1
|
Mohammadi F, Nejatollahi M, Sheikhnia F, Ebrahimi Y, Mohammadi M, Rashidi V, Alizadeh-Fanalou S, Azizzadeh B, Majidinia M. MiRNAs: main players of cancer drug resistance target ABC transporters. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6239-6291. [PMID: 39808313 DOI: 10.1007/s00210-024-03719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025]
Abstract
Chemotherapy remains the cornerstone of cancer treatment; however, its efficacy is frequently compromised by the development of chemoresistance. Multidrug resistance (MDR), characterized by the refractoriness of cancer cells to a wide array of chemotherapeutic agents, presents a significant barrier to achieving successful and sustained cancer remission. One critical factor contributing to this chemoresistance is the overexpression of ATP-binding cassette (ABC) transporters. Furthermore, additional mechanisms, such as the malfunctioning of apoptosis, alterations in DNA repair systems, and resistance mechanisms inherent to cancer stem cells, exacerbate the issue. Intriguingly, microRNAs (miRNAs) have demonstrated potential in modulating chemoresistance by specifically targeting ABC transporters, thereby offering promising new avenues for overcoming drug resistance. This narrative review aims to elucidate the molecular underpinnings of drug resistance, with a particular focus on the roles of ABC transporters and the regulatory influence of miRNAs on these transporters.
Collapse
Affiliation(s)
- Forogh Mohammadi
- Department of Veterinary, Agriculture Faculty, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Masoumeh Nejatollahi
- Research Center for High School Students, Education System Zanjan Province, Zanjan, Iran
| | - Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaser Ebrahimi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Rashidi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahin Alizadeh-Fanalou
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Bita Azizzadeh
- Department of Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Álvarez-Carrasco P, Morales-Villamil F, Maldonado-Bernal C. P-Glycoprotein as a Therapeutic Target in Hematological Malignancies: A Challenge to Overcome. Int J Mol Sci 2025; 26:4701. [PMID: 40429842 PMCID: PMC12112708 DOI: 10.3390/ijms26104701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 05/07/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
P-glycoprotein (P-gp), a transmembrane efflux pump encoded by the ABCB1/MDR1 gene, is a major contributor to multidrug resistance in hematological malignancies. These malignancies, arising from hematopoietic precursors at various differentiation stages, can manifest in the bone marrow, circulate in the bloodstream, or infiltrate tissues. P-gp overexpression in malignant cells reduces the efficacy of chemotherapeutic agents by actively expelling them, decreasing intracellular drug concentrations, and promoting multidrug resistance, a significant obstacle to successful treatment. This review examines recent advances in combating P-gp-mediated resistance, including the development of novel P-gp inhibitors, innovative drug delivery systems (e.g., nanoparticle-based delivery), and strategies to modulate P-gp expression or activity. These modulation strategies encompass targeting relevant signaling pathways (e.g., NF-κB, PI3K/Akt) and exploring drug repurposing. While progress has been made, overcoming P-gp-mediated resistance remains crucial for improving patient outcomes. Future research directions should prioritize the development of potent, selective, and safe P-gp inhibitors with minimal off-target effects, alongside exploring synergistic combination therapies with existing chemotherapeutics or novel agents to effectively circumvent multidrug resistance in hematological malignancies.
Collapse
MESH Headings
- Humans
- Hematologic Neoplasms/drug therapy
- Hematologic Neoplasms/metabolism
- Drug Resistance, Neoplasm/drug effects
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Animals
- Drug Resistance, Multiple/drug effects
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Signal Transduction/drug effects
- Drug Delivery Systems
- Molecular Targeted Therapy
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B/genetics
Collapse
Affiliation(s)
- Pablo Álvarez-Carrasco
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Fernanda Morales-Villamil
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
- Facultad de Medicina, Benemérita Universidad de Puebla, Puebla 72000, Mexico
| | - Carmen Maldonado-Bernal
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
3
|
Mahmoudi Gharehbaba A, Soltanmohammadi F, Vandghanooni S, Eskandani M, Adibkia K. A comprehensive review on overcoming the multifaceted challenge of cancer multidrug resistance: The emerging role of mesoporous silica nanoparticles. Biomed Pharmacother 2025; 186:118045. [PMID: 40215648 DOI: 10.1016/j.biopha.2025.118045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025] Open
Abstract
Multidrug resistance (MDR) is a significant challenge in tumor treatment, severely reducing the effectiveness of anticancer drugs and contributing to high mortality rates. This article overviews the various factors involved in the development of MDR, such as changes in drug targets, increased DNA repair mechanisms, and the impact of the tumor microenvironment. It also emphasizes the potential of mesoporous silica nanoparticles (MSNs) as a drug delivery system to combat MDR. With their unique characteristics-such as a high surface area, adjustable pore sizes, and the ability to be functionalized for targeted delivery-MSNs serve as excellent carriers for the simultaneous delivery of chemotherapeutics and siRNAs aimed at reversing resistance pathways. The paper focuses on innovative methods using MSNs for direct intranuclear delivery of their cargos to overcome efflux barrier and improve the effectiveness of combination therapies. This review highlights a promising approach for enhancing cancer treatment outcomes by integrating advanced nanotechnology with traditional therapies, addressing the ongoing challenge of MDR in oncology.
Collapse
Affiliation(s)
- Adel Mahmoudi Gharehbaba
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Soltanmohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Zuo Y, Li T, Yang S, Chen X, Tao X, Dong D, Liu F, Zhu Y. Contribution and expression of renal drug transporters in renal cell carcinoma. Front Pharmacol 2025; 15:1466877. [PMID: 40034145 PMCID: PMC11873565 DOI: 10.3389/fphar.2024.1466877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/23/2024] [Indexed: 03/05/2025] Open
Abstract
Renal cell carcinoma (RCC) is a common substantive tumor. According to incomplete statistics, RCC incidence accounts for approximately 90% of renal malignant tumors, and is the second most prevalent major malignant tumor in the genitourinary system, following bladder cancer. Only 10%-15% of chemotherapy regimens for metastatic renal cell carcinoma (mRCC) are effective, and mRCC has a high mortality. Drug transporters are proteins located on the cell membrane that are responsible for the absorption, distribution, and excretion of drugs. Lots of drug transporters are expressed in the kidneys. Changes in carrier function weaken balance, cause disease, or modify the effectiveness of drug treatment. The changes in expression of these transporters during cancer pathology results in multi-drug resistance to cancer chemotherapy. In the treatment of RCC, the study of drug transporters helps to optimize treatment regimens, improve therapeutic effects, and reduce drug side effects. In this review, we summarize advances in the role of renal drug transporters in the genesis, progression, and treatment of RCC.
Collapse
Affiliation(s)
- Yawen Zuo
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tong Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuyang Chen
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fang Liu
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Madrid MF, Mendoza EN, Padilla AL, Choquenaira-Quispe C, de Jesus Guimarães C, de Melo Pereira JV, Barros-Nepomuceno FWA, Lopes Dos Santos I, Pessoa C, de Moraes Filho MO, Rocha DD, Ferreira PMP. In vitro models to evaluate multidrug resistance in cancer cells: Biochemical and morphological techniques and pharmacological strategies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:1-27. [PMID: 39363148 DOI: 10.1080/10937404.2024.2407452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The overexpression of ATP-binding cassette (ABC) transporters contributes to the failure of chemotherapies and symbolizes a great challenge in oncology, associated with the adaptation of tumor cells to anticancer drugs such that these transporters become less effective, a mechanism known as multidrug resistance (MDR). The aim of this review is to present the most widely used methodologies for induction and comprehension of in vitro models for detection of multidrug-resistant (MDR) modulators or inhibitors, including biochemical and morphological techniques for chemosensitivity studies. The overexpression of MDR proteins, predominantly, the subfamily glycoprotein-1 (P-gp or ABCB1) multidrug resistance, multidrug resistance-associated protein 1 (MRP1 or ABCCC1), multidrug resistance-associated protein 2 (MRP2 or ABCC2) and cancer resistance protein (ABCG2), in chemotherapy-exposed cancer lines have been established/investigated by several techniques. Amongst these techniques, the most used are (i) colorimetric/fluorescent indirect bioassays, (ii) rhodamine and efflux analysis, (iii) release of 3,30-diethyloxacarbocyanine iodide by fluorescence microscopy and flow cytometry to measure P-gp function and other ABC transporters, (iv) exclusion of calcein-acetoxymethylester, (v) ATPase assays to distinguish types of interaction with ABC transporters, (vi) morphology to detail phenotypic characteristics in transformed cells, (vii) molecular testing of resistance-related proteins (RT-qPCR) and (viii) 2D and 3D models, (ix) organoids, and (x) microfluidic technology. Then, in vitro models for detecting chemotherapy MDR cells to assess innovative therapies to modulate or inhibit tumor cell growth and overcome clinical resistance. It is noteworthy that different therapies including anti-miRNAs, antibody-drug conjugates (to natural products), and epigenetic modifications were also considered as promising alternatives, since currently no anti-MDR therapies are able to improve patient quality of life. Therefore, there is also urgency for new clinical markers of resistance to more reliably reflect in vivo effectiveness of novel antitumor drugs.
Collapse
Affiliation(s)
- Maria Fernanda Madrid
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Eleicy Nathaly Mendoza
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Ana Lizeth Padilla
- Pharmaceutical Sciences, Faculty of Pharmacy, Dentistry, and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | - Celia Choquenaira-Quispe
- Pharmaceutical Sciences, Faculty of Pharmacy, Dentistry, and Nursing, Federal University of Ceará, Fortaleza, Brazil
- Catholic University of Santa María, Arequipa, Perú
| | - Celina de Jesus Guimarães
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - João Victor de Melo Pereira
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | | | - Ingredy Lopes Dos Santos
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | - Claudia Pessoa
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Manoel Odorico de Moraes Filho
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Danilo Damasceno Rocha
- Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
6
|
Malek Mohammadi M, Rismanchi H, Esmailzadeh S, Farahani A, Hedayati N, Alimohammadi M, Mafi A, Farahani N, Hushmandi K. The emerging role of circular RNAs in cisplatin resistance in ovarian cancer: From molecular mechanism to future potential. Noncoding RNA Res 2024; 9:1280-1291. [PMID: 39040815 PMCID: PMC11261309 DOI: 10.1016/j.ncrna.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/05/2024] [Accepted: 05/19/2024] [Indexed: 07/24/2024] Open
Abstract
Ovarian cancer (OC) is the most common cause of death in female cancers. The prognosis of OC is very poor due to delayed diagnosis and identification of most patients in advanced stages, metastasis, recurrence, and resistance to chemotherapy. As chemotherapy with platinum-based drugs such as cisplatin (DDP) is the main treatment in most OC cases, resistance to DDP is an important obstacle to achieving satisfactory therapeutic efficacy. Consequently, knowing the different molecular mechanisms involved in resistance to DDP is necessary to achieve new therapeutic approaches. According to numerous recent studies, non-coding RNAs (ncRNAs) could regulate proliferation, differentiation, apoptosis, and chemoresistance in many cancers, including OC. Most of these ncRNAs are released by tumor cells into human fluid, allowing them to be used as tools for diagnosis. CircRNAs are ncRNA family members that have a role in the initiation, progression, and chemoresistance regulation of various cancers. In the current study, we investigated the roles of several circRNAs and their signaling pathways on OC progression and also on DDP resistance during chemotherapy.
Collapse
Affiliation(s)
| | - Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shakiba Esmailzadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Farahani
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Guo Y, Ashrafizadeh M, Tambuwala MM, Ren J, Orive G, Yu G. P-glycoprotein (P-gp)-driven cancer drug resistance: biological profile, non-coding RNAs, drugs and nanomodulators. Drug Discov Today 2024; 29:104161. [PMID: 39245345 DOI: 10.1016/j.drudis.2024.104161] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Drug resistance has compromised the efficacy of chemotherapy. The dysregulation of drug transporters including P-glycoprotein (P-gp) can mediate drug resistance through drug efflux. In this review, we highlight the role of P-gp in cancer drug resistance and the related molecular pathways, including phosphoinositide 3-kinase (PI3K)-Akt, phosphatase and tensin homolog (PTEN) and nuclear factor-κB (NF-κB), along with non-coding RNAs (ncRNAs). Extracellular vesicles secreted by the cells can transport ncRNAs and other proteins to change P-gp activity in cancer drug resistance. P-gp requires ATP to function, and the induction of mitochondrial dysfunction or inhibition of glutamine metabolism can impair P-gp function, thus increasing chemosensitivity. Phytochemicals, small molecules and nanoparticles have been introduced as P-gp inhibitors to increase drug sensitivity in human cancers.
Collapse
Affiliation(s)
- Yang Guo
- Department of Respiratory and Critical Care Medicine, Shenyang Tenth People's Hospital (Shenyang Chest Hospital), No. 11 Beihai Street, Dadong District, Shenyang 110044, Liaoning, China
| | - Milad Ashrafizadeh
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| | - Guiping Yu
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, No. 163 Shoushan Road, Jiangyin, China.
| |
Collapse
|
8
|
Yu X, Zhang Y, Luo F, Zhou Q, Zhu L. The role of microRNAs in the gastric cancer tumor microenvironment. Mol Cancer 2024; 23:170. [PMID: 39164671 PMCID: PMC11334576 DOI: 10.1186/s12943-024-02084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the deadliest malignant tumors with unknown pathogenesis. Due to its treatment resistance, high recurrence rate, and lack of reliable early detection techniques, a majority of patients have a poor prognosis. Therefore, identifying new tumor biomarkers and therapeutic targets is essential. This review aims to provide fresh insights into enhancing the prognosis of patients with GC by summarizing the processes through which microRNAs (miRNAs) regulate the tumor microenvironment (TME) and highlighting their critical role in the TME. MAIN TEXT A comprehensive literature review was conducted by focusing on the interactions among tumor cells, extracellular matrix, blood vessels, cancer-associated fibroblasts, and immune cells within the GC TME. The role of noncoding RNAs, known as miRNAs, in modulating the TME through various signaling pathways, cytokines, growth factors, and exosomes was specifically examined. Tumor formation, metastasis, and therapy in GC are significantly influenced by interactions within the TME. miRNAs regulate tumor progression by modulating these interactions through multiple signaling pathways, cytokines, growth factors, and exosomes. Dysregulation of miRNAs affects critical cellular processes such as cell proliferation, differentiation, angiogenesis, metastasis, and treatment resistance, contributing to the pathogenesis of GC. CONCLUSIONS miRNAs play a crucial role in the regulation of the GC TME, influencing tumor progression and patient prognosis. By understanding the mechanisms through which miRNAs control the TME, potential biomarkers and therapeutic targets can be identified to improve the prognosis of patients with GC.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Sichuan Province, No. 10 Qinyun Nan Street, Chengdu, 610041, People's Republic of China
| | - Yin Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qinghua Zhou
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| | - Lingling Zhu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
9
|
Wang Q, Li H, Wu T, Yu B, Cong H, Shen Y. Nanodrugs based on co-delivery strategies to combat cisplatin resistance. J Control Release 2024; 370:14-42. [PMID: 38615892 DOI: 10.1016/j.jconrel.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Cisplatin (CDDP), as a broad-spectrum anticancer drug, is able to bind to DNA and inhibit cell division. Despite the widespread use of cisplatin since its discovery, cisplatin resistance developed during prolonged chemotherapy, similar to other small molecule chemotherapeutic agents, severely limits its clinical application. Cisplatin resistance in cancer cells is mainly caused by three reasons: DNA repair, decreased cisplatin uptake/increased efflux, and cisplatin inactivation. In earlier combination therapies, the emergence of multidrug resistance (MDR) in cancer cells prevented the achievement of the desired therapeutic effect even with the accurate combination of two chemotherapeutic drugs. Therefore, combination therapy using nanocarriers for co-delivery of drugs is considered to be ideal for alleviating cisplatin resistance and reducing cisplatin-related toxicity in cancer cells. This article provides an overview of the design of cisplatin nano-drugs used to combat cancer cell resistance, elucidates the mechanisms of action of cisplatin and the pathways through which cancer cells develop resistance, and finally discusses the design of drugs and related carriers that can synergistically reduce cancer resistance when combined with cisplatin.
Collapse
Affiliation(s)
- Qiubo Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hui Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Taixia Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bio-nanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
10
|
Liu C, Li S, Tang Y. Mechanism of cisplatin resistance in gastric cancer and associated microRNAs. Cancer Chemother Pharmacol 2023; 92:329-340. [PMID: 37535106 DOI: 10.1007/s00280-023-04572-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Gastric cancer (GC) is a common malignant tumor with high morbidity and mortality rates that seriously affects human health worldwide. Although surgery is currently the preferred clinical treatment for GC, chemotherapy remains the first choice for perioperative treatment, adjuvant therapy, and palliative care for patients with advanced GC. Cisplatin (DDP) is an antineoplastic agent that has been used clinically for decades, and it is the first-line chemotherapy for many solid tumors. However, the therapeutic efficacy of DDP is often limited by resistance and the complexity of its resistance mechanisms, which involve multiple proteins and signaling pathways. It is well documented that a variety of microRNAs (miRNAs) differentially expressed in DDP-resistant GC cells play important roles in regulating or reversing DDP resistance via various pathways. In this review, we first provide an introduction to the cytotoxicity and major resistance mechanisms of DDP in GC and then discuss the role and mechanism of miRNAs in regulating the DDP resistance process in GC cells. This work demonstrates the potential of relevant miRNAs to become diagnostic and prognostic biomarkers for gastric cancer and targets of action to enhance chemosensitivity and provides directions for future research.
Collapse
Affiliation(s)
- Changqing Liu
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Shan Li
- Department of Pathology, People's Hospital of Shaoyang County, Hengyang, Hunan Province, People's Republic of China
| | - Yunlian Tang
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, 421001, Hunan Province, People's Republic of China.
| |
Collapse
|
11
|
Ebrahimi N, Hakimzadeh A, Bozorgmand F, Speed S, Manavi MS, Khorram R, Farahani K, Rezaei-Tazangi F, Mansouri A, Hamblin MR, Aref AR. Role of non-coding RNAs as new therapeutic targets in regulating the EMT and apoptosis in metastatic gastric and colorectal cancers. Cell Cycle 2023; 22:2302-2323. [PMID: 38009668 PMCID: PMC10730205 DOI: 10.1080/15384101.2023.2286804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 05/11/2023] [Accepted: 08/01/2023] [Indexed: 11/29/2023] Open
Abstract
Colorectal cancer (CRC) and gastric cancer (GC), are the two most common cancers of the gastrointestinal tract, and are serious health concerns worldwide. The discovery of more effective biomarkers for early diagnosis, and improved patient prognosis is important. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), can regulate cellular processes such as apoptosis and the epithelial-mesenchymal transition (EMT) leading to progression and resistance of GC and CRC tumors. Moreover these pathways (apoptosis and EMT) may serve as therapeutic targets, to prevent metastasis, and to overcome drug resistance. A subgroup of ncRNAs is common to both GC and CRC tumors, suggesting that they might be used as biomarkers or therapeutic targets. In this review, we highlight some ncRNAs that can regulate EMT and apoptosis as two opposite mechanisms in cancer progression and metastasis in GC and CRC. A better understanding of the biological role of ncRNAs could open up new avenues for the development of personalized treatment plans for GC and CRC patients.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Hakimzadeh
- Department of Medical Biotechnologies, University of Siena, Tuscany, Italy
| | - Farima Bozorgmand
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Sepehr Speed
- Medical Campus, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | | | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kobra Farahani
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Atena Mansouri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine group, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Dhakne P, Pillai M, Mishra S, Chatterjee B, Tekade RK, Sengupta P. Refinement of safety and efficacy of anti-cancer chemotherapeutics by tailoring their site-specific intracellular bioavailability through transporter modulation. Biochim Biophys Acta Rev Cancer 2023; 1878:188906. [PMID: 37172652 DOI: 10.1016/j.bbcan.2023.188906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Low intracellular bioavailability, off-site toxicities, and multi drug resistance (MDR) are the major constraints involved in cancer chemotherapy. Many anticancer molecules fail to become a good lead in drug discovery because of their poor site-specific bioavailability. Concentration of a molecule at target sites is largely varied because of the wavering expression of transporters. Recent anticancer drug discovery strategies are paying high attention to enhance target site bioavailability by modulating drug transporters. The level of genetic expression of transporters is an important determinant to understand their ability to facilitate drug transport across the cellular membrane. Solid carrier (SLC) transporters are the major influx transporters involved in the transportation of most anti-cancer drugs. In contrast, ATP-binding cassette (ABC) superfamily is the most studied class of efflux transporters concerning cancer and is significantly involved in efflux of chemotherapeutics resulting in MDR. Balancing SLC and ABC transporters is essential to avoid therapeutic failure and minimize MDR in chemotherapy. Unfortunately, comprehensive literature on the possible approaches of tailoring site-specific bioavailability of anticancer drugs through transporter modulation is not available till date. This review critically discussed the role of different specific transporter proteins in deciding the intracellular bioavailability of anticancer molecules. Different strategies for reversal of MDR in chemotherapy by incorporation of chemosensitizers have been proposed in this review. Targeted strategies for administration of the chemotherapeutics to the intracellular site of action through clinically relevant transporters employing newer nanotechnology-based formulation platforms have been explained. The discussion embedded in this review is timely considering the current need of addressing the ambiguity observed in pharmacokinetic and clinical outcomes of the chemotherapeutics in anti-cancer treatment regimens.
Collapse
Affiliation(s)
- Pooja Dhakne
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Megha Pillai
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Sonam Mishra
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Bappaditya Chatterjee
- SVKM's NMIMS School of Pharmacy and Management, Department of Pharmaceutics, Vaikunthlal Mehta Road, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
13
|
Duan C, Yu M, Xu J, Li BY, Zhao Y, Kankala RK. Overcoming Cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed Pharmacother 2023; 162:114643. [PMID: 37031496 DOI: 10.1016/j.biopha.2023.114643] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023] Open
Abstract
Multi-drug resistance (MDR) in cancer cells, either intrinsic or acquired through various mechanisms, significantly hinders the therapeutic efficacy of drugs. Typically, the reduced therapeutic performance of various drugs is predominantly due to the inherent over expression of ATP-binding cassette (ABC) transporter proteins on the cell membrane, resulting in the deprived uptake of drugs, augmenting drug detoxification, and DNA repair. In addition to various physiological abnormalities and extensive blood flow, MDR cancer phenotypes exhibit improved apoptotic threshold and drug efflux efficiency. These severe consequences have substantially directed researchers in the fabrication of various advanced therapeutic strategies, such as co-delivery of drugs along with various generations of MDR inhibitors, augmented dosage regimens and frequency of administration, as well as combinatorial treatment options, among others. In this review, we emphasize different reasons and mechanisms responsible for MDR in cancer, including but not limited to the known drug efflux mechanisms mediated by permeability glycoprotein (P-gp) and other pumps, reduced drug uptake, altered DNA repair, and drug targets, among others. Further, an emphasis on specific cancers that share pathogenesis in executing MDR and effluxed drugs in common is provided. Then, the aspects related to various nanomaterials-based supramolecular programmable designs (organic- and inorganic-based materials), as well as physical approaches (light- and ultrasound-based therapies), are discussed, highlighting the unsolved issues and future advancements. Finally, we summarize the review with interesting perspectives and future trends, exploring further opportunities to overcome MDR.
Collapse
Affiliation(s)
- Chunyan Duan
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan 528137, PR China.
| | - Mingjia Yu
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan 528137, PR China
| | - Jiyuan Xu
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan 528137, PR China
| | - Bo-Yi Li
- Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, PR China
| | - Ying Zhao
- Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, PR China.
| |
Collapse
|
14
|
A Systematic Review of Clinical Validated and Potential miRNA Markers Related to the Efficacy of Fluoropyrimidine Drugs. DISEASE MARKERS 2022; 2022:1360954. [PMID: 36051356 PMCID: PMC9427288 DOI: 10.1155/2022/1360954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/15/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is becoming increasingly prevalent worldwide. Fluoropyrimidine drugs are the primary chemotherapy regimens in routine clinical practice of CRC. However, the survival rate of patients on fluoropyrimidine-based chemotherapy varies significantly among individuals. Biomarkers of fluoropyrimidine drugs'' efficacy are needed to implement personalized medicine. This review summarized fluoropyrimidine drug-related microRNA (miRNA) by affecting metabolic enzymes or showing the relevance of drug efficacy. We first outlined 42 miRNAs that may affect the metabolism of fluoropyrimidine drugs. Subsequently, we filtered another 41 miRNAs related to the efficacy of fluoropyrimidine drugs based on clinical trials. Bioinformatics analysis showed that most well-established miRNA biomarkers were significantly enriched in the cancer pathways instead of the fluoropyrimidine drug metabolism pathways. The result also suggests that the miRNAs screened from metastasis patients have a more critical role in cancer development than those from non-metastasis patients. There are five miRNAs shared between these two lists. The miR-21, miR-215, and miR-218 can suppress fluoropyrimidine drugs'' catabolism. The miR-326 and miR-328 can reduce the efflux of fluoropyrimidine drugs. These five miRNAs could jointly act by increasing intracellular levels of fluoropyrimidine drugs'' cytotoxic metabolites, leading to better chemotherapy responses. In conclusion, we demonstrated that the dynamic changes in the transcriptional regulation via miRNAs might play significant roles in the efficacy and toxicity of the fluoropyrimidine drug. The reported miRNA biomarkers would help evaluate the efficacy of fluoropyrimidine drug-based chemotherapy and improve the prognosis of colorectal cancer patients.
Collapse
|
15
|
You J, Han Y, Qiao H, Han Y, Lu X, Lu Y, Wang X, Kai H, Zheng Y. Hsa_circ_0063804 enhances ovarian cancer cells proliferation and resistance to cisplatin by targeting miR-1276/CLU axis. Aging (Albany NY) 2022; 14:4699-4713. [PMID: 35687899 PMCID: PMC9217714 DOI: 10.18632/aging.203474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/23/2021] [Indexed: 12/24/2022]
Abstract
Purpose: This article researched circ_0063804 effects on ovarian cancer (OC) development and resistance to cisplatin, aiming to provide a new target for OC therapy. Methods: A total of 108 OC patients participated in this study. The circle structure of circ_0063804 was investigated using RNase R. Circ_0063804 expression in OC cells were up-regulated or down-regulated by transfection. Cell proliferation was assessed by cell counting kit-8 assay and colony formation assay. Flow cytometry was used to detect apoptosis. OC cells resistance to cisplatin was explored through MTT assay. Luciferase reporter assay was performed. qRT-PCR and Western blot was applied to research genes expression. Xenograft tumor experiment was conducted using nude mice. Ki67 expression in xenograft tumor was detected by immunohistochemistry. Results: Circ_0063804 expression was up-regulated in OC patients and indicated poor prognosis (P < 0.05). Circ_0063804 had a stable circle structure. Circ_0063804 enhanced proliferation, resistance to cisplatin and reduced apoptosis of OC cells (P < 0.01). miR-1276 was down-regulated in OC patients and sponged by circ_0063804. CLU was directly inhibited by miR-1276 and up-regulated in OC patients. Circ_0063804 exacerbated malignant phenotype and resistance to cisplatin of OC cells in vitro by enhancing CLU expression via sponging miR-1276 (P < 0.01). Circ_0063804 silencing inhibited OC cells growth, resistance to cisplatin and Ki67 expression in vivo (P < 0.01). Conclusion: Circ_0063804 promoted OC cells proliferation and resistance to cisplatin by enhancing CLU expression via sponging miR-1276.
Collapse
Affiliation(s)
- Jun You
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yuwen Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Haifeng Qiao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yun Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaoyan Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yiling Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaoyu Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Haili Kai
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yanli Zheng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
16
|
PITPNA-AS1/miR-98-5p to Mediate the Cisplatin Resistance of Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:7981711. [PMID: 35578599 PMCID: PMC9107361 DOI: 10.1155/2022/7981711] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 12/23/2022]
Abstract
Gastric cancer (GC) is the most deadly gastrointestinal malignancy with high incidence and mortality. Although, molecular mechanisms which drive gastric cancer progression are extensively investigated, the roles of long noncoding RNA (lncRNA) in gastric cancer growth and drug sensitivity remain unclear. Platinum is a mainstay to treat gastric cancer, and platinum resistance always leads to the local recurrence of gastric cancer. Therefore, it is important to identify biomarkers or therapeutic targets to sensitize gastric cancer to platinum. In this study, we employ noncoding RNA sequencing and found that lncRNA PITPNA-AS1 is overexpressed in gastric cancer tissues and associated with poor survival of gastric cancer patients. Kockdown of PITPNA-AS1 in gastric cancer cells significantly inhibited cell growth and triggered apoptotic cell death in gastric cancer cells. Also, cisplatin treatment could decrease PITPNA-AS1 levels in gastric cancer cells through inhibiting H3K27ac. Besides, PITPNA-AS1 is elevated in cisplatin-resistant gastric cancer cells and tissues, PITPNA-AS1 knockdown could sensitize gastric cancer cells to cisplatin treatment. Furthermore, we identified that PITPNA-AS1 directly interacts and inhibits miR-98-5p. Therefore, PITPNA-AS1 could be served as a potential biomarkers and curative therapeutic targets for gastric cancer progression.
Collapse
|
17
|
Loren P, Saavedra N, Saavedra K, De Godoy Torso N, Visacri MB, Moriel P, Salazar LA. Contribution of MicroRNAs in Chemoresistance to Cisplatin in the Top Five Deadliest Cancer: An Updated Review. Front Pharmacol 2022; 13:831099. [PMID: 35444536 PMCID: PMC9015654 DOI: 10.3389/fphar.2022.831099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/16/2022] [Indexed: 12/02/2022] Open
Abstract
Cisplatin (DDP) is a well-known anticancer drug used for the treatment of numerous human cancers in solid organs, including bladder, breast, cervical, head and neck squamous cell, ovarian, among others. Its most important mode of action is the DNA-platinum adducts formation, inducing DNA damage response, silencing or activating several genes to induce apoptosis; these mechanisms result in genetics and epigenetics modifications. The ability of DDP to induce tumor cell death is often challenged by the presence of anti-apoptotic regulators, leading to chemoresistance, wherein many patients who have or will develop DDP-resistance. Cancer cells resist the apoptotic effect of chemotherapy, being a problem that severely restricts the successful results of treatment for many human cancers. In the last 30 years, researchers have discovered there are several types of RNAs, and among the most important are non-coding RNAs (ncRNAs), a class of RNAs that are not involved in protein production, but they are implicated in gene expression regulation, and representing the 98% of the human genome non-translated. Some ncRNAs of great interest are long ncRNAs, circular RNAs, and microRNAs (miRs). Accumulating studies reveal that aberrant miRs expression can affect the development of chemotherapy drug resistance, by modulating the expression of relevant target proteins. Thus, identifying molecular mechanisms underlying chemoresistance development is fundamental for setting strategies to improve the prognosis of patients with different types of cancer. Therefore, this review aimed to identify and summarize miRs that modulate chemoresistance in DDP-resistant in the top five deadliest cancer, both in vitro and in vivo human models.
Collapse
Affiliation(s)
- Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Nicolás Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Kathleen Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | | | | | - Patricia Moriel
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
18
|
Cui J, Cao N, Wang G, Wang F, Yang B, Wang J, Lv Y, Chen Y, Li F. HuR Promotes the Progression of Gastric Cancer through Mediating CDC5L Expression. DISEASE MARKERS 2022; 2022:5141927. [PMID: 35313568 PMCID: PMC8934217 DOI: 10.1155/2022/5141927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022]
Abstract
Methods We performed qRT-PCR, cell cycle assay, cell migration, and mouse transplantation model analysis in our experiments. It has been clarified that HuR and microRNAs (miRNAs) have important interplays in the regulation of tumor progression. Results This study found microRNA-133b (miR-133b), as a HuR-sponged miRNA in GC cells. Downregulation of HuR can promote the expression of miR-133b and further affect the downstream cyclin CDC5L. The expressions of miR-133b were slightly lower in GC tissues than adjacent normal tissues. Conclusion Our studies suggest that HuR and miR-133b are involved in the development and pathological process of GC cells.
Collapse
Affiliation(s)
- Jing Cui
- Department of Biochemistry and Molecular Biology, Basic Medical College, Shanxi Medical University, Taiyuan 030001, China
| | - Nanjing Cao
- Department of Clinical Laboratory, Xi'an Da Xing Hospital, No. 353, North Labor Road, Xi'an 710016, China
- Department of Cell Biology, Shanxi Cancer Hospital, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan 030012, China
| | - Guochao Wang
- Radiation Oncology Center, Shanxi Cancer Hospital, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan 030012, China
| | - Fuhua Wang
- Department of Cell Biology, Shanxi Cancer Hospital, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan 030012, China
| | - Bin Yang
- Surgical VIP, Shanxi Cancer Hospital, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan 030012, China
| | - Jian Wang
- Surgical VIP, Shanxi Cancer Hospital, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan 030012, China
| | - Yongqiang Lv
- Shanxi Cancer Hospital, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan 030012, China
| | - Yunqing Chen
- Surgical VIP, Shanxi Cancer Hospital, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan 030012, China
| | - Feng Li
- Department of Cell Biology, Shanxi Cancer Hospital, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan 030012, China
| |
Collapse
|
19
|
Liu Y, Ao X, Ji G, Zhang Y, Yu W, Wang J. Mechanisms of Action And Clinical Implications of MicroRNAs in the Drug Resistance of Gastric Cancer. Front Oncol 2021; 11:768918. [PMID: 34912714 PMCID: PMC8667691 DOI: 10.3389/fonc.2021.768918] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors of digestive systems worldwide, with high recurrence and mortality. Chemotherapy is still the standard treatment option for GC and can effectively improve the survival and life quality of GC patients. However, with the emergence of drug resistance, the clinical application of chemotherapeutic agents has been seriously restricted in GC patients. Although the mechanisms of drug resistance have been broadly investigated, they are still largely unknown. MicroRNAs (miRNAs) are a large group of small non-coding RNAs (ncRNAs) widely involved in the occurrence and progression of many cancer types, including GC. An increasing amount of evidence suggests that miRNAs may play crucial roles in the development of drug resistance by regulating some drug resistance-related proteins as well as gene expression. Some also exhibit great potential as novel biomarkers for predicting drug response to chemotherapy and therapeutic targets for GC patients. In this review, we systematically summarize recent advances in miRNAs and focus on their molecular mechanisms in the development of drug resistance in GC progression. We also highlight the potential of drug resistance-related miRNAs as biomarkers and therapeutic targets for GC patients.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China.,School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Guoqiang Ji
- Clinical Laboratory, Linqu People's Hospital, Linqu, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Dashti F, Mirazimi SMA, Rabiei N, Fathazam R, Rabiei N, Piroozmand H, Vosough M, Rahimian N, Hamblin MR, Mirzaei H. The role of non-coding RNAs in chemotherapy for gastrointestinal cancers. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:892-926. [PMID: 34760336 PMCID: PMC8551789 DOI: 10.1016/j.omtn.2021.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, hepatic, esophageal, and pancreatic tumors, are responsible for large numbers of deaths around the world. Chemotherapy is the most common approach used to treat advanced GI cancer. However, chemoresistance has emerged as a critical challenge that prevents successful tumor elimination, leading to metastasis and recurrence. Chemoresistance mechanisms are complex, and many factors and pathways are involved. Among these factors, non-coding RNAs (ncRNAs) are critical regulators of GI tumor development and subsequently can induce resistance to chemotherapy. This occurs because ncRNAs can target multiple signaling pathways, affect downstream genes, and modulate proliferation, apoptosis, tumor cell migration, and autophagy. ncRNAs can also induce cancer stem cell features and affect the epithelial-mesenchymal transition. Thus, ncRNAs could possibly act as new targets in chemotherapy combinations to treat GI cancer and to predict treatment response.
Collapse
Affiliation(s)
- Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fathazam
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Piroozmand
- Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
21
|
Chen D, Ping S, Xu Y, Wang M, Jiang X, Xiong L, Zhang L, Yu H, Xiong Z. Non-Coding RNAs in Gastric Cancer: From Malignant Hallmarks to Clinical Applications. Front Cell Dev Biol 2021; 9:732036. [PMID: 34805143 PMCID: PMC8595133 DOI: 10.3389/fcell.2021.732036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023] Open
Abstract
Gastric cancer (GC) is one of the most lethal malignancies worldwide. However, the molecular mechanisms underlying gastric carcinogenesis remain largely unknown. Over the past decades, advances in RNA-sequencing techniques have greatly facilitated the identification of various non-coding RNAs (ncRNAs) in cancer cells, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Accumulating evidence has revealed that ncRNAs are essential regulators in GC occurrence and development. However, ncRNAs represent an emerging field of cancer research, and their complex functionality remains to be clarified. Considering the lack of viable biomarkers and therapeutic targets in GC, further studies should focus on elucidating the intricate relationships between ncRNAs and GC, which can be translated into clinical practice. In this review, we summarize recent research progress on how ncRNAs modulate the malignant hallmarks of GC, especially in tumor immune escape, drug resistance, and stemness. We also discuss the promising applications of ncRNAs as diagnostic biomarkers and therapeutic targets in GC, aiming to validate their practical value for clinical treatment.
Collapse
Affiliation(s)
- Di Chen
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Ping
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yushuang Xu
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengmeng Wang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jiang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglu Yu
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhifan Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Mora Y, Reyes ME, Zanella L, Mora B, Buchegger K, Ili C, Brebi P. Resistance to platinum-based cancer drugs: a special focus on epigenetic mechanisms. Pharmacogenomics 2021; 22:777-790. [PMID: 34281355 DOI: 10.2217/pgs-2021-0020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chemoresistance is a significant clinical challenge, limiting the drug response in cancer. Several mechanisms associated with drug resistance have been characterized, and the role of epigenetics in generating resistance to platinum-based drugs has been clarified. Epigenetic mechanisms such as DNA methylation, histone modification, long noncoding RNA, and microRNA affect the expression of genes implicated in absorption, distribution, metabolism and excretion (ADME) of drugs, and other non-ADME genes that encode enzymes involved in the processes of cell proliferation, DNA repair, apoptosis and signal transduction key in the development of chemoresistance in cancer, specifically in platinum-based drugs. This review summarizes current discoveries in epigenetic regulation implicated in platinum drug resistance in cancer and the main clinical trials based on epigenetic therapy, evaluating their potential synergy with platinum-based drugs.
Collapse
Affiliation(s)
- Yuselin Mora
- Laboratory of Integrative Biology (LIBi), Scientific & Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, 4810296, Chile
| | - María Elena Reyes
- Laboratory of Integrative Biology (LIBi), Scientific & Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, 4810296, Chile.,Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, 8370003, Chile
| | - Louise Zanella
- Laboratory of Integrative Biology (LIBi), Scientific & Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, 4810296, Chile
| | - Bárbara Mora
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, 4810101, Chile
| | - Kurt Buchegger
- Laboratory of Integrative Biology (LIBi), Scientific & Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, 4810296, Chile.,Departamento Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco, 4811230, Chile
| | - Carmen Ili
- Laboratory of Integrative Biology (LIBi), Scientific & Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, 4810296, Chile
| | - Priscilla Brebi
- Laboratory of Integrative Biology (LIBi), Scientific & Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, 4810296, Chile
| |
Collapse
|
23
|
Zhou C, Chen L, Chen R, Xu F, Huang Z, Huang R, Wang W, Xu Q. miR-4486 enhances cisplatin sensitivity of gastric cancer cells by restraining the JAK3/STAT3 signalling pathway. J Chemother 2021; 34:35-44. [PMID: 34167436 DOI: 10.1080/1120009x.2021.1936957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Along with the occurrence of cisplatin resistance, treatment on gastric cancer (GC) becomes difficult. Therefore, researches on new therapeutic methods to revert cisplatin resistance are becoming increasingly urgent. qRT-PCR was used to quantify the expression of miR-4486, JAK3 in SGC-7901 or SGC-7901/DDP cell lines. WB was utilized to analyze the expression of JAK3, STAT3 and p-STAT3 in SGC-7901/DDP cell lines. CCK-8 assay was used to determine the IC50 of cisplatin on both cell lines and cell viability of SGC-7901/DDP cell lines. The target relationship between miR-4486 and JAK3 was determined by luciferase assay. MiR-4486 expression on apoptosis of SGC-7901/DDP cell lines was determined by flow cytometry. qRT-PCR testified that miR-4486 decreased in SGC-7901/DDP cells, and the expression of miR-4486 mimic increased significantly compared with miR-4486 NC. By CCK-8 assay, the IC50 of cisplatin on both cell lines were 9 μg/mL and 81.3 μg/mL, and overexpression of miR-4486 decreased the viability of SGC-7901/DDP cells. Compared with DDP group, the expression of miR-4486 accelerated SGC-7901/DDP cells apoptosis. Dual-luciferase assay suggested that JAK3 was the target gene of miR-4486. qRT-PCR and WB proved that miR-4486/JAK3 axis inhibit the activation of JAK3/STAT3 pathway, and JAK3 overexpression can partly reverse this. As shown by CCK-8 and flow cytometry, miR-4486 overexpression decreased viability and stimulated apoptosis of SGC-7901/DDP cells. However, JAK3 overexpression can also partly revert this. miR-4486 overexpression could decrease viability and improve apoptosis of SGC-7901/DDP cells to revert its cisplatin-resistance, and the mechanism may be related to JAK3/STAT3 signalling pathway.
Collapse
Affiliation(s)
- Caijin Zhou
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Linxia Chen
- Department of Operating Room, the Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Rihong Chen
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Feipeng Xu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhe Huang
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Renwei Huang
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Weiwei Wang
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qingwen Xu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
24
|
Zangouei AS, Moghbeli M. MicroRNAs as the critical regulators of cisplatin resistance in gastric tumor cells. Genes Environ 2021; 43:21. [PMID: 34099061 PMCID: PMC8182944 DOI: 10.1186/s41021-021-00192-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Combined chemotherapeutic treatment is the method of choice for advanced and metastatic gastric tumors. However, resistance to chemotherapeutic agents is one of the main challenges for the efficient gastric cancer (GC) treatment. Cisplatin (CDDP) is used as an important regimen of chemotherapy for GC which induces cytotoxicity by interfering with DNA replication in cancer cells and inducing their apoptosis. Majority of patients experience cisplatin-resistance which is correlated with tumor metastasis and relapse. Moreover, prolonged and high-dose cisplatin administrations cause serious side effects such as nephrotoxicity, ototoxicity, and anemia. Since, there is a high rate of recurrence after CDDP treatment in GC patients; it is required to clarify the molecular mechanisms associated with CDDP resistance to introduce novel therapeutic methods. There are various cell and molecular processes associated with multidrug resistance (MDR) including drug efflux, detoxification, DNA repair ability, apoptosis alteration, signaling pathways, and epithelial-mesenchymal transition (EMT). MicroRNAs are a class of endogenous non-coding RNAs involved in chemo resistance of GC cells through regulation of all of the MDR mechanisms. In present review we have summarized all of the miRNAs associated with cisplatin resistance based on their target genes and molecular mechanisms in gastric tumor cells. This review paves the way of introducing a miRNA-based panel of prognostic markers to improve the efficacy of chemotherapy and clinical outcomes in GC patients. It was observed that miRNAs are mainly involved in cisplatin response of gastric tumor cells via regulation of signaling pathways, autophagy, and apoptosis.
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Cheng Z, Ni Q, Qin L, Shi Y. MicroRNA-92b augments sorafenib resistance in hepatocellular carcinoma via targeting PTEN to activate PI3K/AKT/mTOR signaling. Braz J Med Biol Res 2021; 54:e10390. [PMID: 34076140 PMCID: PMC8186377 DOI: 10.1590/1414-431x2020e10390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
Sorafenib (SOR) resistance is still a significant challenge for the effective treatment of hepatocellular carcinoma (HCC). The mechanism of sorafenib resistance remains unclear. Several microRNAs (miRNAs) have been identified as playing a role in impairing the sensitivity of tumor cells to treatment. We examined the mechanism behind the role of miR-92b in mediating sorafenib resistance in HCC cells. We detected that miR-92b expression was significantly upregulated in SOR-resistant HepG2/SOR cells compared to parental HepG2/WT cells. After transfection with miR-92b inhibitor, the proliferation of HepG2/SOR cells was remarkably weakened and rates of apoptosis significantly increased. PTEN was considered to be a functional target of miR-92b according to a luciferase reporter assay. Knockdown of PTEN significantly impaired the ability of miR-92b inhibitor on increasing sorafenib sensitivity of HepG2/SOR cells. Furthermore, we confirmed by western blotting and immunofluorescence that miR-92b can mediate sorafenib resistance by activating the PI3K/AKT/mTOR pathway in HCC cells by directly targeting PTEN. These findings further validate the mechanism of miR-92b in SOR resistance in HCC treatment.
Collapse
Affiliation(s)
- Zhouyang Cheng
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Qingfeng Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Yang Shi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Soochow, China
| |
Collapse
|
26
|
Xiao H, Zheng Y, Ma L, Tian L, Sun Q. Clinically-Relevant ABC Transporter for Anti-Cancer Drug Resistance. Front Pharmacol 2021; 12:648407. [PMID: 33953682 PMCID: PMC8089384 DOI: 10.3389/fphar.2021.648407] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/16/2021] [Indexed: 02/04/2023] Open
Abstract
Multiple drug resistance (MDR), referring to the resistance of cancer cells to a broad spectrum of structurally and mechanistically unrelated drugs across membranes, severely impairs the response to chemotherapy and leads to chemotherapy failure. Overexpression of ATP binding cassette (ABC) transporters is a major contributing factor resulting in MDR, which can recognize and mediate the efflux of diverse drugs from cancer cells, thereby decreasing intracellular drug concentration. Therefore, modulators of ABC transporter could be used in combination with standard chemotherapeutic anticancer drugs to augment the therapeutic efficacy. This review summarizes the recent advances of important cancer-related ABC transporters, focusing on their physiological functions, structures, and the development of new compounds as ABC transporter inhibitors.
Collapse
Affiliation(s)
- Huan Xiao
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yongcheng Zheng
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lingling Ma
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lili Tian
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
27
|
Spirina LV, Avgustinovich AV, Afanas'ev SG, Cheremisina OV, Volkov MY, Choynzonov EL, Gorbunov AK, Usynin EA. Molecular Mechanism of Resistance to Chemotherapy in Gastric Cancers, the Role of Autophagy. Curr Drug Targets 2021; 21:713-721. [PMID: 31775598 DOI: 10.2174/1389450120666191127113854] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/11/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Gastric cancer (GC) is biologically and genetically heterogeneous with complex carcinogenesis at the molecular level. Despite the application of multiple approaches in the GC treatment, its 5-year survival is poor. A major limitation of anti-cancer drugs application is intrinsic or acquired resistance, especially to chemotherapeutical agents. It is known that the effectiveness of chemotherapy remains debatable and varies according to the molecular type of GC. Chemotherapy has an established role in the management of GC. Perioperative chemotherapy or postoperative chemotherapy is applied for localized ones. Most of the advanced GC patients have a poor response to treatment and unfavorable outcomes with standard therapies. Resistance substantially limits the depth and duration of clinical responses to targeted anticancer therapies. Through the use of complementary experimental approaches, investigators have revealed that cancer cells can achieve resistance through adaptation or selection driven by specific genetic, epigenetic, or microenvironmental alterations. Ultimately, these diverse alterations often lead to the activation of MAPK, AKT/mTOR, and Wnt/β-catenin signaling pathways that, when co-opted, enable cancer cells to survive drug treatments. We have summarized the mechanisms of resistance development to cisplatin, 5-fluorouracil, and multidrug resistance in the GC management. The complexity of molecular targets and components of signaling cascades altered in the resistance development results in the absence of significant benefits in GC treatment, and its efficacy remains low. The universal process responsible for the failure in the multimodal approach in GC treatment is autophagy. Its dual role in oncogenesis is the most unexplored issue. We have discussed the possible mechanism of autophagy regulation upon the action of endogenous factors and drugs. The experimental data obtained in the cultured GC cells need further verification. To overcome the cancer resistance and to prevent autophagy as the main reason of ineffective treatment, it is suggested the concept of the direct influence of autophagy molecular markers followed by the standard chemotherapy. Dozen of studies have focused on finding the rationale for the benefits of such complex therapy. The perspectives in the molecular-based management of GC are associated with the development of molecular markers predicting the protective autophagy initiation and search for novel targets of effective anticancer therapy.
Collapse
Affiliation(s)
- Liudmila V Spirina
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation.,Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russian Federation
| | - Alexandra V Avgustinovich
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Sergey G Afanas'ev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Olga V Cheremisina
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Maxim Yu Volkov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Evgeny L Choynzonov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation.,Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russian Federation
| | - Alexey K Gorbunov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Evgeny A Usynin
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation.,Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russian Federation
| |
Collapse
|
28
|
Taheri M, Shoorei H, Tondro Anamag F, Ghafouri-Fard S, Dinger ME. LncRNAs and miRNAs participate in determination of sensitivity of cancer cells to cisplatin. Exp Mol Pathol 2021; 123:104602. [PMID: 33422487 DOI: 10.1016/j.yexmp.2021.104602] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 02/08/2023]
Abstract
Cisplatin is an extensively used chemotherapeutic substance for various types of human malignancies including sarcomas, carcinomas and lymphomas. Yet, the vast application of this drug is hampered by the emergence of chemoresistance in some treated patients. Several mechanisms such as degradation of the membrane transporters by cisplatin have been implicated in the pathogenesis of this event. Recent researches have also indicated the role of long non-coding RNAs (lncRNAs) as well as micoRNAs (miRNAs) in the emergence of resistance to cisplatin in several cancer types. For instance, up-regulation of miR-21 has been associated with resistance to this agent in ovarian cancer, oral squamous cell cancer, gastric malignancy and non-small cell lung cancer (NSCLC). On the other hand, down-regulation of miR-218 has been implicated in emergence of chemoresistance in breast cancer and esophageal squamous cell carcinoma. MALAT1 is implicated in the chemoresistance of bladder cancer cells, NSCLC, gastric cancer and cervical cancer. Most notably, the expression profile of resistance-associated miRNAs and lncRNAs can predict overall survival of cancer patients. Mechanistic assays have revealed that interference with expression of some miRNAs and lncRNAs can reverse the resistance phenotype in cancer cells. In this paper, we review the scientific writings on the role of lncRNAs and miRNAs in the evolution of chemoresistance to cisplatin in cancer cells.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
29
|
Zhao Y, Miao Z, Jiang M, Zhou X, Lai Y. Effects of breviscapine and C3435T MDR1 gene polymorphism on the pharmacokinetics of fexofenadine, a P-glycoprotein substrate, in healthy volunteers. Xenobiotica 2020; 51:366-372. [PMID: 33256506 DOI: 10.1080/00498254.2020.1857467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Breviscapine (BRE) is usually used for long-term use in patients with cardiovascular diseases such as coronary heart disease, angina pectoris, and cerebral thrombosis. It is possible to combine it with P-glycoprotein (P-gp) substrates in clinic. At present, little is known about whether the simultaneous use of BRE affects the disposal of P-gp substrates. The aim of this study was to evaluate the effect of BRE on the pharmacokinetics of fexofenadine (FEX), a P-gp probe substrate and its associations with the MDR1 C3435T genetic polymorphism in healthy volunteers. In this randomised, open-label, placebo-controlled, two-phase crossover clinical study, drug interactions were evaluated in healthy volunteers. FEX was used as a phenotypic probe for P-gp. In each phase, 18 volunteers were given daily doses of 120 mg (40 mg, three times a day) of BRE tablet or a placebo for 14 days. On day 15, a single oral dose of 120 mg FEX hydrochloride was given orally. Blood samples were collected at predefined time intervals, and plasma levels of FEX were determined by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The pharmacokinetic parameters were calculated by non-compartmental method, and bioequivalence was evaluated. Results showed that BRE pretreatment did not significantly affect the pharmacokinetics of FEX. The peak maximum plasma concentration (C max) and the area under the plasma concentration-time curve from zero to infinity (AUCinf) mean value of FEX with BRE and placebo-treated groups were 699 ng/mL vs. 710 ng/mL and 2972.5 ng⋅h/mL vs. 3460.5 ng⋅h/mL, respectively. The geometric mean ratios (90% confidence intervals) for FEX C max and AUCinf were within the pre-specified range of 0.8-1.25, indicating that FEX in the two pretreatment phases were bioequivalent. Pharmacokinetic parameters of FEX showed no statistically significant difference between MDR1 C3435T CC, CT and TT genotype, revealing that BRE and MDR1 C3435T gene polymorphisms did not affect the pharmacokinetics of FEX in healthy volunteers.
Collapse
Affiliation(s)
- Yingying Zhao
- College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Zhimin Miao
- College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Mingzhao Jiang
- College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Xuan Zhou
- College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Yong Lai
- College of Pharmacy, Dali University, Dali, Yunnan, China
| |
Collapse
|
30
|
Mowla M, Hashemi A. Functional roles of exosomal miRNAs in multi-drug resistance in cancer chemotherapeutics. Exp Mol Pathol 2020; 118:104592. [PMID: 33296693 DOI: 10.1016/j.yexmp.2020.104592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022]
Abstract
Recent understanding of different molecular aspects of tumor initiation and progression has led to the discovery of a growing list of drugs. While these drugs have shown promising effects on tumor cells, their widespread usage has been hampered by the acquisition of drug resistance in a subpopulation of tumor cells. A differential pattern in the secretion of specialized vesicles named "exosomes" in drug-resistant cancer cells have recently received much attention. In addition, microRNAs (miRNAs) have been shown to be enriched in exosomes. Exosomal miRNAs (also known as exo-miRs) could be shuttled to recipient cells and play a role in the regulation of post-transcriptional gene expression, which may exert certain effects on cancer drug resistance. Here, we have reviewed the role of exo-miRs in chemotherapeutic resistance in different cancer types. Besides, studies which have focused on predictive role of circulating exo-miRs in cancer drug resistance are reviewed.
Collapse
Affiliation(s)
- Mahshid Mowla
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Non-coding RNAs underlying chemoresistance in gastric cancer. Cell Oncol (Dordr) 2020; 43:961-988. [PMID: 32495294 DOI: 10.1007/s13402-020-00528-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a major health issue in the Western world. Current clinical imperatives for this disease include the identification of more effective biomarkers to detect GC at early stages and enhance the prevention and treatment of metastatic and chemoresistant GC. The advent of non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long-non coding RNAs (lncRNAs), has led to a better understanding of the mechanisms by which GC cells acquire features of therapy resistance. ncRNAs play critical roles in normal physiology, but their dysregulation has been detected in a variety of cancers, including GC. A subset of ncRNAs is GC-specific, implying their potential application as biomarkers and/or therapeutic targets. Hence, evaluating the specific functions of ncRNAs will help to expand novel treatment options for GC. CONCLUSIONS In this review, we summarize some of the well-known ncRNAs that play a role in the development and progression of GC. We also review the application of such ncRNAs in clinical diagnostics and trials as potential biomarkers. Obviously, a deeper understanding of the biology and function of ncRNAs underlying chemoresistance can broaden horizons toward the development of personalized therapy against GC.
Collapse
|
32
|
Wen Z, Li H, Zhang J. The expression and clinical significance of murine double minute 2, lysosome-associated membrane protein 1, and P-glycoprotein in pediatric acute lymphoblastic leukemia. Transl Pediatr 2020; 9:677-685. [PMID: 33209731 PMCID: PMC7658771 DOI: 10.21037/tp-20-307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND To analyze the expression and clinical significance of murine double minute 2 (MDM2), lysosome-associated membrane protein (LAMP1) and P-glycoprotein (P-gp) in children with acute lymphoblastic leukemia (ALL). METHODS Thirty-three children with ALL who were admitted to our hospital between January 2017 and January 2018 were enrolled as the ALL group. The expression of MDM2, LAMP1 and P-gp was compared between the two groups, as well as between ALL patients with different clinical characteristics. Logistic regression was used to analyze the risk factors that affect the prognosis and survival of ALL patients. Kaplan-Meier survival curves were used to analyze the correlations of MDM2, LAMP1 and P-gp on the prognosis and survival of ALL patients. RESULTS The expression levels of MDM2, LAMP1 and P-gp in the ALL group were higher than those in the control group (P<0.05). The average survival time of the group with low expression of MDM2 was (34.92±0.56) months, the average survival time of the group with high expression of MDM2 was (31.32±0.42) months, and the difference was statistically significant (P<0.05). The average survival time of the group with low expression of LAMP1 was (36.71±0.55) months, the average survival time of the group with high expression of LAMP1 was (29.87±0.40) months, the difference was statistically significant (P<0.05). The average survival time of the group with low expression of P-gp was (36.29±0.41) months, the average survival time of the group with high expression of P-gp was (26.46±0.37) months, and the difference was statistically significant (P<0.05). CONCLUSIONS Abnormal expression levels of MDM2, LAMP1 and P-gp protein are related to the occurrence and development of ALL, and are closely related to patient prognosis and survival. Therefore, MDM2, LAMP1and P-gp can serve as molecular markers for predicting the prognosis of children with ALL.
Collapse
Affiliation(s)
- Zhuoyu Wen
- Department of Pediatrics, Northwest Women and Children's Hospital, Xi'an, China
| | - Hui Li
- Department of Pediatrics, Northwest Women and Children's Hospital, Xi'an, China
| | - Juan Zhang
- Department of Neonatology, Northwest Women and Children's Hospital, Xi'an, China
| |
Collapse
|
33
|
Ghafouri-Fard S, Vafaee R, Shoorei H, Taheri M. MicroRNAs in gastric cancer: Biomarkers and therapeutic targets. Gene 2020; 757:144937. [PMID: 32640300 DOI: 10.1016/j.gene.2020.144937] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/09/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are a group of non-coding RNAs that have critical roles in regulation of expression of genes. They can inhibit or decrease expression of target genes mostly via interaction with 3' untranslated region of their targets. Their crucial roles in the regulation of expression of tumor suppressor genes and oncogenes have potentiated them as contributors in tumorigenesis. Moreover, their stability in body fluids has enhanced their potential as cancer biomarkers. In the present review article, we describe the role of miRNAs in the pathogenesis of gastric cancer and advances in application of miRNAs as biomarkers and therapeutic targets in this kind of malignancy.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Vafaee
- Proteomics Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Wang H, Chen J, Zhang S, Zheng X, Xie S, Mao J, Cai Y, Lu X, Hu L, Shen J, Chai K, Chen W. MiR-223 regulates autophagy associated with cisplatin resistance by targeting FBXW7 in human non-small cell lung cancer. Cancer Cell Int 2020; 20:258. [PMID: 32577098 PMCID: PMC7304223 DOI: 10.1186/s12935-020-01284-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 05/22/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cisplatin is widely used as a first-line treatment for non-small cell lung cancer (NSCLC), but chemoresistance remains a major clinical obstacle for efficient use. As a microRNA, miR-223 was reported to promote the doxorubicin resistance of NSCLC. However, whether miR-223 is also involved in cisplatin resistance of NSCLC and the mechanism miR-223 involved in drug resistance is unclear. Accumulated evidence has shown that abnormal autophagy is associated with tumor chemoresistance. The study aimed to study the role of miR-223 on cisplatin sensitivity in NSCLC and uncover the potential mechanisms. METHODS NSCLC cells transfected with mimic or inhibitor for miR-223 was assayed for chemoresistance in vitro. MiR-223 expression was assessed by quantitative real-time PCR (qRT-PCR). Western blot were used to study the expression level of F-box/WD repeat-containing protein 7 (FBXW7) and autophagy-related protein. The effect of miR-223 on cisplatin sensitivity was examined by using CCK-8, EdU assays and Autophagic flux assay. Luciferase assays, EdU assays and small interfering RNA were performed to identify the targets of miR-223 and the mechanism by which it promotes treatment resistance. Xenograft models were established to investigate the effect of mir-223 on cisplatin sensitivity. RESULTS In the present study, we found that the level of miR-223 was significantly positively correlated with cisplatin resistance. MiR-223 overexpression made NSCLC cells resistant to cisplatin treatment. We further found that autophagy mediated miR-223-mediated cisplatin resistance in NSCLC cells. Further mechanistic research demonstrated that miR-223 directly targeted FBXW7. The overexpression of miR-223 could inhibit the level of FBXW7 protein expression, thus promoting autophagy and making NSCLC cells resistant to cisplatin. Finally, we confirmed the increased effect of cisplatin sensitivity by miR-223 Antagomir in xenograft models of NSCLC. CONCLUSIONS Our results demonstrate that miR-223 could enhance autophagy by targeting FBXW7 in NSCLC cells. Inhibition of autophagy by miR-223 knockdown provides a novel treatment strategy to alleviate cisplatin resistance in NSCLC.
Collapse
Affiliation(s)
- Hui Wang
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053 Zhejiang China
| | - Jiabin Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Shufen Zhang
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Xiaoxiao Zheng
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Shangzhi Xie
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Jiayan Mao
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Ying Cai
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Xuemei Lu
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Liqiang Hu
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Jian Shen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Kequn Chai
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| |
Collapse
|
35
|
Yu J, Zhang X, Ma Y, Li Z, Tao R, Chen W, Xiong S, Han X. MiR-129-5p Restrains Apatinib Resistance in Human Gastric Cancer Cells Via Downregulating HOXC10. Cancer Biother Radiopharm 2020; 36:95-105. [PMID: 32552008 DOI: 10.1089/cbr.2019.3107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background: Repeated administration of apatinib has resulted in serious drug resistance in gastric cancer (GC). Previous studies showed that miR-129-5p had a low expression in GC, and homeobox gene C10 (HOXC10), a carcinogenic gene, was highly expressed in GC, while the molecular mechanism of miR-129-5p involved in apatinib resistance in GC cells is still unclear. Materials and Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of miR-129-5p and HOXC10 in GC tissues or cell lines. The expression levels of associated proteins were detected by Western blot. Cell counting kit-8 (CCK-8), the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), and flow cytometry assays were conducted to detect cell viability, proliferation, and apoptosis of MGC-803/AP and AGS/AP cells in vitro. The dual-luciferase reporter assay was used to verify the targeted relationship between miR-129-5p and HOXC10. The xenograft model was established to examine the effect of miR-129-5p in vivo, and the HOXC10 protein expression in tumor xenograft was assessed by immunohistochemistry. Results: MiR-129-5p had a low expression in GC tissues and apatinib-resistant cell lines, while HOXC10 was highly expressed. Meanwhile, overexpression of miR-129-5p and knockdown of HOXC10 could enhance the chemosensitivity of MGC-803/AP and AGS/AP cells. Dual-luciferase reporter assay confirmed miR-129-5p targeted HOXC10 and downregulated its expression level. MiR-129-5p inhibited proliferation and promoted apoptosis of MGC-803/AP and AGS/AP cells by downregulating HOXC10. The experiment in vivo also confirmed that miR-129-5p reduced apatinib resistance in GC cells by targetedly inhibiting HOXC10. HOXC10 was upregulated in GC tumor xenograft tissues. Conclusion: miR-129-5p restrains apatinib-resistant of GC cells by regulating HOXC10.
Collapse
Affiliation(s)
- Jianping Yu
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of People's Liberation Army, Lanzhou, China
| | - Xiankun Zhang
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of People's Liberation Army, Lanzhou, China
| | - Youwei Ma
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of People's Liberation Army, Lanzhou, China
| | - Zhengkai Li
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of People's Liberation Army, Lanzhou, China
| | - Ruiyu Tao
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of People's Liberation Army, Lanzhou, China
| | - Weikai Chen
- Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shimeng Xiong
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaopeng Han
- Department of General Surgery, The 940th Hospital of Joint Logistics Support Force of People's Liberation Army, Lanzhou, China
| |
Collapse
|
36
|
Wang R, Lu X, Yu R. lncRNA MALAT1 Promotes EMT Process and Cisplatin Resistance of Oral Squamous Cell Carcinoma via PI3K/AKT/m-TOR Signal Pathway. Onco Targets Ther 2020; 13:4049-4061. [PMID: 32494159 PMCID: PMC7231756 DOI: 10.2147/ott.s251518] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/22/2020] [Indexed: 11/29/2022] Open
Abstract
Background Cisplatin (DDP) is the first-line chemotherapy agent for the treatment of oral squamous cell carcinoma (OSCC). The emergence of DDP resistance leads to diminished drug efficacy and survival benefit. lncRNA MALAT1 has been considered as one of the most important factors in OSCC. It has also been reported to enhance chemo-resistance in other kinds of carcinomas. However, little is known about the role of lncRNA MALAT1 in DDP resistance of OSCC. Materials and Methods Two kinds of human DDP-resistant cell lines (CAL-27R and SCC-9R) were developed from cisplatin-naïve cell lines (CAL-27 and SCC-9, respectively) as in vitro cell models. Cell transfection was performed to overexpress or knockdown MALAT1 in these cells. Mouse xenograft models were also established. The following measurements were performed: cell proliferation, colony formation, wound healing, transwell, and TUNEL assays, as well as Western blot and immunofluorescence staining. Results DDP-resistant cells showed higher expression level of MALAT1 compared to cisplatin-naïve cells. The overexpression of MALAT1 in cisplatin-naïve cells enhanced DDP resistance and suppressed apoptosis in OSCC cells. However, the knockdown of MALAT1 in DDP-resistance cells induced apoptotic cell death and restored the sensitivity to DDP. Further analyses suggested that MALAT1 might promote DDP resistance via regulating P-glycoprotein expression, epithelial–mesenchymal transition process, and the activation of PI3K/AKT/m-TOR signaling pathway. Conclusion MALAT1 might be a potential therapeutic target for the treatment of DDP-resistant OSCC.
Collapse
Affiliation(s)
- Ran Wang
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xinxing Lu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Riyue Yu
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
37
|
Ahadi A. Dysregulation of miRNAs as a signature for diagnosis and prognosis of gastric cancer and their involvement in the mechanism underlying gastric carcinogenesis and progression. IUBMB Life 2020; 72:884-898. [DOI: 10.1002/iub.2259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Alireza Ahadi
- Department of Medical Genetics, School of MedicineShahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
38
|
Gao J, Yuan Y, Zhang L, Yu S, Lu J, Feng J, Hu S. Inhibition of ZEB1-AS1 confers cisplatin sensitivity in breast cancer by promoting microRNA-129-5p-dependent ZEB1 downregulation. Cancer Cell Int 2020; 20:90. [PMID: 32210737 PMCID: PMC7092489 DOI: 10.1186/s12935-020-1164-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/04/2020] [Indexed: 11/22/2022] Open
Abstract
Background Breast cancer is the leading cause of cancer-related mortality in women worldwide. Long non-coding RNAs (lncRNAs) are of critical importance in tumor drug resistance. Herein, this study aims to determine the roles of lncRNA ZEB1-AS1 in drug resistance of breast cancer involving microRNA-129-5p (miR-129-5p) and ZEB1. Methods Microarray-based gene expression profiling of breast cancer was conducted to identify the differentially expressed lncRNAs. ZEB1 expression was measured in adjacent and cancerous tissues. Next, MCF-7 and MDA-MB-231 cells were treated with a series of inhibitor, mimic or siRNA to clarify the roles of lncRNA ZEB1-AS1 and miR-129-5p in drug resistance of breast cancer. Then the target relationship of miR-129-5p with lncRNA ZEB1-AS1 and ZEB1 was verified. The expression patterns of miR-129-5p, lncRNA ZEB1-AS1, Bcl-2, MDR-1, ZEB1 and corresponding proteins were evaluated. Moreover, the apoptosis and drug resistance of MCF-7 cell were detected by CCK-8 and flow cytometry respectively. Results LncRNA ZEB1-AS1 was observed to be an upregulated lncRNA in breast cancer, and ZEB1 overexpression was noted in breast cancerous tissues. MiR-129-5p was revealed to specifically bind to both ZEB1 and lncRNA ZEB1-AS1. Moreover, the expression levels of ZEB1-AS1, ZEB1, Bcl-2, MDR-1, and corresponding proteins were decreased, but the expression of miR-129-5p was increased with transfection of miR-129-5p mimic and lncRNA ZEB1-AS1 siRNA. Besides, drug resistance to cisplatin was inhibited, and cell apoptosis was promoted in breast cancer after transfection of miR-129-5p mimic, lncRNA ZEB1-AS1 siRNA, and ZEB1 siRNA. Conclusion In conclusion, the study provides evidence that lncRNA ZEB1-AS1 silencing protects against drug resistance in breast cancer by promoting miR-129-5p-dependent ZEB1 downregulation. It may serve as a novel therapeutic target in breast cancer treatment.
Collapse
Affiliation(s)
- Jin Gao
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42, Baiziting, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yuan Yuan
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42, Baiziting, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Lili Zhang
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42, Baiziting, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Shaorong Yu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42, Baiziting, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jianwei Lu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42, Baiziting, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jifeng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42, Baiziting, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Sainan Hu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42, Baiziting, Nanjing, 210009, Jiangsu, People's Republic of China.
| |
Collapse
|
39
|
Wei L, Sun J, Zhang N, Zheng Y, Wang X, Lv L, Liu J, Xu Y, Shen Y, Yang M. Noncoding RNAs in gastric cancer: implications for drug resistance. Mol Cancer 2020; 19:62. [PMID: 32192494 PMCID: PMC7081551 DOI: 10.1186/s12943-020-01185-7] [Citation(s) in RCA: 332] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer is the fourth most common malignancy and the third leading cause of cancer-related deaths worldwide. Advanced gastric cancer patients can notably benefit from chemotherapy including adriamycin, platinum drugs, 5-fluorouracil, vincristine, and paclitaxel as well as targeted therapy drugs. Nevertheless, primary drug resistance or acquisition drug resistance eventually lead to treatment failure and poor outcomes of the gastric cancer patients. The detailed mechanisms involved in gastric cancer drug resistance have been revealed. Interestingly, different noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), are critically involved in gastric cancer development. Multiple lines of evidences demonstrated that ncRNAs play a vital role in gastric cancer resistance to chemotherapy reagents and targeted therapy drugs. In this review, we systematically summarized the emerging role and detailed molecular mechanisms of ncRNAs impact drug resistance of gastric cancer. Additionally, we propose the potential clinical implications of ncRNAs as novel therapeutic targets and prognostic biomarkers for gastric cancer.
Collapse
Affiliation(s)
- Ling Wei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Jujie Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yan Zheng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Xingwu Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Liyan Lv
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Jiandong Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yeyang Xu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yue Shen
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| |
Collapse
|
40
|
Abstract
To investigate combined effect of the anticancer drug cisplatin (CP) and the opiate analgesic morphine (MOR) on liver, rats were administered MOR (10 mg/kg/day i.p. for 10 days), with or without CP (7.5 mg/kg i.p. once at day 5 of the study). MOR or CP alone caused deterioration of liver function tests and induced damage to histological architecture of liver. In addition, each drug alone caused hepatic oxidative stress, as evident by significant increase of malondialdehyde and nitric oxide, as well as the significant decrease in GSH, catalase and SOD compared to control. Administration of either MOR or CP also caused liver inflammation, evident by the increase in the pro-inflammatory cytokines; TNF-α and IL-6. In addition, either MOR or CP induced liver apoptosis, as shown by significant increase in expression of the pro-apoptotic marker; caspase 3 compared to control. Either MOR or CP also caused up-regulation of the efflux transporter P-glycoprotein (P-gp). Combining MOR with CP caused deterioration in all parameters tested compared to CP alone. Thus, treatment with MOR worsened CP-induced hepatotoxicity through oxidative stress, inflammation and apoptosis mechanisms. In addition, both drugs contributed to the up-regulation of P-gp, which might be a new mechanism for their hepatotoxic effects.
Collapse
|
41
|
Wan P, Bai X, Yang C, He T, Luo L, Wang Y, Fan M, Wang Z, Lu L, Yin Y, Li S, Guo Q, Song Z. miR-129-5p inhibits proliferation, migration, and invasion in rectal adenocarcinoma cells through targeting E2F7. J Cell Physiol 2020; 235:5689-5701. [PMID: 32052431 DOI: 10.1002/jcp.29501] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022]
Abstract
microRNAs (miRNAs), a kind of small noncoding RNAs, are considered able to regulate expression of genes and mediate RNA silencing. miR-129-5p was shown to be a cancer-related miRNA. However, the influence of miR-129-5p in rectal adenocarcinoma (READ) development remains to be determined. Based on the TCGA data, downregulation of miR-129-5p in READ samples was observed. Manual restoration of the miR-129-5p in SW1463 and SW480 cell lines significantly inhibited invasion, migration, and proliferation of READ cell lines, while the apoptosis ability was enhanced. Meanwhile, we found E2F7 acted as a potential target of miR-129-5p and was upregulated in READ samples. E2F7 upregulation reversed the repression of miR-129-5p on READ development. Finally, in vivo experiments showed that inhibition of tumor growth in nude mice was achieved through upregulating miR-129-5p. Overall, our findings suggest increasing of miR-129-5p leads to the suppression of READ progression through regulating the expression of E2F7, which may provide novel insights into the treatment of READ.
Collapse
Affiliation(s)
- Ping Wan
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xuan Bai
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chao Yang
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Tian He
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lilin Luo
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yun Wang
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Minmin Fan
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhilin Wang
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Liming Lu
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yajing Yin
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Sisi Li
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qiang Guo
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhengyi Song
- Department of Digestive System, The First People's Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
42
|
Verma HK, Ratre YK, Mazzone P, Laurino S, Bhaskar LVKS. Micro RNA facilitated chemoresistance in gastric cancer: a novel biomarkers and potential therapeutics. ALEXANDRIA JOURNAL OF MEDICINE 2020; 56:81-92. [DOI: 10.1080/20905068.2020.1779992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Henu Kumar Verma
- Developmental and Stem Cell Biology Laboratory, Institute of Experimental Endocrinology and Oncology CNR, Naples, Italy
- Section of Stem Cell and Development, Istituto di Ricerche Genetiche “Gaetano Salvatore” Biogem, Ariano Irpino, Italy
| | | | - Pellegrino Mazzone
- Section of Stem Cell and Development, Istituto di Ricerche Genetiche “Gaetano Salvatore” Biogem, Ariano Irpino, Italy
| | - Simona Laurino
- Laboratory of Preclinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata (CROB), Rionero in Vulture, Italy
| | | |
Collapse
|
43
|
Sun Y, Zhang J, Yin H, Yin J. MicroRNA-mediated suppression of P-glycoprotein by quantum dots in lung cancer cells. J Appl Toxicol 2019; 40:525-534. [PMID: 31883144 DOI: 10.1002/jat.3924] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023]
Abstract
The interactions between adenosine triphosphate-binding cassette (ABC) transporters and nano-sized materials are attracting increasing attention, due to their great potential in overcoming the multidrug resistance (MDR) phenomena in cancer treatment. However, the inner mechanisms involved in the interactions are largely unknown. In this study, two commercial quantum dots (QDs), CdSe/ZnS-MPA and CdSe/ZnS-GSH, were tested for their interactions with P-glycoprotein (P-gp), as well as the relating mechanisms in lung cancer (A549) cells. Both QDs significantly suppressed the gene and protein expressions of P-gp in A549 cells. To explain this, the gene expressions of nine relating microRNAs (miRNAs) were evaluated. The results indicated a shared up-regulation of miR-34b and miR-185 by both QDs. Furthermore, mimics and inhibitors of miR-34b and miR-185 significantly enhanced and suppressed the gene and protein expressions of P-gp, respectively, confirming the modulatory function of these two miRNAs on P-gp. Interestingly, expressions of both miRNAs were suppressed during treatment with Cd2+ and doxorubicin, which induced the expression of P-gp, indicating the universality of these miRNAs-related mechanisms. Thus, as miR-34b and miR-185 participated in the suppression of P-gp functions in A549 cells they could be interesting targets for the treatment of lung cancer.
Collapse
Affiliation(s)
- Yimin Sun
- University of Science and Technology of China, Hefei, China.,CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jie Zhang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Huancai Yin
- University of Science and Technology of China, Hefei, China.,CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jian Yin
- University of Science and Technology of China, Hefei, China.,CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,Shandong Guo Ke Medical Technology Development Co., Ltd, Jinan, China
| |
Collapse
|
44
|
Zhao X, Hu GF, Shi YF, Xu W. Research Progress in microRNA-Based Therapy for Gastric Cancer. Onco Targets Ther 2019; 12:11393-11411. [PMID: 31920330 PMCID: PMC6935305 DOI: 10.2147/ott.s221354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is one of the leading causes of tumor-related mortality. In addition to surgery and endoscopic resection, systemic therapy remains the main treatment option for GC, especially for advanced-stage disease and for cases not suitable for surgical therapy. Hence, improving the efficacy of systemic therapy is still an urgent problem to overcome. In the past decade, the essential roles of microRNAs (miRNAs) in tumor treatment have been increasingly recognized. In particular, miRNAs were recently shown to reverse the resistance to chemotherapy drugs such as 5-fluorouracil, cisplatin, and doxorubicin. Synthesized nanoparticles loaded with mimics or inhibitors of miRNAs can directly target tumor cells to suppress their growth. Moreover, exosomes may serve as promising safe carriers for mimics or inhibitors of miRNAs to treat GC. Some miRNAs have also been shown to play roles in the mechanism of action of other anti-tumor drugs. Therefore, in this review, we highlight the research progress on microRNA-based therapy in GC and discuss the challenges and prospects associated with this strategy. We believe that microRNA-based therapy has the potential to offer a clinical benefit to GC patients, and this review would contribute to and motivate further research to promote this field toward this ultimate goal.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Gao-Feng Hu
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Yan-Fen Shi
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Wei Xu
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
45
|
Seo HA, Moeng S, Sim S, Kuh HJ, Choi SY, Park JK. MicroRNA-Based Combinatorial Cancer Therapy: Effects of MicroRNAs on the Efficacy of Anti-Cancer Therapies. Cells 2019; 9:cells9010029. [PMID: 31861937 PMCID: PMC7016872 DOI: 10.3390/cells9010029] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
The susceptibility of cancer cells to different types of treatments can be restricted by intrinsic and acquired therapeutic resistance, leading to the failure of cancer regression and remission. To overcome this problem, a combination therapy has been proposed as a fundamental strategy to improve therapeutic responses; however, resistance is still unavoidable. MicroRNA (miRNAs) are associated with cancer therapeutic resistance. The modulation of dysregulated miRNA levels through miRNA-based therapy comprising a replacement or inhibition approach has been proposed to sensitize cancer cells to other anti-cancer therapies. The combination of miRNA-based therapy with other anti-cancer therapies (miRNA-based combinatorial cancer therapy) is attractive, due to the ability of miRNAs to target multiple genes associated with the signaling pathways controlling therapeutic resistance. In this article, we present an overview of recent findings on the role of therapeutic resistance-related miRNAs in different types of cancer. We review the feasibility of utilizing dysregulated miRNAs in cancer cells and extracellular vesicles as potential candidates for miRNA-based combinatorial cancer therapy. We also discuss innate properties of miRNAs that need to be considered for more effective combinatorial cancer therapy.
Collapse
Affiliation(s)
- Hyun Ah Seo
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (H.A.S.); (S.M.); (S.Y.C.)
| | - Sokviseth Moeng
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (H.A.S.); (S.M.); (S.Y.C.)
| | - Seokmin Sim
- Generoath, Seachang-ro, Mapo-gu, Seoul 04168, Korea;
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (H.A.S.); (S.M.); (S.Y.C.)
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (H.A.S.); (S.M.); (S.Y.C.)
- Correspondence: or ; Tel.: +82-33-248-2114
| |
Collapse
|
46
|
Jia Y, Gao Y, Dou J. Effects of miR-129-3p on biological functions of prostate cancer cells through targeted regulation of Smad3. Oncol Lett 2019; 19:1195-1202. [PMID: 31966049 PMCID: PMC6956156 DOI: 10.3892/ol.2019.11216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Effects of miR-129-3p on the biological functions of prostate cancer cells through the targeted regulation of Smad3 were investigated. RT-PCR was used to detect the expression levels of miR-129-3p in prostate cancer tissues and cells and its target gene Smad3 mRNA determined by bioinformatics prediction. Correlation between miR-129-3p and Smad3 was analyzed. MTT assay, cell invasion detection, and apoptosis detection were conducted to detect the effects of miR-129-3p and Smad3 on the proliferation, invasion, and apoptosis of prostate cancer cells. The results of RT-qPCR showed that the expression level of miR-129-3p decreased but that of Smad3 increased in the prostate cancer tissue, and the expression levels of the two were significantly and negatively correlated. Additionally, the expression levels were closely related to the degree of tumor differentiation, TNM staging, and lymph node metastasis (P<0.05). Bioinformatics prediction and subsequent experiments proved that Smad3 was the direct target gene of miR-129-3p. Cell detection confirmed that the overexpression of miR-129-3p or the inhibition of Smad3 expression inhibited the proliferation and invasion of prostate cancer cells, promoting apoptosis, and increased the expression level of pro-apoptotic protein Bax, as well as decreased the expression level of anti-apoptotic protein Bcl-2. Inhibition of miR-129-3p expression had the opposite effect to overexpression. miR-129-3p, which may be a new and potential target for the treatment of prostate cancer, can inhibit the proliferation and invasion of prostate cancer cells and promote their apoptosis by directly targeting Smad3.
Collapse
Affiliation(s)
- Yunpeng Jia
- Department of Urology Surgery, Gansu Provincial Hospital of TCM, Lanzhou, Gansu 730050, P.R. China
| | - Yu Gao
- Department of Urology Surgery, The Dazu District People's Hospital, Chongqing 402360, P.R. China
| | - Jianguo Dou
- Department of Urology Surgery, The Dazu District People's Hospital, Chongqing 402360, P.R. China
| |
Collapse
|
47
|
Luo YJ, Huang QM, Ren Y, Liu ZL, Xu CF, Wang H, Xiao JW. Non-coding RNA in drug resistance of gastric cancer. World J Gastrointest Oncol 2019; 11:957-970. [PMID: 31798777 PMCID: PMC6883183 DOI: 10.4251/wjgo.v11.i11.957] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/21/2019] [Accepted: 10/03/2019] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related mortality worldwide. The poorly prognosis and survival of GC are due to diagnose in an advanced, non-curable stage and with a limited response to chemotherapy. The acquisition of drug resistance accounts for the majority of therapy failure of chemotherapy in GC patients. Although the mechanisms of anticancer drug resistance have been broadly studied, the regulation of these mechanisms has not been completely understood. Accumulating evidence has recently highlighted the role of non-coding RNAs (ncRNAs), including long non-coding RNAs and microRNAs, in the development and maintenance of drug resistance due to their regulatory features in specific genes involved in the chemoresistant phenotype of GC. We review the literature on ncRNAs in drug resistance of GC. This review summarizes the current knowledge about the ncRNAs’ characteristics, their regulation of the genes involved in chemoresistance and their potential as targeted therapies for personalized treatment in resistant GC.
Collapse
Affiliation(s)
- Ya-Jun Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Qing-Mei Huang
- Department of Oncology, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Yan Ren
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Zi-Lin Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Cheng-Fei Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Hao Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Jiang-Wei Xiao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| |
Collapse
|
48
|
Peng C, Huang K, Liu G, Li Y, Yu C. MiR-876-3p regulates cisplatin resistance and stem cell-like properties of gastric cancer cells by targeting TMED3. J Gastroenterol Hepatol 2019; 34:1711-1719. [PMID: 30843262 DOI: 10.1111/jgh.14649] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/26/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Gastric cancer (GC), a prevalent tumor, exerts a major economic burden, and we aimed to explore miR-876-3p's effects on GC and related mechanisms. METHODS Cell viability was analyzed via CCK-8 and colony formation assay. Stem cell-like properties were examined via spheroid colony formation assay. mRNA abundance of key genes was analyzed via quantitative polymerase chain reaction. Protein level of TMED3 and stem cell markers was examined by western blot. TargetScan, luciferase, and biotin-miRNA pulldown assay were used to identify miR-876-3p's target. RESULTS MiR-876-3p was downregulated in GC, and its mRNA level had negative relationship with cisplatin resistance of GC. Moreover, decreased miR-876-3p expression level suggested poor prognosis of GC patients. MiR-876-3p inhibited drug resistance of cisplatin-resistant cell line SGC-7901/DDP and MKN-45/DDP, as shown by decreased cell viability, IC50 , and colony formation ability. MiR-876-3p inhibited stem cell-like features and downregulated the expressions of Sox-2, Oct-4, CD133, and CD44 in GC cells. Luciferase and biotin-miRNA pulldown assay confirmed that TMED3 was miR-876-3p's direct target. TMED3 siRNA inhibited miR-876-3p's effects on cisplatin resistance and stem cell-like features of SGC-7901/DDP cells. CONCLUSION MiR-876-3p enhanced cisplatin sensitivity and restricted stem cell-like features of GC through targeting TMED3.
Collapse
Affiliation(s)
- Chunwei Peng
- Department of Gastrointestinal Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kai Huang
- Department of Gastrointestinal Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Guangjie Liu
- Department of Gastrointestinal Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yunsong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Changjun Yu
- Department of Gastrointestinal Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
49
|
Sun C, Zhang S, Liu C, Liu X. Curcumin Promoted miR-34a Expression and Suppressed Proliferation of Gastric Cancer Cells. Cancer Biother Radiopharm 2019; 34:634-641. [PMID: 31539270 DOI: 10.1089/cbr.2019.2874] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: To investigate the effects of curcumin on miR-34a and proliferation of gastric cancer cells. Materials and Methods: Human gastric cancer cell line SGC-7901 was divided into control, curcumin, miR-34a agomir (miR-34a), miR-34a agomir negative control, and curcumin combined miR-34a antagomir (combine) groups. 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide assay, scratch damage test, and transwell assay were used to detect cell proliferation, migration, and invasion. The cell apoptosis and cell cycle were detected by flow cytometry. Western blot was used to detect the expression of B-cell lymphoma-2 (Bcl-2), cyclin-dependent kinase 4 (CDK4), and cyclin D1. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling was used to detect apoptosis of tumors and Western blot was used to detect the expression of Bcl-2, CDK4, and cyclin D1 in tumors. Results: The results showed that curcumin markedly increased the content of miR-34a microRNA (mRNA) in SGC-7901 cells, inhibited proliferation, migration, and invasion of SGC-7901 cells, when compared to control group (p < 0.05). Compared with control group, curcumin significantly inhibited cell cycle progression in G0/G1-S phase, increased the cell number of G0/G1 phase, and downregulated the Bcl-2, CDK4, and cyclin D1 protein expression in cells and tissues (p < 0.05). After transfection of miR-34a agomir or antagomir into cells it was found that miR-34a agomir and curcumin had similar effects on resisting malignant biological behavior. Curcumin combined with miR-34a antagomir could weaken or reverse the above results. Conclusions: Curcumin could inhibit the proliferation and induce apoptosis of SGC-7901 cells. Its mechanism might be related to the miR-34a expression in cells, thus affecting the expression of Bcl-2, CDK4, and cyclin D1.
Collapse
Affiliation(s)
- Chunlin Sun
- Department of Traditional Chinese Medicine, Weihai Central Hospital, Weihai, China
| | - Shuping Zhang
- Department of Radiation Oncology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Changhai Liu
- Department of Traditional Chinese Medicine, Weihai Central Hospital, Weihai, China
| | - Xueqiang Liu
- Department of Traditional Chinese Medicine, Weihai Central Hospital, Weihai, China
| |
Collapse
|
50
|
Gao B, Yang F, Chen W, Li R, Hu X, Liang Y, Li D. Multidrug resistance affects the prognosis of primary epithelial ovarian cancer. Oncol Lett 2019; 18:4262-4269. [PMID: 31579424 DOI: 10.3892/ol.2019.10745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 04/15/2019] [Indexed: 11/06/2022] Open
Abstract
Multidrug-resistant tumor cells can tolerate different structures, functions and antidrug action mechanisms, therefore, allowing these cells to respond to various structurally unrelated mechanisms of different chemotherapy drugs and to exhibit cross-resistance. The present study aimed to investigate the role of Multi-drug resistance gene (MDR1), Placental glutathione S-transferase-P1 (GSTP1), Lung resistance protein (LRP) and Ras association domain family member 1 (RASSF1A) in primary epithelial ovarian cancer (PEOC). The mRNA (protein) expression levels of MDR1, product P glycoprotein, LRP and GSTP1 were evaluated with reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis in all tissue samples, ovarian cancer cell line A2780 and A2780/DDP. Methylation-specific PCR (MSP) was used to detect RASSF1A gene methylation in all tissue samples. The resistance genes/proteins were either poorly or not expressed in A2780, however were highly expressed in A2780/DDP cell line. The expression of resistance genes/proteins decreased following different concentrations of zebularine-stimulated A2780/DDP. Hypermethylation and low expression of RASSF1A gene were detected in PEOC and A2780/DDP. Subsequent to being exposed to different concentrations of zebularine-stimulated A2780/DDP, the RASSF1A methylation level was decreased, while the unmethylation level was increased. The expression of RASSF1A gene/protein was gradually restored, and the gene/protein expression was enhanced with the increase in drug concentration. Multivariate logistic regression indicated that the expression level of gene LRP and GSTP1 was a risk factor for PEOC prognosis. Furthermore, the expression of LRP and GSTP1 in the negative-group survival curves was higher compared with the positive group. High expression of resistance genes may serve an important role in cancer primary resistance. Low expression caused by hyper-methylation of RASSF1A gene may serve an important role in cancer-acquired resistance in PEOC. The present study suggested that resistant gene expression may be a potential prognostic biomarker.
Collapse
Affiliation(s)
- Bo Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710061, P.R. China.,Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Fengmei Yang
- Department of Obstetrics and Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Wei Chen
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Rui Li
- Department of Medical Office, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xiuxue Hu
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yong Liang
- Department of Anesthesiology, Ren-ming Hospital of Yun-xi, Shiyan, Hubei 442000, P.R. China
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710061, P.R. China
| |
Collapse
|