1
|
Li Z, Duan J, Cao A, Gong Z, Liu H, Shen D, Ye T, Zhu S, Cen Q, He S, He Y, Zheng C, Lin X. Activating Wnt1/β-Catenin signaling pathway to restore Otx2 expression in the dopaminergic neurons of ventral midbrain. Exp Neurol 2025; 388:115216. [PMID: 40089003 DOI: 10.1016/j.expneurol.2025.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Parkinson's disease (PD) is the world's second most prevalent neurodegenerative disease. Currently, aside from levodopa, there are no other effective drugs clinically available to slow its progression. Otx2 plays a critical role in the differentiation of midbrain dopaminergic neurons (mDANs) during midbrain development. However, in adulthood, Otx2 is primarily expressed in the ventral tegmental area (VTA)-ventral part, and mDANs in the dorsal part of the VTA and the substantia nigra pars compacta (SNc) show no Otx2 expression. Research indicates that Otx2 is essential not only for the development of mDANs but also for their protection against the toxicity of MPTP and rotenone. Consequently, Otx2 is a potential clinical target for mDANs protection. Identifying the upstream mechanism that regulates Otx2 expression is crucial to restoring its expression in the SNc and enhancing its levels in the entire ventral midbrain mDANs. In this study, we have demonstrated the safety of Otx2 overexpression in vitro by using adeno-associate virus (AAV) and explored the feasibility of promoting Otx2 expression through the Wnt/β-Catenin signaling pathway using various drugs, a miR-34 mimic, and an inhibitor. Our results showed that Otx2 overexpression via AAV in the SNc is relatively safe, and CHIR99021 can induce Otx2 expression in mouse mDANs, thereby, alleviating PD-liked motor symptoms induced by MPTP. These findings suggest that modulating Otx2 expression through the Wnt/β-Catenin signaling pathway holds a therapeutic approach for Parkinson's disease.
Collapse
Affiliation(s)
- Zhao Li
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Jinhai Duan
- Department of Geriatric Neurology, Guangdong Institute of Geriatrics, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, #106, Zhongshan, 2nd Road, Guanzhou, Guangdong, China
| | - AnQi Cao
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Zhuo Gong
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Hao Liu
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Danyang Shen
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Tonglin Ye
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Shunyan Zhu
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Qikai Cen
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Shuaiying He
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Yongqian He
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China
| | - Canbing Zheng
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China.
| | - Xian Lin
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, #58 Zhongshan 2nd Road, Guangzhou, Guangdong, China; Department of Anatomy &Physiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan 2nd Road, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Sharifi-Kelishadi M, Zare L, Fathollahi Y, Javan M. Conversion of Astrocyte Cell Lines to Oligodendrocyte Progenitor Cells Using Small Molecules and Transplantation to Animal Model of Multiple Sclerosis. J Mol Neurosci 2024; 74:40. [PMID: 38594388 DOI: 10.1007/s12031-024-02206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Astrocytes, the most prevalent cells in the central nervous system (CNS), can be transformed into neurons and oligodendrocyte progenitor cells (OPCs) using specific transcription factors and some chemicals. In this study, we present a cocktail of small molecules that target different signaling pathways to promote astrocyte conversion to OPCs. Astrocytes were transferred to an OPC medium and exposed for five days to a small molecule cocktail containing CHIR99021, Forskolin, Repsox, LDN, VPA and Thiazovivin before being preserved in the OPC medium for an additional 10 days. Once reaching the OPC morphology, induced cells underwent immunocytofluorescence evaluation for OPC markers while checked for lacking the astrocyte markers. To test the in vivo differentiation capabilities, induced OPCs were transplanted into demyelinated mice brains treated with cuprizone over 12 weeks. Two distinct lines of astrocytes demonstrated the potential of conversion to OPCs using this small molecule cocktail as verified by morphological changes and the expression of PDGFR and O4 markers as well as the terminal differentiation to oligodendrocytes expressing MBP. Following transplantation into demyelinated mice brains, induced OPCs effectively differentiated into mature oligodendrocytes. The generation of OPCs from astrocytes via a small molecule cocktail may provide a new avenue for producing required progenitors necessary for myelin repair in diseases characterized by the loss of myelin such as multiple sclerosis.
Collapse
Affiliation(s)
| | - Leila Zare
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran.
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
3
|
Fernandes R, Barbosa-Matos C, Borges-Pereira C, de Carvalho ALRT, Costa S. Glycogen Synthase Kinase-3 Inhibition by CHIR99021 Promotes Alveolar Epithelial Cell Proliferation and Lung Regeneration in the Lipopolysaccharide-Induced Acute Lung Injury Mouse Model. Int J Mol Sci 2024; 25:1279. [PMID: 38279281 PMCID: PMC10816825 DOI: 10.3390/ijms25021279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung injury that currently lacks effective clinical treatments. Evidence highlights the potential role of glycogen synthase kinase-3 (GSK-3) inhibition in mitigating severe inflammation. The inhibition of GSK-3α/β by CHIR99021 promoted fetal lung progenitor proliferation and maturation of alveolar epithelial cells (AECs). The precise impact of CHIR99021 in lung repair and regeneration during acute lung injury (ALI) remains unexplored. This study intends to elucidate the influence of CHIR99021 on AEC behaviour during the peak of the inflammatory phase of ALI and, after its attenuation, during the repair and regeneration stage. Furthermore, a long-term evaluation was conducted post CHIR99021 treatment at a late phase of the disease. Our results disclosed the role of GSK-3α/β inhibition in promoting AECI and AECII proliferation. Later administration of CHIR99021 during ALI progression contributed to the transdifferentiation of AECII into AECI and an AECI/AECII increase, suggesting its contribution to the renewal of the alveolar epithelial population and lung regeneration. This effect was confirmed to be maintained histologically in the long term. These findings underscore the potential of targeted therapies that modulate GSK-3α/β inhibition, offering innovative approaches for managing acute lung diseases, mostly in later stages where no treatment is available.
Collapse
Affiliation(s)
- Raquel Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (R.F.); (C.B.-M.); (C.B.-P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga, Portugal
| | - Catarina Barbosa-Matos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (R.F.); (C.B.-M.); (C.B.-P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga, Portugal
| | - Caroline Borges-Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (R.F.); (C.B.-M.); (C.B.-P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga, Portugal
| | - Ana Luísa Rodrigues Toste de Carvalho
- Department of Internal Medicine, São João Universitary Hospital Center, 4200-319 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Sandra Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (R.F.); (C.B.-M.); (C.B.-P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga, Portugal
| |
Collapse
|
4
|
Liu J, Wang Y, Li Q, Liu T, Liu X, Zhang H, Fu Z, Dai Y, Yang H, Wang Y, Wang Y. Phenylethanoid glycosides derived from Cistanche deserticola promote neurological functions and the proliferation of neural stem cells for improving ischemic stroke. Biomed Pharmacother 2023; 167:115507. [PMID: 37722192 DOI: 10.1016/j.biopha.2023.115507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023] Open
Abstract
Phenylethanoid glycosides derived from Cistanche deserticola (PhGs) are plant-derived natural medicinal compounds that occur in many medicinal plants. This study aims to investigate whether PhGs treatment improves the stroke and its potential mechanisms. Adult male C57BL/6 J mice were administrated PhGs once daily for 7 days after MCAO surgery. The neurological score, and catwalk were evaluated on Day 1, 3 and 7 after ischemic stroke. Furthermore, triphenyl-2,3,5-tetrazoliumchloride (TTC) and hematoxylin-eosin (H&E) staining were used for evaluating the infarct volume and neuronal restoration. The effects of PhGs on NSCs proliferation were investigated in vitro and in vivo. Western blot was used to detect the proteins of Wnt/β-catenin signaling pathway. This study found that PhGs effectively improved the neurological functions in ischemic stroke mice. TTC and H&E staining demonstrated that PhGs not only reduced infarct volume, but also improved neuronal restoration. The immunohistochemistry and 5-Ethynyl-2-deoxyuridine (EdU) incorporation assays revealed that PhGs promoted the proliferation of neural stem cells (NSCs) in subventricular zone (SVZ). In addition, transcriptome analysis of NSCs showed that the Wnt/β-catenin signaling pathway was involved in the PhGs induced NSCs proliferation. Importantly, the related proteins in the Wnt/β-catenin signaling pathway were changed after PhGs treatment, including β-catenin, Wnt3a, GSK-3β, c-Myc. PhGs treatment improved the stroke through enhancing endogenous NSCs proliferation via activating Wnt/β-catenin signaling pathway. Due to its effect on the proliferation of NSCs, PhGs are a potential adjuvant therapeutic drug for post-stroke treatment.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Yanyan Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qinyuan Li
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Tao Liu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xu Liu
- Tianjin Xiqing District Hospital of Traditional Chinese Medicine, Tianjin, 300380, China
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component based Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhifei Fu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yifan Dai
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Haiyuan Yang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China.
| | - Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component based Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Ying Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
5
|
Schaafsma P, Kracht L, Baanstra M, Jellema-de Bruin AL, Coppes RP. Role of immediate early genes in the development of salivary gland organoids in polyisocyanopeptide hydrogels. Front Mol Biosci 2023; 10:1100541. [PMID: 36818041 PMCID: PMC9932530 DOI: 10.3389/fmolb.2023.1100541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Human salivary gland organoids have opened tremendous possibilities for regenerative medicine in patients undergoing radiotherapy for the treatment of head and neck cancer. However, their clinical translation is greatly limited by the current use of Matrigel for organoid derivation and expansion. Here, we envisage that the use of a fully, synthetic hydrogel based on the oligo (-ethylene glycol) functionalized polymer polyisocyanopeptides (PICs) can provide an environment suitable for the generation and expansion of salivary gland organoids (SGOs) after optimization of PIC polymer properties. We demonstrate that PIC hydrogels decorated with the cell-binding peptide RGD allow SGO formation from salivary gland (SG)-derived stem cells. This self-renewal potential is preserved for only 4 passages. It was found that SGOs differentiated prematurely in PIC hydrogels affecting their self-renewal capacity. Similarly, SGOs show decreased expression of immediate early genes (IEGs) after culture in PIC hydrogels. Activation of multiple signalling pathways involved in IEG expression by β-adrenergic agonist isoproterenol, led to increased stem cell self-renewal capacity as measured by organoid forming efficiency (OFE). These results indicate that PIC hydrogels are promising 3D matrices for SGOs, with the option to be used clinically, after further optimization of the hydrogel and culture conditions.
Collapse
Affiliation(s)
- Paulien Schaafsma
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Laura Kracht
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mirjam Baanstra
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Anne L. Jellema-de Bruin
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert P. Coppes
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands,*Correspondence: Robert P. Coppes,
| |
Collapse
|
6
|
Park J, Choi H, Shim K. Inhibition of GSK3β Promotes Proliferation and Suppresses Apoptosis of Porcine Muscle Satellite Cells. Animals (Basel) 2022; 12:ani12233328. [PMID: 36496849 PMCID: PMC9738253 DOI: 10.3390/ani12233328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
As the global population increases, interest in cultured meat (a new research field) is gradually increasing. The main raw material for the production of cultured meat is muscle stem cells called satellite cells isolated from livestock. However, how to mass proliferate and maintain satellite cells in vitro without genetic manipulation remains unclear. In the present study, we isolated and purified porcine muscle satellite cells (PMSCs) from the femur of a 1-day-old piglet and cultured PMSCs by treating them with an inhibitor (XAV939, Tankyrase (TNKS) inhibitor) or an activator (CHIR99021, glycogen synthase kinase 3 beta (GSK3β) inhibitor) of Wnt signaling. The CHIR group treated with 3 μM CHIR99021 showed a significantly increased proliferation rate of PMSCs compared to the SC group (control), whereas the XAV group treated with 1 μM XAV939 showed a significantly decreased proliferation rate of PMSCs. CHIR99021 also inhibited the differentiation of PMSCs by reducing the expression of MyoD while maintaining the expression of Pax7 and suppressed apoptosis by regulating the expression of apoptosis-related proteins and genes. RNA sequencing was performed to obtain gene expression profiles following inhibition or activation of the Wnt signaling pathway and various signaling mechanisms related to the maintenance of satellite cells were identified. Our results suggest that inhibition of GSK3β could dramatically improve the maintenance and mass proliferation ability of PMSCs in vitro by regulating the expression of myogenic markers and the cell cycle.
Collapse
Affiliation(s)
- Jinryong Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- 3D Tissue Culture Research Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyunwoo Choi
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kwanseob Shim
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Correspondence: ; Tel.: +82-063-270-2609
| |
Collapse
|
7
|
Schiro LE, Bauer US, Sandvig A, Sandvig I. Isolation and comparison of neural stem cells from the adult rat brain and spinal cord canonical neurogenic niches. STAR Protoc 2022; 3:101426. [PMID: 35693206 PMCID: PMC9184809 DOI: 10.1016/j.xpro.2022.101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Here, we present a unified protocol for the extraction, culture, and basic characterization of rat neural stem cells (NSCs) from all three canonical neurogenic niches in the brain and spinal cord. We describe tissue dissection and dissociation, cell culture, followed by EdU labeling and characterization of NSCs. By yielding considerable numbers of viable cells per animal, this protocol enables the establishment of substantial, long-term cell banks, thus offering cost and labor efficiency while significantly reducing the numbers of animals used. Extraction, culture, and characterization of adult neurogenic niche neural stem cells Comparison of neural stem cells from the different neurogenic niches High yield of viable neural stem cells obtainable per animal
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
8
|
Xu C, Ma H, Gao F, Zhang C, Hu W, Jia Y, Xu J, Hu J. Screening of Organophosphate Flame Retardants with Placentation-Disrupting Effects in Human Trophoblast Organoid Model and Characterization of Adverse Pregnancy Outcomes in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:57002. [PMID: 35503735 PMCID: PMC9064024 DOI: 10.1289/ehp10273] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Abnormal placental development may result in adverse pregnancy outcomes and metabolic diseases in adulthood; however, it remains unknown whether and how xenobiotics affect human placentation. OBJECTIVES This study aimed to screen and identify placentation-disrupting chemicals in commonly used organophosphate flame retardants (OPFRs) and, if identified, to investigate potential adverse effects on placentation in relation to adverse pregnancy outcomes and metabolic disorder in offspring in mice. METHODS We devised a high-throughput immunofluorescence screening assay based on human trophoblast organoids and used it to screen OPFRs that inhibit the proliferation of organoids. One identified chemical was assessed for its effects on placentation by evaluating villous cytotrophoblasts, syncytiotrophoblasts, and extravillous trophoblasts using immunofluorescence and a mitochondrial stress test after 2 d of exposure. A 10-d exposure study was further performed to observe the dynamic effect of the OPFR on the structure of the organoids. RNA-sequencing and western blotting experiments were performed to explore the associated pathways, and a potential binding protein was identified by immunoprecipitation and in vitro kinase activity assays. Animal studies were performed to determine whether the findings in organoids could be replicated in mice and to observe adverse pregnancy outcomes. RESULTS The proliferation of organoids exposed to three aryl-OPFRs was significantly lower than the proliferation of control organoids. Further analysis demonstrated that one such chemical, 2-ethylhexyl-diphenyl phosphate (EHDPP), disrupted placentation in organoids. Mechanistically, EHDPP interfered with insulin-like growth factor 1 receptor (IGF1R) to inhibit aerobic respiration. Mice exposed to EHDPP at a physiological human concentrations exhibited immature and mature placental disorders, which correlated with fetal growth restriction, implantation failure, stillbirth, and impaired glucose tolerance. CONCLUSIONS The human trophoblast organoid model showed that the commonly used OPFRs disrupted placentation via IGF1R, indicating that its use may contribute to adverse pregnancy outcomes and metabolic disorders in offspring. https://doi.org/10.1289/EHP10273.
Collapse
Affiliation(s)
- Chenke Xu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Haojia Ma
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Fumei Gao
- Reproductive Medical Center, Peking University People’s Hospital, Peking University, Beijing, China
| | - Chenhao Zhang
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Wenxin Hu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yingting Jia
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Jun Xu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, China
| | - Jianying Hu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
9
|
Glycogen Synthase Kinase 3 Regulates the Genesis of Displaced Retinal Ganglion Cells3. eNeuro 2021; 8:ENEURO.0171-21.2021. [PMID: 34518365 PMCID: PMC8496207 DOI: 10.1523/eneuro.0171-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 01/13/2023] Open
Abstract
Glycogen synthase kinase 3 (GSK3) proteins (GSK3α and GSK3β) are key mediators of signaling pathways, with crucial roles in coordinating fundamental biological processes during neural development. Here we show that the complete loss of GSK3 signaling in mouse retinal progenitors leads to microphthalmia with broad morphologic defects. A single wild-type allele of either Gsk3α or Gsk3β is able to rescue this phenotype. In this genetic context, all cell types are present in a functional retina. However, we unexpectedly detected a large number of cells in the inner nuclear layer expressing retinal ganglion cell (RGC)-specific markers (called displaced RGCs, dRGCs) when at least one allele of Gsk3α is expressed. The excess of dRGCs leads to an increased number of axons projecting into the ipsilateral medial terminal nucleus, an area of the brain belonging to the non-image-forming visual circuit and poorly targeted by RGCs in wild-type retina. Transcriptome analysis and optomotor response assay suggest that at least a subset of dRGCs in Gsk3 mutant mice are direction-selective RGCs. Our study thus uncovers a unique role of GSK3 in controlling the production of ganglion cells in the inner nuclear layer, which correspond to dRGCs, a rare and poorly characterized retinal cell type.
Collapse
|
10
|
Wagstaff EL, Heredero Berzal A, Boon CJF, Quinn PMJ, ten Asbroek ALMA, Bergen AA. The Role of Small Molecules and Their Effect on the Molecular Mechanisms of Early Retinal Organoid Development. Int J Mol Sci 2021; 22:7081. [PMID: 34209272 PMCID: PMC8268497 DOI: 10.3390/ijms22137081] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Early in vivo embryonic retinal development is a well-documented and evolutionary conserved process. The specification towards eye development is temporally controlled by consecutive activation or inhibition of multiple key signaling pathways, such as the Wnt and hedgehog signaling pathways. Recently, with the use of retinal organoids, researchers aim to manipulate these pathways to achieve better human representative models for retinal development and disease. To achieve this, a plethora of different small molecules and signaling factors have been used at various time points and concentrations in retinal organoid differentiations, with varying success. Additions differ from protocol to protocol, but their usefulness or efficiency has not yet been systematically reviewed. Interestingly, many of these small molecules affect the same and/or multiple pathways, leading to reduced reproducibility and high variability between studies. In this review, we make an inventory of the key signaling pathways involved in early retinogenesis and their effect on the development of the early retina in vitro. Further, we provide a comprehensive overview of the small molecules and signaling factors that are added to retinal organoid differentiation protocols, documenting the molecular and functional effects of these additions. Lastly, we comparatively evaluate several of these factors using our established retinal organoid methodology.
Collapse
Affiliation(s)
- Ellie L. Wagstaff
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
| | - Andrea Heredero Berzal
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
| | - Camiel J. F. Boon
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Peter M. J. Quinn
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center—New York-Presbyterian Hospital, New York, NY 10032, USA;
| | | | - Arthur A. Bergen
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Netherlands Institute for Neuroscience (NIN-KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
11
|
Gurevich I, Burton SA, Munn C, Ohshima M, Goedland ME, Czysz K, Rajesh D. iPSC-derived hepatocytes generated from NASH donors provide a valuable platform for disease modeling and drug discovery. Biol Open 2020; 9:bio055087. [PMID: 33268331 PMCID: PMC7758638 DOI: 10.1242/bio.055087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects 30-40% of adults and 10% of children in the US. About 20% of people with NAFLD develop non-alcoholic steatohepatitis (NASH), which may lead to cirrhosis and liver cancer, and is projected to be a leading cause of liver transplantation in the near future. Human induced pluripotent stem cells (iPSC) from NASH patients are useful for generating a large number of hepatocytes for NASH modeling applications and identification of potential drug targets. We developed a novel defined in vitro differentiation process to generate cryopreservable hepatocytes using an iPSC panel of NASH donors and apparently healthy normal (AHN) controls. iPSC-derived hepatocytes displayed stage specific phenotypic markers, hepatocyte morphology, with bile canaliculi. Importantly, both fresh and cryopreserved definitive endoderm and hepatoblasts successfully differentiated to pure and functional hepatocytes with increased CYP3A4 activity in response to rifampicin and lipid accumulation upon fatty acid (FA) treatment. End-stage hepatocytes integrated into three-dimensional (3D) liver organoids and demonstrated increased levels of albumin secretion compared to aggregates consisting of hepatocytes alone. End-stage hepatocytes derived from NASH donors demonstrated spontaneous lipidosis without FA supplementation, recapitulating a feature of NASH hepatocytes in vivo Cryopreserved hepatocytes generated by this protocol across multiple donors will provide a critical cell source to facilitate the fundamental understanding of NAFLD/NASH biology and potential high throughput screening applications for preclinical evaluation of therapeutic targets.
Collapse
Affiliation(s)
- Igor Gurevich
- Life Science R&D Division, FUJIFILM Cellular Dynamics, Inc., 525 Science Drive, Madison, WI 53711, USA
| | - Sarah A Burton
- Life Science R&D Division, FUJIFILM Cellular Dynamics, Inc., 525 Science Drive, Madison, WI 53711, USA
| | - Christie Munn
- Life Science R&D Division, FUJIFILM Cellular Dynamics, Inc., 525 Science Drive, Madison, WI 53711, USA
| | - Makiko Ohshima
- Life Science R&D Division, FUJIFILM Cellular Dynamics, Inc., 525 Science Drive, Madison, WI 53711, USA
| | - Madelyn E Goedland
- Life Science R&D Division, FUJIFILM Cellular Dynamics, Inc., 525 Science Drive, Madison, WI 53711, USA
| | - Katherine Czysz
- Life Science R&D Division, FUJIFILM Cellular Dynamics, Inc., 525 Science Drive, Madison, WI 53711, USA
| | - Deepika Rajesh
- Life Science R&D Division, FUJIFILM Cellular Dynamics, Inc., 525 Science Drive, Madison, WI 53711, USA
| |
Collapse
|
12
|
Pisal RV, Mokry J. BMP Inhibition in the Presence of LIF Differentiates Murine Embryonic Stem Cells to Early Neural Stem Cells. Folia Biol (Praha) 2020; 66:155-160. [PMID: 34087971 DOI: 10.14712/fb2020066050155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Early mouse neural stem cells (NSCs) first appear in embryonic day E5.5 and express pluripotency markers Oct4, Sox2, Nanog and early neural marker Sox1. Early NSCs are a good model for understanding the role of various pathways that control initial neural commitment. However, a protocol for differentiation of mouse embryonic stem cells (ESCs) into early NSCs by adherent monolayer culture has not yet been established. Hence, in this study, we identified the combination of growth factors and small molecules that differentiated mouse ESCs into early NSCs and supported their proliferation. Leukaemia inhibitory factor (LIF) was the first factor to be tested and it was found that ESCs can differentiate into early neurogenic lineage in the presence of LIF. However, we found that the induction is weaker in the presence of LIF as compared to cells differentiated in its absence. GSK-3 inhibitor, along with BMP and TGF-β pathway inhibitor (dual SMAD inhibition), are commonly used to sequentially direct ESCs towards NSCs. However, when we used this combination, mouse ESCs failed to differentiate into early NSCs. We observed that by adding Wnt inhibitor to the combination of GSK-3 inhibitor, BMP inhibitor, TGF-β inhibitor and LIF, it was possible to differentiate ESCs into early NSCs. qRT-PCR analysis of early NSCs illustrated that they expressed key pluripotency genes Oct4 and Nanog, albeit at levels lower than non-differentiated ESCs, along with early neural markers Sox1 and Pax6.
Collapse
Affiliation(s)
- R V Pisal
- Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - J Mokry
- Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
13
|
Nguyen TMX, Vegrichtova M, Tlapakova T, Krulova M, Krylov V. The interconnection between cytokeratin and cell membrane-bound β-catenin in Sertoli cells derived from juvenile Xenopus tropicalis testes. Biol Open 2019; 8:bio.043950. [PMID: 31822471 PMCID: PMC6955214 DOI: 10.1242/bio.043950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sertoli cells (SCs) play a central role in the determination of male sex during embryogenesis and spermatogenesis in adulthood. Failure in SC development is responsible for male sterility and testicular cancer. Before the onset of puberty, SCs are immature and differ considerably from mature cells in post-pubertal individuals regarding their morphology and biochemical activity. The major intermediate filament (IF) in mature SCs is vimentin, anchoring germ cells to the seminiferous epithelium. The collapse of vimentin has resulted in the disintegration of seminiferous epithelium and subsequent germ cell apoptosis. However, another IF, cytokeratin (CK) is observed only transiently in immature SCs in many species. Nevertheless, its function in SC differentiation is poorly understood. We examined the interconnection between CK and cell junctions using membrane β-catenin as a marker during testicular development in the Xenopus tropicalis model. Immunohistochemistry on juvenile (5 months old) testes revealed co-expression of CK, membrane β-catenin and E-cadherin. Adult (3-year-old males) samples confirmed only E-cadherin expression; CK and β-catenin were lost. To study the interconnection between CK and β-catenin-based cell junctions, the culture of immature SCs (here called XtiSCs) was employed. Suppression of CK by acrylamide in XtiSCs led to breakdown of membrane-bound β-catenin but not F-actin and β-tubulin or cell-adhesion proteins (focal adhesion kinase and integrin β1). In contrast to the obvious dependence of membrane β-catenin on CK stability, the detachment of β-catenin from the plasma membrane via uncoupling of cadherins by Ca2+ chelator EGTA had no effect on CK integrity. Interestingly, CHIR99021, a GSK3 inhibitor, also suppressed the CK network, resulting in the inhibition of XtiSCs cell-to-cell contacts and testicular development in juvenile frogs. This study suggests a novel role of CK in the retention of β-catenin-based junctions in immature SCs, and thus provides structural support for seminiferous tubule formation and germ cell development. Summary: Cytokeratin (CK) and β-catenin are expressed in juvenile testicles and cultivated Xenopus tropicalis immature Sertoli cells (SC). Acrylamide and CHIR99021 disrupted the CK network, immature SC connections and testes development.
Collapse
Affiliation(s)
- Thi Minh Xuan Nguyen
- Charles University, Faculty of Science, Vinicna 7, 128 44, Prague 2, Czech Republic.,Department of Biotechnology, The University of Da-Nang, University of Science and Technology, 54 Nguyen Luong Bang, Da-Nang, 550000, Vietnam
| | - Marketa Vegrichtova
- Charles University, Faculty of Science, Vinicna 7, 128 44, Prague 2, Czech Republic
| | - Tereza Tlapakova
- Charles University, Faculty of Science, Vinicna 7, 128 44, Prague 2, Czech Republic
| | - Magdalena Krulova
- Charles University, Faculty of Science, Vinicna 7, 128 44, Prague 2, Czech Republic
| | - Vladimir Krylov
- Charles University, Faculty of Science, Vinicna 7, 128 44, Prague 2, Czech Republic
| |
Collapse
|
14
|
Liang S, Liang S, Zhou H, Yin N, Faiola F. Typical halogenated flame retardants affect human neural stem cell gene expression during proliferation and differentiation via glycogen synthase kinase 3 beta and T3 signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109498. [PMID: 31377521 DOI: 10.1016/j.ecoenv.2019.109498] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 05/18/2023]
Abstract
2',2',4,4'-tetrabromo diphenyl ether (BDE-47), one of the most abundant congeners of commercial pentaBDE utilized as flame retardants, has been phased out of production due to its potential neural toxicity and endocrine disrupting activities, and yet still present in the environment. Several alternatives to BDE-47, including tetrabromobisphenol A (TBBPA), tetrabromobisphenol S (TBBPS), tetrachlorobisphenol A (TCBPA) and decabromodiphenyl ether (BDE-209), are presently employed without restrictions and their potential toxic effects on human neural development are still unclear. In this study, we utilized a human neural stem cell (hNSC)-based system to evaluate the potential developmental neurotoxic effects of the above-mentioned five chemicals, at environment and human exposure relevant concentrations. We found that those compounds slightly altered the expression of hNSC identity markers (SOX2, SOX3 and NES), without impairing cell viability or proliferation, in part by either modulating glycogen synthase kinase 3 beta (GSK3β) signaling (TBBPS, TCBPA and BDE-47), and slightly disturbing the NOTCH pathway (TBBPA, TBBPS and TCBPA). Moreover, the five chemicals seemed to alter hNSC differentiation by perturbing triiodothyronine (T3) cellular signaling. Thus, our findings suggest that the five compounds, especially TBBPS, TCBPA, and BDE-47, may affect hNSC self-renewal and differentiation abilities and potentially elicit neural developmental toxicity.
Collapse
Affiliation(s)
- Shaojun Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengxian Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Shin WJ, Seo JH, Choi HW, Hong YJ, Lee WJ, Chae JI, Kim SJ, Lee JW, Hong K, Song H, Park C, Do JT. Derivation of primitive neural stem cells from human-induced pluripotent stem cells. J Comp Neurol 2019; 527:3023-3033. [PMID: 31173371 DOI: 10.1002/cne.24727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/23/2019] [Accepted: 05/30/2019] [Indexed: 12/27/2022]
Abstract
Human-induced pluripotent stem cells (hiPSCs) have facilitated studies on organ development and differentiation into specific lineages in in vitro systems. Although numerous studies have focused on cellular differentiation into neural lineage using hPSCs, most studies have initially evaluated embryoid body (EB) formation, eventually yielding terminally differentiated neurons with limited proliferation potential. This study aimed to establish human primitive neural stem cells (pNSCs) from exogene-free hiPSCs without EB formation. To derive pNSCs, we optimized N2B27 neural differentiation medium through supplementation of two inhibitors, CHIR99021 (GSK-3 inhibitor) and PD0325901 (MEK inhibitor), and growth factors including basic fibroblast growth factor (bFGF) and human leukemia inhibitory factor (hLIF). Consequently, pNSCs were efficiently derived and cultured over a long term. pNSCs displayed differentiation potential into neurons, astrocytes, and oligodendrocytes. These early NSC types potentially promote the clinical application of hiPSCs to cure human neurological disorders.
Collapse
Affiliation(s)
- Woo Jung Shin
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Republic of Korea
| | - Hyun Woo Choi
- Department of Animal Science, College of Agricultural Life Science, Chonbuk National University, Jeonbuk, Republic of Korea
| | - Yean Ju Hong
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Won Ji Lee
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Jung Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Republic of Korea
| | - Sung Joo Kim
- Department of Molecular Medicine and Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jeong Woong Lee
- Research Center of Integrative Cellulomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Wang Z, Yuan Y, Zhang Z, Ding K. Inhibition of miRNA-27b enhances neurogenesis via AMPK activation in a mouse ischemic stroke model. FEBS Open Bio 2019; 9:859-869. [PMID: 30974042 PMCID: PMC6487723 DOI: 10.1002/2211-5463.12614] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 12/31/2022] Open
Abstract
Stroke is a leading cause of death and disability, but treatment options remain limited. Recent studies have suggested that cerebral ischemia‐induced neurogenesis plays a vital role in post‐stroke repair. Overactivation of AMP‐activated protein kinase (AMPK), a master sensor of energy balance, has been reported to exacerbate neuron apoptosis, but the role of chronic AMPK stimulus in post‐stroke recovery remains unclear. MicroRNAs have emerged as regulators of neurogenesis and have been reported to be involved in neurological function. In this study, we verified that miR‐27b directly targets AMPK and inhibits AMPK expression. In cultured neural stem cells, miR‐27b inhibitor improved proliferation and differentiation via the AMPK signaling pathway, but did not have an obvious effect on cell viability under oxygen and glucose deprivation conditions. In a mouse middle cerebral artery occlusion model, administration of miR‐27b inhibitor significantly enhanced behavioral function recovery and spatial memory. Up‐regulation of neurogenesis was observed both in the subventricular zone and in the hippocampal dentate gyrus. Collectively, our data suggest that miR‐27b inhibition promotes recovery after ischemic stroke by regulating AMPK activity. These findings may facilitate the development of novel therapeutic strategies for stroke.
Collapse
Affiliation(s)
- Zhengang Wang
- Department of Neurosurgery, Affiliated Hospital of Weifang Medical University, China
| | - Yimei Yuan
- Department of Neurosurgery, Affiliated Hospital of Weifang Medical University, China
| | - Zhaoguang Zhang
- Department of Ultrasonography, Affiliated Hospital of Weifang Medical University, China
| | - Kuiying Ding
- Technology Center, Weifang Entry-exit Inspection and Quarantine Bureau, China
| |
Collapse
|
17
|
Treatment of melanoma with selected inhibitors of signaling kinases effectively reduces proliferation and induces expression of cell cycle inhibitors. Med Oncol 2017; 35:7. [PMID: 29214525 PMCID: PMC5719123 DOI: 10.1007/s12032-017-1069-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/30/2017] [Indexed: 01/01/2023]
Abstract
Cancer treatment often tends to involve direct targeting enzymes essential for the growth and proliferation of cancer cells. The aim of this study was the recognition of the possible role of selected protein kinases: PI3K, ERK1/2, and mTOR in cell proliferation and cell cycle in malignant melanoma. We investigated the role of protein kinase inhibitors: U0126 (ERK1/2), LY294002 (PI3K), rapamycin (mTOR), everolimus (mTOR), GDC-0879 (B-RAF), and CHIR-99021 (GSK3beta) in cell proliferation and expression of crucial regulatory cell cycle proteins in human melanoma cells: WM793 (VGP) and Lu1205 (metastatic). They were used either individually or in various combinations. The study on the effect of signaling kinases inhibitors on proliferation—BrdU ELISA test after 48–72 h. Their effect on the expression of cell cycle regulatory proteins: cyclin D1 and D3, cyclin-dependent kinase CDK4 and CDK6, and cell cycle inhibitors: p16, p21, and p27, was studied at the protein level (western blot). Treatment of melanoma cells with protein kinase inhibitors led to significantly decreased cell proliferation except the use of a GSK-3β kinase inhibitors—CHIR-99021. The significant decrease in the expression of selected cyclins and cyclin-dependent kinases (CDKs) with parallel increase in the expression of some of cyclin-dependent kinases inhibitors and in consequence meaningful reduction in melanoma cell proliferation by the combinations of inhibitors of signaling kinases clearly showed the crucial role of AKT, ERK 1/2, and mTOR signal transduction in melanoma progression. The results unanimously indicate those pathways as an important target for treatment of melanoma.
Collapse
|