was measured by western blotting. We found that SIX1 had significantly higher expression in GC tissues and that it could promote GC cell proliferation and invasion. Also, overexpression of SIX1 increased the expression of cyclin D1, MMP2, p-ERK, and EMT-related proteins, which could all be inhibited by knocking down SIX1. In conclusion, SIX1 is upregulated in GC tissues. It can promote GC cell proliferation by targeting cyclin D1, invasion via ERK signalling, and EMT pathways by targeting MMP2 and E-cadherin. SIGNIFICANCE OF THE STUDY: Our study showed that SIX1 was upregulated in GC tissues, and promoted GC cell proliferation by targeting cyclin D1, invasion via ERK signalling, and EMT pathways by targeting MMP2 and E-cadherin. These results suggested the potential regulatory mechanism of SIX1 in proliferation and invasion of gastric cancer.
Collapse
Affiliation(s)
- Ying Xie
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Peng Jin
- Department of the Third Urology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xuren Sun
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Taiwei Jiao
- Department of Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yining Zhang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yue Li
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Mingjun Sun
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
15
|
Tetraspanin 1 inhibits TNFα-induced apoptosis via NF-κB signaling pathway in alveolar epithelial cells. Inflamm Res 2018; 67:951-964. [DOI: 10.1007/s00011-018-1189-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 11/28/2022] Open
|
16
|
Jayasooriya RGPT, Molagoda IMN, Park C, Jeong JW, Choi YH, Moon DO, Kim MO, Kim GY. Molecular chemotherapeutic potential of butein: A concise review. Food Chem Toxicol 2017; 112:1-10. [PMID: 29258953 DOI: 10.1016/j.fct.2017.12.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022]
Abstract
Butein is a biologically active flavonoid isolated from the bark of Rhus verniciflua Stokes, which is known to have therapeutic potential against various cancers. Notably, butein inhibits cancer cell growth by inducing G2/M phase arrest and apoptosis. Butein-induced G2/M phase arrest is associated with increased phosphorylation of ataxia telangiectasia mutated (ATM) and Chk1/2, and consequently, with reduced cdc25C levels. In addition, butein-induced apoptosis is mediated through the activation of caspase-3, which is associated with changes in the expression of Bcl-2 and Bax proteins. Intriguingly, butein sensitizes cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis via ERK-mediated Sp1 activation, which promotes the transcription of specific death receptor 5. Butein also inhibits the migration and invasion of human cancer cells by suppressing nuclear factor-κB- and extracellular signal-regulated kinases 1/2-mediated expression of matrix metalloproteinase-9 and vascular endothelial growth factor. Additionally, butein downregulates the expression of human telomerase reverse transcriptase and causes a concomitant decrease in telomerase activity. These findings provide the basis for the pharmaceutical development of butein. The aim of this review is to provide an update on the mechanisms underlying the anticancer activity of butein, with a special focus on its effects on different cellular signaling cascades.
Collapse
Affiliation(s)
- Rajapaksha Gedara Prasad Tharanga Jayasooriya
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; Department of Biological Sciences, Faculty of Applied Science, University of Rajarata, Mihintale 50300, Sri Lanka
| | | | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dongeui University, Busan 67340, Republic of Korea
| | - Jin-Woo Jeong
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Dong-Oh Moon
- Department of Biology Education, Daegu University, Jillyang, Gyeongsan, Gyeonsangbuk-do 38453, Republic of Korea
| | - Mun-Ock Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungcheongbuk-do 28116, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
17
|
Zhang L, Wang X, Wang R, Zheng X, Li N, Li H, Cao X, Zhou B, Lin Y, Yang L. Baicalin potentiates TRAIL‑induced apoptosis through p38 MAPK activation and intracellular reactive oxygen species production. Mol Med Rep 2017; 16:8549-8555. [PMID: 28983599 DOI: 10.3892/mmr.2017.7633] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 08/11/2017] [Indexed: 11/05/2022] Open
Abstract
The combination of tumor necrosis factor‑related apoptosis‑inducing ligand (TRAIL) with other agents has been recognized as a promising strategy to overcome TRAIL resistance in cancer cells. Baicalin (5, 6‑dihydroxy‑7‑o‑glucuronide flavone) is a flavonoid from the root of the medicinal herb Scutellaria baicalensis Georgi, which has been reported to exert antioxidant, anti‑inflammatory, antiviral and anticancer activities in vitro. However, the effect of baicalin on TRAIL‑induced cytotoxicity has not been previously reported. In the present study, the effect of combining TRAIL and baicalin was investigated in non‑small cell lung cancer cell lines. The results revealed that baicalin was able to sensitize A549 and H2009 cells to TRAIL‑induced apoptosis. This was detected by the potentiation of poly‑adenosine‑5'‑diphosphate‑ribose polymerase cleavage and Annexin V‑fluorescein isothiocyanate staining of cells co‑treated with baicalin and TRAIL. In addition, p38 mitogen‑activated protein kinase was activated in baicalin and TRAIL co‑treated cancer cells, whereas the p38 inhibitor SB203580 effectively suppressed cell death within the co‑treated cells. Butylated hydroxyanisole and N‑acetyl‑cysteine, known reactive oxygen species (ROS) scavengers, significantly suppressed the potentiated cytotoxicity induced by baicalin and TRAIL co‑treatment. The present study is the first, to the best of our knowledge, to demonstrate that baicalin enhances the anticancer activity of TRAIL via p38 activation and ROS accumulation, and may be exploited for anticancer therapy.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Anatomy, Histology and Embryology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Xia Wang
- Department of Immunology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ruixue Wang
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xuelian Zheng
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Na Li
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Huannan Li
- Department of Anatomy, Histology and Embryology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Xiaoren Cao
- Department of Anatomy, Histology and Embryology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Bin Zhou
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yong Lin
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lan Yang
- Department of Anatomy, Histology and Embryology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| |
Collapse
|
18
|
microRNA-488 inhibits chemoresistance of ovarian cancer cells by targeting Six1 and mitochondrial function. Oncotarget 2017; 8:80981-80993. [PMID: 29113360 PMCID: PMC5655255 DOI: 10.18632/oncotarget.20941] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of miR-488 has been implicated in several human cancers. In this study, we aim to explore its expression and biological function in ovarian cancers. We found miR-488 expression was downregulated in ovarian cancer tissues. Using CCK8 and colony formation assay showed that miR-488 inhibited SKOV3 cell proliferation and colony formation, with downregulation of cyclin D1 and cyclin E protein. While miR-488 inhibitor promoted OVCAR3 cell growth and colony formation. Cell viability and Annexin V/PI staining showed that miR-488 downregulated cell survival and increased apoptosis rate when treated with cisplatin and paclitaxel. Further experiments using MitoTracker and JC-1 staining indicated that miR-488 regulated mitochondrial fission/fusion balance and inhibited mitochondrial membrane potential, with p-Drp1, Drp1 and Fis1 downregulation. Luciferase reporter assay showed that Six1 is a target of miR-488. We also found a negative association between Six1 and miR-488 in ovarian cancer tissues. In addition, Six1 overexpression induced mitochondrial fission and increased mitochondrial potential, with upregulation of Drp1 signaling. Six1 depletion showed the opposite effects. Restoration of Six1 in SKOV3 cells rescued decreased p-Drp1 and Drp1 expression induced by miR-488 mimic. Six1 plasmid also reversed the effects of miR-488 on chemoresistance and apoptosis. Taken together, the present study showed that, by targeting Six1, miR-488 inhibits chemoresistance of ovarian cancer cells through regulation of mitochondrial function.
Collapse
|
19
|
Ma Q, Wu X, Wu J, Liang Z, Liu T. SERP1 is a novel marker of poor prognosis in pancreatic ductal adenocarcinoma patients via anti-apoptosis and regulating SRPRB/NF-κB axis. Int J Oncol 2017; 51:1104-1114. [PMID: 28902358 PMCID: PMC5592859 DOI: 10.3892/ijo.2017.4111] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022] Open
Abstract
Stress associated endoplasmic reticulum protein 1 (SERP1), can cause accumulation of unfolded proteins in ER stress. However, studies on the role of SERP1 in pancreatic ductal adenocarcinoma (PDAC) are still incomplete. The present study aimed at identifying whether SERP1 acts as a potential novel prognostic marker of PDAC, and analyzed its possible mechanism. GEO database analysis showed SERP1 was significantly upregulated in PDAC tissues, and strongly associated with advanced clinical stage of PDAC patients from TCGA database. Univariate and multivariate Cox regression analysis further revealed SERP1 high expression was an independent factor for the prognosis of PDAC. Gene set enrichment analysis (GSEA) revealed that SERP1 was mainly involved in regulating cell apoptosis and nuclear factor-κB (NF-κB) signaling pathway, and downregulated SERP1 significantly promoted PANC-1 cell apoptosis. To further explore its possible mechanism, protein-protein interaction (PPI) and gene ontology (GO) analysis showed the functions of proteins interacting with SERP1 were mainly enriched in regulating cell apoptosis, and SRP receptor β subunit (SRPRB) was the core of the whole PPI network. The expression of SERP1 was negatively correlated with SRPRB expression. In vitro, downregulated SERP1 significantly increased SRPRB expression. Furthermore, upregulated SRPRB could increase cell apoptosis rate and decreased the expression level of NF-κB and the phosphorylation NF-κB. The above results indicated that SERP1 as a potential novel prognostic marker of PDAC probably via regulating cell apoptosis and NF-κB activation, which may be associated with SRPRB.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Xiuxiu Wu
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Jing Wu
- Department of Medical Imaging, Beijing Huairou Hospital, University of Chinese Academy of Science, Beijing 101400, P.R. China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Tonghua Liu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
20
|
Yuan Z, Jiang H, Zhu X, Liu X, Li J. Ginsenoside Rg3 promotes cytotoxicity of Paclitaxel through inhibiting NF-κB signaling and regulating Bax/Bcl-2 expression on triple-negative breast cancer. Biomed Pharmacother 2017; 89:227-232. [DOI: 10.1016/j.biopha.2017.02.038] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/11/2017] [Accepted: 02/11/2017] [Indexed: 01/24/2023] Open
|